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Abstract. We study L2 and Sobolev estimates for solutions of the Cauchy-Riemann
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1. Introduction

Since the fundamental work of Kohn ([23, 24]) for the ∂-Neumann problem on smooth
bounded strongly pseudoconvex domains in Cn and that of Hörmander ([20]) on L2-
estimates of the Cauchy-Riemann operator on bounded pseudoconvex domains in Cn,
there has been tremendous progress on L2-Sobolev theory of the ∂-operator and the ∂-
Neumann problem for bounded pseudoconvex domains in Cn (see, for example, monographs
[11, 21, 8, 36] for expositions on the subject). One of the most important results is the
Sobolev estimates for bounded smooth pseudoconvex domains in Cn (see [25]). For s ≥ 0,
let Hp,q

W s(Ω) be the Dolbeault cohomology with Sobolev W s coefficients defined by

Hp,q
W s(Ω) =

{f ∈W s
p,q(Ω) | ∂f = 0}

{f ∈W s
p,q(Ω) | f = ∂u, u ∈W s

p,q−1(Ω)}
.

Theorem 1.1 (Kohn). Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary. For every 0 ≤ p ≤ n, 0 < q < n and s ≥ 0,

(1.1) Hp,q
W s(Ω) = 0.

The theory is less developed for domains in the complex projective space CPn. The L2-
Sobolev theory of Kohn [25] or Hörmander [20] does not readily generalize to pseudoconvex
domains in CPn, since there is no strictly plurisubharmonic function that can be used
as a weight in CPn. On the other hand, the Fubini-Study metric on CPn has a positive
holomorphic bisection curvature which can be used to study these problems. In this paper,
we discuss some methods and results on L2 and Sobolev estimates on pseudoconvex and
pseudoconcave domains in CPn.

The plan of the paper is as follows: In Section 2 we discuss the ∂-Neumann problem
for pseudoconvex domains in CPn. As an application, we give an alternative approach to
Hörmander’s L2 existence theorems for bounded domains in Cn using Bochner-Kodaira-
Morrey-Kohn formula and the curvature property of the Fubini-Study metric, but without
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using weights (see Corollary 2.4). In Section 3, we discuss the L2 theory for ∂ on Lipschtiz
pseudoconvex domains in CPn. The results in this section is known when the domain has
C2-smooth boundary (see [2] or [4]). There is some necessary modification when gener-
alizing this result to Lipschitz domains. In Section 4, we examine the W 1 estimates on
pseudoconcave domains. We show that the range of ∂ in W 1(Ω) is closed for all degrees,
including the critical case when q = n − 1. Notice that on a pseudoconcave domain, the
cohomology for q = n− 1 is Hausdorff and infinite dimensional (see [22] and [32, 33]). This
can be used to characterize annuli domains in Cn (see [13]). In Section 5, we discuss the ∂
operator in the Hilbert space W s setting and prove duality results. In the L2 setting, this
is done in earlier work (see [20] or [8]). Though Sobolev estimates for ∂ on pseudoconvex
domains in CPn remain an open problem, we hope the duality results, Theorems 5.12 and
5.13, will shed some light on this intriguing problem (see Remark at the end of Section 5).

2. Fubini-Study metric and the ∂ problem in Cn

Let (X,ω) be an n-dimensional Kähler manifold with Kähler form

ω = − i
2

n∑
α,β=1

hαβ̄dzα ∧ dz̄β

in local holomorphic coordinates and the associated hermitian metric h. The volume form
of X is then given by dV = ωn/n!. Let ∇ be the Levi-Civita connection for the associated
Riemannian metric g = Re h, which is identical to the Chern connection on the holomorphic
tangent bundle T 1,0X due to the Kähler condition. We will use | · |ω and 〈·, ·〉ω to denote
respectively the pointwise norm and inner product induced by ω. (Hereafter, we will identify
Kähler form with the associated hermitian metric. We might drop the subscript ω when it
is clear from the context.) Let

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

be the curvature tensor, extended to be C-linear and to act on tensors of any type. The
curvature tensor is then given by

Rαβ̄γδ̄ = h(R(
∂

∂zγ
,

∂

∂z̄δ
)
∂

∂z̄β
,

∂

∂zα
)(2.1)

=
∂2hαβ̄
∂zγ∂z̄δ

−
∑
ε,τ

hε̄τ
∂hαε̄
∂zγ

∂hτ β̄
∂z̄δ

(2.2)

where hε̄τ denotes the inverse of hτ ε̄.
Let L1, . . . , Ln be a local orthonormal frame field of type (1, 0) and ω1, . . . , ωn be the

coframe field. For a (p, q)-form u, we set

〈Θu, u〉 =
n∑

j,k=1

〈ω̄j ∧
(
L̄kyR(Lj , L̄k)u

)
, u〉,

where y is the usual contraction operator. For a C2-smooth function ϕ, we set

〈(∂∂ϕ)u, u〉 =

n∑
j,k=1

∂∂ϕ(Lj , L̄k)〈L̄jyu, L̄kyu〉.

Let Ω be a relatively compact domain in X with C2-smooth boundary bΩ. Let ρ(z)
be the signed distance function from z to bΩ such that ρ(z) = −d(z, bΩ) for z ∈ Ω and
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ρ(z) = d(z, bΩ) when z ∈ X \Ω. Let ϕ be a real-valued C2 function on Ω. Let L2
p,q(Ω, e

−ϕ)
is the space of (p, q)-forms u on Ω such that

‖u‖2ϕ =

∫
Ω
|u|2ωe−ϕdV <∞.

We will also use (·, ·)ϕ to denote the associated inner product. Let ∂
∗
ϕ be the adjoint of the

maximally defined ∂ : L2
p,q(Ω, e

−ϕ) → L2
p,q(Ω, e

−ϕ). We now recall an integration by parts
formula due to Bochner, Kodaira, Morrey, Kohn, and Hörmander that is basic to the study
of the complex Laplacian. With the above notations, we can now state the following Basic
Identity (see [38, 34, 4]).

Theorem 2.1 (Bochner-Kodaira-Morrey-Kohn-Hörmander). Let Ω be a relatively
compact domain in a Kähler manifold X with C2-smooth boundary bΩ. For any u ∈
C1
p,q(Ω) ∩ dom (∂

∗
), we have

(2.3) ‖∂u‖2ϕ + ‖∂∗ϕu‖2ϕ = ‖∇u‖2ϕ + +(Θu, u)ϕ + ((∂∂ϕ)u, u)ϕ +

∫
bΩ
〈(∂∂ρ)u, u〉e−ϕdS

where dS is the induced surface element on bΩ and |∇u|2 =
∑n

j=1 |∇L̄j
u|2.

The Kähler form associated with the Fubini-Study metric gFS on the complex projective
space CPn is given by

ωFS = i∂∂ log(1 + |z|2)(2.4)

= i
n∑

α,β=1

gαβ̄(z) dzα ∧ dz̄β(2.5)

in local inhomogeneous coordinates, where

(2.6) gαβ̄(z) =
∂2 log(1 + |z|2)

∂zα∂z̄β
=

(1 + |z|2)δαβ̄ − z̄αzβ
(1 + |z|2)2

.

The volume form is then

(2.7) dVFS = det(gαβ̄(z))dVE =
1

(1 + |z|2)n+1
dVE

where dVE is the Euclidean volume form. The curvature tensor is then given by

Rαβ̄γδ̄ = gαβ̄gγδ̄ + gαδ̄gβ̄γ .

It follows that the complex projective space CPn with the Fubini-Study metric has constant
holomorphic sectional curvature 2 and its holomorphic bisectional curvature is bounded
between 1 and 2. Furthermore, we have that if u is a (p, q)-form on CPn with q ≥ 1, then

(2.8) 〈Θu, u〉 = 0, if p = n; 〈Θu, u〉 ≥ 0, if p ≥ 1;

and

(2.9) 〈Θu, u〉 = q(2n+ 1)|u|2 if p = 0.

For a proof of these results, see [38] or Proposition A.5 in the Appendix in [4].

Proposition 2.2. Let Ω be a pseudoconvex domain in CPn with C2 boundary and 1 ≤ q ≤
n− 1. Let ϕ be a plurisubharmonic function on Ω. Then

(2.10) ‖∂u‖2ϕ + ‖∂∗ϕu‖2ϕ ≥ q(2n+ 1)‖u‖2ϕ
for any (0, q)-form u ∈ dom (∂) ∩ dom (∂

∗
ϕ).
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Proof. This is a direct consequence of the curvature property (2.9) and (2.3):

‖∂u‖2ϕ + ‖∂∗ϕu‖2ϕ = ‖∇u‖2ϕ + (Θu, u)ϕ + ((∂∂ϕ)u, u)ϕ +

∫
bΩ
〈(∂∂ρ)u, u〉e−ϕdS(2.11)

≥ (Θu, u)ϕ ≥ q(2n+ 1)‖u‖2ϕ.
�

Theorem 2.3. Let Ω be a pseudoconvex domain in CPn such that Ω 6= CPn and 1 ≤
q ≤ n − 1. Let ϕ be a plurisubharmonic function on Ω. For any ∂-closed (0, q)-form
f ∈ L2

0,q(Ω, e
−ϕ), there exists a (0, q − 1)-form u ∈ L2

0,q−1(Ω, e−ϕ) such that ∂u = f with

(2.12) ‖u‖2ϕ ≤
1

q(2n+ 1)
‖f‖2ϕ.

Proof. If Ω has C2 boundary, estimate (2.12) is then a consequence of (2.11). The general
case is then proved by exhausting Ω from inside by pseudoconvex domains with smooth
boundaries. �

Corollary 2.4. Let Ω be a bounded pseudoconvex domain in Cn with diameter δ, where
δ = supz,z′∈Ω |z − z′|. Then for any f ∈ L2

p,q(Ω) with ∂f = 0, there is a (p, q − 1)-form

u ∈ L2
(p,q−1)(Ω) such that ∂u = f with

(2.13) ‖u‖2 ≤ Cn,qδ2‖f‖
where Cn,q is a constant depending only on n and q, but is independent of Ω.

Proof. We may assume that p = 0. First we assume that Ω has C2 boundary and its
diameter δ < 1. The estimate (2.13) follows from (2.11). The general case can be obtained
by exhausting Ω by smooth subdomains with C2 boundary.

For general bounded domain Ω with radius δ, the estimate (2.13) follows from scaling
argument. �

Remark. Corollary 2.4 is a weaker version of the Hörmander’s L2 theory (see [20]), where
he proves the L2 existence with estimate (2.13) with cn,q = e/q, which is independent of n.

3. L2 theory for ∂ on Lipschitz pseudoconvex domains in CPn

The following theorem is based on an earlier result of Berndtsson and Charpentier [2,
Theorem 2.3] (see also [18, 4]).

Theorem 3.1. Let (X,ω) be a Kähler manifold of dimension n. Assume that the curvature
operator Θ is semi-positive on (p, q)-forms for all 1 ≤ q ≤ n. Let Ω be a Stein domain in
X. Suppose that there exist a distance function ρ < 0 and a constant η > 0 such that

−i∂∂(−ρ)η ≥ ηK(−ρ)ηω

on Ω for some constant K > 0. Then the ∂-Neumann Laplacian � has a bounded inverse
N on L2

p,q(Ω) and for u ∈ Dom(∂) ∩Dom(∂
∗
),

(3.1) ‖∂u‖2 + ‖∂∗u‖2 ≥ qηK

4
‖u‖2.

Furthermore, the operator N is bounded from W s
p,q(Ω)→W s

p,q(Ω) with

(3.2) ‖∂∗Nu‖2s ≤ Cη‖u‖2s; ‖∂Nu‖2s ≤ Cη‖u‖2s.
for any u ∈W s

p,q(Ω) with 0 < s < η/2.



5

Proof. For any sufficiently small ε > 0, by Richberg’s theorem, there exists σ ∈ C∞(Ω)
such that

−(−ρ)η ≤ σ ≤ −(1− ε)(−ρ)η and − i∂∂σ ≥ (1− ε(−ρ)η)ηK(−ρ)ηω.

Let ρ̃ = −(−σ)1/η. Then ρ̃ ∈ C∞(Ω), ρ̃ < 0 and

(3.3) −i∂∂(−ρ̃)η ≥ (1− ε(−ρ)η)ηK(−ρ̃)ηω

Let f be a ∂-close form in L2
p,q(Ω). Let Ωj ⊂⊂ Ω be an increasing sequence of smooth

bounded pseudoconvex domains whose union is Ω. Let 0 < r < 1 be a constant to be
chosen and let ϕ = −rη log(−ρ̃). It then follows from (3.3) that

(3.4) i∂ϕ ∧ ∂ϕ ≤ ri∂∂ϕ and i∂∂ϕ ≥ (1− εCηj )rηKω

on Ωj , where Cj = max{−ρ(z) | z ∈ Ωj}. Let α ∈ (0, η). Applying (2.3) to Ωj with weight
ϕ, and using the semi-positivity condition on the curvature operator Θ, we then have

(3.5) ‖∂u‖2ϕ,Ωj
+ ‖∂∗ϕu‖2ϕ,Ωj

≥ ((∂∂ϕ)u, u)ϕ

for any u ∈ C1
p,q(Ωj) ∩ dom (∂

∗
Ωj

). By Demailly’s formulation of Hörmander’s L2-estimates

(see [9, Theorem 4.1]), that there exists uj ∈ L2
p,q−1(Ω, e−ϕ) such that ∂uj = f and

(3.6)

∫
Ωj

|uj |2e−ϕ dV ≤
∫

Ωj

|f |2
i∂∂ϕ

e−ϕ dV

Let uj be the solution that is orthogonal to N (∂), the nullspace of ∂, in L2(Ωj , e
−ϕ). Let

vj = uje
ϕ. Then vj ⊥ N (∂) in L2(Ωj , e

−2ϕ). Applying (3.6) with the weight ϕ replaced by
2ϕ, we then have ∫

Ωj

|vj |2e−2ϕ dV ≤
∫

Ωj

|∂vj |22i∂∂ϕe
−2ϕ dV

Thus

(3.7)

∫
Ωj

|uj |2 dV ≤
∫

Ωj

|∂uj + ∂ϕ ∧ u|2
2i∂∂ϕ

dV.

By the Cauchy-Schwarz inequality,

|∂uj + ∂ϕ ∧ uj |22i∂∂ϕ ≤ (1 + 1/t)|∂uj |22i∂∂ϕ + (1 + t)|∂ϕ ∧ uj |22i∂∂ϕ
≤ (1 + 1/t)|∂uj |22i∂∂ϕ + (1 + t)|∂ϕ|2

2i∂∂ϕ
|uj |2

≤ 1 + 1/t

2qrηK(1− εCηj )
|∂uj |2 +

(1 + t)r

2
|uj |2.

Here in the last inequality, we have used (3.3). It then follows from (3.7) that∫
Ωj

|uj |2 dV ≤
1 + 1/t

(1− (1 + t)r/2)r
· 1

2qηK(1− εCηj )

∫
Ωj

|∂uj |2

We now take t = 1 and r = 1/2 to minimize the first factor on the right-hand side of the
above inequality. By choosing a sequence of ε → 0 and letting j → ∞, we then obtain
u ∈ L2

p,q(Ω) as a weak limit of a subsequence of {uj} such that ∂u = f and∫
Ω
|u|2 dV ≤ 4

qηK

∫
Ω
|f |2 dV.

This yields the basic estimate (3.1). The basic estimate (3.1) implies the existence of
the ∂-Neumann operators for all degrees (see [20] or [8]). The first part of the inequality
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(3.2) follows from [2] and the second part follows from [4]. The boundedness of N follows
from (3.2) �

Let ωFS be the Kähler form associated with the Fubini-Study metric on CPn. Let Ω be
a (proper) pseudoconvex domain in CPn with C2-smooth boundary. Let δ(z) = d(z, bΩ)
be the distance, with respect to the Fubini-Study metric, from z to the boundary bΩ. Let
Ωε = {z ∈ Ω | δ(z) > ε}. It then follows from Takeuchi’s theorem [37] that there exists a
universal constant K0 > 0 such that

(3.8) i∂∂(− log δ) ≥ K0ωFS

on Ω. In particular, there exists ε0 > 0 such that

(3.9) ∂∂(−δ)(ζ, ζ) ≥ K0ε|ζ|2ωFS

for all ζ ∈ T 1,0
x (bΩε) for 0 ≤ ε ≤ ε0. (See [15, 5] for different proofs of Takeuchi’s theorem.)

Obsawa and Sibony [30] showed–as a consequence of Takeuchi’s theorem–that, there exists
0 < η ≤ 1 such that

(3.10) i∂∂(−δη) ≥ KηδηωFS

on Ω for some constant K > 0. (See [5, Proposition 2.3] and [4, Lemma 2.2] for a more
streamlined proof of this fact.) Such a constant η is called a Diederich-Fornæss exponent
of Ω (see [10]). We refer the reader to [17] for similar results when the boundary is only
Lipschitz, and to [14, 1] for relevant results on the Diederich-Fornæss exponent and nonexis-
tence of Levi-flat hypersurfaces in complex manifolds. Combining (3.10) with Theorem 3.1,
we then have:

Theorem 3.2. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary. Then
for 0 ≤ p ≤ n and 1 ≤ q < n, the ∂-Neumann Laplacian � has a bounded inverse N on
L2
p,q(Ω). Furthermore, we have N , ∂

∗
N ∂N and the Bergman projection B = I − ∂∗N∂

are all exact regular on W s
p,q(Ω) for all s < η0

2 .

We remark that if the boundary is smooth, it follows from [26] that there exists s > 0
such that Theorem 3.2 holds.

The following proposition is a consequence of the above L2-theory for ∂ on CPn. Its
proof follows the same lines of arguments as those in [16, 9, 18, 4] when the boundary is
C2-smooth.

Proposition 3.3. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary. Then
the L2 holomorphic (n, 0)-forms in L2

n,0(Ω) 6= {0}. Furthermore, L2 Holomorphic (n, 0)-
forms separate points.

Remark. Both Theorem 3.2 and Proposition 3.3 might not hold if we drop the Lips-
chitz condition. Let Ω be a pseudoconvex domain in CPn, not necessarily with Lips-
chitz boundary. Using Theorem 2.3, we still have that �0,q has an inverse N0,q where
N0,q : L2

0,q(Ω)→ L2
0,q(Ω).

When p > 0, it is not known if �p,q : L2
p,q(Ω) → L2

p,q(Ω) has closed range (see related

results in [28] on the Hartogs triangle in CP2). The reason is that when p > 0, the curvature
term (2.8) is only nonnegative. Thus p plays a role for domains in CPn, in contrast to
Corollary 2.4 for bounded pseudoconvex domains in Cn.
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4. W 1 estimates for ∂ on pseudoconcave domains

Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary. Let ∂ : L2
p,q−1(Ω)→

L2
p,q(Ω) be the weak maximal L2 closure of ∂ and its Hilbert space adjoint is denoted by

∂
∗
. Let

∂c : L2
p,q−1(Ω)→ L2

p,q(Ω)

be the minimal (strong) closure of ∂. By this we mean that f ∈ Dom(∂c) if and only if that
there exists a sequence of smooth forms fν in C∞p,n−1(Ω) compactly supported in Ω such

that fν → f and ∂fν → ∂f in L2. It is easy to see that (see [7])

∂c = − ∗ ∂∗∗,
where ∗ : Λp,q → Λn−p,n−q is the Hodge star operator defined by

〈φ, ψ〉dV = φ ∧ ∗ψ.

It is well-known that ∂ has closed range if and only if ∂
∗

has closed range (see [20] or Lemma
4.1.1 in [8]). By using the Hodge star operator, we have that the operator ∂ : L2

p,q−1(Ω)→
L2
p,q(Ω) has closed range if and only if ∂c : L2

n−p,n−q(Ω)→ L2
n−p,n−q+1(Ω) has closed range

(see [7]).

Lemma 4.1. Let Ω be a pseudoconvex domain with Lipschitz boundary in CPn. We have

Hp,q
L2 (Ω) ∼= Hn−p,n−q

c,L2 (Ω) = {0}, q 6= 0.

Proof. Using Theorem 3.2, ∂ has closed range in L2
p,q(Ω) for all degrees. Thus from the L2

Serre duality proved in [7], the lemma follows. �

Proposition 4.2. Let Ω be a pseudoconvex domain with Lipschitz boundary in CPn, n ≥ 3.
Suppose that f ∈ L2

p,q(Ω), where 0 ≤ p ≤ n and 1 ≤ q < n. Assuming that ∂f = 0 in CPn

with f = 0 outside Ω. Then there exists u ∈ L2
p,q−1(Ω) with u = 0 outside Ω satisfying

∂̄u = f in the distribution sense in CPn.
For q = n, if f satisfies the compatibility condition

(4.1)

∫
Ω
f ∧ φ = 0, φ ∈ L2

n−p,0(Ω) ∩Ker(∂),

then the same conclusion holds.

Proof. Since the boundary is Lipschtiz, we have that solving ∂c is the same as solving ∂
with prescribed support in Ω (see Lemma 2.3 in [27]). The proposition then follows from
Lemma 4.1. �

Let Ω+ be the complement of Ω defined by

Ω+ = CPn \ Ω.

Then the domain Ω+ is a pseudoconcave domain with Lipschitz boundary. The L2-theory
for ∂ on Ω+ is not known in general, unless Ω ⊂ Cn (see [31] , [32] or [13]). However,
estimates for the ∂-equation in Sobolev spaces W 1(Ω+) can be obtained from the L2-
existence theory of ∂ in Ω.

Theorem 4.3. Let Ω be a pseudoconvex domain with Lipschitz boundary CPn and let
Ω+ = CPn \ Ω. For any ∂-closed f ∈ W 1

p,q(Ω
+), where 0 ≤ p ≤ n, 0 ≤ q < n − 1, there

exists F ∈ L2
p,q(CPn) with F |Ω+ = f and ∂F = 0 in CPn in the distribution sense.



8 SIQI FU AND MEI-CHI SHAW

Proof. The theorem is already proved when the boundary is C2 in [4]. Since Ω has Lipschitz
boundary, there exists a bounded extension operator from W 1(Ω+) to W 1(CPn) (see, e.g.,

[35]). Let f̃ ∈ W 1
p,q(CPn) be the extension of f so that f̃ |Ω+ = f with ‖f̃‖W 1(CPn) ≤

C‖f‖W 1(Ω+). We have ∂f̃ ∈ L2
p,q+1(Ω).

From Proposition 4.2, there exists uc with compact support in Ω such that ∂uc = ∂f̃ in
CPn. Define

(4.2) F = f̃ − uc.
Then F ∈ L2

p,q(CPn) and F is a ∂-closed extension of f . �

Corollary 4.4. Let Ω+ be a pseudoconcave domain in CPn with Lipschitz boundary, where
n ≥ 2. Then W 1

p,0(Ω+) ∩Ker(∂) = {0} for every 1 ≤ p ≤ n and W 1(Ω+) ∩Ker(∂) = C.

Proof. Using Theorem 4.3 for q = 0, we have that any holomorphic (p, 0)-form on Ω+

extends to be a holomorphic (p, 0) in CPn, which are zero (when p > 0) or constants (when
p = 0). �

Corollary 4.5. Let Ω+ be a pseudoconcave domain in CPn with Lipschitz boundary, where
n ≥ 3. For any ∂-closed f ∈W 1

p,q(Ω
+), where 0 ≤ p ≤ n, 1 ≤ q < n− 1, p 6= q, there exists

u ∈W 1
p,q−1(Ω+) with ∂u = f in Ω+.

Proof. Let F ∈ L2
p,q(CPn) be the ∂̄-closed extension of f from Ω to CPn. Since Hp,q(CPn) =

{0}, there exists u ∈ L2
p,q−1(Ω) such that ∂̄u = F on CPn. By the elliptic theory of the

∂̄-complex on compact complex manifolds, one can choose such a solution u ∈W 1
p,q−1(CPn).

�

Next we discuss the situation for the critical degree q = n − 1 on Ω+. For q = n − 1,
there is an additional compatibility condition for the ∂-closed extension of (p, n− 1)-forms
from Ω+ to the whole space CPn. This case differs from the others since the cohomology
group does not vanish in general (see [13]). We first derive the compatibility condition for
the extension of ∂-closed forms when q = n− 1.

Lemma 4.6. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary and let
Ω+ = CPn \ Ω. For any f ∈W 1

p,n−1(Ω+) and φ ∈ L2
n−p,0(Ω) ∩Ker(∂), the pairing

(4.3)

∫
bΩ+

f ∧ φ

is well-defined.

Proof. Since the boundary is Lipschitz, any function in W 1(Ω+) has a trace in W
1
2 (bΩ+).

Also Holomorphic L2 functions or forms have trace in W−
1
2 (bΩ). The pairing (4.3) is well-

defined follows from these known facts on Lipschtiz domains. Since we cannot find an exact
reference, We will give a proof using the Friedrichs lemma.

Since the boundary is Lipschitz, it follows that smooth forms up to the boundary are
dense in the graph norm of ∂ since the boundary is Lipschitz (see [20] or Lemma 4.3.2 in
[8]). For any ∂-closed (holomorphic) (n− p, 0)-form φ with L2(Ω) coefficients, there exists
a sequence φν ∈ C∞n−p,0(Ω) such that φν → φ and ∂φν → 0 in L2(Ω).

Let f̃ ∈W 1
p,n−1(CPn) be a bounded extension of f . We have

(4.4)

∫
bΩ
f ∧ φν =

∫
Ω
∂(f̃ ∧ φν) =

∫
Ω
∂f̃ ∧ φν ±

∫
Ω
f̃ ∧ ∂φν →

∫
Ω
∂f̃ ∧ φ.
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Thus the limit on the left-hand-side of (4.4) exists and is independent of the approximating

sequence {φν} that we choose. It is also independent of the extension function f̃ . To see

this, let f̃1 ∈W 1
p,n−1(CPn) be another bounded extension of f . We have f̃ − f̃1 = f −f = 0

on bΩ. Thus

(4.5) 0 =

∫
bΩ

(f̃ − f̃1) ∧ φν =

∫
Ω
∂((f̃ − f̃1) ∧ φν)→

∫
Ω
∂f̃ ∧ φ−

∫
Ω
∂f̃1 ∧ φ.

Hence the pairing ∫
bΩ
f ∧ φ = lim

ν→∞

∫
bΩ
f ∧ φν =

∫
Ω
∂f̃ ∧ φ

is well-defined.
The lemma is proved. �

Theorem 4.7. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary and let
Ω+ = CPn \ Ω. For any ∂-closed f ∈ W 1

p,n−1(Ω+), where 0 ≤ p ≤ n and p 6= n − 1, the
following conditions are equivalent:

(1) The restriction of f to bΩ+ satisfies the compatibility condition

(4.6)

∫
bΩ+

f ∧ φ = 0, φ ∈ L2
n−p,0(Ω) ∩Ker(∂).

(2) There exists F ∈ L2
p,n−1(CPn) such that F |Ω = f in Ω+ and ∂F = 0 in CPn in the

sense of distribution.
(3) There exists u ∈W 1

p,n−2(Ω+) satisfying ∂u = f in Ω+.

Proof. We first prove that (1) implies (2). Suppose that f satisfies the condition (4.6). Using

the same notation as in the proof of Theorem 4.3, we first extend f to f̃ ∈ W 1
p,n−1(CPn).

Then the form ∂f̃ is in L2
p,n(Ω). It follows from (4.6) that∫

Ω
∂f̃ ∧ φ =

∫
bΩ
f ∧ φ = 0

for every φ ∈ L2
n−p,0(Ω) ∩ Ker(∂). Thus condition (4.1) is satisfied. Using Proposition 4.2

for q = n, there exists uc with compact support in Ω such that ∂uc = ∂f̃ in CPn. Then
F = f̃ − uc is an L2 ∂-closed extension of f to CPn. This proves that (1) implies (2).

To show that (2) implies (3), one can solve F = ∂U for some U ∈W 1
p,n−2(CPn) since we

assume that p 6= n − 1. Let u = U on Ω, we have u ∈ W 1
p,n−2(Ω) satisfying ∂u = f in Ω.

Thus (2) implies (3).
Finally, we prove that (3) implies (1). Suppose that f = ∂u with u ∈ W 1

p,n−2(Ω+). The

trace of u on the boundary has coefficients in W
1
2 (bΩ). We have for any φ ∈ L2

n−p,0(Ω) ∩
Ker(∂), we claim that

(4.7)

∫
bΩ+

f ∧ φ =

∫
bΩ+

∂u ∧ φ = 0.

The integration by parts is justified by an approximation arguments. Since the boundary is
Lipschitz, from Friedrichs’s Lemma, we can approximate φ by smooth forms φν ∈ C∞(Ω)
such that φν → φ in L2

n−p,0(Ω) and ∂φν → 0 in L2
n−p,1(Ω). Thus we have

(4.8)

∫
bΩ+

f ∧ φ = lim
ν→∞

∫
bΩ+

∂u ∧ φν = lim
ν→∞

(−1)p+n−2

∫
bΩ+

u ∧ ∂φν → 0.

This proves that (3) implies (1). �
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Theorem 4.8. Let Ω ⊂⊂ CPn be a pseudoconvex domain with Lipschitz boundary and let
Ω+ = CPn \ Ω. Then ∂ : W 1

p,n−2(Ω+)→W 1
p,n−1(Ω+) has closed range, where 0 ≤ p ≤ n.

Proof. Let f be a ∂-closed (p, n− 1)-form in W 1
p,n−1(Ω+). Suppose that f is in the closure

of the range of ∂ : W 1
p,n−2(Ω+) → W 1

p,n−1(Ω+). There exists a sequence uν ∈ W 1
p,n−2(Ω+)

such that ∂uν → f in W 1
p,n−1(Ω+). It suffices to show that there exists u ∈ W 1

p,n−2(Ω+)

such that ∂u = f .
From Theorem 4.7, it suffices to show that the condition (4.6) is satisfied for every

φ ∈ L2
n−p,0(Ω) ∩Ker(∂). This follows from

(4.9)

∫
bΩ+

f ∧ φ = lim
ν→∞

∫
bΩ+

∂uν ∧ φ = lim
ν→∞

(−1)p+n−2

∫
bΩ+

uν ∧ ∂φ = 0.

Thus f = ∂u for some u ∈W 1
p,n−2(Ω+). Thus the range of ∂ is closed in W 1

p,n−1(Ω+).
�

For k ≥ 0, we define the Dolbeault cohomology Hp,q
Wk(Ω+) with W k(Ω+)-coefficients by

Hp,q
Wk(Ω+) =

{f ∈W k
p,q(Ω

+) | ∂f = 0}
{f ∈W k

p,q(Ω
+) | f = ∂u, u ∈W k

p,q−1(Ω+)}
.

Similarly, Hp,0
Wk(Ω+) is defined to be the space of (p, 0)-forms with holomorphic coefficients

in W k(Ω). When k = 0, we use Hp,q
L2 (Ω+) to denote the L2 Dolbeault cohomology.

Corollary 4.9. Let Ω+ be the same as in Theorem 4.8.

• If 0 ≤ q < n− 1 and p 6= q, Hp,q
W 1(Ω+) = 0.

• When p 6= n− 1, the space Hp,n−1
W 1 (Ω+) is Hausdorff and infinite dimensional.

Proof. When q 6= n − 1, the corollary follows from Corollary 4.5 for q > 0 and Corollary
4.4 when q = 0.

When q = n − 1, the Hausdorff property of Hp,n−1
W 1 (Ω+) follows from Theorem 4.8. It

remains only to prove that it is infinite dimensional.
Let f ∈W 1

p,n−1(Ω) and ∂f = 0. We define a pairing between Hp,n−1
W 1 (Ω) and Hn−p,0

L2 (Ω−)

(4.10) l : Hp,n−1
W 1 (Ω+)×Hn−p,0

L2 (Ω)

by

(4.11) l([f ], h) =

∫
bΩ+

f ∧ h.

It is easy to see that the pairing (4.10) is well-defined. If f satisfies the condition∫
bΩ+

f ∧ φ = 0, φ ∈ L2
n−p,0(Ω) ∩Ker(∂),

there exists a solution u ∈W 1
p,n−2(Ω) satisfying ∂u = f . This implies that [f ] = 0.

Thus l is a one-to-one map from Hp,n−1
W 1 (Ω+) to Hn−p,0

L2 (Ω)′, the bounded linear functional

on Hn−p,0
L2 (Ω). The space Hn−p,0

L2 (Ω) is infinite dimensional from Proposition 3.3. We have

that Hp,n−1
W 1 (Ω+) is infinitely dimensional. Since it is a Hilbert space, it is isomorphic to

Hn−p,0
L2 (Ω). �
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Remark. The space of L2 harmonic forms for the critical degree q = n− 1 on an annulus
between two concentric balls or strongly pseudoconvex domains in Cn has been computed
in [22]. This has been generalized to annulus between two pseudoconvex domains in Cn
in [32, 33]. We also remark that the conditions on the cohomology groups can be used to
characterize domains with holes with Lipschtiz boundary in Cn (see [13]).

When the domain Ω ⊂ CPn is pseudoconconcave with C2 boundary, W 1 estimates for ∂
were obtained earlier in [4] when q < n− 1 (see also [6]).

5. Extensions of ∂ in Sobolev spaces and duality

In this section we will formulate the ∂ operator in Sobolev spaces and study its duality.
Let Ω be a bounded domain with Lipschitz boundary in a complex hermitian manifold X.
We first extend the ∂ problem and its dual from L2(Ω) to Sobolev spaces W s(Ω) for s > 0.
We restrict ourselves to domains with Lipschitz boundary so that the space W s(Ω) can be
identified as the restriction from W s(X) to W s(Ω) (see e.g., [35]). When s = 0, the L2

weak and strong extension for ∂ discussed by way of the Friederichs’ lemma is well-known
(see Chapter 1 in Hörmander [20]; see also Lemma 4.3 in [8]). The L2 ∂-Cauchy problem is
used in Section 4. Now we extend ∂ and the ∂-Cauchy problem to W s and its dual spaces.
We first remark that the dual space for L2(Ω) is itself. The dual space for W s(Ω) for s > 0
is defined as follows.

Definition 5.1. Let Ω be a bounded Lipschitz domain in a complex hermitian manifold
X and let s > 0. The dual space of W s(Ω), denoted by W−s∗ (Ω), is the space of continuous
linear functional f on W s(Ω) with the norm

‖f‖W−s
∗ (Ω) = sup{|〈f, g〉|; ∀g ∈W s(Ω), ‖g‖W s ≤ 1} <∞.

(Here and in what follows we use the notation 〈f, g〉 = f(g) for pairing of elements of
W s(Ω) and W−s∗ (Ω)).

Let W−s(Ω) denote the dual space of W s
0 (Ω), where W s

0 (Ω) is the completion in W s(Ω)
of D(Ω), the space of compactly supported smooth functions on Ω. Since

D(Ω) ↪→W s
0 (Ω) ↪→W s(Ω),

by taking the transpose, we have

E(Ω) = C∞(Ω)←↩ W−s(Ω)←↩ W−s∗ (Ω).

When 0 ≤ s ≤ 1
2 , the space W s

0 (Ω) = W s(Ω) (see Theorem 11.1 in [29]). Thus there is

no difference between the spaces W−s(Ω) and W−s∗ (Ω). However, when s > 1
2 , these two

spaces are different. We must distinguish between these spaces. Following [3], we use the
notation W−s∗ (Ω) to indicate that these spaces demand special attention.

Next we identify the spaces W−s∗ (Ω) as a subspace of distributions in X when the domain
Ω is Lipschitz. It is well known that the dual space of C∞(Ω) = E(Ω) is the space E ′(Ω)
of distributions with compact support in Ω. The following lemma is also well known (see,
e.g., Lemma 2.3 in [27]). We repeat the proof here for the benefit of the reader.

Lemma 5.1. Let Ω be a relatively compact domain with Lipschitz boundary in a mani-
fold X. The dual space of C∞(Ω) is the space E ′

Ω
(X) of distributions on X with support

contained in Ω.
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Proof. Since the restriction map

R : C∞(X)→ C∞(Ω)

is continuous and surjective, the transpose map tR : C∞(Ω)′ → E ′(X) is continuous and
injective. Clearly, tR((C∞(Ω))′) ⊆ E ′

Ω
(X), the space of distributions on X with support

contained in Ω. It remains to prove the opposite inclusion. Any distribution T ∈ E ′
Ω

(X)

defines a continuous linear functional T̃ on C∞(Ω) by setting, for f ∈ C∞(Ω),

〈T̃ , f〉 = 〈T, f̃〉,

where f̃ is a C∞-smooth extension of f to X. Since the boundary of Ω is Lipschitz, the
space C∞0 (X\Ω) is dense in the space of C∞-smooth functions on X with support contained

in X \Ω. This implies that 〈T̃ , f〉 is independent of the choice of the extension f̃ of f . For

any open set U ⊂ C, T̃−1(U) = R ◦T−1(U). Thus, applying the open mapping theorem on

R, we have that T̃ is continuous linear functional on C∞((Ω)). Therefore, the dual space
of C∞(Ω) is the space E ′

Ω
(X) of distributions on X with support contained in Ω. �

Corollary 5.2. Let Ω be a relatively compact domain with Lipschitz boundary in a hermit-
ian manifold X. We have W−s∗ (Ω) ⊂ DΩ(X).

Proof. Since the space of C∞(Ω) ⊂W s(Ω), we have W s(Ω)′ ⊂ C∞(Ω)′. From Lemma 5.1,
we have W−s∗ (Ω) ⊂ DΩ(X). �

The dual space of L2(Ω) is still L2(Ω). Any function f ∈ L2(Ω) is an L2 function on X by
extending f as zero outside Ω. When s > 0, since W s(Ω) ( L2(Ω), the dual space W s

∗ (Ω)
of W s(Ω) is larger and it contains L2(Ω) as a proper subspace. We next identify explicitly
the subspace in DΩ(X) which represents W−s∗ (Ω). For convenience sake, we assume that X
is a compact complex hermitian manifold. For s ∈ R, we define W s(X) to be the Sobolev
spaces of order s. By assuming that X is compact, there is only one way to define these
spaces up to equivalent norms. Then W s(X) and W−s(X) are dual space to each other.

Definition 5.2. Let X be a compact complex hermitian manifold and let Ω be a domain
in X with Lipschitz boundary. Let W−s

Ω
(X) be the subspace of distributions in W−s(X)

with support in Ω.

Lemma 5.3. Let Ω be a bounded domain with Lipschitz boundary in a compact complex
hermitian manifold X. For any s ≥ 0, we have W−s∗ (Ω) = W−s

Ω
(X).

Proof. Since the boundary of Ω is Lipschitz, every function in W s(Ω) can be extended to
be a function in W s(X). Consider the restriction map

R : W s(X)→W s(Ω).

It is continuous and surjective. Thus the dual map

R′ : W s(Ω)′ = W−s∗ (Ω)→W s(X)′ = W−s(X)

is an injection. Moreover, from Corollary 5.2, the image of W s(Ω)′ by R′ is included in
W−s

Ω
(X). This shows that W s(Ω)′ ⊂W−s

Ω
(X).

To prove the other direction, we will show that if f ∈W−s
Ω

(X), then f ∈W s(Ω)′. To see

this, let φ be a function in W s(Ω). Since the boundary is Lipschitz, there exists a bounded
extension map E (see e.g. [35]) from W s(Ω) to W s(X) with

‖Eφ‖W s(X) ≤ C‖φ‖W s(Ω).
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We define a linear functional on W s(Ω) by (f, φ) = (f,Eφ)X . Then we have

|〈f, φ〉| = |〈f,Eφ〉X | ≤ ‖f‖W−s(X)‖Eφ‖W s(X) ≤ C‖φ‖W s(Ω).

Thus f is a bounded linear functional on W s(Ω). Thus f ∈ W−s∗ (Ω). This proves the
lemma.

�

Lemma 5.4. Let Ω be a bounded domain with Lipschitz boundary in a compact complex
hermitian manifold X. For any s ≥ 0, the space C∞0 (Ω) is dense in W−s∗ (Ω).

Proof. When s = 0, this is true for any domain without the Lipschitz assumption. From
Lemma 5.3, every element f ∈W−s∗ (Ω) is an element in W−s

Ω
(X). By a partition of unity,

this is a local problem near each z ∈ Ω. Since Ω is Lipschitz, for any point z ∈ bΩ, there is
a neighborhood U of z in X, and for ε ≥ 0, a continuous one parameter family tε of smooth
maps from U into X such that tε(D ∩ U) is compactly contained in Ω, and tε converges
to the identity map on U as ε → 0. In local coordinates near z, the map tε is simply the
translation by an amount ε in the inward normal direction. Then we can approximate f
locally by f (ε), where

f (ε) = (t−1
ε )∗f

is the pullback of f by the inverse t−1
ε of tε. A partition of unity argument now gives a form

f (ε) ∈ W−s
Ω

(X) such that f (ε) is supported inside Ω and as ε → 0, f (ε) → f in W−s(X).

The lemma follows from regularization. �

We let ∂ be the differential operator and ϑ be its formal adjoint.

Definition 5.3. For s ≥ 0, 0 ≤ p ≤ n and 1 ≤ q ≤ n, let

(5.1) ∂s : W s
p,q−1(Ω)→W s

p,q(Ω),

denote the maximal closed extension of ∂s from the Hilbert space W s
p,q−1(Ω) to W s

p,q(Ω).

A form f ∈W s
p,q−1(Ω) ∩Dom(∂s) if and only if ∂f is in W s

p,q(Ω) in the distribution sense.

Equivalently, let Dp,q(Ω) denote the smooth (p, q)-forms with compact support in Ω and

ϑ denote the formal adjoint of ∂. A form f ∈ Dom(∂s) if and only if f ∈ W s
p,q−1(Ω) and

there exists g ∈W s
p,q(Ω) such that

(5.2) 〈φ, g〉 = 〈ϑφ, f〉, for every φ ∈ Dp,q(Ω).

In this case, we define ∂sf = g in the definition of distribution.

Lemma 5.5. The ∂s operator is a closed densely defined operator from W s
p,q−1(Ω) to

W s
p,q(Ω).

Proof. From the assumption that Ω is Lipschitz, the space C∞p,q−1(Ω) ⊂W s
p,q−1(Ω) is a dense

subspace. Thus the operator ∂s is a densely defined operator since C∞p,q−1(Ω) ⊂ Dom(∂s),

The ∂s operator is a closed operator, i.e, the graph of ∂ is closed since differentiation in the
distributions sense is continuous. �

We have the following lemma which states that the weak equal strong extension for ∂s
when the boundary is Lipschitz.

Lemma 5.6. (Maximal Weak and Strong extensions for ∂s) Let Ω be a bounded
Lipschitz domain in a complex hermitian manifold X. A form f ∈W s

p,q−1(Ω)∩Dom(∂s) if
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and only if there exists a sequence fν ∈ C∞p,q−1(Ω) such that fν → f in W s
p,q−1(Ω) and ∂fν

converges to ∂f in the W s
p,q(Ω).

Proof. Since the boundary is Lipschitz, the lemma follows from the Friedrichs’ lemma by
regularizing the form f (see [12], [19], [20] or [8]). �

Remark. It is important that the boundary is Lipschitz. If the boundary is not Lipschitz,
the lemma might not hold (see the recent paper [28]).

Definition 5.4. The dual ∂
′
s of ∂s is defined as

(5.3) ∂
′
s : W−s∗,p,q(Ω)→W−s∗,p,q−1(Ω);

An element f ∈ Dom(∂
′
s) ∩W−s∗,p,q(Ω) if and only if there exists g ∈W−s∗,p,q−1(Ω) such that

(5.4) 〈∂sφ, f〉 = 〈φ, g〉, φ ∈ Dom(∂s).

If (5.4) holds, we define ∂
′
sf = g. Let ϑ be the formal adjoint of ∂. We then have ϑf = g

in the distribution sense on Ω.

Remark. The pairing in (5.4) is between dual spaces. We must not confuse the dual

operator ∂
′
s with the Hilbert space adjoint ∂

∗
s : W s

p,q(Ω) → W s
p,q−1(Ω). Only when s = 0,

we have ∂
′

= ∂
∗

since W−s∗ (Ω) = W s(Ω) only when s = 0. The importance of taking the
dual pairing is that we can use integration by parts when the forms are smooth.

We will show next that ϑf = g in the distribution sense in X and generalize the L2 ∂-
Cauchy problem to the spaces W−s∗ (Ω). From now on, we will fix s, p, q and will sometimes
drop the dependence of s, p, q in the function spaces to avoid too many indices when there
is no danger of confusion.

Proposition 5.7. Let Ω be a bounded domain with Lipschitz boundary in a complex her-

mitian compact manifold X. The form f ∈ Dom(∂
′
s) if and only if f ∈W−s

Ω
(X) and there

exists g ∈W−s
Ω

(X) such that ϑf = g in the distribution sense in X.

Proof. From Definition 5.4, f ∈ W−s∗ (Ω) and there exists g ∈ W−s∗ (Ω) such that (5.4)

holds. Note that f ∈ Dom(∂
′
s), from Lemma 5.3, both f and g are distributions in X with

compact support in Ω.
In particular, since C∞p,q(Ω) ⊂ Dom(∂s), we have

(5.5) (∂sφ, f) = (∂φ, f) = (φ, g), φ ∈ C∞p,q(Ω).

Using Lemma 5.3, both f and g are in W−s
Ω

(X), i.e., distributions in W−s(X) with compact

support in Ω. Equality (5.5) implies that

(5.6) (∂φ, f) = (φ, g), φ ∈ C∞p,q(X).

Equality (5.6) means that ϑf = g in the distribution sense in X. �

We will also need the following well known result from functional analysis (see, e.g.,
Section VII.5 in [39], Theorem 1.1.1 in [20], and Proposition 2.5 and Theorem 2.7 in [27]).

Lemma 5.8. Let X and Y be Hilbert spaces and let T be a densely defined closed operator
from X into Y . Let T ′ be the transpose of T . Then the following statements are equivalent:

(1) T has closed range R (T ) in Y .
(2) T ′ has closed range R (T ′) in X ′.
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(3) R (T ) = {g ∈ Y | 〈g, f〉 = 0 for every f ∈ N (T ′)}.
(4) R (T ′) = {f ∈ X ′ | 〈g, f〉 = 0 for every g ∈ N (T )}.
(5) There is a constant C > 0 such that

(5.7) ‖f‖X ≤ C‖Tf‖Y , f ∈ dom (T ) ∩N (T )⊥

(6) There is a constant C > 0 such that

(5.8) ‖g‖Y ′ ≤ C‖T ′g‖X′ , g ∈ dom (T ′) ∩N (T ′)⊥

Proof. The equivalence of (1)-(4) is the Banach closed range theorem (see [39, p. 205]) and
holds on Banach spaces. The equivalence between (1) and (5) and between (2) and (6) is
a consequence of the closed graph theorem (see [20, Theorem 1.1.1]). �

Applying the above theorem to ∂s : W s
p,q−1(Ω)→W s

p,q(Ω), we have:

Corollary 5.9. Let Ω be a bounded domain with Lipschitz boundary in a complex hermitian
compact manifold X. Suppose that ∂s : W s

p,q−1(Ω) → W s
p,q(Ω) has closed range. Then we

have

(1) R (∂s) = {g ∈W s
p,q(Ω) | 〈g, f〉 = 0 for every f ∈ N (∂

′
s)}.

(2) R (∂
′
s) = {f ∈W−s∗p,q−1(Ω) | 〈g, f〉 = 0 for every g ∈ Ker(∂s)}.

Definition 5.5. Let Ω be a bounded Lipschitz domain in a complex hermitian compact
manifold X. For 0 ≤ p ≤ n, 1 ≤ q ≤ n, s ≥ 0, let

(5.9) ∂
s
c : W−s

Ω
(X)→W−s

Ω
(X)

denote the (weak) closed extension of ∂ from the Hilbert space W−s
Ω

(X) to W−s
Ω

(X). A

form f ∈ Dom(∂
s
c) if and only if f ∈W−s

Ω
(X) and ∂f ∈W−s

Ω
(X).

Let ∗ be the Hodge star operator which maps (p, q)-forms to a (n− p, n− q)-forms in X.
We have on the compact complex manifold X,

(5.10) ϑ = − ∗ ∂ ∗ .

We also have the following relations between ∂
′
s and ∂

s
c.

Lemma 5.10. Let Ω be a bounded Lipschitz domain in a complex hermitian compact man-

ifold X. A form f ∈ Dom(∂
′
s) if and only if ∗f ∈ Dom(∂

s
c). We have

(5.11) ∂
s
c = ∗∂′s ∗ .

Proof. When s = 0, this is proved in [7]. Let f ∈ Dom(∂
′
s). From Proposition 5.7,

f ∈W−s
Ω

(X) and ϑf = g ∈W−s
Ω

(X). Thus ∗f and ∗g are forms in W−s(X) with compact

support in Ω and ∂ ∗ f = ∗ϑf in the distribution sense in X. Thus ∗f ∈ Dom(∂
s
c). The

other direction is the same. Since on a compact manifold, equation (5.10) holds both for
smooth forms and for currents. The equality (5.11) follows.

�

Lemma 5.11. (Weak and Strong extensions for ∂
s
c) A form f ∈ Dom(∂

s
c) if and only

if f ∈ W−s
Ω

(X) and there exists fν ∈ Dp,q(Ω) such that both {fν} and {∂fν} converge in

W−s
Ω

(X) to f and g respectively with ∂f = g in X.
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Proof. When s = 0, this is done by Friederichs’ Lemma (see [20], [8] or [27]). Assume
f, g ∈ W−s

Ω
(X) such that ∂f = g in the distribution sense in X. Both f and g are

distribution in X and compactly supported in Ω.
We need to construct a sequence fν of smooth forms with compact support in Ω which

converges in the graph norm of ∂ in W−s
Ω

(X) to f . By a partition of unity, this is a again

local problem near each z ∈ Ω. Let tε and f ε be the same as before. We approximate f
locally by f (ε), where

f (ε) = (t−1
ε )∗f

is the pullback of f by the inverse t−1
ε of tε. A partition of unity argument now gives a

form f (ε) ∈W−s
Ω

(X) such that f (ε) is compactly supported inside Ω and as ε→ 0,

(5.12) f (ε) → f in W−s(X) ∂f (ε) → ∂f in W−s(X).

We can apply Friedrich’s lemma to regularize the form f (ε) to construct a sequence of
smooth forms fν with compact support in Ω with the desired property. �

Theorem 5.12. Let Ω be a bounded Lipschitz domain in a complex hermitian compact
manifold X. The following conditions are equivalent:

(1) The operator ∂s : W s
p,q−1(Ω)→W s

p,q(Ω) has closed range.

(2) The operator ∂
′
s : W−s

Ω,p,q
(X)→W−s

Ω,p,q−1
(X) has closed range.

(3) The operator ∂
s
c : W−s

Ω,n−p,n−q(X)→W−s
Ω,n−p,n−q+1

(X) has closed range.

Proof. Since the boundary is Lipschitz, from Lemma 5.3, the space W−s∗ (Ω) = W−s
Ω

(X).

It then follows from Lemma 5.9 that (1) and (2) are equivalent. That (2) and (3) are
equivalent follows from Lemma 5.10. �

Theorem 5.13. Let Ω be a bounded Lipschitz domain in a complex hermitian compact
manifold X. Suppose that the range of ∂s is closed in W s

p,q(Ω). Then g ∈ Range(∂
s
c) ∩

W−s
Ω,n−p,n−q(X) if and only if

(5.13) (∗g, f) = 0, for all f ∈ Ker(∂) ∩W s
p,q(Ω).

Proof. We first prove the necessity. If g is in the range of ∂
s
c, there exists u ∈W−s

Ω,n−p,n−q(X)

such that ∂u = g in X in the distribution sense. Thus there exists a sequence of compactly
supported smooth forms uν → u and ∂uν → g. It is easy to see that for every f ∈
Ker(∂s) ∩W s

p,q(Ω),

(∗g, f) = (g, ∗f) = lim
ν

∫
Ω
∂uν ∧ f = ± lim

ν

∫
Ω
uν ∧ ∂sf = 0.

Thus (5.13) holds.

On the other hand, if (5.13) holds, we will show that g is in the range of ∂
s
c, or equiva-

lently, ∗g is in the range of ∂
∗
s. Let u ∈ C∞p,q−1(Ω) and f = ∂u. Then the linear functional

L(∂u) = (∗g, u) ≤ ‖g‖W−s
∗
‖u‖W s ≤ ‖g‖W−s

∗
‖∂u‖W s

is a bounded linear functional from Range(∂) ⊂ W s
p,q(Ω) to C. From the Hahn-Banach

theorem, L extends to be a bounded linear functional on W s
p,q(Ω). Thus there exists an

v ∈W−s∗p,q−1(Ω) such that

L(∂u) = (v, ∂u) = (∗g, u), u ∈ C∞p,q−1(Ω).
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This means that v ∈ Dom(∂
∗
s) and ∂

∗
sv = ∗g. This proves that g = ∂

s
c ∗ v and g is in the

range of ∂
s
c. �

Remark. Not much is known if we consider Ω to be a smooth pseudoconvex domain in
CPn (or in a complex hermitian manifold) except for small s < 1

2 (see Theorems 3.1 and
3.2). Suppose that Ω is a pseudoconvex domain in CPn with smooth boundary. It is still
unknown if

∂s : W s
p,q−1(Ω)→W s

p,q(Ω), s ∈ N

has closed range or if (1.1) holds for s ≥ 1.
However, if we consider the complement Ω+ = CPn \ Ω, then it follows from Corollary

4.9 that

∂1 : W 1
p,q−1(Ω+)→W 1

p,q(Ω
+), s ∈ N

has closed range for all 1 ≤ q ≤ n− 1. Here we only need that bΩ+ to be Lipschitz.
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