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ABSTRACT. We study L? and Sobolev estimates for solutions of the Cauchy-Riemann
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1. INTRODUCTION

Since the fundamental work of Kohn ([23, 24]) for the d-Neumann problem on smooth
bounded strongly pseudoconvex domains in C" and that of Hérmander ([20]) on L2-
estimates of the Cauchy-Riemann operator on bounded pseudoconvex domains in C”,
there has been tremendous progress on L2-Sobolev theory of the J-operator and the O-
Neumann problem for bounded pseudoconvex domains in C" (see, for example, monographs
[11, 21, 8, 36| for expositions on the subject). One of the most important results is the
Sobolev estimates for bounded smooth pseudoconvex domains in C" (see [25]). For s > 0,
let Hﬁ}qs(Q) be the Dolbeault cohomology with Sobolev W* coefficients defined by

_ {f €Wy, () |37 =0}
{FeWs (@) [ =0uueW;, (@)}

HEA()

Theorem 1.1 (Kohn). Let Q be a bounded pseudoconvex domain in C" with smooth
boundary. For every 0 <p<n,0<qg<n ands >0,

(1.1) HPA(Q) = 0.

The theory is less developed for domains in the complex projective space CP". The L?-
Sobolev theory of Kohn [25] or Hérmander [20] does not readily generalize to pseudoconvex
domains in CP", since there is no strictly plurisubharmonic function that can be used
as a weight in CP". On the other hand, the Fubini-Study metric on CP" has a positive
holomorphic bisection curvature which can be used to study these problems. In this paper,
we discuss some methods and results on L? and Sobolev estimates on pseudoconvex and
pseudoconcave domains in CP™.

The plan of the paper is as follows: In Section 2 we discuss the J-Neumann problem
for pseudoconvex domains in CP". As an application, we give an alternative approach to
Hoérmander’s L? existence theorems for bounded domains in C" using Bochner-Kodaira-
Morrey-Kohn formula and the curvature property of the Fubini-Study metric, but without
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using weights (see Corollary 2.4). In Section 3, we discuss the L? theory for d on Lipschtiz
pseudoconvex domains in CP™. The results in this section is known when the domain has
C%-smooth boundary (see [2] or [4]). There is some necessary modification when gener-
alizing this result to Lipschitz domains. In Section 4, we examine the W' estimates on
pseudoconcave domains. We show that the range of 9 in W(Q) is closed for all degrees,
including the critical case when ¢ = n — 1. Notice that on a pseudoconcave domain, the
cohomology for ¢ = n — 1 is Hausdorff and infinite dimensional (see [22] and [32, 33]). This
can be used to characterize annuli domains in C" (see [13]). In Section 5, we discuss the 0
operator in the Hilbert space W* setting and prove duality results. In the L? setting, this
is done in earlier work (see [20] or [8]). Though Sobolev estimates for & on pseudoconvex
domains in CP” remain an open problem, we hope the duality results, Theorems 5.12 and
5.13, will shed some light on this intriguing problem (see Remark at the end of Section 5).

2. FUBINI-STUDY METRIC AND THE 0 PROBLEM IN C"

Let (X,w) be an n-dimensional Kéhler manifold with K&hler form

. n
w=—5 Y hogdza NdZ
a,f=1
in local holomorphic coordinates and the associated hermitian metric A. The volume form
of X is then given by dV = w"/n!. Let V be the Levi-Civita connection for the associated
Riemannian metric ¢ = Re h, which is identical to the Chern connection on the holomorphic
tangent bundle 719X due to the Kihler condition. We will use | - |, and (-, ), to denote
respectively the pointwise norm and inner product induced by w. (Hereafter, we will identify
Kahler form with the associated hermitian metric. We might drop the subscript w when it
is clear from the context.) Let

R(X,Y)=VxVy — VyVx — Vixy]

be the curvature tensor, extended to be C-linear and to act on tensors of any type. The
curvature tensor is then given by

o 0,0 0

2.1 — S D
2.1) Rajns h’(R(azq 0z;' 0z5" 024
9?h,_ 3 — Oh.-0h_3
. aB er Yllag 78
(2.2) 927070 ;h 0z7 0z

where h°™ denotes the inverse of h,z.
Let Li,..., L, be a local orthonormal frame field of type (1,0) and w',...,w™ be the
coframe field. For a (p, ¢)-form u, we set

(Ou,u) = Y (@ A (LpoR(Lj, Li)u), w),
g k=1

where _ is the usual contraction operator. For a C2-smooth function ¢, we set
— n — — — —
((00p)u, u) =" 00¢(Lj, L) (Ljou, Lyu).
jk=1

Let Q be a relatively compact domain in X with C?-smooth boundary bQ. Let p(z)
be the signed distance function from z to b2 such that p(z) = —d(z,bQ) for z €  and
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p(z) = d(z,b92) when z € X \ Q. Let ¢ be a real-valued C? function on Q. Let L;q(Q, e %)
is the space of (p, ¢)-forms u on € such that

Jul2 = /Q u2e?dV < oo.

We will also use (-, -),, to denote the associated inner product. Let 5; be the adjoint of the
maximally defined 9: L2 (Q,e %) — L2 (€Q,e ?). We now recall an integration by parts
formula due to Bochner, Kodaira, Morrey, Kohn, and Héormander that is basic to the study

of the complex Laplacian. With the above notations, we can now state the following Basic
Identity (see [38, 34, 4]).

Theorem 2.1 (Bochner-Kodaira-Morrey-Kohn-H6érmander). Let 2 be a relatively
compact domain in a Kdahler manifold X with C?-smooth boundary b). For any u €
Cp ,(Q2) N dom (9%), we have

(2:3) 9ul} + 10,ull? = IVull? + +(Ou, )y + ((90p)u, u)y + /bQ<(0<9p)u, uje “dS

where dS is the induced surface element on bQ and |Vul|? = > i1 ]VZ]_UIQ.

The Kéahler form associated with the Fubini-Study metric grg on the complex projective
space CP" is given by

(2.4) wrg = 100 log(1 + |z|?)
(2.5) =1 Z 9op(2) dza N dzg
a,f=1

in local inhomogeneous coordinates, where

_ Plog(1+ 212 (1 +[2)d05 — Zazs

2. 3 =
(26) 93(2) = 5,025 1+ 2P
The volume form is then
1
2. dVrs = det(g,. 5 dVpg = —————d

where dVg is the Euclidean volume form. The curvature tensor is then given by

Ropys = 9a59+5 + 90595y
It follows that the complex projective space CP™ with the Fubini-Study metric has constant
holomorphic sectional curvature 2 and its holomorphic bisectional curvature is bounded
between 1 and 2. Furthermore, we have that if u is a (p, ¢)-form on CP" with ¢ > 1, then

(2.8) (Ou,uy =0, if p=mn; (Ou,uy >0, if p>1;
and
(2.9) (Ou,u) = q(2n+ 1)|u*> if p=0.

For a proof of these results, see [38] or Proposition A.5 in the Appendix in [4].

Proposition 2.2. Let Q be a pseudoconvexr domain in CP" with C? boundary and 1 < ¢ <
n — 1. Let ¢ be a plurisubharmonic function on ). Then

(2.10) 19ull?, + 195ul? = a(2n + D]ull?

for any (0, q)-form u € dom (9) N dom (8:,).
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Proof. This is a direct consequence of the curvature property (2.9) and (2.3):

(211)  [|9ull? + 10 ullf = IVull}, + (©u, u), + (09p)u, u), + /bQ<(3ap)u, uje¥dS

> (Qu, u)y > q(2n+ 1)|ullZ.
O
Theorem 2.3. Let Q be a pseudoconvexr domain in CP" such that Q # CP" and 1 <

q < n—1. Let ¢ be a plurisubharmonic function on Q. For any g-closiad (0, q)-form
fe Laq(Q,e_“"), there exists a (0,q — 1)-form u € Laqfl(ﬂ,e_‘p) such that Ou = f with
1

(2.12) llly < Crm 1715

Proof. If Q has C? boundary, estimate (2.12) is then a consequence of (2.11). The general
case is then proved by exhausting €2 from inside by pseudoconvex domains with smooth
boundaries. g

Corollary 2.4. Let Q be a bounded pseudoconver domain in C" with diameter §, where
§ = sup, eqlz — 2| Then for any f € L2 (Q) with df = 0, there is a (p,q — 1)-form
u € L%p’q_l)(ﬂ) such that Ou = f with

(2.13) [ull> < Cngd®| ]

where C, 4 15 a constant depending only on n and q, but is independent of Q2.

Proof. We may assume that p = 0. First we assume that Q has C? boundary and its
diameter 0 < 1. The estimate (2.13) follows from (2.11). The general case can be obtained
by exhausting € by smooth subdomains with C? boundary.

For general bounded domain Q with radius d, the estimate (2.13) follows from scaling
argument. [l

Remark. Corollary 2.4 is a weaker version of the Héormander’s L? theory (see [20]), where
he proves the L? existence with estimate (2.13) with ¢, , = e/q, which is independent of n.

3. L? THEORY FOR O ON LIPSCHITZ PSEUDOCONVEX DOMAINS IN CP”

The following theorem is based on an earlier result of Berndtsson and Charpentier |2,
Theorem 2.3] (see also [18, 4]).

Theorem 3.1. Let (X,w) be a Kdhler manifold of dimension n. Assume that the curvature
operator © is semi-positive on (p,q)-forms for all 1 < g < n. Let Q be a Stein domain in
X. Suppose that there exist a distance function p < 0 and a constant n > 0 such that

—i00(—p)" > nK (—p)"w

on §Q for some constant K > 0. Then the ?—Neumann Laplacian O has a bounded inverse
N on L2 (Q) and for u € Dom(d) N Dom(8"),

5 o+ anis
(3.1) |9ul® + [107ul* = == lull*
Furthermore, the operator N is bounded from Wy (Q) — W, () with
(3.2) 10" Null? < CyllullZ; [ONull2 < Cyllul3-
for any v € W () with 0 < s <n/2.
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Proof. For any sufficiently small ¢ > 0, by Richberg’s theorem, there exists o € C*°(Q)
such that

—(=p)" <o <~(1=¢)(=p)" and —iddo > (1 —e(—p)")nK(—p)lw
Let p = —(—0)Y/". Then p € C®(Q), p < 0 and
(3.3) —i99(=p)" = (1 — e(—p)")nK (=p)"w
Let f be a O-close form in L;,q(Q). Let €2; CC € be an increasing sequence of smooth

bounded pseudoconvex domains whose union is €. Let 0 < r < 1 be a constant to be
chosen and let ¢ = —rnlog(—p). It then follows from (3.3) that

(3.4) i0p N Op < rif0dp and i00p > (1 — eCl)rnKw

on Q;, where C; = max{—p(z) | z € Q;}. Let a € (0,n). Applying (2.3) to Q; with weight
©, and using the semi-positivity condition on the curvature operator ©, we then have
(3.5) 1ull2g, + [105ul2 0, = (09p)u, u),

for any u € C’;’q(STj) N dom (5; ). By Demailly’s formulation of Hérmander’s L2-estimates

(see [9, Theorem 4.1]), that there exists u; € qu 1(£2,e7%) such that du; = f and

3.6 / u%‘%@dvg/ fI>n e7?adv
( ) Qj’ J’ Qj| ’z@&p

Let u; be the solution that is orthogonal to A/(d), the nullspace of 9, in L?(2;,e~%). Let
v; = uje?. Then v; L N(0) in L*(;,e~2%). Applying (3.6) with the weight ¢ replaced by

2¢, we then have
/Q lvj|?e" 2% dV </ |8v]|2 0 e 2 dv

J

Thus
(3.7) / |uj|* dV g/ |Ouj +3$0/\u\§i85¢ dav.

j Qy

By the Cauchy-Schwarz inequality,
\Bu]—l—ﬁgp/\uj\z 950 (1+1/t)|8uj 2167 +(1+t)]8<p/\uj\2 950
< (41008 B, + O+ DT 5l

1+1/t Bu 2 (l—i-t)r’u"Q
~ 2grnK (1 —eCY) Ui 2 e
Here in the last inequality, we have used (3.3). It then follows from (3.7) that

141/t
|2 < 2
/Qj [u 7V < -1+ t)r/2)r 2qr]K (1-— 6077 / 9

We now take ¢ =1 and r = 1/2 to minimize the first factor on the right-hand side of the
above inequality. By choosing a sequence of ¢ — 0 and letting j — oo, we then obtain
u € L;q(Q) as a weak limit of a subsequence of {u;} such that du = f and

4

2 2
ul*dV < / dV
/Q’ ‘ qnK Qm

This yields the basic estimate (3.1). The basic estimate (3.1) implies the existence of
the 0-Neumann operators for all degrees (see [20] or [8]). The first part of the inequality
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(3.2) follows from [2] and the second part follows from [4]. The boundedness of N follows
from (3.2) O

Let wpg be the Kéhler form associated with the Fubini-Study metric on CP". Let §2 be
a (proper) pseudoconvex domain in CP" with C%-smooth boundary. Let 6(z) = d(z, bQ2)
be the distance, with respect to the Fubini-Study metric, from z to the boundary b§2. Let
Q. ={z € Q|d(z) > e}. It then follows from Takeuchi’s theorem [37] that there exists a
universal constant Ky > 0 such that

(3.8) i00(—1og &) > Kowrs
on (2. In particular, there exists ¢y > 0 such that
(3.9) 90(=0)(¢, ) = KoelC[Zy

for all ¢ € Tp°(b2) for 0 < € < ¢g. (See [15, 5] for different proofs of Takeuchi’s theorem.)
Obsawa and Sibony [30] showed-as a consequence of Takeuchi’s theorem-that, there exists
0 < n <1 such that

(3.10) i00(—6") > Knd"wrs

on ) for some constant K > 0. (See [5, Proposition 2.3] and [4, Lemma 2.2] for a more
streamlined proof of this fact.) Such a constant 7 is called a Diederich-Fornaess exponent
of Q (see [10]). We refer the reader to [17] for similar results when the boundary is only
Lipschitz, and to [14, 1] for relevant results on the Diederich-Fornaess exponent and nonexis-
tence of Levi-flat hypersurfaces in complex manifolds. Combining (3.10) with Theorem 3.1,
we then have:

Theorem 3.2. Let Q be a pseudoconvexr domain in CP™ with Lipschitz boundary. Then
forO<p<nandl < qg<n, the Q—Neulnann Laplacian U has a bounded inverse N on
Lg,q(Q). Furthermore, we have N, "N ON and the Bergman projection B = I — 9'Nd

are all exvact regular on W (Q) for all s < 5.

We remark that if the boundary is smooth, it follows from [26] that there exists s > 0
such that Theorem 3.2 holds.

The following proposition is a consequence of the above L?-theory for & on CP". Its
proof follows the same lines of arguments as those in [16, 9, 18, 4] when the boundary is
C?-smooth.

Proposition 3.3. Let Q) be a pseudoconvexr domain in CP™ with Lipschitz boundary. Then
the L* holomorphic (n,0)-forms in L2 ((Q) # {0}. Furthermore, L*> Holomorphic (n,0)-
forms separate points.

Remark. Both Theorem 3.2 and Proposition 3.3 might not hold if we drop the Lips-
chitz condition. Let € be a pseudoconvex domain in CP", not necessarily with Lips-
chitz boundary. Using Theorem 2.3, we still have that [y, has an inverse Ng, where
Noyg : Laq(Q) — L%yq(Q).

When p > 0, it is not known if O, , : Lqu(Q) — LIQ),q(Q) has closed range (see related
results in [28] on the Hartogs triangle in CPP?). The reason is that when p > 0, the curvature
term (2.8) is only nonnegative. Thus p plays a role for domains in CP", in contrast to
Corollary 2.4 for bounded pseudoconvex domains in C".



4. W' ESTIMATES FOR 0 ON PSEUDOCONCAVE DOMAINS

Let Q be a pseudoconvex domain in CP" with Lipschitz boundary. Let O : Lf)’qfl(Q) —
L]%’q(ﬂ) be the weak maximal L? closure of d and its Hilbert space adjoint is denoted by
3. Let

Oc: L2, 1(Q) = L2 ()
be the minimal (strong) closure of d. By this we mean that f € Dom(d,) if and only if that
there exists a sequence of smooth forms f, in Cfn&(g) compactly supported in £ such

that f, — f and 0f, — Of in L%. It is easy to see that (see [7])
5C = — % 5**7
where x: AP? — A"™P"74 ig the Hodge star operator defined by

(@, )dV = ¢ N *.

It is well-known that @ has closed range if and only if & has closed range (see [20] or Lemma
4.1.1 in [8]). By using the Hodge star operator, we have that the operator 9 : L2 _(Q) —

f?)’q([%)) has closed range if and only if J.. : L%_pm_q(Q) — Lgb—p,n—q +1(92) has closed range
see [7]).

Lemma 4.1. Let Q be a pseudoconvex domain with Lipschitz boundary in CP". We have

HPI(Q) = B 27Q) = {0}, g #0.

Proof. Using Theorem 3.2, 0 has closed range in L]%’q(ﬂ) for all degrees. Thus from the L?
Serre duality proved in [7], the lemma follows. O

Proposition 4.2. Let Q) be a pseudoconvexr domain with Lipschitz boundary in CP", n > 3.
Suppose that f € L§7q(Q), where 0 < p<nand 1l < g <n. Assuming that 0f =0 in CP"
with f = 0 outside 2. Then there exists u € L?__{(Q) with u = 0 outside § satisfying

- p,q—1
Ou = f in the distribution sense in CP".
For g =n, if f satisfies the compatibility condition

(4.1) [rno=0. eri o @nKe),
then the same conclusion holds.

Proof. Since the boundary is Lipschtiz, we have that solving 0. is the same as solving 0
with prescribed support in € (see Lemma 2.3 in [27]). The proposition then follows from
Lemma 4.1. g

Let Q% be the complement of Q defined by
QO =CP"\ Q.
Then the domain Q" is a pseudoconcave domain with Lipschitz boundary. The L?-theory
for @ on Q" is not known in general, unless Q C C" (see [31] , [32] or [13]). However,

estimates for the 5;equation in Sobolev spaces W!(QT) can be obtained from the L2-
existence theory of 0 in 2.

Theorem 4.3. Let Q be a pseudoconver domain with Lipschitz boundary CP" and let
QFf = CP"\ Q. For any O-closed f € Wp{q(Q*), where 0 < p <n, 0 <qg<n-—1, there
exists F' € L;q((CJP’") with Flg+ = f and OF = 0 in CP" in the distribution sense.
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Proof. The theorem is already proved when the boundary is C? in [4]. Since 2 has Lipschitz
boundary, there exists a bounded extension operator from W(QF) to W!(CP") (see, e.g.,
35]). Let f € W, ,(CP") be the extension of f so that flor = f with Hf\|W1((CPn) <
CHwal(QJr) We have 0f € L;zzy,q-i-l(Q)'

From Proposition 4.2, there exists u. with compact support in Q such that du. = 0 f in
CP". Define

(4.2) F=f—u.
Then F € L2 (CP") and F is a d-closed extension of f. O

Corollary 4.4. Let Q" be a pseudoconcave domain in CP™ with Lipschitz boundary, where
n > 2. Then W),(7) N Ker(d) = {0} for every 1 <p <n and W (") N Ker(d) = C.

Proof. Using Theorem 4.3 for ¢ = 0, we have that any holomorphic (p,0)-form on QF
extends to be a holomorphic (p,0) in CP", which are zero (when p > 0) or constants (when
p=0). O

Corollary 4.5. Let Q" be a pseudoconcave domain in CP"™ with Lipschitz boundary, where
n > 3. For any 0-closed f € Wp{q((ﬁ), where 0 <p<n, 1 <g<n-—1,p#q, there exists

u € Wz}7q71(Q+) with Ou = f in Q7.

Proof. Let F € L 4(CP") be the O-closed extension of f from 2 to CP™. Since HP*4(CP") =
{0}, there exists u € qu () such that du = F on CP". By the elliptic theory of the
0-complex on compact complex manifolds, one can choose such a solution u € Wpl7 q_l(C]P’”).

Next we discuss the situation for the critical degree ¢ = n —1 on Q. For ¢ = n — 1,
there is an additional compatibility condition for the d-closed extension of (p,n — 1)-forms
from Q7 to the whole space CP™. This case differs from the others since the cohomology
group does not vanish in general (see [13]). We first derive the compatibility condition for
the extension of O-closed forms when ¢ =n — 1.

Lemma 4.6. Let Q be a pseudoconver domain in CP" with Lipschitz boundary and let
QT =CP"\ Q. For any f € W;)l,n—l(9+) and ¢ € L2 _ »0(82) N Ker(0), the pairing

(4.3) A

Ot
is well-defined.

Proof. Since the boundary is Lipschitz, any function in W1!(2*) has a trace in W%(b(ﬁ).

Also Holomorphic L? functions or forms have trace in W2 (b€2). The pairing (4.3) is well-
defined follows from these known facts on Lipschtiz domains. Since we cannot find an exact
reference, We will give a proof using the Friedrichs lemma.

Since the boundary is Lipschitz, it follows that smooth forms up to the boundary are
dense in the graph norm of 9 since the boundary is Lipschitz (see [20] or Lemma 4.3.2 in
[8]). For any O-closed (holomorphic) (n — p, 0)-form ¢ with L?(Q) coefficients, there exists
a sequence qbl, € Cp°,0(9) such that ¢, — ¢ and d¢, — 0 in L*(Q).

Let fe W (CIP’" ) be a bounded extension of f. We have

(4.4) /fA%—/@f/\qbu /afwy /fA8¢V—>/0fA¢>
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Thus the limit on the left-hand-side of (4.4) exists and is independent of the approximating
sequence {¢,} that we choose. It is also independent of the extension function f . To see
this, let f) € W;nfl((C]P’") be another bounded extension of f. We have f—fi = f—f =0
on bS2. Thus

(4.5) 0=/m(f—fl)my=/96<(f—f1>w,,>+/QafA¢—/Qaf1A¢.

Hence the pairing
[ sno=jm [ fro,=[afre
bQ V=0 b Q
is well-defined.
The lemma is proved. U

Theorem 4.7. Let Q) be a pseudoconver domain in CP" with Lipschitz boundary and let
QFf = CP"\ Q. For any O-closed f € Wz}’n_l(QJr), where 0 < p <mn and p # n — 1, the
following conditions are equivalent:

(1) The restriction of f to bQT satisfies the compatibility condition

(4.6) / fAe=0, ¢eLl ()N Ker(D).

(2) There ezists F' € Lg’nfl((CP”) such that Flg = f in QT and OF =0 in CP" in the
sense of distribution. B
(3) There exists u € W, (") satisfying du = f in Q.
Proof. We first prove that (1) implies (2). Suppose that f satisfies the condition (4.6). Using
the same notation as in the proof of Theorem 4.3, we first extend f to f € Wz},n_l(C]P’").

Then the form df is in L%,n(Q) It follows from (4.6) that

/afmz) / FAG=0

for every ¢ € L2_ _po()N Ker(d). Thus condition (4.1) is satisfied. Using Proposition 4.2
for ¢ = n, there exists u. with compact support in {2 such that du. = df in CP". Then
F = f —u, is an L? d-closed extension of f to CP". This proves that (1) implies (2).

To show that (2) implies (3), one can solve F' = U for some U € Wl},n,2(CIP") since we
assume that p #n — 1. Let w = U on 2, we have u € W;n_g(Q) satisfying du = f in Q.
Thus (2) implies (3).

Finally, we prove that (3) implies (1). Suppose that f = du with u € W, ,(2F). The
trace of u on the boundary has coeflicients in W%(bQ) We have for any ¢ € L2__ ()N
Ker(9), we claim that

(4.7) /bmf/\¢:/bmauA¢=0.

The integration by parts is justified by an approximation arguments. Since the boundary is
Lipschitz, from Friedrichs’s Lemma, we can approximate ¢ by smooth forms ¢, € C*°()
such that ¢, — ¢ in L2 _ p0(€2) and O¢, — 0in L2 _ _p1(§2). Thus we have

n—p,0

(4.8) fA¢= lim Ou A ¢, = lim (—1)P+”2/ u A O, — 0.
O+

O+ vV—r00 bO+ V—r00

This proves that (3) implies (1). O
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Theorem 4.8. Let Q2 CC CP" be a pseudoconvexr domain with Lipschitz boundary and let
Qt =CP"\ Q. Then 9: W;n_Q(Q‘F) — Wz},n—l(9+) has closed range, where 0 < p < n.

Proof. Let f be a 0-closed (p,n — 1)-form in Wplm_l(Q*). Suppose that f is in the closure
of the range of 9 : W}, o(Q") = W, (QF). There exists a sequence u, € W, (")

such that du, — f in Wz}’n_l(QJr). It suffices to show that there exists u € Wz}vn_Q(QJ“)

such that Ou = f.
From Theorem 4.7, it suffices to show that the condition (4.6) is satisfied for every
¢ € L2 () NKer(d). This follows from

n—p,0

(4.9) / fA¢= lim Ouy, A ¢ = lim (1)P+”—2/ u, A O¢ = 0.
bt bt

v—00 Jro+ v—00

Thus f = du for some u € Wp17n72(Q+)' Thus the range of J is closed in Wg},nfl

(7).
0

For k > 0, we define the Dolbeault cohomology Hif% (1) with W*(QF)-coefficients by

_ {f € WE,(©7) | 3f = 0}
{F e WE@¥) | f = Bu,ue WS, 1(07))

HEAL(QF) :

Similarly, Hﬁ}i (Q27) is defined to be the space of (p, 0)-forms with holomorphic coefficients
in W*(2). When k = 0, we use H75/(Q") to denote the L? Dolbeault cohomology.

Corollary 4.9. Let Q" be the same as in Theorem 4.8.
e If0<qg<n—1andp+#q, HA(QT)=0.
e When p #n — 1, the space Hﬁﬁ_l(ﬂﬂ is Hausdorff and infinite dimensional.

Proof. When ¢ # n — 1, the corollary follows from Corollary 4.5 for ¢ > 0 and Corollary
4.4 when ¢ = 0.

When ¢ = n — 1, the Hausdorff property of Hﬁ’ﬁ*l(fﬁ) follows from Theorem 4.8. It
remains only to prove that it is infinite dimensional.

Let f € W), 1(Q) and 0f = 0. We define a pairing between H",)[’,’}_l(Q) and HZQ_p’O(Q*)

(4.10) L HYLHQT) < HY ()

by

(4.11) W([f],h) = fAh.
bt

It is easy to see that the pairing (4.10) is well-defined. If f satisfies the condition

/b Fhe=0. de Ll (@) NKe(d)

there exists a solution u € Wplm_Q(Q) satisfying Ou = f. This implies that [f] = 0.

Thus [ is a one-to-one map from H ﬁ’ﬁ’_l(Q*) to H5 " (), the bounded linear functional
on HZ;p’O(Q). The space Hzgp’o(ﬂ) is infinite dimensional from Proposition 3.3. We have
that Hgl’ﬁ_l(ﬂﬂ is infinitely dimensional. Since it is a Hilbert space, it is isomorphic to

HP0(9). O
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Remark. The space of L? harmonic forms for the critical degree ¢ = n — 1 on an annulus
between two concentric balls or strongly pseudoconvex domains in C™ has been computed
in [22]. This has been generalized to annulus between two pseudoconvex domains in C"
in [32, 33]. We also remark that the conditions on the cohomology groups can be used to
characterize domains with holes with Lipschtiz boundary in C" (see [13]).

When the domain © C CP" is pseudoconconcave with C? boundary, W' estimates for 0
were obtained earlier in [4] when ¢ < n — 1 (see also [6]).

5. EXTENSIONS OF O IN SOBOLEV SPACES AND DUALITY

In this section we will formulate the 0 operator in Sobolev spaces and study its duality.
Let 2 be a bounded domain with Lipschitz boundary in a complex hermitian manifold X.
We first extend the 0 problem and its dual from L?(£2) to Sobolev spaces W*(Q) for s > 0.
We restrict ourselves to domains with Lipschitz boundary so that the space W*(2) can be
identified as the restriction from W*(X) to W*(2) (see e.g., [35]). When s = 0, the L?
weak and strong extension for 9 discussed by way of the Friederichs’ lemma is well-known
(see Chapter 1 in Hérmander [20]; see also Lemma 4.3 in [8]). The L? 9-Cauchy problem is
used in Section 4. Now we extend 0 and the 0-Cauchy problem to W# and its dual spaces.
We first remark that the dual space for L?(2) is itself. The dual space for W*(Q) for s > 0
is defined as follows.

Definition 5.1. Let 2 be a bounded Lipschitz domain in a complex hermitian manifold
X and let s > 0. The dual space of W*(£2), denoted by W, *(2), is the space of continuous
linear functional f on W#(£2) with the norm

1f =) = sup{l{f;9)l; Vg € W*(Q),[|gllws < 1} < cc.

(Here and in what follows we use the notation (f,g) = f(g) for pairing of elements of
W#(Q) and W 5(Q)).

Let W—*(Q) denote the dual space of W (€2), where W () is the completion in W*(Q2)
of D(Q2), the space of compactly supported smooth functions on 2. Since

D(Q) = W5(Q) = W*(Q),
by taking the transpose, we have
E(Q)=C®(Q) > W3(Q) = W, *(Q).

When 0 < s < 3, the space W§(Q2) = W*(Q) (see Theorem 11.1 in [29]). Thus there is
no difference between the spaces W=5(Q) and W, *(2). However, when s > 3, these two
spaces are different. We must distinguish between these spaces. Following [3], we use the
notation W,_*(Q) to indicate that these spaces demand special attention.

Next we identify the spaces W *(Q2) as a subspace of distributions in X when the domain
Q is Lipschitz. It is well known that the dual space of C*>°(Q) = £(f) is the space £'()
of distributions with compact support in 2. The following lemma is also well known (see,
e.g., Lemma 2.3 in [27]). We repeat the proof here for the benefit of the reader.

Lemma 5.1. Let Q be a relatively compact domain with Lipschitz boundary in a mani-
fold X. The dual space of C*(2) is the space E’Q(X) of distributions on X with support

contained in Q.
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Proof. Since the restriction map

R : C®(X) = C=(Q)
is continuous and surjective, the transpose map ‘R: C*®(Q) — &'(X) is continuous and
injective. Clearly, ‘R((C*(Q))") C EG(X), the space of distributions on X with support

contained in Q. It remains to prove the opposite inclusion. Any distribution 7' € €’§(X )

defines a continuous linear functional 7' on C*°(Q) by setting, for f € C>(9Q),

(T, f) = (T, f),

where f is a C*°-smooth extension of f to X. Since the boundary of ) is Lipschitz, the
space C3°(X \ Q) is dense in the space of C*°-smooth functions on X with support contained
in X \ Q. This implies that (T, f) is independent of the choice of the extension fof f. For
any open set U CN(C, f‘l(U) = RoT~Y(U). Thus, applying the open mapping theorem on

R, we have that T is continuous linear functional on C*°((£2)). Therefore, the dual space

of C>°((2) is the space £5(X) of distributions on X with support contained in €. O

Corollary 5.2. Let Q2 be a relatively compact domain with Lipschitz boundary in a hermit-
ian manifold X. We have W 5(2) C Dg(X).

Proof. Since the space of C°°(Q2) C W*(Q), we have W*(2) € C*°(Q)". From Lemma 5.1,
we have W,.*(Q2) C Dg(X). O

The dual space of L?(Q) is still L2(Q2). Any function f € L?(2) is an L? function on X by
extending f as zero outside 2. When s > 0, since W*(Q) C L?(Q), the dual space WS ()
of W*(€) is larger and it contains L?((2) as a proper subspace. We next identify explicitly
the subspace in Dg(X) which represents W, *(€). For convenience sake, we assume that X
is a compact complex hermitian manifold. For s € R, we define W*(X) to be the Sobolev
spaces of order s. By assuming that X is compact, there is only one way to define these
spaces up to equivalent norms. Then W*(X) and W~%(X) are dual space to each other.

Definition 5.2. Let X be a compact complex hermitian manifold and let {2 be a domain
in X with Lipschitz boundary. Let W5*(X) be the subspace of distributions in W™*(X)

with support in .

Lemma 5.3. Let Q be a bounded domain with Lipschitz boundary in a compact complex

hermitian manifold X. For any s > 0, we have W.;*(Q) = Wz*(X).

Proof. Since the boundary of € is Lipschitz, every function in W#(Q2) can be extended to
be a function in W#(X). Consider the restriction map
R:W3X) = W*(Q).
It is continuous and surjective. Thus the dual map
R -W3(Q) =W, Q) - W(X) =W *(X)

is an injection. Moreover, from Corollary 5.2, the image of W*(Q2)’ by R’ is included in
W5 (X). This shows that W*(Q)" € W5*(X).

To prove the other direction, we will show that if f € W5*(X), then f € W*(Q)". To see
this, let ¢ be a function in W*(§2). Since the boundary is Lipschitz, there exists a bounded
extension map E (see e.g. [35]) from W*(Q2) to W*(X) with

[Edllwsx) < Cliollws -
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We define a linear functional on W*(2) by (f, ¢) = (f, E¢)x. Then we have

(o)l = I EQ) x| < [[fllw-sx) 1 EGllws(x) < Clillws(o)-

Thus f is a bounded linear functional on W*(Q2). Thus f € W 5(Q). This proves the
lemma.

O

Lemma 5.4. Let Q be a bounded domain with Lipschitz boundary in a compact complex
hermitian manifold X. For any s > 0, the space C§°(R2) is dense in W 5(12).

Proof. When s = 0, this is true for any domain without the Lipschitz assumption. From
Lemma 5.3, every element f € W, *(2) is an element in Wﬁ_S(X ). By a partition of unity,
this is a local problem near each z € Q. Since  is Lipschitz, for any point z € bS), there is
a neighborhood U of z in X, and for ¢ > 0, a continuous one parameter family ¢. of smooth
maps from U into X such that t.(D NU) is compactly contained in 2, and ¢. converges
to the identity map on U as € — 0. In local coordinates near z, the map ¢. is simply the
translation by an amount ¢ in the inward normal direction. Then we can approximate f
locally by ), where
FO =N

is the pullback of f by the inverse t-! of t.. A partition of unity argument now gives a form
e e W5 (X) such that f©) is supported inside Q and as ¢ — 0, f(&) — f in W—5(X).
The lemma follows from regularization. U

We let O be the differential operator and ¥ be its formal adjoint.
Definition 5.3. For s > 0,0<p<nand1<gqg<n,let
(5.1) Ds = Wy g1 () = W, (),

denote the maximal closed extension of 9, from the Hilbert space W3, () to W ().
Aform fe W, ()N Dom(9s) if and only if §f is in WS (Q) in the distribution sense.

Equivalently, let D, ,(©2) denote the smooth (p, ¢)-forms with compact support in 2 and
¥ denote the formal adjoint of 9. A form f € Dom(d;) if and only if f € W ,—1(82) and
there exists g € W () such that

(5.2) (p,g9) = (Do, f), for every ¢ € D, ().

In this case, we define 0, f = ¢ in the definition of distribution.

Lemma 5.5. The 0, operator is a closed densely defined operator from W;q_l(Q) to
W# ().
P

Proof. From the assumption that 2 is Lipschitz, the space Cp%,_1(2) C W, _1(Q) is a dense

subspace. Thus the operator Js is a densely defined operator since C;?,(;—l(ﬁ) C Dom(9,),
The 0, operator is a closed operator, i.e, the graph of 9 is closed since differentiation in the
distributions sense is continuous. ]

We have the following lemma which states that the weak equal strong extension for 9,
when the boundary is Lipschitz.

Lemma 5.6. (Mazimal Weak and Strong extensions for J,) Let Q be a bounded

Lipschitz domain in a complex hermitian manifold X. A form f € Wy ()N Dom(9s) if
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and only if there exists a sequence f, € ;"’q_l(ﬁ) such that f, — f in W3, 1(Q) and of,
converges to Of in the WS (€).

Proof. Since the boundary is Lipschitz, the lemma follows from the Friedrichs’ lemma by
regularizing the form f (see [12], [19], [20] or [8]). O

Remark. It is important that the boundary is Lipschitz. If the boundary is not Lipschitz,
the lemma might not hold (see the recent paper [28]).

Definition 5.4. The dual 9, of 0, is defined as

(5.3) Tyt W3, (Q) = WS ()
An element f € Dom@;) N W, 4(82) if and only if there exists g € W, 7 _;(£2) such that
(5.4) (050, f) = (b.9), & € Dom(0).

If (5.4) holds, we define 5lsf = g. Let ¥ be the formal adjoint of . We then have 9f = ¢
in the distribution sense on 2.

Remark. The pairing in (5.4) is between dual spaces. We must not confuse the dual
operator 5; with the Hilbert space adjoint 8. : W5, (Q) — W7, 1(Q). Only when s = 0,
we have & = 0 since W, () = W#(Q) only when s = 0. The importance of taking the
dual pairing is that we can use integration by parts when the forms are smooth.

We will show next that ¥f = ¢ in the distribution sense in X and generalize the L? 0-
Cauchy problem to the spaces W, %(€Q). From now on, we will fix s, p, ¢ and will sometimes

drop the dependence of s, p, ¢ in the function spaces to avoid too many indices when there
is no danger of confusion.

Proposition 5.7. Let Q) be a bounded domain with Lipschitz boundary in a complex her-
mitian compact manifold X. The form f € Dom(gls) if and only if f € Wﬁ_s(X) and there
exists g € Wﬁ_S(X) such that 9f = g in the distribution sense in X.

Proof. From Definition 5.4, f € W*(2) and there exists g € W *(Q2) such that (5.4)
holds. Note that f € Dom@;), from Lemma 5.3, both f and ¢ are distributions in X with
compact support in Q.

In particular, since C%(€2) C Dom(ds), we have

(5.5) (0s¢, ) = (99, ) = (8,9), ¢ € Cpy(V).

Using Lemma 5.3, both f and ¢ are in WgS(X), i.e., distributions in W~*%(X) with compact
support in Q. Equality (5.5) implies that

(5.6) (09, ) = (6,9), ¢ € Cpy(X).

Equality (5.6) means that Jf = ¢ in the distribution sense in X. O

We will also need the following well known result from functional analysis (see, e.g.,
Section VIL5 in [39], Theorem 1.1.1 in [20], and Proposition 2.5 and Theorem 2.7 in [27]).

Lemma 5.8. Let X and Y be Hilbert spaces and let T' be a densely defined closed operator
from X into Y. Let T" be the transpose of T. Then the following statements are equivalent:

(1) T has closed range R (T') in'Y .
(2) T has closed range R (T") in X'.
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3) R(T) ={g €Y | (g, f) =0 for every f € N (T")}.
4) R(T") = {f € X" | {g, f) = 0 for every g € N'(T)}.
5) There is a constant C > 0 such that

(5.7 Ifllx <CITflly,  f€dom(T)NN (T)*

6) There is a constant C > 0 such that

(
(
(
)
(

(5-8) lglly < ClIT'gllxr, g € dom (T") NN (T")*

Proof. The equivalence of (1)-(4) is the Banach closed range theorem (see [39, p. 205]) and
holds on Banach spaces. The equivalence between (1) and (5) and between (2) and (6) is
a consequence of the closed graph theorem (see [20, Theorem 1.1.1]). O

Applying the above theorem to O : W —1(82) = Wy (Q), we have:

Corollary 5.9. Let ) be a bounded domain with Lipschitz boundary in a complex hermitian
compact manifold X . Suppose that 05 : W, _1(2) — Wy () has closed range. Then we
have

(1) R(@s) = {g € W5 () | (g, f) =0 for every f € N (3,)}.
(2) R(@,) ={fe W*;Sq Q) | g, f) =0 for every g € Ker(D)}.

Definition 5.5. Let 2 be a bounded Lipschitz domain in a complex hermitian compact
manifold X. For 0 <p<n,1<qg<n,s>0,let

(5.9) 9, W (X) = W (X)
denote the (weak) closed extension of 9 from the Hilbert space W5 (X) to W5*(X). A
form f € Dom(,) if and only if f € W5*(X) and of € W5 (X).

Let * be the Hodge star operator which maps (p, ¢)-forms to a (n —p,n — ¢)-forms in X.
We have on the compact complex manifold X,

(5.10) V= —%0%*.
We also have the following relations between 5; and 0.

Lemma 5.10. Let Q be a bounded Lipschitz domain in a comple:r hermitian compact man-

ifold X. A form f € Dom(0 S) if and only if xf € Dom(8.). We have
(5.11) 05 =0, % .

Proof. When s = 0, this is proved in [7]. Let f € Dom(d,). From Proposition 5.7,
fe WQ_S(X) and Jf =g € WQ_S(X). Thus *f and *g are forms in W~°(X) with compact
support in Q and @ * f = *9f in the distribution sense in X. Thus *f € Dom@i). The
other direction is the same. Since on a compact manifold, equation (5.10) holds both for

smooth forms and for currents. The equality (5.11) follows.
U

Lemma 5.11. (Weak and Strong extensions for 9, o) A form f € Dom(0 C) if and only
if f € Wgs( ) and there exists f, € Dy 4(Q) such that both {f,} and {df,} converge in

WgS(X) to f and g respectively with Of = g in X.
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Proof. When s = 0, this is done by Friederichs’ Lemma (see [20], [8] or [27]). Assume
f, g€ Wﬁs(X ) such that df = ¢ in the distribution sense in X. Both f and g are

distribution in X and compactly supported in €.

We need to construct a sequence f,, of smooth forms with compact support in €2 which
converges in the graph norm of 0 in WéS(X ) to f. By a partition of unity, this is a again
local problem near each z € . Let t. and f¢ be the same as before. We approximate f
locally by ), where

FO=@hs
is the pullback of f by the inverse t-! of t.. A partition of unity argument now gives a
form f&) e Wﬁ_S(X ) such that f (©) is compactly supported inside Q and as € — 0,

(5.12) fO s imws(X) af® - af in W(X).

We can apply Friedrich’s lemma to regularize the form f() to construct a sequence of
smooth forms f, with compact support in 2 with the desired property. O

Theorem 5.12. Let Q2 be a bounded Lipschitz domain in a complex hermitian compact
manifold X. The following conditions are equivalent:

(1) The operator O : pg—1(82) = W5 (Q) has closed range.

(2) The operator 5; WP (X) — Wé;q (X) has closed range.

. Q.p,q -1
(3) The operator 0O, Wﬁ,n—p,n—q(X) — Wﬁnip’nqu(X) has closed range.
Proof. Since the boundary is Lipschitz, from Lemma 5.3, the space W, *(Q) = W5°(X).
It then follows from Lemma 5.9 that (1) and (2) are equivalent. That (2) and (3) are
equivalent follows from Lemma 5.10. g

Theorem 5.13. Let Q2 be a bounded Lipschitz domain in a complex hermitian compact
manifold X. Suppose that the range of 0s is closed in W (2). Then g € Range(d.) N

w=? q(X) if and only if

Qn—pn—
(5.13) (xg,f) =0, for all f € Ker(0) N W, ().
Proof. We first prove the necessity. If g is in the range of 5:; there exists u € W2° (X)

o Qn—p,n—q
such that u = g in X in the distribution sense. Thus there exists a sequence of compactly
supported smooth forms u, — u and Ou, — g. It is easy to see that for every f €

Ker(ds) N W, ,(€2),

(*g,f):(g,*f):lil{n/gaul,/\f::I:lign/gu,,/\@sf:().

Thus (5.13) holds.
On the other hand, if (5.13) holds, we will show that g is in the range of gz, or equiva-

lently, xg is in the range of 5:. Let u € Z‘jff]_l(ﬁ) and f = Ou. Then the linear functional

L(0u) = (+g,u) < gl lullws < llgllyy-[Oullw-

is a bounded linear functional from Range(d) C W () to C. From the Hahn-Banach
theorem, L extends to be a bounded linear functional on W (€2). Thus there exists an
veW,_° (Q) such that

*p,q—1
L(EU,) = (U,EU) = (*g,'LL), u € ]?i]fl(ﬁ)
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This means that v € Dom(d,) and d,v = *g. This proves that g = d, * v and g is in the
range of 9. O

Remark. Not much is known if we consider €2 to be a smooth pseudoconvex domain in
CP" (or in a complex hermitian manifold) except for small s < % (see Theorems 3.1 and
3.2). Suppose that € is a pseudoconvex domain in CP™ with smooth boundary. It is still
unknown if
Os : Wy ,1(Q2) — W, (), seN

has closed range or if (1.1) holds for s > 1.

However, if we consider the complement Q7 = CP" \ Q, then it follows from Corollary
4.9 that

01 : Wplyq_l(Q'F) — Wp{q(Q"’), seN

has closed range for all 1 < ¢ < n — 1. Here we only need that bQ™" to be Lipschitz.
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