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Simple Summary: In the present study, we created transgenic Arabidopsis plants overexpressing
two fungal acetylesterases and a fungal feruloylesterase that acts on cell wall polysaccharides
and studied their possible complementary additive effects on host defense reactions against the
fungal pathogen, Botrytis cinerea. Our results showed that the Arabidopsis plants overexpressing
two acetylesterases together contributed significantly higher resistance to B. cinerea in comparison
with single protein expression. Conversely, coexpression of either of the acetyl esterases together
with feruloylesterase compensates the latter’s negative impact on plant resistance. The results also
provided evidence that combinatorial coexpression of some cell wall polysaccharide-modifying
enzymes might exert an additive effect on plant immune response by constitutively priming plant
defense pathways even before pathogen invasion. These findings have potential uses in protecting
valuable crops against pathogens.

Abstract: The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant
growth and protection against both biotic and abiotic stresses. Signals and molecules produced
during host—pathogen interactions have been proven to be involved in plant stress responses ini-
tiating signal pathways. Based on our previous research findings, the present study explored the
possibility of additively or synergistically increasing plant stress resistance by stacking beneficial
genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively
overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a
rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed
either together or in combination with the feruloylesterase to study the effect of CW polysaccha-
ride deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen,
Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed
higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT)
Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone
compromised plant resistance, coexpression of feruloylesterase together with either one of the
two acetylesterases restored plant resistance to the pathogen. These CW modifications induced
several defense-related genes in uninfected healthy plants, confirming their impact on plant resis-
tance. These results demonstrated that coexpression of complementary CW-modifying enzymes in
different combinations have an additive effect on plant stress response by constitutively priming the
plant defense pathways. These findings might be useful for generating valuable crops with higher
protections against biotic stresses.

Keywords: cell wall; polysaccharides; Arabidopsis thaliana; Aspergillus nidulans; acetylesterase; feru-
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1. Introduction

The plant cell wall (CW) is a dynamically active and highly controlled structure that is
vital for plant growth and development [1]. The CW plays a crucial role in the determina-
tion of plant cell structure and shape of the tissues. Apart from its structural role, the CW is
involved in important functions such as cell to cell interactions, growth and development of
the whole plant, and interaction with the external environment [2]. The plant CW is mainly
composed of cellulose and highly diverse heteropolysaccharides, such as hemicelluloses
(xyloglucans, xylans and different mannans) and pectins (homogalacturonan, rhamnogalac-
turonan I, rhamnogalacturonan II, xylogalacturonan and apiogalacturonan), which are
assembled in macromolecular networks [3,4]. In addition to the diverse monosaccharide
composition, CW polysaccharides are also decorated with methyl, acetyl, and feruloyl
groups, which are O-linked to sugars. These functional groups protect polysaccharides
from the action of specific CW-degrading glycosyl hydrolases and also to cross link CW
constituents for controlling cell extensibility [5-7].

Recently, it was demonstrated that plant CW alterations, either by intentionally im-
pairing or overexpressing CW-related genes, have a significant effect on disease resistance
and abiotic stresses [8-11]. It was initially assumed that the disease resistance phenotypes
associated with alterations of CW integrity were due to the incapability of un-adapted
pathogens to overcome the modified CW compositions/structures in the genetically modi-
fied plant mutants or over-expressed transgenic lines. However, later studies found that
the CW is not just a passive barrier. CW alterations trigger complex defensive signaling
pathways to fight against plant pathogens [11-15]. The role of CW polysaccharides on
plant resistance to pathogens has been extensively reviewed recently in detail [16].

Based on research evidence, it was assumed that artificial CW modifications might in-
duce plant defense responses even prior to pathogen infection, and these defense reactions
could be able to reduce pathogen infection and spread [16]. Several efforts have been made
to unravel the complexity behind the role of the CW in plant pathogen resistance [7,17].
Indeed, increasing evidence shows that changes in CW composition, via either altering
polysaccharide biosynthesis or polysaccharide post-synthetic modifications in muro, in-
duced reactions similar to those induced during plant responses to naturally occurring
biotic/abiotic stresses [7,16-23].

Substantial experimental evidences have proven that modifications in pectin biosyn-
thesis strongly affected the plant response to pathogens. For instance, it was found that
the nuclear-localized transcriptional activator AtERF014 can act as a dual regulator of
Arabidopsis resistance against two pathogens, Pseudomonas syringae and B. cinerea [24].
Altering the expression of AtERF014, either by overexpressing or by gene-silencing, in-
fluenced the expression of pectin biosynthesis genes and also the pectin content, which
resulted in differential resistance or susceptible response of Arabidopsis plants against these
two pathogens [24]. Arabidopsis gael gae6 double mutants, which have terminated expres-
sion of two glucuronate 4-epimerases involved in the synthesis of the pectin precursor UDP-
D-galacturonic acid, showed susceptibility to the pathogens P. syringae and B. cinerea [25].
The Arabidopsis double mutant powdery mildew-resistant 5 and 6-3 (pmrbpmr6-3), which
showed a pectin-enriched CWs phenotype, was found more susceptible to P. syringae, and
interestingly was found more resistant to the fungus Colletotrichum higginsianum than WT
plants [26-28]. Increased susceptibility to C. higginsianum was also observed in Arabidopsis
mur8-1 mutants, which displayed a reduction in CW rhamnose and also RG-I content, in
comparison to the WT [26].

Pectic complexity is further amplified by post-synthetic modifications such as acetyla-
tion, methylesterification, etc. [29]. Specific endogenous pectin methylesterases (PME) and
PME inhibitors (PMEI) were found dynamically modulated during plant-microbe interac-
tions [30,31]. Necrotrophic pathogenetic microbes have evolved the capability to degrade
lowly methylesterified pectin efficiently by using specific polygalacturonases (PGs). At
later stages of pathogen infection, plants can defend their CW integrity by inducing specific
PMEISs to block the PME-mediated demethylesterification of pectin. This action protects the
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CW from further degradation by PGs and limits pathogen spread [21]. Accordingly, Ara-
bidopsis, wheat and cotton plants overexpressing pectin methylesterases inhibitors (PMEI)
exhibited increased resistance to B. cinerea, Fusarium graminearum and Verticillium dahliae, re-
spectively [32-34]. The overexpression of PG-inhibiting proteins (PGIPs) in different plant
species increased their resistance to necrotrophic fungi and bacteria [35,36]. Additionally,
it was demonstrated that reduced pectin acetylation in Arabidopsis by overexpression of
Aspergillus nidulans acetylesterase (AnRAE) resulted in the induction of specific defensive
responses and increased resistance to B. cinerea [37].

The molecular biology of pectin is highly complex, and we are still far away from
understanding the exact details of their contribution to CW integrity-mediated pathogen
resistance. However, most of the resistance phenotypes involving altered pectic composi-
tion and structures were partially found to be associated with enhanced accumulation of
oligogalacturonides (OGs), which are known to be damage-associated molecular patterns
(DAMPs) resulting from the breakdown of pectic «-galacturonosyl residues. OGs have
been recognized in Arabidopsis by Wall-Associated Kinase 1 (WAK1), which serves as a
pattern recognition receptor in triggering plant immune responses [38]. OGs were demon-
strated to elicit a wide array of defense responses, including a strong apoplastic oxidative
burst, accumulation of phytoalexins and up-regulation of pathogen defense-related genes
which subsequently confers resistance to pathogens [39-43].

Some experimental evidence demonstrated the existence of a link between the al-
teration of xylose content in hemicellulose and their degree of acetyl esterification to
the immune response of Arabidopsis to plant pathogens. For instance, plants with
higher levels of wall-bound xylose, as occurs in the Arabidopsis de-etiolated3 (det3) and
irx6 mutants [44,45] and the xyl/1-2 mutant [46], had enhanced resistance to the fungus,
P. cucumerina. On the other hand, Arabidopsis, aghl and aggl agg2 mutants, which have
reduced xylose content were found to be highly susceptible to P. cucumerina [47-49]. The
Arabidopsis Reduced Wall Acetylation2 (rwa2) mutant, with 20% reduced polysaccharide
O-acetylation, was found more resistant to the necrotroph, B. cinerea and the biotroph,
Hyaloperonospora arabidopsidis than WT plants [50,51]. Similarly, transgenic plants over-
expressing a fungal xylan acetylesterase showed a reduction in CW xylan acetylation,
and consequently these plants were found highly resistant to necrotrophic fungi [37].
The Arabidopsis pmr5 mutant, with impaired O-acetylation of wall polysaccharides, was
found more resistant to the pathogens, Erysiphe cichoracearum and C. higginsianum than WT
plants [26,27,52].

Arabidopsis esk1 plants with impaired xylan acetylation showed variations in their
cellular biochemical compositions, such as increased accumulation of abscisic acid, constitu-
tive upregulation of the genes encoding antimicrobial peptides and the enzymes involved
in the synthesis of tryptophan-derived metabolites, enhanced accumulation of disease
resistance-related secondary metabolites and different osmolytes, which overall resulted in
plant resistance to freezing, drought, and salinity [53-56].

It was also shown that ferulic acid (FA) plays an important role in plant-pathogen in-
teractions, and that many phenolic compounds such as FA are often induced in response to
various biotic stresses. FA is known to play a vital role in fungal pathogen resistance and has
also been found to act as an insect deterrent [57,58]. Experiments showed that FA-mediated
cross-linking results in CW stiffening and a reduction in growth [59], and that a negative cor-
relation exists between the amount of CW feruloyl esterification and pathogen infection [60].
In another experiment, Arabidopsis and Brachypodium (Brachypodium distachyon) plants
expressing A. nidulans feruloylesterase, which hydrolyzes ester linkages between host plant
CW polysaccharides and FA, were found to have reduced CW feruloylation and increased
susceptibility to the pathogens B. cinerea and Bipolaris sorokiniana, respectively [61].

In our previous studies, in Arabidopsis and Brachypodium plants we investigated
the consequences of the expression of two different fungal acetylesterases, A. nidulans
xylan acetylesterase (AnAXE) and a rhamnogalacturonan acetylesterase (AnRAE), and
both the enzymes remove acetyl groups (deacetylates) from CW polysaccharides [37]. The
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transgenic plants with reduced polysaccharide acetylation showed significantly increased
resistance to the fungal pathogens B. cinerea and B. sorokiniana, respectively. In another
related study in Arabidopsis and Brachypodium plants, we investigated the effect of
expression of an A. nidulans feruloylesterase (AnFAE), which removes feruloyl groups (de-
feruloylates) from CW polysaccharides [61,62]. Transgenic Arabidopsis and Brachypodium
plants expressing AnFAE showed significantly reduced levels of FA and wall-associated
extensins, and increased susceptibility to B. cinerea and B. sorokiniana, respectively [61,62].

Earlier studies showed that naturally occurring acetylation and feruloylation of CW
polysaccharides plays an important role in protecting the CW from the action of specific CW-
degrading glycosyl hydrolases and also strengthening CW via diferulic cross-linkages [5-7].
It was shown that CW deacetylation increased plant resistance [37,50-56,62] by increasing
accessibility of CW polysaccharides to plant glycosidases for partial degradation. The
oligosaccharides released as a result of this partial degradation can be perceived as DAMPs
and trigger defense-related genes. Furthermore, previous studies have shown that express-
ing fungal acetylesterases resulted in the induction of defense pathway genes even without
pathogen inoculation [37,61]. On the other hand, expression of feruloylesterase resulted in
significantly reduced levels of FA and wall-associated extensins, thereby weakening the
CW. Deferuloylation of the CW did not have an impact on the expression of defense related
genes in non-infected transgenic plants but increased their susceptibility to B. cinerea and
B. sorokiniana [61,62], most likely due to mechanical weakness of deferuloylated CWs.

Overall, the results obtained earlier showed that both deacetylation by acetylesterases
and deferuloylation by feruloylesterase produced opposite effects on plant resistance
to pathogens [37,61] due to different consequences of their actions. The expression of
fungal acetylesterases caused constitutive priming of plant defense pathways even before
pathogen infection and made the plants be in a ready state to defend against the possible
microbial attacks.

In the present study, we generated double transgenic plants over-expressing the same
fungal acetylesterases (AnAXE and AnRAE) [37], either together or in combination with
the previously used feruloylesterase (AnFAE) [61], to investigate the impact of stacking
two beneficial genes (AnAXE/AnRAE) to improve plant immunity and also to investigate
the effect of two genes that were known to produce opposite effects (AnAXE/AnFAE and
AnRAE/AnFAE). We demonstrated that over-expressing stacked genes (AnAXE/AnRAE)
produced an additive impact on induction of Arabidopsis defense signaling pathways
and additive impact on defense reactions against B. cinerea. The positive effect of reduced
CW acetylation by AnAXE or AnRAE on plant resistance was also able to compensate the
negative impact of weakened CW due to reduced feruloylation caused by AnFAE. These
results provide new insights into the application of post-synthetic modification of the CW
as a tool to protect valuable crops against pathogens.

2. Materials and Methods
2.1. Arabidopsis Growth Conditions

Arabidopsis seeds of different genotypes were planted and grown on LC-1 potting
soil mix (Sun Gro Horticulture, Agawam, MA, USA) in a growth chamber under controlled
conditions. The growth chamber was maintained at 21 °C, with 16 h light/8 h dark
photoperiod, 65% relative humidity and 160 pmols~! m~?2 light intensity [37,61].

2.2. Generation of Transgenic Plants

In this study, the UBIQUITIN-10 promoter (UBQ10), which is an endogenous, consti-
tutively expressed promoter of Arabidopsis, was used instead of a commonly used CaMV
35 S promoter [63]. Recently, a set of Gateway-compatible binary vectors were developed
for the expression of transgenes tagged with different fluorescent proteins [64]. Of these
binary vectors, pUBC-CFP, which enables the tagging of proteins with cyan fluorescent
protein (CFP) at the C-terminus, was chosen for the present investigation [64]. pUBC-CFP
possesses a gene conferring resistance to the Basta herbicide for selection of homozygous
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Arabidopsis transformants. The DNA sequences of AnAXE, AnRAE, and AnFAE genes
were first cloned into the pENTR/D-TOPO entry vector and later Gateway-recombined
into the pUBC-CFP vector. The Arabidopsis 3-expansin signal peptide was fused to the N-
terminus of each gene [37,61,62] to ensure the protein secretion into the apoplastic space to
aid in the deacetylation and deferuloylation of CW polysaccharides. The genes containing
the signal peptide sequences were inserted in between the promotor and CFP sequences.
To generate single mutants, the recombinant pUBC-CFP vectors carrying AnAXE, AnRAE,
and AnFAE were transformed separately into Agrobacterium tumefaciens cells (EHA101
strain) by electroporation and transformed onto WT Arabidopsis plants (Col-0) by the
floral-dip method [65].

To create three combinations of transgenic plants over expressing two genes together,
two selection methods were required, one for each transgene. So far, neither of the vec-
tors generated by Grefen et al. [64], nor any other available vector source, possessed a
Gateway-compatible UBQ10 promoter with selection other than resistance to Basta. Thus,
a vector with different selection marker was created. To achieve this, Gibson assembly [66]
protocol was used to transfer the currently available expression cassette from pUBC-CFP
vector onto an existing backbone: pCAMBIA-1300-MCS (Figure S1). Complementary
overhanging primers for each cassette inserts and plasmid backbones were designed,
and fragments were amplified by PCR, annealed together, and later transformed into
E. coli. Then, basta-resistant transgenic plants already containing single genes, pUBC-
[AnAXE/AnRAE/AnFAE]-CFP, were transformed with Agrobacterium carrying pCAMBIA-
UBQ10-[AnAXE/AnRAE/AnFAE]-CFP by the floral-dip method. After transformation, three
independent transgenic Arabidopsis lines were selected for each construct, and homozy-
gous plants were generated using herbicide and/or antibiotic resistance. PCR was carried
out with genomic DNA to confirm the presence of full-length constructs.

2.3. RNA Extraction, cDNA Synthesis, and Real-Time gPCR

From the leaves of 3-week-old plants, total RNA was extracted using the SV Total RNA
Isolation System (Promega Corp, Madison, WI, USA), and cDNA was synthesized with the
SuperScript III First Strand Synthesis System (Invitrogen Corp, Carlsbad, CA, USA). Real-
time quantitative PCR (RT-qPCR) was carried out on the Mx3000P qPCR System (Agilent,
Santa Clara, CA, USA), using the GoTaq qPCR Master Mix (Promega Corp, Madison, WI,
USA), and appropriate primers (Table S1) to estimate the relative expression of various
genes. The ACTIN2 gene (At3g18780) was used as the reference gene. For a particular
gene, the expression level in WT plant was set as 1, and the expression of that gene in
transgenic plants was calculated relative to that of WT plants. The comparative threshold
cycle technique [67] was used for estimating differences between the transcript level in WT
and transgenic plants.

The transcript levels of various defense genes were estimated using RT-qPCR in
healthy uninfected Arabidopsis plants as described earlier [37,61]. The expression levels
of defense pathway genes tested in our study were: jasmonic acid responsive genel (JR1),
phytoalexin deficient3 (PAD3) gene, 3-1,3-endoglucanase? (bG2) gene, pathogenesis-related
proteins 1 and 5 (PR1 and PR5) genes, plant defensinl.2 (PDF1.2) gene, wound responsive3
(WR3) gene, pathogen-induced W box-containing transcription factor (WRKY40) gene,
polygalacturonase-inhibiting proteinl (PGIP) gene, CYP81F2 (CYP) gene, and oxidoreduc-
tase (RetOx) gene [37,61].

2.4. CW Composition Analysis

CWs of different Arabidopsis genotypes were extracted from healthy uninfected plants
as described earlier [37]. Acetyl content in the CW was estimated using an assay previously
developed by McComb and McCready (1957) [68]. Briefly, 10 mg of CW was weighed and
mixed with 2.5 mL of 0.5 M hydroxylamine hydrochloride by vortexing. Subsequently,
2.5 mL of 2 N sodium hydroxide was added gradually and mixed thoroughly. From
the above mixture, 0.5 mL was aliquoted and mixed with 0.2 mL of water and further
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with 0.5 mL of acid methanol (35.2 mL 70% perchloric acid in 500 mL of methanol).
Next, 1.3 mL of ferric perchlorate was added in small increments and mixed after each
addition. The mixture was incubated at room temperature for 15 min and the resultant
‘ferric acetohydroxamic complex’ product was estimated by spectrometric measurement
of absorbance at 510 nm. Simultaneously, a standard curve was generated using Glc
pentaacetate as a standard. Then, the acetyl content of the samples was calculated using
the standard curve.

For the determination of ferulic acid content, total phenolic acids were first extracted
from the CWs of various samples and analyzed further using the method as described
earlier [62]. Briefly, 1 mg of CW was weighed and incubated in 2 mL of 2M NaOH for 24 h.
The supernatant was collected, the reaction was repeated one more time, and the resultant
supernatants were combined together. The supernatant was neutralized with HCl and the
total phenolics were extracted using ethyl acetate, which was then evaporated to dryness
with a stream of Nj. The phenolics were redissolved in 100% methanol and analyzed on
reverse-phase HPLC using a Prevail C18 5 p column (4.6 mm x 250 mm; Grace Davison
Discovery Sciences, Deerfield, IL, USA) under UV detection at 290 nm and 320 nm. The
phenolic acids were separated using a gradient of 0.1% trifluoroacetic acid in water (pH 2.8)
and acetonitrile at a flow rate of 1 mL min~! under following conditions: 0-10 min—95%
water; 10-30 min—85% water; 30—40 min—70% water; 40-47 min—>5% water; 47-55 min—
95% water. To determine the amount of ferulic acid content, a standard curve was generated
using different concentrations of standard ferulic acid (Sigma-Aldrich, St. Louis, MO, USA).

2.5. Infection of Arabidopsis Genotypes with Botrytis Cinerea

Botrytis cinerea (strain SF1) was grown for 15 days on potato dextrose agar (39 g L™1)
plates at 23 °C with a 12 h light and 12 h dark photoperiod, as mentioned previously [32].
The conidial spores produced were harvested by gently washing the surface of the agar
plates with 5 mL of sterile water. The spore suspension was filtered through glass wool to
remove the residual mycelia, and the spore concentration was estimated using a Thoma
chamber. To achieve uniform spore germination, the conidia were grown in potato dextrose
broth (24 g L™!) at room temperature for 3 h and the germinated spores were used for
inoculation of Arabidopsis leaves, as described previously [50,69]. Fully developed uniform
leaves were cut from 3-week-old Arabidopsis plants (three leaves per plant). The petioles
of cut leaves were embedded within 0.8% agar in square Petri dishes. Two 5 puL droplets
of germinated spore suspension (5 x 10° conidia mL~!) were placed on each side of the
mid-rib on the surface of each leaf. Potato dextrose broth without spores was used as
negative control. The inoculated leaves were incubated at 24 °C with a 12 h light and 12 h
dark photoperiod, and the lesion diameter was measured using Image] software [70] 48 h
post inoculation (hpi).

2.6. Determination of HyO, Accumulation

Healthy uninfected WT and transgenic leaves were assayed for HyO, production
using the 3,3’-diaminobenzidine (DAB) staining method as described previously [71]. DAB
solution was prepared first (1 mg/mL; pH 3.0), and subsequently Tween-20 and Na,HPO4
were added to a final concentration of 0.05% and 10 mM, respectively. Three uniform
rosette leaves from 3-week-old Arabidopsis plants were harvested and immersed in 5 mL
of DAB solution mixture in a 24-well plate. Then, the leaf samples were vacuum infiltrated
for 5 min twice to ensure DAB solution penetrated the tissues. After vacuum infiltration,
the 24-well plate was covered with aluminum foil and placed on a shaker for 12 h. After
12 h, the leaves were transferred to a bleaching solution (3:1:1 ethanol: acetic acid: glycerol)
and boiled at 95 °C for 15 min. After boiling, the old bleaching solution was replaced with
the fresh bleaching solution and the DAB-stained leaves were photographed.
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2.7. Statistical Analysis

All experimental mean data were subjected to statistical analysis using R software.
The bioassay data of total acetyl content, ferulic acid content and lesion size data of
each experiment were initially tested for significance by analysis of variance (ANOVA).
Subsequently Fisher’s protected least significant difference (LSD) test value was used to
compare treatment means at p < 0.05. The statistical significance of the relative transcript
of RT-qPCR data of different treatments was established using Student’s f-test at p < 0.05 (*)
and also at p < 0.01 (**).

3. Results
3.1. Generation of Transgenic Arabidopsis Plants Expressing A. nidulans Acetylesterases (AnAXE
and AnRAE) and Feruloylesterase (AnFAE)

In this study, six different transgenic lines were generated as follows: transgenic Ara-
bidopsis lines expressing three single genes separately (AnAXE, AnRAE and AnFAE) and
three transgenic Arabidopsis lines each co-expressing two genes together (AnAXE/AnRAE,
AnAXE/AnFAE and AnRAE/AnFAE). Transgenic Arabidopsis lines expressing single genes
were generated by employing pUBC-CFP binary vector with a C-terminal CFP fusion under
the control of endogenous UBIQUITIN-10 promoter (UBQ-10) (Figure S1). Native UBQ-10
was chosen over the 35 S promoter since it facilitates moderate expression in nearly all
Arabidopsis tissues. Moreover, using UBQ-10 avoids possible problems of gene silencing
associated with 35 S promoter [63].

In order to confirm the gene expression in all transgenic lines, RT-qPCR analysis
was conducted (Figure S2). All the selected lines showed that the introduced genes’
transcript expression was at a comparable level without statistically significant differences.
All transgenic plants showed no differences in growth and development with respect to
control plants.

3.2. Expression of Fungal Acetylesterases Reduced the Degree of CW Acetylation in
Transgenic Arabidopsis

The effect of expression of acetylesterases on the degree of acetyl esterification of
CW polysaccharides was evaluated. The acetyl groups were extracted from the CWs
of leaves of the transgenic and WT plants and total acetyl contents were quantified by
spectrophotometric assay [68]. Our results indicated that AnAXE and AnRAE plants
showed a 45% and 33% reduction in CW acetyl levels, respectively, in comparison to
Arabidopsis WT plants (Col-0) (Figure 1). As expected, the acetyl content in CWs of
AnFAE plants was equal to Col-0 plants. Among the double-gene overexpressor transgenic
Arabidopsis plants, ANAXE/AnRAE showed the greatest reduction in acetyl content (66%),
followed by AnAXE/AnFAE with a 45% reduction, and AnRAE/AnFAE with a 39%
reduction in acetyl contents (Figure 1).

3.3. Transgenic Arabidopsis Expressing Fungal Feruloylesterase Showed Reduction in
CW Feruloylation

The levels of ferulic acid content were quantified in transgenic plants expressing
feruloylesterase in comparison to WT plants. The degree of feruloylation was deter-
mined in CWs extracted from transgenic and WT plants using reverse-phase HPLC and
commercial ferulic acid as a standard. The transgenic plants AnFAE, AnAXE/AnFAE
and AnRAE/AnFAE showed a 51%, 49%, and 53% reduction in ferulic acid content, re-
spectively, in comparison to Col-0 plants (Figure 2). However, the AnAXE, AnRAE and
AnAXE/AnRAE plants showed the same level of ferulic acid content as that of Col-0 plants.

3.4. Acetylesterase Expressing Plants Have Increased Resistance to Necrotrophic Fungal Pathogen

Our previous studies with single gene-expressing Arabidopsis plants showed that
deacetylation increased resistance against the fungal pathogen B. cinerea whereas deferuloy-
lation increased the susceptibility [37,61]. The effect of ectopically expressing either single
genes (AnAXE, AnRAE, and AnFAE), or pairs of genes (AnAXE/AnRAE, AnAXE/AnFAE, and



did 55 /0 1eduction 1in LVvyv acctyl 1evels, 1espectively, 1 comparison to A
plants (Col-0) (Figure 1). As expected, the acetyl content in CWs of AnF
equal to Col-0 plants. Among the double-gene overexpressor transgen
Polegy 2021, 10 1flants, ANAXE/AnRAE showed the greatest reduction in acetyl &dritent (
by AnAXE/AnFAE with a 45% reduction, and AnRAE/AnFAE with a 39

acetyl contemts: (Frgnne Arhbidopsis plants was assessed by inoculating leaves with B. cinerea
conidia and observing lesion symptom development 48 hpi with Image]J software.

)70

(—*—
=
Q
-

a—e) indicate the

(@)
75}
o

b
ing Fungal Fetuloylestérase Showed Reduct

=,
>
T
S

e
ent were quantified in transgenic plants
plants. The degree of feruloylation wa

CWsfe racte rgm anggeriic gn plants gsm reverse-phase HPLC
ferulic &%id a&o a stagﬁard Fhe trzgﬁysgem\@ plant\gé‘ AnFAE AnAXE/As
RAE/AnFAE showed a 51%, 49%, afi'ld 53¢9redug§0n in ferulic acid contes

rison to Col u lowever, the A nRAE a

Fgure . CINSPIRAEISOR R Apla %ﬁg&%}ag@w&m M o ﬂ@%@p@m
plants. Letfery{ok) peicatnife d@yﬁ@wﬁﬁmté@rmbn@mﬁnﬁe’pﬁﬁé@em sthe® averad®®)+ SD of three dlffen

0.6

Acétylsiimoles@er
1mg of dey cell %all

o
3]

Ferulic acid nmoles per
1mg of dry cell wall
I o o o
o - N w -
- -
B
- T

Figure 2. Cell wall feruloylatlon of transgenic and WT (Col-0) Arabidopsis plants. Ferulic acid content 1s represented in nmol

per mg dry F1EMIE2 bellewiadd ferloylatipn: ef tramsgenicand Wik Axabidepsis plants.
and three WRpltnis représed teddnteaandlopedifmped ppd@Ride mﬂqﬁflsm&@e?wes@ﬁ&) the average

ferent independgnttransgeniclivesabrasheansitnchanddhuesdvd plants.detters
significant iRt eioesshanehiestiienedn dtyspes{ Bf shredlphiSigepsotith «20708)d 32%

reduction in lesion size, respectively, in comparison to Col-0 (Figure 3A). AnFAE Arabidop-
sis plants were hlghly susceptible to B. cinerea, and the lesion size was 14% larger than the

3.4. AcetyleStérsgeobsspressiryddRinivks Fillopesrione dsesk Rbs fsthescestoaNetrtrophic

Path pathogen among all the plants with a 60% reduction in lesion size. ANAXE/AnFAE and
at 08€1M  AnRAE/AnFAE Arab1d0p51s plants were found to be susceptible to the pathogen at the
same level as that ofithe WT Aﬁl{ldo%m fFlgure 3A,

Our previous studies wi ene- éxpressmg Arabidopsis plar
deacetylation increased resistance against the fungal pathogen B. cinerea v
loylation increased the susceptibility [37,61]. The effect of ectopically ex

single genes (AnAXE, AnRAE, and AnFAE), or pairs of genes (r

A an AVE‘/A»inEA — r'\-v'\r] A..D A E‘/A1/1E/‘ T\ 2.n Avﬂ]ﬂ;rlnﬂn;n ﬂ]r\ﬂl-n YT AT Y f\nnr\nnr\r]



Biology 2021, 10, 1070 90f18

3.5. Deacetylation and Deferuloylation of CW Resulted in Expression of Pathogen-Responsive Genes

To determine whether overexpression of acetylesterases/feruloylesterase and the
resultant decrease in CW acetylation/feruloylation constitutively primed the plant defense
pathways, transcript levels of defense pathway-related genes were measured by RT-qPCR
in healthy, uninfected Arabidopsis plants. In Arabidopsis transgenic plants expressing
AnRAE gene, the upregulation of PAD3, RetOx, and PR1 transcripts was found to be 3.5-
fold, 5-fold, and 4-fold higher than WT plants, respectively (Figure 4A). There was a 3-fold
induction of PR1 gene transcript level in AnAXE-expressing plants. There were no genes
induced in AnFAE plants. At the same time, the transcript level of WRKY and PDF1.2

genes were significantly downregulated by 6- to 10-fold in all three single-gene Arabidopsis
transgenic plants (Figure 4A).
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iScussion
ages ShOWl’l). Plants are under continuous biotic and abiotic stresses that can severely compromise

their survival, and the plant CW and its polysaccharides acts as mechanical barriers to
give protection against stresses. Compromising plant CW integrity, by either altering
polysaccharide biosynthesis or polysaccharide post-synthetic modifications, results in high
impact on disease resistance and abiotic stresses [16-23,37]. Such deliberately introduced
CW modifications could induce plant defense pathway gene(s) and defense responses even
prior to pathogen infection, and these defense responses might be able to reduce or slow
down pathogen spread during actual infection [16].

In previous studies, we demonstrated that the expression of two different fungal
acetylesterases (AnAXE and AnRAE) individually, resulted in reduced polysaccharide
acetylation and increased plant resistance to two pathogens, B. cinerea, and B. sorokiniana [37].
On the other hand, transgenic over expression of the fungal feruloylesterase (AnFAE)
showed a substantial reduction in CW ferulic acid and increased susceptibility to B. cinerea
and B. sorokiniana [61,62]. Deacetylation resulted in exposure of the CW polysaccharides to
CW-degrading hydrolases, possibly leading to the generation of DAMPs and constitutive
priming of plant defense pathways, which might have prepared the plants in a ready state
to defend against the possible attack of pathogens in the future [37].

In this present study, we generated transgenic plants over expressing previously
reported AnAXE, AnRAE, and AnFAE genes in pairwise combinations in order to mainly
analyze the effect of stacking genes on CW modifications, Arabidopsis defense reactions
against B. cinerea, and the induction of defense pathway-related genes. The obtained results
from this study demonstrated the additive impact of stacked AnAXE/AnRAE genes in
enhancing the Arabidopsis defense response against the fungal pathogen B. cinerea.

In our previous studies, we overexpressed AnAXE, AnRAE, and AnFAE under the
35 S promoter and did not observe any abnormality in the phenotype or physiology of
the plants in over expressing AnAXE, AnRAE, or AnFAE under the 35 S promoter [61,62].
In this work, an endogenous UBQ10 promoter was chosen, instead of the 35 S promoter,
for both single and double overexpressors in order to promote a moderate constitutive co-
expression of genes in nearly all Arabidopsis tissues [63]. This strategy also avoids possible
problems of co-suppression or gene silencing associated with the 35 S promoter, which
have been previously reported [63]. Likewise, in this study, no abnormality in phenotype or
physiology were detected in either single or double overexpressors. Further, the RT-qPCR
results showed that the expression level of the overexpressed genes in different transgenic
plants were at a comparable level with no significant difference observed under the control
of UBQ10 promoter (Figure S2).

The results showed that AnAXE and AnRAE plants had reduced acetyl contents
(Figure 1) and AnFAE plants had reduced ferulic acid contents in the CW (Figure 2).
AnAXE and AnRAE-expressing plants showed higher resistance to B. cinerea, whereas
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AnFAE-expressing plants were more susceptible to the fungus. All these data obtained
were in accordance with our previous results obtained in Arabidopsis plants expressing the
same genes under the control of the 35 S promoter [37,61,62]. This shows that the native
UBQ10 promoter provides a sufficient level of the introduced gene expression, which
supports a high level of enzymatic activity localized in the apoplast, comparable to 35
S-driven expression.

AnFAE transgenic plants were found to be highly susceptible to the fungal pathogen
B. cinerea (Figure 3). Our previous study showed that deferuloylation by AnFAE reduced
the strength of the CW cross-linking, which resulted in susceptibility of transgenic plants
to B. cinerea [61]. The susceptibility of ANAXE/AnFAE and AnRAE/AnFAE plants was not
significantly different from WT plants (Figure 3), indicating that the expression of AnAXE
or AnRAE can revert the increased susceptibility caused by AnFAE expression.

Pyramiding beneficial compatible genes and quantitative trait loci (QTL) through
natural breeding or transgenic methods was beneficial for the development of superior resis-
tance against plant pathogens [72-75]. In our study, the double-transgenic ANAXE/AnRAE
plants were found to be highly resistant to B. cinerea with respect to the single AnAXE
or AnRAE overexpressors. The level of resistance positively correlates with the level of
reduction in CW acetyl content (Figures 1 and 3). This shows a complementary additive
effect of both AnAXE and AnRAE genes when expressed together. Interestingly, the combi-
nation of acetylesterase genes with feruloylesterase reverses the negative impact of CW
deferuloylation on plant resistance.

Earlier studies showed that CW deacetylation primed plant resistance [37,50-56,62].
It was proposed that deacetylated CW polysaccharides become more accessible to plant
glycosidases for partial degradation, thus possibly producing DAMP oligosaccharides. The
DAMPs triggered defense-related genes [37]. On the other hand, the deferuloylation of the
CW resulted in decreased plant defense resistance due to mechanically weakened CW [61].
The reduction in CW cross-linking via FA and the reduction in wall-associated extensins by
deferuloylation resulted in a mechanically weakened CW [61]. Contrary to deacetylation,
the deferuloylation of the CW did not trigger defense-related genes [61]. Both the earlier
studies and the present study showed that deacetylation by acetylesterases and deferu-
loylation by feruloylesterase are independent processes and produced opposite effects on
plant resistance to pathogens due to different consequences of their actions [37,50-56,61,62].
The reduction in polysaccharide feruloylation weakens the CW, which results in a more
digestible biomass, which is the goal of the contemporary bioenergy industry, but at the
same time makes it easier for fungal penetration and invasion into plants [61,76,77]. How-
ever, the addition of one acetylesterase and, thus, the induction of defense-related genes
can compensate for the CW weakness and assist in plant protection against pathogens.

Our results suggest the possibility to enhance plant immunity through a coordinated
expression of genes that produce different CW modifications. An earlier example of
successful application of this approach comes from experiments in wheat. The combination
of PvPGIP2 and TAXI-III, a xylanase inhibitor, enhanced wheat host resistance against
F. graminearum [78]. Additionally, pyramiding two pectinase inhibitors, PvPGIP2 and
PME], resulted in broad spectrum pathogen resistance [78].

The CW deacetylation of transgenic plants might result in high exposure of polysac-
charides to endogenous CW-degrading enzymes, such as polygalacturonases (PGs) and
hemicellulases. Our earlier studies showed that the deacetylated CWs of AnAXE and An-
RAE transgenic plants were highly susceptible to a xylanase and PG, respectively [37,61,62].
The activity of these enzymes might have resulted in the constitutive generation of OGs
or other DAMPs, triggering defense-related pathways and priming transgenic plants to
defend against B. cinerea. Several studies indicated that CW-mediated plant resistance was
associated with an enhanced accumulation of DAMP oligomers [16,18,19,22,79]. Changes
in expression of different defense pathway genes in both single and double-gene over-
expressor transgenic plants support these observations (Figure 4). Transcript levels of
PAD3, RetOx, PDF1.2 and PR1 were induced in all three double-gene transgenic plants
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(AnAXE/AnRAE, AnAXE/AnFAE and AnRAE/AnFAE) and WR3 gene was induced in
AnAXE/AnRAE plants (Figure 4B). In single-gene transgenic AnRAE Arabidopsis plants,
the induction of PAD3, RetOx and PR1 was noticed, whereas induction of PR1 was noticed
in AnAXE plants (Figure 4A). These results indicate that ectopic expression of AnAXE and
AnRAE might have caused different CW alterations, and each are able to trigger specific
defense pathways.

A previous study on whole-genome transcript profiling and RT-qPCR analyses showed
that PAD3, RetOx and WR3 were rapidly and highly up-regulated upon exposure to OGs
and other elicitors [80,81]. PAD3 was reported to be involved in the biosynthesis of an
antimicrobial phytoalexin (camalexin) to defend against fungal pathogens [80,82]. WR3
was established to be involved in JA-independent wound signal transduction of plant
defense [83]. Results showed that RetOx expression is induced mainly by DAMPs and
results in the production of HyO,, which in turn might restrict/kill the pathogens locally
and act as a signal for the induction of defense pathways distantly [84]. In agreement
with the above finding, the obtained results here showed that increased accumulation
of H,O, observed in AnRAE, AnAXE/AnRAE, AnAXE/AnFAE and AnRAE/AnFAE
plants positively correlates with induction of RetOx transcript level observed in RT-qPCR
(Figures 4 and 5).

Further, the DAB staining showed that AnNRAE/AnFAE plants had higher H,O,
accumulation (Figure 5), and this could have produced higher resistance in AnNRAE/AnFAE
than any other plants (Figure 3). However, our pathogen infection assays showed that
AnAXE/AnRAE plants (due to additive effect) were more resistant than AnRAE/AnFAE
plants (due to compensatory effect), and resistance produced by AnRAE/AnFAE plants
was found to be only equal to Col-0. The RT-qPCR results showed that the other two double-
gene expression lines (AnAXE/AnRAE and AnAXE/AnFAE) also expressed nearly the
same level of RetOx to that of the AnNRAE/AnFAE plant. Apart from RetOx-mediated
hydrogen peroxide expression, other pathway genes shown in our RT-qPCR data and many
other unknown pathway genes might have combinedly contributed to pathogen resistance
instead of depending only on hydrogen peroxide expression. The combined effect of many
pathway genes might have overall contributed to the higher B. cinerea resistance seen
in AnNAXE/AnRAE plants than AnRAE/AnFAE, which is in agreement with the earlier
finding that complexity of transcriptional programming and gene regulatory network are
needed for Arabidopsis defense against B. cinerea [85]. This indicates that the involvement
of CW-mediated defense pathway genes in protecting the plants against biotic and abiotic
stress is highly complex and careful selection criteria is needed for gene stacking by
considering all the aspects of molecular biology of plant—pathogen interactions.

Previously, it was shown that PDF1.2 was regulated by Jasmonic acid (JA), which
is mainly involved in plant defense reactions against necrotrophic pathogens such as
B. cinerea [86]. Our transcriptional analysis also revealed that the PDF1.2 gene, encoding
defensin protein in Arabidopsis, was highly induced in all the three double-transgenic
overexpressor lines, whereas it was down regulated in the single transgenic lines (Figure 4).
One possible explanation is that in the absence of infection, the deacetylation or deferuloy-
lation caused by single-gene expression in transgenic plants seems to activate DAMPs and
SA-related genes such as PAD3, RetOx and PR1 at the expense of the Jasmonic acid-induced
genes such as PDF1.2 and JR1. In the double-gene expression lines, the combined effect of
deacetylation and/or deferuloylation might have been perceived by the plants as a more
serious loss of CW integrity to be managed with a more complete arsenal of weapons,
including Jasmonic acid-related genes. Further in-depth research might be needed in the
future to address the complex phenomenon of expression and involvement of genes in the
CW-related defense pathway.

In our study, the PRI gene was found to be highly induced in transgenic AnAXE,
AnRAE and AnAXE/AnRAE plants, but not in plants with AnFAE (Figure 4). Interest-
ingly, it correlates well with the pathogen resistance observed in these transgenic plants
(Figure 3). Earlier, it has been shown that PR-1 family proteins are the most highly pro-
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duced proteins upon pathogen attack, and most of the PR-1 proteins are secreted into
the extracellular /apoplast region. PR-1 proteins play a vital role in plant defense, such
as broad-spectrum antimicrobial compound, act as receptors for recognizing pathogen
effectors, and signal molecules for salicylic acid-mediated disease resistance [87].

5. Conclusions

In conclusion, the results obtained in this research demonstrated the potential impact
of the post-synthetic modification of CW polysaccharides by introducing CW-degrading
enzymes. The CW polysaccharide modifications can trigger complex responses to defend
the plants against both the biotic and abiotic stresses. This study also confirms and pro-
vides new evidence that the additive effect of a combination of different polysaccharide
modifications can constitutively prime plant defense pathways even before pathogen in-
fection and offers enhanced plant protection. However, it should be emphasized that the
involvement of CW-mediated defense is highly complex; therefore, selection of complimen-
tary genes should be based on careful consideration of all aspects of molecular biology of
plant—-pathogen interactions. Apart from the genes we used in the present study, numerous
other genes for CW polysaccharide modifying enzymes are available and could be con-
sidered in the future. Stacking several CW degrading enzymes with different specificity
towards various CW components to induce diverse signal pathways could be a promising
direction in basic research on molecular biology of CW integrity signaling, as well as useful
in applied research as a tool to generate varieties of valuable crops with improved stress
resistance and biomass quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10101070/s1, Figure S1: Gibson assembly scheme for the generation of recombinant
vector, pPCAMBIA-UBQ10-AnFAE-CFP used in this study. The expression cassette contains the UBQ10
promoter, AnFAE-CFP fusion gene, and the 35S terminator were ligated together to the backbone
from the pCAMBIA-1300-MCS expression vector using one-step Gibson assembly. Similar strategy
was used to clone AnAXE and AnRAE genes into pPCAMBIA-1300-MCS, Figure S2: Real time-qPCR
analysis of transcript level of transgenes in transgenic lines and WT plants (Col-0). RT-qPCR analysis
was conducted to find out the transcript level of individual introduced transgenes in six dif-ferent
transgenic lines (AnAXE, AnRAE, AnFAE, AnAXE/AnRAE, AnAXE/AnFAE and AnRAE/AnFAE).
ACTIN2 was used as a reference gene to normalize the data. The transcript data represents average
and + SD of three different independent transgenic lines for each construct. Asterisks indicate
significant differ-ences between the mean transcript level among the transgenic plants and WT plants
(Student’s t test, p < 0.05; n = 3), Table S1: List of primers used in this study (5’-3").
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