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Abstract— Clustering algorithms based on deep neural net-
works have been widely studied for image analysis. Most existing
methods require partial knowledge of the true labels, namely,
the number of clusters, which is usually not available in practice.
In this article, we propose a Bayesian nonparametric framework,
deep nonparametric Bayes (DNB), for jointly learning image
clusters and deep representations in a doubly unsupervised
manner. In doubly unsupervised learning, we are dealing with the
problem of ‘“unknown unknowns,” where we estimate not only
the unknown image labels but also the unknown number of labels
as well. The proposed algorithm alternates between generating
a potentially unbounded number of clusters in the forward pass
and learning the deep networks in the backward pass. With
the help of the Dirichlet process mixtures, the proposed method
is able to partition the latent representations space without
specifying the number of clusters a priori. An important feature
of this work is that all the estimation is realized with an end-
to-end solution, which is very different from the methods that rely
on post hoc analysis to select the number of clusters. Another
key idea in this article is to provide a principled solution to
the problem of ‘trivial solution” for deep clustering, which has
not been much studied in the current literature. With extensive
experiments on benchmark datasets, we show that our doubly
unsupervised method achieves good clustering performance and
outperforms many other unsupervised image clustering methods.

Index Terms—Bayesian nonparametrics (BNPs), convolu-
tional neural network (CNN), image clustering, joint learning,
regularization.

I. INTRODUCTION

ECENT advancement in deep learning has brought

breakthroughs in the field of supervised learning. In par-
ticular, convolutional neural networks (CNNs) have been
extensively used in computer vision to predict image labels and
extract convolutional features. Although the existing state-of-
the-art algorithms have achieved very high accuracy, super-
vised learning requires a great amount of annotated data,
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which is limited by the availability of labels and the huge
cost of collecting and annotating the images. Unsupervised
learning, particularly clustering, is useful to automatically
create labels and extract features from unlabeled data.

Even though clustering methods have been broadly studied
in general machine learning literature [1], [2], the majority
of them are not scalable to large-scale datasets. Thus, it has
brought to researchers’ attention for the development of clus-
tering methods that are based on deep neural networks, which
is still relatively immature for image analysis. Convolutional
autoencoders, which are able to learn the image representations
through minimizing a reconstruction loss, have been employed
frequently for clustering images [3], [4]. Directly using the
embedding data learned from autoencoders for clustering is
deemed not efficient enough, given that they consist of two
stages for extracting the low-dimensional representation and
learning the clustering behaviors, and the features that are
optimal in reconstructing the raw images are not necessarily
the most discriminative for clustering. Despite a growing
number of studies on jointly doing these two tasks with
autoencoder [5], [6], the symmetry architecture makes the
computational cost for obtaining data embeddings from an
autoencoder increasing quickly with the network depth, which
limits its application to large-scale tasks in practice [7].

Recent progress has been made to jointly learn the image
clusters and convolutional features with CNNs [5], [8], [9],
which shows promising performance for recovering the true
labels even compared with supervised learning methods.
However, a big assumption of these joint methods is the
knowledge of the number of clusters. This assumption is not
only unrealistic in many applications, but it also limits the
clustering algorithm from being self-innovative (i.e., finding
new clusters). For instance, in cancer research, scientists use
medical images to cluster heterogeneous patient population
into homogeneous subpopulations [10], where the number
of such subpopulations is unknown and estimating it is of
high scientific value by itself as it measures the intertumor
heterogeneity for a given cancer type. Determining the number
of clusters during clustering is also an attractive property for
clustering survey images with robots as it could allow truly
autonomous sensor data abstraction and incorporation of new
information [11]. Another important application is clustering
high-dimensional astronomical images, while the number of
clusters is hard to be acquired [12]. For these examples,
without prior information and guidelines, it is computationally
expensive or even impossible to select the number of clusters
as a hyperparameter, which requires running the clustering
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algorithm many times. In this article, to highlight the distinc-
tion from the general deep clustering methods, we refer to the
task of learning both cluster labels and the number of clusters
as to “doubly unsupervised” learning. Doubly unsupervised
learning is significantly harder than unsupervised learning,
which is given in the following.

1) In unsupervised learning, the number of ways to parti-
tion a set of n images into k nonempty subsets is the
Stirling number of the second kind S(n, k).

2) In doubly unsupervised learning, the number of ways
to partition a set of n images into an unknown num-
ber of nonempty subsets is the Bell number B, =
> i_oS(n,k), which is substantially larger than the
Stirling number even for a moderate number of images.

Let X = {x;,x2,...,x,} be a collection of n
images with unknown labels Y = {y, y2, ..., y,}. Each label
vi€{l,2,..., K} can take an unknown number K of
possible integers. We aim to find a good mapping from
the images X to their data embeddings, namely, the net-
work parameterization, together with Y. Let 6 denote the
parameters of the deep clustering model and L denote a
loss function. We formulate a doubly unsupervised problem
for the joint learning of deep representations and image
clusters as

argmin L(Y, K, 0|X). (1)
Y.K.0

It is not straightforward to extend the existing deep clus-
tering algorithms to “doubly unsupervised” tasks. In this
article, we propose a novel deep nonparametric Bayes (DNB)
clustering algorithm with a recursive framework that takes
advantage of both deep neural networks and Bayesian nonpara-
metric (BNP) models; the latter elegantly learns the number
of clusters in an automated fashion. BNP models are a
class of flexible statistical models that are widely used in
both supervised and unsupervised learning. Specifically to
this work, our framework is based on a Dirichlet process
mixture (DPM) model that allows for a potentially unbounded
number of clusters (as sample size approaches infinity). Due
to this limiting behavior of DPM, we do not need to prespecify
the number of clusters a priori, and the model is able to learn
it a posteriori. In addition, existing clustering deep neural
networks (CDNNGs), especially those that deploy alternating
procedure, are susceptible to the problem of so-called “trivial
solutions” [9], [13], where the projected latent features tightly
collapsed around the cluster centers. Such a case will lead to
undesirable clustering behavior even though the loss function
may keep decreasing. For example, empty clusters can be
obtained for the deep clustering methods with a specified
number of clusters. For the methods with an alternating
procedure between training the deep network and learning the
unsupervised classifier, the parameterization of the network
leading to an embedded subspace that assigns subjects to a
few clusters will be reinforced to only discriminate between
these clusters [9]. The consequence is even more serious for
doubly unsupervised learning that lacks a constraint of the
cluster number, where all the embedded data will be collapsed
into a singular point. To address this problem, we propose a
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simple effective solution based on the geometric interpretation
of matrix determinant, which can be potentially used in other
deep clustering algorithms as well.

The major contributions of our work are as follows.

1) We formulate a doubly unsupervised problem for joint
learning of deep representations and image clusters.

2) We develop a novel end-to-end training framework for
the formulated doubly unsupervised problem, which can
jointly learn the image clusters and deep representations
without knowing the number of clusters.

3) We present an effective solution to the common problem
of “trivial solution” through regularization.

4) We perform extensive experiments and ablation stud-
ies, benchmarking against alternative deep clustering
methods with the optimal number of clusters selected
using a couple of common clustering validity indices,
to show the effectiveness and importance of the proposed
framework.

II. RELATED WORK

Clustering partitions the entities into latent groups/clusters
in an unsupervised manner, with the aim of creating homo-
geneous groups such that observations in the same cluster are
more similar to each other than to those in other clusters.
It is an essential problem that has been extensively stud-
ied in machine learning [1]. A good number of classical
clustering algorithms have been proposed, e.g., K-means,
hierarchical clustering, and finite mixture models [1], [14]. For
high-dimensional data, many clustering algorithms suffer from
the curse of dimensionality, which usually requires dimen-
sion reduction to eliminate the effects of attributes that are
irrelevant to the cluster structure. Yamamoto and Hwang [15],
Allab et al. [16], Labiod and Nadif [17], and Allab et al. [18]
proposed to embed the data on a low-dimensional space and
cluster the embeddings. Instead of sequentially performing
data embedding and subspace clustering, a more efficient and
effective strategy is to jointly learn the embedding and cluster-
ing. Reduced k-means analysis and factorial k-means analysis
are studied for such joint learning [15]. Principal component
analysis (PCA), which is one of the most common tools for
dimension reduction, has been unified with semi-nonnegative
matrix factorization (NMF) to give more interpretable solu-
tions while getting good clustering results [16]. Recently,
spectral data embedding has also been thoroughly studied to
learn the low-dimensional representation that is more suited
for identifying the cluster structures [17], [18].

Similar to the data embedding technique used for subspace
clustering, deep clustering has been recently developed, which
projects high-dimensional data onto low-dimensional deep
representation space using deep neural networks and then
partitions the deep representations to create cluster labels. The
optimization objective of deep clustering methods is typically
minimizing a clustering loss through the deep representations
generated from a deep neural network. Based on the way that a
neural network determines the clustering loss, deep clustering
methods can be grouped to autoencoder-based, generative
adversarial-based network, and CDNN-based approaches [7].
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Autoencoder is a popular structure for reconstruction tasks,
which has been widely used for learning embedded space.
Autoencoder consists of an encoder and a decoder, where
each of them can be a fully connected neural network or
a CNN, and the architecture of the decoder is usually a
mirrored version of the encoder. The encoder is responsible
for compressing the input data to an embedded space, and
the decoder reconstructs the input data given the data embed-
dings. For the autoencoder-based methods, the embedded data
from the encoder component are used for performing cluster
analysis [5], [6], [19]. Recently, there have been a great num-
ber of methods that train/fine-tune the data embedding from
autoencoders and identify cluster structures with common
learning approaches, e.g., k-means [6] and Gaussian mixture
models (GMMs) [20], under a unified learning framework.
A generative adversarial network (GAN) [68] has also gained
popularity for deep clustering in recent years. GAN builds a
min-max game by alternating between training a generative
network and training a discriminative network, where the
generative network projects samples from a prior distribution
to the data space and the discriminative network discriminates
whether an input is from real data or generated from a prior
distribution. Based on the underlying idea of the GAN, several
models that apply the adversarial autoencoders [21], [22] or
generalize GAN to multiple classes [23] have been proposed
for deep clustering. However, similar to the GAN, these
algorithms have the same problems of weak convergence
and mode collapse [7]. In order to have a simpler training
procedure and enable joint learning of deep representations
and image clusters, deep neural network-based algorithms have
been lately proposed to build an end-to-end clustering pipeline
that improves the model scalability by directly minimizing
a clustering loss on the top of a network [8], [9]. These
methods only require a clustering loss and involve an iterative
procedure for jointly updating the network and estimating
the cluster labels. A well-designed clustering loss, as well
as the training framework, can be easily adapted to any
kind of network, e.g., a fully connected network, a CNN,
and even a deep belief network. In addition to having a
unified training pipeline, deep neural network-based methods
can also avoid adding a decoder that is required by the
autoencoder-based models. This difference makes it easier
for deep neural network-based methods to be extended to
large-scale tasks in practice. Especially considering many
state-of-the-art CNN architectures developed recently, deep
neural network-based methods enable a wider application to
the large-scale dataset [24]. For example, DeepCluster, an end-
to-end method that jointly updates network parameters and
image clusters, has been successfully applied on large-scale
datasets like ImageNet [25] for learning visual features [9].

The unsupervised learning algorithms typically require prior
knowledge of the number of clusters, which potentially limits
their practical values. Several clustering validity indices, such
as the Silhouette coefficient [26], Dunn index [27], and some
others [28]-[33], have been designed to compare the quality
of clusters for a specific dataset and to determine the optimal
number of clusters. These indices can be combined with
existing clustering algorithms for the doubly supervised tasks.

However, this approach often incurs a high computation cost
because of repeatedly refitting the clustering model with differ-
ent numbers of clusters. Density-based clustering approaches,
e.g., DBSCAN [34], do not require the specification of the
number of clusters but usually have some additional sensitive
tuning hyperparameters. BNP clustering methods have become
one of the primary choices for solving such a problem given
their advantage of automatically identifying the number of
clusters [35]. These methods offer a wide range of flexible
alternatives, including DPM [36], [37], Pitman—Yor process
mixtures [38], and normalized generalized Gamma process
mixtures [39]. BNP mixtures can approximate any probability
density arbitrarily well and neatly resolves the issue of finding
the number of clusters. In addition, the rapid development of
fast computation algorithms, such as variational Bayes (VB)
[40] and consensus Monte Carlo [41], [42], allows BNP to
scale up to larger datasets. For those reasons, BNP has gained
great popularity in the machine learning community for doubly
unsupervised learning tasks.

The recent achievement in deep clustering has successfully
solved the challenge of clustering images with deep neural
networks, which also encourages the development of a method
to automatically determine the number of clusters with deep
clustering. Only few attempts has been made to perform deep
clustering assuming the number of clusters to be unknown
[43], which nevertheless requires pretraining the deep network
for clustering. A straightforward way to combine the general
clustering algorithms that estimate the number of clusters with
deep networks is to implement them directly on the deep
representations generated from a well-trained network, which
can be achieved through pretraining the network or a recon-
struction task with an autoencoder. However, it comes with
a two-stage training procedure and cannot jointly learn the
deep representations, image labels, and the number of clusters.
Also, network pretraining requires a lot of annotated images
and sometimes needs to account for a cross-domain effect;
the computational cost of learning deep representations from
an autoencoder can increase greatly with the network depth,
which limits its scalability to large-scale tasks [7]. In this
article, we will develop a novel deep clustering method that
jointly estimates the number of clusters, deep representations,
and clustering labels.

III. METHOD

We first provide a high-level picture of the proposed method
and fix our notations. Let X = {xi,...,x,} denote a set
of unlabeled n images. Each image x; has dimension d =
H x W x C, which represents the image height, width, and
the number of channels, respectively. Let z; = fy(x;) be
a function that maps high-dimensional images to a much
lower dimensional space. In our work, fy(:) is a CNN with
convolutional layers and fully connected layers, parameterized
by 6. Let y; € {1,..., K} denote the unknown cluster label
for image i and let Y = {y;, ..., y,}. Later, we will provide
a clustering rule that minimizes a loss function L.

Clustering the raw images X is challenging due to the
extremely large value of d. For that, deep clustering algorithms
have been recently developed, which assumes that K is known
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Fig. 1. Tllustration of the proposed joint learning framework for deep BNP
clustering.

and consider the optimization problem minyg L(Y, 0|X, K).
We consider the case where K is unknown with the opti-
mization problem given in (1). It is difficult to minimize the
loss function with respect to all the parameters simultaneously
due to the intricate relationship between the network parame-
ters and clustering assignments. In addressing this challenge,
we propose the DNB clustering algorithm.

A. DNB Clustering Algorithm

In order to enable the deep network to be jointly trained
through backpropagation from a clustering loss, we provide
an iterative optimization scheme alternating between a forward
step and a backward step: first, clustering the embedded data
output from the network, which creates pseudo labels and esti-
mates cluster-specific parameters, and second, learning deep
representations as well as updating the network parameters
through minimizing a joint loss that we design given the
pseudo labels and the associated distributions. Note that in the
first step, we also learn the number of clusters. We additionally
provide an extra step in the forward pass for refining the
generated clusters. The flowchart of DNB is shown in Fig. 1.
As we mentioned earlier, most clustering models that require
a prespecified number of clusters are not suitable for doubly
unsupervised learning tasks. We build our forward step based
on a BNP model, a popular Bayesian inference method that is
useful for automatically determining the number of clusters.

1) DPMs and Clustering: In our forward step, the deep
representations Z = {zj,...,2z,} of X are generated from
the previous loop. We will focus on one particular BNP
model, the DPMs because of its computational simplicity, large
support, and well-understood theoretical properties; extension
to other BNP mixtures, such as Pitman—Yor process mix-
tures and normalized generalized gamma process mixtures,
is straightforward. Dirichlet processes (DPs) are a family of
stochastic processes whose realizations are probability distri-
butions. Importantly, the distributions drawn from the DP are
discrete with probability one. Used as the prior distribution in
Bayesian inference, the discreteness induces ties among the
parameters, which in turn naturally forms clusters. DPM can
be formulated as a Bayesian hierarchical model
n:i|G ~ G, G ~ DP(a, Gy) 2)

zilni ~ p(zilmi),
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where the likelihood p(:|-) is some known probability distrib-
ution indexed by the parameter #; and #; has a DP-distributed
prior distribution G. DP has two parameters, the concentration
parameter o and the base measure G, which is usually chosen
to be conjugate with respect to the likelihood for efficient
computation. The discreteness of G gives rise to ties among 7’s
and the cluster labels are determined by the ties, i.e., y; = y;
if n; = #;. The concentration parameter « influences the
prior number of clusters. Its value can be chosen via either
an empirical Bayes approach [44] or imposing a gamma
hyperprior [45]. However, we do not pursue this direction
because, in our experiments, we find that its value does not
significantly affect the posterior distribution.

Marginalizing out G, the hierarchical model in (2) can be
equivalently expressed as an infinite mixture model

zilyi =k~ p(zilng), yilw ~ categ(n), @ = (w1, 72,...)
k—1

mo=p A= B). B ~bea(l,a), ni~Go  (3)

where #; is the cluster-specific parameter, 7 is a vector of
probabilities for cluster k = 1,2,..., and beta and categ
denote beta and categorical distributions, respectively. This
construction is also known as the stick-breaking representa-
tion, which is crucial to the derivation of the VB algorithm
for DPM. It is clear from this representation that clustering
with DPM does not require the prespecification of the number
of clusters as it can automatically grow as the sample size
increases. Let N(-|a, A) denote a normal density with mean a
and covariance A and W (-|c, D) denote a Wishart density with
degrees of freedom ¢ and scale matrix D (i.e., the expectation
is ¢D). We use a normal likelihood f (z;|n;) = N(zilux, Ak_l)
with a conjugate normal-Wishart base distribution Gy =
N(urlc, Ak_l/r) x W(Ax|b,Q71). Even just with normal
likelihood, DPM can approximate any distribution arbitrarily
well.

2) Approximate Posterior Inference via VB : The DPM is
indexed by four sets of parameters {ux}oe . {Ac}iy> {Prlies
and {y;}"_,. The posterior distribution of these parameters can-
not be computed directly. We use VB to approximate the pos-
terior distribution. VB aims to minimize the Kullback-Leibler
(KL) divergence between the variational distribution and the
posterior distribution. We assume a fully factorized variational
distribution

({#k}k 1»{Ak}k 1»{ﬁk}K* ! {yi r‘l )

K*—1

= Hq(ﬂk)q(/\k) H q(ﬂk)Hq(y, @

where q(ui) = N(uelmi, ¥0), g(Ax) = W(Agler, DY),
q(B) = beta(Bly1, yi2), and q(y;) = categ(¢i). The
stick-breaking process is truncated at level K* so that
q(fx-=1)=1. We remark that K* is not a prespecified
number of clusters as in other clustering algorithms. Rather,
K* is simply an upper bound for the number of clusters here,
and hence, any large enough K* (e.g., 100) leads to the same
results. Since both the full conditional distribution and the
variational distribution are exponential family distributions,
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minimizing KL divergence with respect to the variational
parameters is straightforward by following the general coordi-
nate ascent algorithm in [40]. For completeness, the detailed
algorithm is reported in Section I (see the Supplementary
Material).

3) Refine the Clusters: The clusters estimated from the
VB algorithm are coarse in the sense that it only provides
an approximate inference of DPM. In addition, DPM tends
to produce many singleton clusters when the sample size is
large. Hence, we need an algorithm to refine the clusters,
which can be accomplished through merging similar clusters.
An intuitive choice is to apply “clustering of clusters,” which
is able to merge a large number of clusters into a smaller
number of larger clusters. In order to do so, we implement
a recently proposed algorithm SIGN [41] for refining the
cluster estimates and merging tiny clusters. It takes three
sets of inputs: cluster assignments ¥ = {¥,...,§,} with
yi € {1,..., B}, cluster-specific parameters {/i,, Ab}f:l, and
cluster-specific summary statistics {77, S’b}f:l, where 71;, and
S, are the sample mean and covariance matrix of features
{zilJi = b} in cluster b, respectively. In our context, ¥ and
{ip, Ab}f:l are estimated from the VB algorithm and the
summary statistics are easy to compute given Y. Through
sampling from the approximate posterior distribution of the
DPM model, this algorithm returns three sets of outputs:
the refined/merged clusters ¥ = {yi,...,y,} with y; €
{1,..., K}, updated cluster-specific parameters {uy, Ak},{(:1 ,
and updated cluster-specific summary statistics {zk,sk},le,
which will be sent to our clustering loss for backpropagating
the network. Therefore, with this step, we can make the num-
ber of clusters much smaller than that from VB, i.e., K <« B.
The details of the SIGN algorithm are provided in Section II
(see the Supplementary Material).

4) Backpropagate the Networks: In our backward step,
we need to train the deep network as well as extract the deep
representations. A gradient descent method is usually used
for updating the network parameter 8, for which we need to
specify a single loss function with the pseudo labels Y and
{ur, Ax}E,. For coherency, we first derive a clustering loss
from the log-posterior distribution of DPM

LoO, {mi, i, Aidpe i 1X)
n o0
= — ZloankV\klm
i=1 k=1

X eXP(—%(fe(xi) — )" A (fy (xi) — ﬂk))« )

The optimization of (5) is infeasible due to the infinite sum.
To resolve this issue, we integrate out z; from (5), which
yields a loss function without intractable terms

Lo, Y, {ur, Ar}i,1X)

=D (folx) = )" Ay (foxi) — ). (6)

i=1
The loss function defined in (6) is calculated based on the
clusters of samples, which should be estimated using all
the data points. In order to use batch-based optimization

for training the network, we generate the cluster labels and
cluster-specific parameters at the beginning of each period
(which is a similar concept to “epoch” in supervised learning),
namely, the forward pass is taken on the entire dataset in every
period. In the backward step, we can easily use backpropa-
gation with mini-batch stochastic gradient descent (MGD) to
update the network parameters 6 given the generated pseudo
labels Y and cluster-specific parameters (i, A;) in every
training batch.

B. “Trivial Solution” Problem

“Trivial solution” is a common problem across many unsu-
pervised learning methods, especially for the deep clustering
approaches that jointly learn discriminative features and assign
cluster labels to the extracted features [9]. When projecting the
high-dimensional data onto low-dimensional space, the deep
net fp(-) tends to produce a collapsed feature space so that
any clustering rule will fail to discriminate these features. As a
consequence, most of the observations are grouped in very few
clusters with a very low clustering loss value. For example,
if the network parameters are all close to zero 8 = 0, then
the embedded data vectors will be all around zeros as well
Z = fyp(X) = 0 for any X. This gives rise to a single cluster
with nearly optimal clustering loss. A common solution used
by existing deep clustering methods is penalizing a minimal
number of samples per cluster [9], [46]. Together with a fixed
number of clusters, it avoids the problem of features being
collapsed into few clusters. However, we are facing a more
challenging problem due to the undetermined number of clus-
ters. In this section, we will provide a simple effective solution
inspired by the determinantal point processes [47], [48], and
our solution can also be generalized to other unsupervised
learning algorithms.

1) Repulsion and Regularization: Let £ denote the sample
covariance matrix of the extracted features Z = fy(X). The
determinant det(X ;) can be interpreted as the volume of a
parallelotope spanned by the column vectors of X;. Similar
column vectors span less volume than distinct ones. In other
words, small det(X7) leads to degenerated/attractive features,
whereas large det(X ;) leads to separable/repulsive features.
The latter allows us to resolve the trivial solution issue.
To avoid small det(X;), we minimize the loss function L
with an additional constraint

min Lj, s.t. det(Xz) > c. @)

2) Objective Function: The determinant det(Xz) usually
has a very large scale, which makes the constraint on (7)
numerically unstable, so we convert it to a log-determinant
optimization problem given that the sample covariance matrix
Y, is always positive semidefinite. In our experiments,
the positive definiteness is guaranteed given that we choose
a large batch size. If a small batch size is required, a matrix
shrinkage can be applied by adding a small multiple of the
identity matrix to £z, i.e., Xz+4¢ I, where J is an additional
hyperparameter. By placing a constraint on the log determinant
of X7, we have

min Lo, s.t. logdet(Xz) > ¢'. ®)
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Algorithm 1 Clustering Algorithm for Updating 8 and Cluster
Labels Y
1: Input:
X: a sequence of images
2: Qutput:
0: network parameters; Y: image labels;
Z: deep representations
3: Initialize:
6: CNN parameters; period p = 1
4: while not converged do
5. a. Generate Z() from fyo-n(X)
6:  b. Update cluster labels ) and cluster-specific para-
meters ,&,({p ), /~\,£p ) using VB algorithm
7 c. Refine the clusters y®, ;) A ®
d. Update ) given y®, 1P, AP
. for Iteration r = 1,---,T do
10: Update 6 through MGD using loss from (9)
11:  end for
122 p<«<p+1
13: end while

Letting Q7 = X ', (7) is equivalent to the following opti-
mization problem (Lagrange multipliers):

min Lo+ AglogdetQy, )

where 1x is a balancing parameter. We will refer to the new
regularization as “repulsion” and use Lz to denote it in the
following discussion.

Through adding a regularization term to (6), we get our
training objective function in (9). With this training objec-
tive, the optimization workflow is outlined in Algorithm 1.
The final algorithm is quite straightforward. In each training
period, we perform a forward pass, and for each training
batch, we perform a backward pass to update the network.
Generally, the algorithm is considered as being converged
when the whole training objective cannot be improved fur-
ther. In practice, we choose and save the checkpoint for the
model with the minimum L} from the periods p’s that hit a
relative tolerance on the “repulsion” within a certain number
of periods, i.e., (Lg{’) — Lg{’_l))/L%”_l) < €, where € is a
small relative tolerance value and is chosen to be 0.01 in our
experiments. Our optimization flow is end-to-end and easy to
be implemented. We use noninformative priors for the DPM
model, so there is a minimal need to tune the hyperparameters
in the proposed algorithm. In order to have a good starting
point, we initialize the network in three steps. First, we flatten
the image arrays to 1-D vectors and apply PCA to transform
the vectors to low-dimensional space. Second, we run the
VB algorithm on the transformed data to generate cluster
labels from DPM. Finally, we append a classification layer
to the deep network and update the network parameters by
minimizing the cross-entropy loss until convergence, taking
the cluster labels generated from VB as ground truth.

IV. EXPERIMENTS

We demonstrate the utility of the proposed method in
comparison with unsupervised learning methods that assume
a known number of clusters on benchmark datasets.
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TABLE I
DATA INFORMATION

Dataset #Samples  Image Size  #Classes

YTF 10,000 55%55 41

USPS 11,000 16x16 10

MNIST-test 10,000 28%28 10

UMist 575 112x92 20

FRGC 2462 32x32 20

A. Datasets

We evaluate our clustering performance on five bench-
mark image datasets that are commonly used for evaluating
deep clustering methods. These include handwritten digits
datasets, USPS' and MNIST-test [2], and face image datasets,
UMist [49], FRGC-v2.02,> and Youtube-Face (YTF) [50].
USPS has 11000 handwritten digit images from zero to nine.
MNIST-test is a dataset that consists of 10000 handwritten
digit images. For FRGC-v2.0 and YTF datasets, we follow the
preprocessing work in [5] and [8] and, respectively, choose the
same 41 subjects and 20 subjects from the original datasets.
The sample size, the image size, and the number of classes
for all the datasets are shown in Table I.

B. Clustering Performance

The experimental setups and implementation details for
running DNB can be found in Section IIl (see the Sup-
plementary Material). We consider as baselines a couple of
unsupervised learning methods that require a known num-
ber of clusters for comparison, including K-means [51],
NIW spectral clustering (SC-NJW) [52], self-tuning spec-
tral clustering (SC-ST) [53], large-scale spectral clustering
(LS-SC) [54], agglomerative clustering with average linkage
(AC-Link) [1], zeta-function based agglomerative cluster-
ing (AC-Zell) [55], normalized cuts (N-Cuts) [56], spectral
embedded clustering (SEC) [57], local discriminant models
and global integration (LDMGI) [58] and locality-preserving
NMF (NMF-LP) [59], NMF with deep model (NMF-D) [60],
deep embedded clustering (DEC) [61], and additionally two
recent state-of-the-art deep clustering methods, joint unsu-
pervised learning (JULE) [8], and deep embedded regular-
ized clustering (DEPICT) [5] with a grid search for the
unknown number of clusters. Specifically, we run the algo-
rithms with a value from grid points of {5, 10, ..., 100} as
the number of clusters and then select the optimal number
of clusters using a couple of common clustering validity
indices following their corresponding selection rule [62]. The
estimated clustering labels and embedding data are used
as inputs to calculate these indices. The clustering valid-
ity indices we apply are: cubic clustering criterion (CCC)
[30], silhouette score (SC) [26], Dunn index (DUNN) [27],
Cindex (CIND) [29], Ptbiserial index (PTB) [31], [63],
DB index (DB) [32], and SDBW index (SDBW) [33].
We report the results for JULE® and DEPICT* based on the
optimal number of clusters determined with each index. Some

Uhttps://cs.nyu.edu/roweis/data.html
2http://www3.nd.edu/cvrl/CVRL/Data_ Sets.html
3https://github.com/jwyang/JULE.torch
“https://github.com/herandy/DEPICT
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TABLE II

QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING ALGORITHMS ON THE BENCHMARK DATASETS FOR CLUSTERING PERFORMANCE
(NMI AND ACC). THE MEANS AND STANDARD DEVIATIONS OF NMI AND ACC ARE REPORTED. THE DASH MARK (-)
INDICATES THAT THE RESULT IS MISSING OR IMPRACTICAL TO OBTAIN

Dataset YTF USPS MNIST-test UMist FRGC
NMI  ACC  NMI _ACC  NMI _ACC  NMI __ACC  NMi __ ACC
Komeans 0761 0548 0447 0467 0528 0560 0609 0419 0389 0327
SC-NJW 0752 0551 0690 0413 0755 0220 0727 0551 018  0.178
SC-ST 0620 0290 0726 0308 0756 0454 0611 0411 0431 0358
SC-LS 0750 0544 0681 065 0756 0740 0810 0568 0550 0407
N-Cuts 0742 053 0675 0314 0753 0304 0782 0550 0285 0235
AC-Link 0738 0547 0579 0421 0662 0693 0643 0398 0168  0.175
AC-Zell 0733 0519 0799 0575 0768 0693 0755 0517 0351 0266
SEC - i 0511 0544 079 0815 - 0.633 ; -
LDMGI ] ] 0563 0580 0811 0847 0866  0.691 ] -
NMF-LP 0720 0546 0435 0522 0467 0479 0560 0365 0346  0.259
NP 0831 0506 0642 0169 0621 0157 0776 0273 0538 0213
0.008) (0.012) (0.005 (0.015) (0.003) (0.005 (0.006) (0.018) (0.017) (0.003)
NMF-D 0562 053 0287 0382 0241 0250 0500 - 0259 0274
DEC 0446 0371 058 0619 0827 085 0713 0552 0505 0378
- 0011 0683 0927 0944 0916 0912 0840 0486 0660 0543
0.002)  (0.008) (0.014) (0.041) (0.001) (0.027) (0.015) (0.063) (0.027)  (0.009)
0462 0229 0662 0478 0660  0.600 0454 0364
DEPICT +SC ) 004)  (0.000) (0.058) (0.024) (0.219) (0.313) - - 0.172)  (0.108)
0790 0547 0743 0464 0767 0600 0829 0605 0627 0523
JULE + DUNN  113)  (0.116) (0.046) (0.056) (0.153) (0.325) (0.124) (0.253) (0.099) (0.037)
0462 0229 0889 0852 0826  0.721 0458 0373
DEPICT + DUNN 1604y (0.000) (0.026) (0.055) (0.04)  (0.139) - - ©.191)  (0.127)
DONE 0884 0658 0835 0724 0860 0841 0851 0710 0651 0464
(0.008) (0.008) (0.020) (0.031) (0.004) (0.025 (0.042) (0.056) (0.021)  (0.020)

competing methods are reported with their best results from
either their original papers or from previous literature [5], [8],
[64]. When the result is reported as unavailable/impractical
to obtain in this literature and/or the implementation is not
publicly available, we put a dash mark (-) for this result
(Table II and Table II, see the Supplementary Material).
In addition, we include the results by directly running BNP
on the principal components of the flattened image data.

We report the results of DNB and the baselines that are
reimplemented by us averaged over three runs. We evaluate
the clustering performance with two commonly used metrics,
normalized mutual information (NMI) [5], [8], [65] and clus-
tering accuracy (ACC). NMI measures the similarity of two
different cluster assignments A and B. The NMIs and ACCs of
all the methods are reported in Table II and the average results
for our methods and baselines that are reimplemented by us
are provided with the sample standard deviations included in
the bracket. The training curves are shown in Fig. 1 (see
the Supplementary Material), which include how the levels
of total loss, clustering loss, Ly, repulsion regularization Lg,
and clustering accuracy change over periods.

Even though our method does not need the information of
the number of clusters that is required by the other methods
as an input, DNB still outperforms most of the competing
methods across different datasets. Also, note that DNB out-
performs DEC, a popular autoencoder-based deep clustering
method, in our comparison. We further present the clustering
performance of JULE and DEPICT when they are combined
with the various aforementioned clustering validity indices.
We report the results with SC and DUNN in Table II and those
with other indices in Table II (see the Supplementary Mate-
rial). Overall, we find that DNB outperforms DEPICT with
both of these two indices only except for DEPICT 4+ DUNN

on USPS. DNB has a better performance than JULE + DUNN
but performs moderately worse than JULE + SC. Fig. 3
(see the Supplementary Material) shows the running time for
DNB as well as JULE and DEPICT with grid search on
K. DNB is significantly faster. We conclude that with an
unknown number of clusters, running existing deep clustering
methods with an arbitrary selection approach cannot guarantee
a better performance than our method even at a much higher
computational cost. Note that when the true number of clusters
is unknown, which clustering validity index is “optimal” is also
unknown. Thus, the choice of index itself is very challenging
and has a significant effect on the clustering performance
as we see from our experiments that the results of JULE
and DEPICT have large variability across different clustering
validity indices. Therefore, we believe that the proposed DNB
is useful in practice as a new deep clustering method that does
not require the users to input the number of clusters or to select
an optimal clustering validity index. In summary, as a joint
learning method that does not specify the number of clusters
a priori, DNB obtains a promising clustering performance.

C. Sensitivity Analysis of DPM Hyperparameters

The most influential parameter of the DPM model is the DP
concentration parameter o, which allows for the inference on
the number of clusters from data. Parameter o is usually set
with a = (a*/K*), where o* can be chosen in a noninforma-
tive way (e.g., in our experiments, a* = 1) so that the data
quickly “washes out” the influence of hyperparameters as the
sample size grows. To investigate the effect of a*, in addition
to o™ = 1, we report the clustering performance on all datasets
with o* € {100, 200,400} in Fig. 2, which corresponds
to {1,2,4} for o given K* = 100 in our experiments.
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We also provide a sensitivity analysis of o™ over 11 evenly
spaced values from [0.5, 5.0] in Fig. 2 (see the Supplementary
Material) to show how a* affects the performance in a finer
range. We find that clustering performance is relatively robust
to the choice of a* within the tested ranges and the specific
datasets under consideration, which suggests the effectiveness
of applying a noninformative prior in our experiments. If
desired, a can also be estimated by an empirical Bayes
approach or assigned a gamma hyperprior. Although the latter
still requires the specification of hyperparameters of gamma,
in general, those hyperparameters will have a smaller influence
on the clustering results as they are higher in the hierarchy
of the hierarchical model. We remark that there are other
factors that can influence the number of clusters K, such as the
hyperparameters in the base measure G¢. Our recommendation
is to set them to be noninformative and maximally let the data
dictate the determination of K.

D. Finding the Number of Estimated Clusters

We further investigate the accuracy in estimating the number
K of clusters. In Fig. 3, we report the number of estimated
clusters changing with the learning process. We focus on the
major clusters that contain >1% of the images because the
BNP model is known to generate many tiny clusters that
are often hard to interpret [66]. For the two handwritten
digits datasets, the number of clusters approaches the truth

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

as the algorithm processes. The number of clusters for the
MNIST-test can be accurately detected, whereas the number
for USPS is slightly overestimated. For the face image data,
DNB still performs reasonably well: it accurately estimates K
for UMist, slightly overestimates K for FRGC, and slightly
underestimates K for YTE.

E. Ablation Experiments

In our experiments, we adopt a PCA-based pretraining
initialization instead of random initialization to get a good
starting point for the network weights. To investigate the
effect of our initialization strategy and also check the robust-
ness of our model against random initialization, we run our
DNB algorithm with a random initialization and present the
results comparing with those using the pretraining initial-
ization in Table III. As shown in the first two rows for
each dataset in Table III, our initialization achieves a slight
improvement around 1%-4% in terms of NMI and similarly
ACC for all the datasets except for YTF. DNB still obtains
a good performance over all the datasets with the random
initialization, which suggests the robustness of our model
against random initialization as well as the benefit of using
the designed initialization strategy.

The SIGN algorithm and DPM model are the two important
components in our learning framework. To investigate the
impact of the SIGN algorithm, we train our model by dropping
this component. Also, to clarify the effectiveness of the DPM,
we run our model by replacing the DPM with a finite mixture
model, i.e., GMM, and choosing the number of clusters, K,
for GMM with the same value of K* from our DPM. We also
drop SIGN and replace DPM with GMM at the same time
to further evaluate their joint effects. As shown in Table III,
the performances of dropping SIGN only and replacing DPM
with GMM only are both reduced compared with that of the
proposed full model for most of the datasets. We find that
the performance decreases very slightly for FRGC, and the
performance of replacing DPM with GMM does not change
significantly for UMist, while the performance drops a lot
when SIGN is disabled. However, when we drop SIGN and
replace DPM with GMM together, the training of FRGC
and UMist both fails due to exploded losses. In this case,
the performance of other datasets except for YTF also drops
to a larger extent compared to dropping or changing one of
the two components. From these results, we conclude that
the use of SIGN contributes to the clustering performance
by refining the cluster estimates, but our model does not
heavily depend on SIGN when the BNP clustering component,
i.e., the DPM in our experiments, is retained. When SIGN is
dropped, the different performance between DPM and GMM
with a large fixed K among most of the datasets validates the
importance of applying a BNP model for clustering when K is
unknown. An interesting finding is that when SIGN is applied
for refining clusters, using GMM with a large K can lead to a
good performance on some datasets. It is likely because SIGN
is based on a BNP model and plays a role in refining the cluster
estimates from GMM. We additionally report a comparison of
the number of resultant clusters between with and without
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TABLE III

ABLATION STUDIES OF DNB ON INITIALIZATION, SIGN, DPM/GMM,
AND REPULSION REGULARIZATION. THE MEANS AND STANDARD
DEVIATIONS OF NMI AND ACC ARE REPORTED. AN X-MARK
INDICATES FAILED TRAINING

Dataset NMI/ACC

YTF

Pretrain | SIGN [ DPM GMM [ Rep |

0.884/0.658
(0.008/0.008)
0.881/0.647
(0.001/0.004)
0.875/0.656
((0.013/0.013))
0.865/0.583
(0.004/0.010)
0.868/0.570
(0.002/0.010)
v v X

v v v

v v

\
N N N

ANENEENEEN

USPS

0.835/0.724
(0.020/0.031)

0.790/0.674
(0.010/0.011)

0.818/0.755
(0.005/0.005)

0.702/0.299
(0.005/0.017)

0.691/0.295
(0.018/0.062)
v v X

b

\

< <
N N N

ANENEENEEN

MNIST-test

0.860/0.841
(0.004/0.025)

0.822/0.775
(0.008/0.028)

0.775/0.754
(0.016/0.005)

0.721/0.368
(0.004/0.006)

0.718/0.366
(0.004/0.023)
v v X

\

<\

N N
N N N

ANENEENEEN

UMist

0.851/0.710
(0.042/0.056)
0.838/0.667
(0.048/0.067)
0.770, 0.503
(0.041, 0.044)
0.873/0.629
(0.009/0.012)
X
v v X

<\

<

< <
NN N N

AENIENEEEN
\
\

FRGC

0.651/0.464
(0.021/0.020)
0.642/0.463
(0.012/0.007)
0.645/0.463
(0.018/0.024)
0.672/0.430
(0.014/0.013)
X
v v X

(\
<\
<

<\
N NN

EENIENEEN

SIGN refinement when DPM is retained in Table III (see
the Supplementary Material). As shown in Table III (see the
Supplementary Material), SIGN is able to significantly reduce
the number of clusters through refining clusters.

Finally, we investigate the effect of the new regularization
“Repulsion” (Rep) by setting Ax = 0 in our objective training
function [see (9)]. The last row for each dataset in Table III
shows that dropping “Repulsion” will fail the training for all
the datasets due to clusters being collapsed into one, which

proves that the “Repulsion” regularization is critical to avoid
the “trivial solution” in our training framework.

V. CONCLUSION

In this article, we consider a doubly unsupervised learning
problem for image data. We present a deep BNP clustering
framework, DNB, for jointly learning image clusters and deep
representations without specifying the number of clusters.
DNB trains the deep neural networks with the DPM model
in a recurrent fashion, which consists of a forward step for
generating cluster labels and a backward step for propagating
the clustering loss through the network. We further integrate
a regularization approach to address the problem of “trivial
solution.” We validate DNB through extensive experiments
comparing with many existing clustering methods.

In this article, we focus on a general algorithm that
addresses an unsolved problem for deep clustering with an
unknown number of clusters. In order to perform an extensive
comparison with many clustering methods, we demonstrate
the clustering performance on several benchmark large-scale
datasets and choose network architectures following the previ-
ous work [5], [8]. As being considered crucial for the perfor-
mance of supervised learning, the architecture of networks also
plays an important role in the performance of deep clustering.
We did not specifically search the network architectures and
simply adopted simple designs that are similar to what has
been deployed in previous work [8], as designing new network
architectures is not the focus of this work. Given it is not
straightforward to apply the existing neural architecture search
and hyperparameter tuning algorithms that have been devel-
oped for supervised learning, some work has been proposed
to apply an ensemble paradigm to alleviate the impact of
different architectures and hyperparameters [67], which can
be our future research direction. On the other hand, as limited
by the running time and computational resources such as
the experiments performed in other deep clustering literature,
at this point, we do not explore our algorithm on more noisy,
difficult, and much larger datasets, e.g., ImageNet, which may
take weeks for training [9] and require more delicate designs of
network architecture and training strategy, and thus, we leave
this extension for future work.
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