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Abstract

Data-driven approaches now allow for systematic mapping of microstructure to properties. In particular, we now have diverse approaches to “featur-
ize” microstructures, creating a large pool of machine-readable descriptors for subsequent structure-property analysis. We explore three questions
in this work: (a) Can a small subset of features be selected to train a good structure-property predictive model? (b) Is this subset agnostic to the
choice of feature selection algorithm? And (c) can the addition of expert-identified features improve model performance? Using a canonical dataset,

we answer in the affirmative for all three questions.

Introduction

The holy grail of materials science is to discover the physi-
cally meaningful microstructural features controlling the mate-
rial properties of interest and to describe such relationships
in forms useful for optimal design of engineered components.
Therefore, the core materials knowledge is often expressed as
structure-property (SP) relationships: P = F (3), where P is
the property of interest, and d is the vector of salient micro-
structural features or descriptors. The function F is typically
learned via hypothesis-driven experiments or physics-based
numerical simulations or, more recently, via machine-learning
approaches.!'

Mapping microstructure-sensitive properties with micro-
structure representation is invariably challenging due to the
mismatch between the high dimensionality of microstructural
information (e.g., via microscopy or simulations) and the prin-
cipal degrees of freedom (or salient features) governing the
SP models. This is because microstructural imaging aims to
provide detailed, high-resolution maps. Hence, imaging tech-
niques inevitably produce high-dimensional representations
of microstructure, while the goal of establishing practically
useful SP models is to identify the smallest set of features that
can successfully predict the effective properties exhibited by
the material. Often, this set is not known a priori, especially
for complex multi-physics phenomena governing the material
properties. Thus, the efficient learning of F' depends critically

on the availability of a large pool of computable features' and
principled approaches for selecting the most informative (or
salient) features.

There exist several distinct approaches to “featurize” the
microstructure. These include voxel-based representations, >
characterization via physical descriptors,’>% statistical func-
tions, 78] spectral density functions (SDF),*!1%1 and machine-
learning methods.!'?! Features may include physically mean-
ingful descriptors (e.g., grain size, volume fraction, tortuosity),
statistical function (e.g., two-point correlation), or local neigh-
borhoods. Regardless of the features, the microstructure (typi-
cally an image in 2D or image stack in 3D) is converted into a
machine-friendly format one can subsequently perform compu-
tations upon. For a detailed comparative discussion of various
representations, we refer the reader to recent review papers.>!'!]

Our motivation here is to understand the importance of data
representation and subsequent selection of salient features, as
well as the robustness of unsupervised selection of salient fea-
tures. Additionally, we evaluate the utility of including selected
expert-enriched features (i.e., domain knowledge) in enhancing
the predictive power of the trained models.

We utilize a problem of constructing SP models for organic
photovoltaics applications (OPV). It is well known that the
microstructure of OPV active layers determines, to a large
extent, the photovoltaic performance of the device. Hence, there
is a critical need to establish SP models for this application. We

! We use the words “features” and “descriptors” interchangeably.
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utilize an open-source dataset'!?! of microstructures and OPV
properties—specifically, short circuit current Jsc—as our canoni-
cal dataset. We utilize human-derived and machine-derived
features with machine-learning approaches to construct SP
models. Our benchmark for comparison is a SP model care-
fully derived using expert-derived features. We explore how
well machine-derived features can emulate an expert in deriv-
ing the salient features for this specific SP mapping. Finally,
the paper is supplemented with a set of notebooks showcasing
the basic steps involved in constructing SP models (see section
Data availability).

Materials and methods

This work examines methods for constructing SP maps for
OPV applications. The focus of modeling is on the effect of
microstructure on the OPV device performance. The micro-
structure constitutes the active layer of OPV. It consists of two
phases, where one phase serves as an efficient electron-donor,
and the other serves as an efficient electron-acceptor. The active
layer being modeled is sandwiched between two electrodes: an
anode and a cathode. In this work, the performance of an OPV
device is characterized by its short circuit current, Jg.. The Jy is
derived using a physics-based computational model that solves
the excitonic drift-diffusion equations. The model focuses on
the charge transport through the microstructure (based on a
well-studied material system, P3HT:PCBM blend? mixture).
The model solves for the spatial distribution of excitons, elec-
trons, holes, and the electric potential across the active layer
of the OPV device. The ML models are trained on an open-
source dataset with 1708 OPV microstructures generated using
a Cahn—Hilliard equation solver.'* Each microstructure in this
dataset is a two-dimensional, two-phase microstructure of size
401 x 101 pixels and is annotated by one property (Js from the
computational model). Additional details on data generation
and the computational models are presented in the supplemen-
tary information and our prior work.!'>!4]

The dataset is of moderate size, but predicting properties
required substantial resources.'>] However, the major reason
behind selecting this dataset is the availability of the SP model
derived by the expert. In the paper, we refer to it as a reference
model M. It is also a data-driven model trained previously on
the same dataset. However, domain experts first established
this model by defining a large set of potential features and then
identifying three salient features through repeated trial and
error correlation studies. This model is used in this paper to
compare with other methods of feature selection. We note that
model Mg should not be considered as a ground-truth model
but rather a reference model as the name suggests.

The short circuit current is our property of interest and the
ground-truth values for Jy are computed using the computa-
tional model, and then used to determine the accuracy of the

2 P3HT:PCBM is poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-
propyl-1-phenyl-[6,6]Cy;.
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machine-learning (ML) models examined in this paper. All
models are trained, tested and validated with a data split into a
training set (80%) and a testing set (20%). The performance of
each model is evaluated by fivefold cross validation (performed
on the training set).

We compare the performance of SP models built with dif-
ferent data-driven featurization schemes against model Mg.
The accuracy of all the ML models examined in this paper are
evaluated by comparing against the ground-truth data (which
is computed from a detailed physics-based model). All the ML
models in this paper can be thought of as surrogate models to
this detailed physics-based model.['

Three levels of microstructure
representations

Formally, we consider three microstructure data representations
levels (RL): the raw data (RLO), the featurized data (RL1), and
the extracted salient features (RL2)—see Fig. 1.

Representation layer zero (RLO): The raw data (i.e., image
data) constitute the RLO. The raw data size depends on the
resolution and size of the sample. While it is possible to train
SP models that directly map raw data to output,!'"'%! several
challenges exist—including the curse of dimensionality!'”!
that necessitates the availability of very large datasets and the
“black box” nature of such models, which makes extracting
scientific insight non-trivial. Additionally, it is non-trivial to
enforce underlying invariances (e.g., translation and/or rotation
invariance) that could play a part in determining the output. An
extra layer of representation is introduced (RL1) to overcome
these challenges. We refer to this step as the featurization step
(RL1). We formally denote the raw dataset of N microstructures
as X = {X1,..., Xy}, where microstructure X; is represented by
a (ny x ny) bitmap with bitmap pixel X;(x,y) € {0, 1} at posi-
tion (x, y).

Representation layer one (RL1): This level corresponds to
the feature layer, where transformations are applied to RLO.
Here, we consider two classes of features: human-derived and
machine-derived features (see Fig. 1). The human-derived
features consist of application-specific descriptors.['®! Such
descriptors require input from experts to formulate and
compute. While this featurization approach carries the risk
of missing key features due to unintended bias or lack of
information, the feature set is typically physically meaning-
ful, explainable, and interpretable. Examples include volume
fractions, interfacial area per unit volume, connected compo-
nents density, average domain sizes, tortuosity of the paths,
and percent contact area with boundaries. The dimensionality
of this feature set is usually much smaller than the dimension-
ality of the input microstructure. In this work, we use twenty-
one descriptors computed using a graph-based approach!'®!
to form two vectors of descriptors. The first vector d consists
of nineteen descriptors defined based on an understanding of
photophysics operations. The second vector d’ is appended
with two additional descriptors enriched by the expert. We
refer to these two vectors as d = {dy,...,d; : d; € R} with
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Figure 1. A taxonomy of microstructure representations with three layers RLO, RL1, RL2 allows principled classification of various
approaches to construct SP models. RLO consists of raw data that can be featurized into RL1 using two approaches: human-derived
features (here descriptors) and machine-derived features (here two-points spatial correlations). Both types of features can be enriched
with expert knowledge. In the last feature engineering layer—RL2, the salient features are extracted using three types of approaches:
expert-based selection (blue box), supervised feature selection (green boxes), and unsupervised feature engineering (yellow boxes). The
salient features from RL2 are used to construct models of varying complexity. Models are labeled Mg, M4to Ms as shown schematically.
Note that all models with a tilde use the monomial-augmented salient features, and all models with prime superscripts correspond to the

expert-enriched features.

cardinality of / = 19 and the expert-enriched features d’ with
cardinality (/ 4+ 2). Specifically, three stages of photocurrent
generation—Tlight absorption, exciton dissociation, and charge
transport—guide the definition of these descriptors. We refer
to [19] for a detailed description of these descriptors and Sup-
plementary Information for the list of descriptors. The two
additional expert-defined descriptors were based on an in-
depth, time-consuming sensitivity and correlation analysis
of the full-physics simulations that predict the short circuit
current. We emphasize that these descriptors (contact area
of donor phase with anode and acceptor phase with cathode)
are non-trivial, expert knowledge-enriched descriptors. Our
descriptors range from fairly straightforward, like volume
fraction, to descriptors defined by the experts, like the last
two descriptors mentioned above. A general rule of machine
learning is that starting with more descriptors often results in
an improved model, as tools for feature selection can screen
irrelevant descriptors and then construct a model using only
the down-selected features. However, the number of features
should be sufficient to capture the underlying relationship
between descriptors and property with good accuracy and
without overfitting.

For the machine-derived features, two-point spatial auto-
correlations (also known as two-point statistics) are generated
using the open-source package, PyMKS (The Materials Knowl-
edge System in Python), see [20,21]. There is an extensive lit-
erature on using spatial distributions to represent microstruc-
tures for structure-property models.!*>* For the two-phase
material system under consideration, only one auto-correla-
tion of the electron-accepting phase is needed.[*>*%! Consider

a microstructure, X;. Let m, denote this microstructure as an
array, where s indexes each pixel, and the values of my reflect
the volume fraction of the electron-acceptor phase in the pixel
s. In the microstructures considered in this work, each pixel is
fully occupied on one of the two phases present in the micro-
structure. Hence m, takes values of zero or one. The auto-cor-
relation of interest is defined as:

1
h=yg > mgmgy,and F; = {f,Vr € S,} (1)
N

where f, denotes the auto-correlation array indexed by a set of
discrete vectors 7. S, represents the total number of valid place-
ments of the discrete vector » used in evaluating the spatial
statistics,[?>?” and F; corresponds to auto-correlation array of
microstructure X; in X'. The two-point correlation is computed
for each microstructure, JX; in X’ and then aggregated to form
the machine-featurized dataset X/ = {F}, Fa, ..., Fy ).
Machine-derived features can also be enriched with expert
knowledge by assigning new material states to each pixel. Spe-
cifically, the output Jy is known to depend on the availability of
donor phase adjacent to the anode and acceptor phase adjacent
to the cathode. To account for this, a 1-D auto-correlation of
the acceptor phase on the surface adjacent to the cathode and a
1-D auto-correlation of the donor phase on the surface adjacent
to the anode are added to the earlier feature set, f, to generate
the enriched feature set, /. Mathematically, f” = {f, fan,/Ca},
where fan and fc, are appropriate 1-D auto-correlations on the
layers adjacent to the anode and cathode, respectively. Simi-
lar to machine-featurized dataset, the expert-enriched dataset
is formed X/’ = {F{,F,,...,Fy}, where F! corresponds to

MRS COMMUNICATIONS - VOLUME XX - ISSUE xx - www.mrs.org/mrc B 3



rs Communications

NS
auto-correlation array of expert-enriched state in X; microstruc-
ture.’ It is important to note that the two-point statistics reflect
the directional dependencies of the extracted microstructure
measures. However, the dimensionality of this feature array is
large—same order as the input microstructure.

Representation layer one (RL2): This layer corresponds to a
“concentration of information”, where the number of features is
reduced, ideally without degrading the predictive power of the
SP model being built. This is an important step in constructing
surrogate models, because interpolation theory suggests that for a
fixed number of samples, more accurate interpolants can be con-
structed when the number of features is smaller.?®?°1 However,
identifying a proper salient features is challenging. First, there
is no uniqueness guarantee for a set of salient features. Different
data-driven approaches could result in different sets of salient
features. Second, the set of salient features can be incomplete.*
Finally, there is no guarantee that the salient features are inter-
pretable, thus precluding an easy generation of insight.

We broadly identify three approaches used for salient fea-
ture selection: (a) expert-based selection, (b) supervised fea-
ture selection, and (c) unsupervised feature engineering. Fig-
ure 1 visually lays out this classification at RL2. The first two
approaches are used on human-derived features, while the last
approach is applied on machine-derived features.

In the first approach, an expert defines the vector of salient
features, denoted as d . In Fig. 1, this approach is marked with
the blue box. The vector d© (EE € d’) can be derived using a
hypothesis-driven approach or, as in our case, an unsupervised
approach relying on the correlation studies. Here, the vector
of expert-derived salient features consists of three features:
dt = {d\10,d», min(d>g, d>1)}. These salient features are djo—
the volume fraction of electron-donor phase (as this is the phase
that contributes to the light absorption), d»—the weighted frac-
tion of the electron-donor phase (where weighting is applied to
the shortest distance to the interface and captures the efficacy of
exciton diffusion), and finally min(d5o, d>) the minimal contact
area with the electrode (donor with an anode, and acceptor with
cathode). The product of three descriptors correlates well with
the short circuit current, but identifying this vector of features
required tedious, manual, and time-consuming investigations
by a domain expert. These three features are used to construct
our reference model Mg (cf. Fig. 1).

In the second approach, three types of off-the-shelf feature
selection techniques®®! are applied: filter methods, wrapper
methods, and embedded methods. For each type of method, we
choose one technique that we briefly describe here in the main
document and provide more details in Supplementary Infor-
mation. The filter methods are the simplest to use. Here, we
select the maximum Relevance Minimal Redundancy method

3 Expert-enriched features are scaled through standardization (or
Z-score normalization) before the feature engineering step to elimi-
nate bias toward the subset with highest variance.

4 Completeness is difficult to confirm even for hypothesis-driven
selection approaches.
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(mRMR). Iteratively, this technique seeks to select down a small
set of features that have a strong correlation with the targeted
properties and a low redundancy with other features selected in
previous iterations. It is a relatively simple technique that does
not involve any SP model construction but only looks at the
basic correlation between variables (either descriptors/features
or property). As a result, the input features are ordered based on
their score, capturing relevance and redundancy. The scoring is
then used to decide on the number of salient features used as
inputs to the SP model. Once the number of salient features is
selected, any model construction strategy can be used.

In wrapper methods, feature selection and machine learning
are coupled. Forward selection (FS) is a representative method
used in this paper, and it involves an iterative process that starts
with an empty set of features. In each iteration, the feature that
best improves the model is added until the addition of a new
feature does not improve the model’s performance. Because
these two steps are linked, this type of method is prone to
overfitting. Moreover, for a large pool of descriptors, wrapper
methods may be computationally demanding.

Finally, embedded methods, such as Random Forrest (RF)
used in this work, are the most complex feature selection
methods. The Random Forest algorithm constructs hundreds
of decision trees, each building a SP mapping over a random
extraction of the observations from the dataset with a random
combination of the input features. As a consequence, RF is less
prone to overfitting at the expense of computational cost. The
feature selection (or scoring) is computed from each decision
tree and averaged over all the trees. When training an indi-
vidual tree, the output variance is minimized at each node of the
particular tree. In this method, an individual feature’s relevance
is based on the decrease in its variance.

All feature selection methods described above are char-
acterized as supervised methods. In some cases, the salient
feature selection is tightly coupled with the model. This is
the case for forward selection and random forest models. In
Fig. 1, we highlight the tight link by drawing the green boxes
around salient features and the models. In filter methods, the
model construction is independent of the feature selection. The
importance score is computed to capture correlation with the
property. In Fig. 1, we highlight the weak link between model
and property with a vertical line. In this paper, nRMR, FS and
RF are applied to two vectors of descriptors d and d’ to derive
the corresponding salient feature vector d= {21,32, ...,35}
of size § « /. The vectors with salient features are denoted
with the superscript of the method used: dMRMR g gmRMR
dFS, d'FS, dRF | and d’RF. The vectors of salient features
with superscript prime are selected from the vector d (e.g.,
d™RMR — g g ds i d; e d'}), and the vectors of salient
feature without the superscript are selected from the vector d
(e.g., d"RMR ¢ )

In the third approach—unsupervised feature engineer-
ing—salient features are identified independent of the prop-
erties. Principal Component Analysis (PCA) is commonly
used for this purpose. PCA seeks to rotationally transform
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the data while maximizing the variance capture in the data-
set in any selected (low) number of dimensions. The num-
ber of salient features is chosen based on the unexplained
(residual) variance in the dataset (or can be selected using the
performance of the SP model). In this paper, we apply PCA
to the machine-derived features (X and X'") from RL1 to
derlve salient features f {PC1(X),...,PCs(X”)} and
f {PCl(Xf ), ..., PCg (Xf )}, where PC; (Xf) is the principal
score of X/ and PC; (X" f' ) is the principal score of X- /. We also
apply PCA directly to the raw data from RLO (X) to derive
X ={PCi(X),...,PCs(X)}.

Microstructure-property models
This study aims to compare the predictive power of the differ-
ent salient features computed in RL2. Toward this goal, differ-
ent SP models are constructed and their predictive accuracy is
evaluated (see also Fig. 1). The model Mg is considered as the
reference model. The parametric form of this model is grounded
in the process of the current generation in OPV that involves a
sequence of three steps, where the outcome of each subsequent
step depends on the previous step. Hence, the property (P or
Jsc) 1s modeled as the product of powers of three salient fea-

tures: P = H d . Taking logarithm of both sides, the model

form is expressed as log(P) = Zl 1 Ai log(d) allowing the
application of linear regression methods for building the
desired model.

All other models in the paper are also constructed using
linear regression. In the simplest case, the model takes the form
of: P = le Ai/d\i, where d = {31 , 32, ...,35} are the salient fea-
tures, and 4 = {4, 41, ..., As} are the influence coefficients cap-
turing the SP map. This form is used in models M, M>, M3,

[ M}, M}, My, M, and Ms. In the first six models, the salient
features correspond to the human-derived salient features, in
the next two models the salient features corresponds to the PC
scores of machine-derived features (f, f’). Model Ms uses
the PC scores obtained directly from the raw data (X). We also
augment the salient features d with monomials of order up to
g. Here, the surrogate model is expressed as P = Z Agd?,
where d¥ = d91d%...d% are power products (monomlals) of
the salient features, and 4 = {4, 41, ..., A5} are the influence
coefficients capturing the SP map. For example, for vector
d= {/d\l ,dr}, and q=2, the extended v vector of features (mono-
mials) would be: d = {1, d1 dz,dz,dz,ch dz} The size of the
extended feature vector is S. The monomial- l-augmented vec-
tors are formed for salient features gmRMR | g/mRMR 5 g f f 7
to form the corresponding vectors d™MRMR | d’mRMR and [, f'.
The SP maps constructed using the extended vectors of features
are denoted with tilde and include M;, M 15 My and M, 4 In the
first two of these models, the salient features correspond to the
descriptor vectors d™RMR g d g™MRMR while for the last two
models, the salient features correspond to the vectors f and f’ .

Figure 1 lays out all models below the corresponding
salient features and methods used to derive them. Note
that all models with the prime superscript correspond to

the expert-enriched features (d’, /"), while models without
these superscripts correspond to the smaller features (d, f).
Models with subscripts one, two, and three use the salient
features from mRMR, FS, and RF, respectively. All mod-
els with subscript four correspond to the machine-derived
features projected into a low dimensional embedding using
PCA. Model with subscript five operated directly on the raw
data projected into low dimensional embedding using PCA.
All models with tilde correspond to the features space aug-
mented with monomials.

Results and analysis

This study compares the capabilities of various featuriza-
tion methods (creation, selection, engineering) of the micro-
structure to enable robust data-driven SP mapping between
OPYV microstructure and its short circuit current. Altogether,
thirteen different SP models are constructed and evaluated
against each other. Table I presents a summary of the com-
parisons, while Figs. 2 and 3 depict the results of feature
selection and feature engineering methods on the SP model
performance. We report the number of salient features S, the
salient features, and the performance measure (R?) for pre-
diction.’ The accuracy is evaluated using the physics-based
computational model as the ground-truth.

Our results indicate that model Mg offers very good perfor-
mance among all models built. This model is the expert-derived
model with only three salient features manually selected by
the expert in repeated trials. The R? value for model Mg is
0.97. The superior performance is consistent across training,
validation, and prediction. Nevertheless, models with compa-
rable performance can be constructed for both human-derived
and machine-derived features only if features are enriched with
expert knowledge and suitably augmented (using monomials in
the present study). Note the good performance of models (M|
and M} in Table I). Next, we compare and contrast various set-
tings of model construction to answer the three major questions
raised in the abstract.

We begin by comparing various feature selection methods
to construct a SP model. Figure 2 depicts the results for models
M|, M}, M; for the expert-enriched vector of descriptors d’.
Three panels of the figure depict the order of descriptors from
d’ with the decreasing importance score (except for the forward
selection method where the score is not computed explicitly).
Each panel also reports the change in model performance as
one includes systematically the identified important features in
the model building. Clearly, the improvement in the R? values
is minimal with the less important features. These characteris-
tics are evident from all three panels. For example, in the right

5 Results in Supplementary Information additionally report the nor-
malized mean absolute errors (NMAESs) for fivefold validation and
prediction.
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panel of Fig. 2, the R? increases significantly for the first four
features, whose importance scores are considerably higher than
the rest of the features. These four features correspond to the
salient features identified by the method. The selected number
of features is marked with the vertical red line for guidance.
The number of salient features is chosen based on the gap in
the score value between subsequent features (mRMR, RF)
or asymptotic behavior of R? (FS). Interestingly, these three
methods select a similar number of salient features: four or
five. Tables 1 and 2 in Supplementary Information provide the
number of salient features S for all models. It is seen that all
three types of feature selection methods (mRMR, FS, RF) offer
a comparable performance of R? = 0.88-0.93 (see values for
models M|, M}, M in Table 2 of the Supplementary Informa-
tion). Moreover, the salient feature/descriptors in the three vec-
tors (see Table I) are consistent. The interfacial area (d3), the
donor contact area with the anode (d>q), and the acceptor con-
tact area with the cathode (d>1) have been the most commonly

selected feature among these three models. These descriptors
match or are strongly correlated with the expert-derived sali-
ent features (see Fig. 1 in the Supplementary Information).
This demonstrates that for this particular application feature
selection is agnostic to the selection method. This is important
because it demonstrates that when the featurization of micro-
structure is performed well, the machine-learning model can
be constructed with good performance and minimal additional
intervention from the domain expert. Moreover, it affirmatively
answers the question of whether a small set of features can be
selected to train a predictive model of SP.

We note that the features used to construct these models
include two expert-crafted features (dzg and da1). To ask the
question on the importance of expert involvement in the pro-
cess of creating the features, we constructed the analogous
models (M), M and M3) with the smaller pool of descriptors
d. For the same number of salient features, the performance
decreases consistently across three types of methods (mMRMR,

Table I. Performance of SP models using feature selection and feature engineering applied on four types features: expert-derived features (sec-
ond column), human-derived features (third and forth column), machine-derived features (fifth and sixth column), and raw data (last column).

Expert-derived features

Feature selection (mRMR) on human-derived

Feature engineering (PCA) on PCA

and model features machine-derived features on raw
data
RL1 features d d d f f X
RL2 features (dyg, dp, Min(dhg, Gp1)) (03, dyo, dg, G5, Ghg, d11) (03, dyp, 21, dg, dap) I [z bt
NEG) 3 6 (28) 521 7 (36) 7 (36) 11
Model Mg W () (i) My (M) AU W
Performance 0.97 0.81 (0.83) 0.89 (0.98) 0.75 (0.85) 0.87 (0.95) 0.60

Bold value indicates the highest A2 value among all models.

Model performance is reported as B2 on testing set.

Filter method: mRMR

Wrapper method: forward selection

Embedded method: random forest
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Figure 2. Performance of feature selection on human-derived features d’ and the associated model of SP: (left) filter method (MRMR) and
model Mq, (middle) wrapper method (forward selection) and model Mé, and (right) embedded method (random forest) and model M’s. The
red vertical line corresponds to the number of features selected for the final model used to report the accuracy values in Table I. Note that
all methods consistently choose similar salient features (the number and the descriptors d3, dog, doq, d1g) for which models offer optimal

performance.
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Figure 3. The correlation coefficient against the number of PCA
components for different versions of model My. The features used
in My are derived from two-point correlations of the phase distri-
bution and then transformed via a PCA into a lower dimensional
representation (seven components are used for data reported in
Table I).

FS, RF). The R? of prediction decreased by 0.08 for forward
selection, 0.05 for mRMR, and 0.10 for the random forest
regression model. Moreover, the performance behavior for an
increasing number of features increases only gradually (see
Supplementary Information Figs. 4, 6 and 7) without a clear
asymptotic behavior. Even with the full set of nineteen features,
the built SP model cannot reach a comparable performance of
models with salient features selected from the full vector d’.
Finally, the lost performance cannot be compensated for by
monomial-augmented features. The R? values for A7I| model
increases by only 0.02 compared to the M model.® In contrast,
when the same model with augmented features is applied on the
feature vector d’, the R? increases to 0.98 (model M{ ), which
is the highest performance among all models. These consistent
results reiterate the importance of the input features, and rein-
force the value of expert-enrichment to the data representation
and featurization. Moreover, our results demonstrate that the
addition of expert-derived features can significantly improve
the model performance and these improvements cannot be
reproduced by increasing the complexity of the model without
expert-enriched features.

In the second part of this study, four different SP models
(Ma, My, Ma, ]\714) with machine-derived featurization are
produced and compared. Models My and M} are models with
regular machine-derived features and expert-enriched machine-
derived features. ]\714, M 4 correspond to models with monomial-
augmented models with regular machine-derived features and
expert-enriched machine-derived features. These SP models are
constructed with increasing number of principal components to
evaluate their influence on model performance. Figure 3 depicts
the performance of these models where the prediction (test set)

¢ Here, we use the monomial function of order two. See Supplemen-
tary Information for more results.

R? scores are presented as functions of the number of PC scores
used. The results indicate that the models perform better with
increasing number of PC scores (used for model building) up
to 7 PC scores. The first seven PC scores are found to explain
> 95% of the entire OPV dataset. Therefore, only the first seven
PC scores from each workflow are used for establishing SP
models with machine-derived features. As seen from the Table I
and Fig. 3, using expert guidance in machine-derived features
consistently improved prediction performance on all models.
This observation suggests that significant improvements in the
model accuracy can be achieved by adding expert-guided fea-
tures to the base features. This improvement in accuracy cannot
be reproduced by increasing the model complexity or adding
more machine-derived features.

It is also clear that both workflows with machine-derived
features and expert-guided machine-derived features are capa-
ble of producing robust and reliable SP models with high pre-
diction and cross validation performance. In the case of mod-
els using machine-derived features, the monomial-augmented
feature set model consistently perform better than the basic set
of features. This situation is expected given that simple linear
models are insufficient for capturing the complex relationship
between low dimensional microstructure features and the short
circuit current (Jg ) property.

Conclusions

We show using an open-source dataset that feature selection
is a valuable approach to constructing SP maps, and that—
for a rich-enough feature set—any feature selection approach
can be used to train a good SP model. However, machine-only
feature engineering and selection methods alone (without
human intervention) do not offer the optimal solution to sali-
ent feature identification. Our results demonstrate the value of
expert knowledge embedded during the featurization step of
the structure-property map construction. We have demonstrated
that for the application studied here (organic solar cells) SP
models employing a combination of machine-learning methods
and expert knowledge can achieve similar performance to a
time-consuming, entirely hand-crafted SP model used in previ-
ous work. This makes the case for development of principled
approaches that incorporate expert knowledge into the featuri-
zation step during the construction of SP maps.
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Nomenclature

X Raw dataset with microstructures

2,‘ Salient feature

d Vector of salient features

dt Vector of salient features derived by the expert
d™RMR  Vector of salient features derived using the mRMR

method from d’
drs Vector of salient features derived via forward
selection from d.

d™RMR Vector of salient features derived using the mRMR
method from d.
dRF Vector of salient features derived via random forest

method from d.
f Salient features derived via PCA from f'
f’ Salient features derived via PCA from f’
X Salient features derived via PCA from X
d Vector of monomial-augmented salient features

d"™RMR " Vector of monomial-augmented d/mRMR

d™RMR " Vector of monomial-augmented dmRMR

f Monomial-augmented f

Z’v Monomial-augmented f’

My SP model mapping Z’ to Jye

My SP model mapping f to Jg

M, SP model mapping d'™RMR ¢ J

A Influence coefficients capturing the SP map
Vector of descriptors

d Expert-enriched vector of descriptors

d; Descriptor/feature

F; Autocorrelation array of microstructure X;

F Function mapping the salient features to property

F! Array of microstructure X; auto-correlation with
state enriched by the expert knowledge

Jse The short circuit current (A/m?)

m(s) A state of the microstructure at the location s in X

M, SP model mapping d™RMR o g

M| SP model mapping d'mRMR ¢4 g

M SP model mapping d™S to Jse

M; SP model mapping d’FS to Jg

M; SP model mapping dRF to Jse

M; SP model mapping d'®F to J
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My SP model mapping the salient features derived
using low dimensional embedding of f.
M, SP model mapping the salient features derived

using low dimensional embedding of f”
Ms SP model mapping X to Js
Mg SP model derived by the expert
N Total number of microstructures in X’
P Material property of interest, here J

PC; Principal component

q Order of monomial functions

RLO Representation layer zero: raw data

RL1 Representation layer one: input features

RL2 Representation layer two: salient features

X Microstructure data point in X

xr Dataset featurized using machine-derived approach

X Dataset featurized using machine-derived approach
and enriched with expert knowledge

S Size of salient features vector

S Size of salient extended features vector
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