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Abstract
Data-driven approaches now allow for systematic mapping of microstructure to properties. In particular, we now have diverse approaches to “featur-
ize” microstructures, creating a large pool of machine-readable descriptors for subsequent structure-property analysis. We explore three questions 
in this work: (a) Can a small subset of features be selected to train a good structure-property predictive model? (b) Is this subset agnostic to the 
choice of feature selection algorithm? And (c) can the addition of expert-identified features improve model performance? Using a canonical dataset, 
we answer in the affirmative for all three questions.

Introduction
The holy grail of materials science is to discover the physi-
cally meaningful microstructural features controlling the mate-
rial properties of interest and to describe such relationships 
in forms useful for optimal design of engineered components. 
Therefore, the core materials knowledge is often expressed as 
structure-property (SP) relationships: P = F(d̂) , where P is 
the property of interest, and d̂  is the vector of salient micro-
structural features or descriptors. The function F is typically 
learned via hypothesis-driven experiments or physics-based 
numerical simulations or, more recently, via machine-learning 
approaches.[1–4]

Mapping microstructure-sensitive properties with micro-
structure representation is invariably challenging due to the 
mismatch between the high dimensionality of microstructural 
information (e.g., via microscopy or simulations) and the prin-
cipal degrees of freedom (or salient features) governing the 
SP models. This is because microstructural imaging aims to 
provide detailed, high-resolution maps. Hence, imaging tech-
niques inevitably produce high-dimensional representations 
of microstructure, while the goal of establishing practically 
useful SP models is to identify the smallest set of features that 
can successfully predict the effective properties exhibited by 
the material. Often, this set is not known a priori, especially 
for complex multi-physics phenomena governing the material 
properties. Thus, the efficient learning of F depends critically 

on the availability of a large pool of computable features1 and 
principled approaches for selecting the most informative (or 
salient) features.

There exist several distinct approaches to “featurize” the 
microstructure. These include voxel-based representations,[3,4] 
characterization via physical descriptors,[5,6] statistical func-
tions,[7,8] spectral density functions (SDF),[9,10] and machine-
learning methods.[1,2] Features may include physically mean-
ingful descriptors (e.g., grain size, volume fraction, tortuosity), 
statistical function (e.g., two-point correlation), or local neigh-
borhoods. Regardless of the features, the microstructure (typi-
cally an image in 2D or image stack in 3D) is converted into a 
machine-friendly format one can subsequently perform compu-
tations upon. For a detailed comparative discussion of various 
representations, we refer the reader to recent review papers.[5,11]

Our motivation here is to understand the importance of data 
representation and subsequent selection of salient features, as 
well as the robustness of unsupervised selection of salient fea-
tures. Additionally, we evaluate the utility of including selected 
expert-enriched features (i.e., domain knowledge) in enhancing 
the predictive power of the trained models.

We utilize a problem of constructing SP models for organic 
photovoltaics applications (OPV). It is well known that the 
microstructure of OPV active layers determines, to a large 
extent, the photovoltaic performance of the device. Hence, there 
is a critical need to establish SP models for this application. We 
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1  We use the words “features” and “descriptors” interchangeably.
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utilize an open-source dataset[12] of microstructures and OPV 
properties—specifically, short circuit current Jsc—as our canoni-
cal dataset. We utilize human-derived and machine-derived 
features with machine-learning approaches to construct SP 
models. Our benchmark for comparison is a SP model care-
fully derived using expert-derived features. We explore how 
well machine-derived features can emulate an expert in deriv-
ing the salient features for this specific SP mapping. Finally, 
the paper is supplemented with a set of notebooks showcasing 
the basic steps involved in constructing SP models (see section 
Data availability).

Materials and methods
This work examines methods for constructing SP maps for 
OPV applications. The focus of modeling is on the effect of 
microstructure on the OPV device performance. The micro-
structure constitutes the active layer of OPV. It consists of two 
phases, where one phase serves as an efficient electron-donor, 
and the other serves as an efficient electron-acceptor. The active 
layer being modeled is sandwiched between two electrodes: an 
anode and a cathode. In this work, the performance of an OPV 
device is characterized by its short circuit current, Jsc . The Jsc is 
derived using a physics-based computational model that solves 
the excitonic drift-diffusion equations. The model focuses on 
the charge transport through the microstructure (based on a 
well-studied material system, P3HT:PCBM blend2 mixture). 
The model solves for the spatial distribution of excitons, elec-
trons, holes, and the electric potential across the active layer 
of the OPV device. The ML models are trained on an open-
source dataset with 1708 OPV microstructures generated using 
a Cahn–Hilliard equation solver.[13] Each microstructure in this 
dataset is a two-dimensional, two-phase microstructure of size 
401× 101 pixels and is annotated by one property ( Jsc from the 
computational model). Additional details on data generation 
and the computational models are presented in the supplemen-
tary information and our prior work.[13,14]

The dataset is of moderate size, but predicting properties 
required substantial resources.[15] However, the major reason 
behind selecting this dataset is the availability of the SP model 
derived by the expert. In the paper, we refer to it as a reference 
model ME . It is also a data-driven model trained previously on 
the same dataset. However, domain experts first established 
this model by defining a large set of potential features and then 
identifying three salient features through repeated trial and 
error correlation studies. This model is used in this paper to 
compare with other methods of feature selection. We note that 
model ME should not be considered as a ground-truth model 
but rather a reference model as the name suggests.

The short circuit current is our property of interest and the 
ground-truth values for Jsc are computed using the computa-
tional model, and then used to determine the accuracy of the 

machine-learning (ML) models examined in this paper. All 
models are trained, tested and validated with a data split into a 
training set (80%) and a testing set (20%). The performance of 
each model is evaluated by fivefold cross validation (performed 
on the training set).

We compare the performance of SP models built with dif-
ferent data-driven featurization schemes against model ME  . 
The accuracy of all the ML models examined in this paper are 
evaluated by comparing against the ground-truth data (which 
is computed from a detailed physics-based model). All the ML 
models in this paper can be thought of as surrogate models to 
this detailed physics-based model.[14]

Three levels of microstructure 
representations
Formally, we consider three microstructure data representations 
levels (RL): the raw data (RL0), the featurized data (RL1), and 
the extracted salient features (RL2)—see Fig. 1.

Representation layer zero (RL0): The raw data (i.e., image 
data) constitute the RL0. The raw data size depends on the 
resolution and size of the sample. While it is possible to train 
SP models that directly map raw data to output,[1,16] several 
challenges exist—including the curse of dimensionality[17] 
that necessitates the availability of very large datasets and the 
“black box” nature of such models, which makes extracting 
scientific insight non-trivial. Additionally, it is non-trivial to 
enforce underlying invariances (e.g., translation and/or rotation 
invariance) that could play a part in determining the output. An 
extra layer of representation is introduced (RL1) to overcome 
these challenges. We refer to this step as the featurization step 
(RL1). We formally denote the raw dataset of N microstructures 
as X = {X1, . . . ,XN } , where microstructure Xi is represented by 
a (nx × ny) bitmap with bitmap pixel Xi(x, y) ∈ {0, 1} at posi-
tion (x, y).

Representation layer one (RL1): This level corresponds to 
the feature layer, where transformations are applied to RL0. 
Here, we consider two classes of features: human-derived and 
machine-derived features (see Fig. 1). The human-derived 
features consist of application-specific descriptors.[18] Such 
descriptors require input from experts to formulate and 
compute. While this featurization approach carries the risk 
of missing key features due to unintended bias or lack of 
information, the feature set is typically physically meaning-
ful, explainable, and interpretable. Examples include volume 
fractions, interfacial area per unit volume, connected compo-
nents density, average domain sizes, tortuosity of the paths, 
and percent contact area with boundaries. The dimensionality 
of this feature set is usually much smaller than the dimension-
ality of the input microstructure. In this work, we use twenty-
one descriptors computed using a graph-based approach[18] 
to form two vectors of descriptors. The first vector d consists 
of nineteen descriptors defined based on an understanding of 
photophysics operations. The second vector d ′ is appended 
with two additional descriptors enriched by the expert. We 
refer to these two vectors as d = {d1, . . . , dl : di ∈ R} with 

2  P3HT:PCBM is poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-
propyl-1-phenyl-[6,6]C61.
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cardinality of l = 19 and the expert-enriched features d ′ with 
cardinality (l + 2) . Specifically, three stages of photocurrent 
generation—light absorption, exciton dissociation, and charge 
transport—guide the definition of these descriptors. We refer 
to [19] for a detailed description of these descriptors and Sup-
plementary Information for the list of descriptors. The two 
additional expert-defined descriptors were based on an in-
depth, time-consuming sensitivity and correlation analysis 
of the full-physics simulations that predict the short circuit 
current. We emphasize that these descriptors (contact area 
of donor phase with anode and acceptor phase with cathode) 
are non-trivial, expert knowledge-enriched descriptors. Our 
descriptors range from fairly straightforward, like volume 
fraction, to descriptors defined by the experts, like the last 
two descriptors mentioned above. A general rule of machine 
learning is that starting with more descriptors often results in 
an improved model, as tools for feature selection can screen 
irrelevant descriptors and then construct a model using only 
the down-selected features. However, the number of features 
should be sufficient to capture the underlying relationship 
between descriptors and property with good accuracy and 
without overfitting.

For the machine-derived features, two-point spatial auto-
correlations (also known as two-point statistics) are generated 
using the open-source package, PyMKS (The Materials Knowl-
edge System in Python), see [20,21]. There is an extensive lit-
erature on using spatial distributions to represent microstruc-
tures for structure-property models.[22–24] For the two-phase 
material system under consideration, only one auto-correla-
tion of the electron-accepting phase is needed.[25,26] Consider 

a microstructure, Xi . Let ms denote this microstructure as an 
array, where s indexes each pixel, and the values of ms reflect 
the volume fraction of the electron-acceptor phase in the pixel 
s. In the microstructures considered in this work, each pixel is 
fully occupied on one of the two phases present in the micro-
structure. Hence ms takes values of zero or one. The auto-cor-
relation of interest is defined as:

where fr denotes the auto-correlation array indexed by a set of 
discrete vectors r. Sr represents the total number of valid place-
ments of the discrete vector r used in evaluating the spatial 
statistics,[22,27] and Fi corresponds to auto-correlation array of 
microstructure Xi in X  . The two-point correlation is computed 
for each microstructure, Xi in X  and then aggregated to form 
the machine-featurized dataset X f = {F1,F2, ...,FN }.

Machine-derived features can also be enriched with expert 
knowledge by assigning new material states to each pixel. Spe-
cifically, the output Jsc is known to depend on the availability of 
donor phase adjacent to the anode and acceptor phase adjacent 
to the cathode. To account for this, a 1-D auto-correlation of 
the acceptor phase on the surface adjacent to the cathode and a 
1-D auto-correlation of the donor phase on the surface adjacent 
to the anode are added to the earlier feature set, f, to generate 
the enriched feature set, f ′ . Mathematically, f ′ = {f , fAn, fCa} , 
where fAn and fCa are appropriate 1-D auto-correlations on the 
layers adjacent to the anode and cathode, respectively. Simi-
lar to machine-featurized dataset, the expert-enriched dataset 
is formed X f

′
= {F ′

1
,F

′
2
, ...,F

′
N
} , where F ′

i
 corresponds to 

(1)fr =
1

Sr

∑

s

msms+r and Fi = {fr ∀r ∈ Sr}

Figure 1.   A taxonomy of microstructure representations with three layers RL0, RL1, RL2 allows principled classification of various 
approaches to construct SP models. RL0 consists of raw data that can be featurized into RL1 using two approaches: human-derived 
features (here descriptors) and machine-derived features (here two-points spatial correlations). Both types of features can be enriched 
with expert knowledge. In the last feature engineering layer—RL2, the salient features are extracted using three types of approaches: 
expert-based selection (blue box), supervised feature selection (green boxes), and unsupervised feature engineering (yellow boxes). The 
salient features from RL2 are used to construct models of varying complexity. Models are labeled ME , M1 to M5 as shown schematically. 
Note that all models with a tilde use the monomial-augmented salient features, and all models with prime superscripts correspond to the 
expert-enriched features.



	

4         MRS COMMUNICATIONS · VOLUME XX · ISSUE xx · www.mrs.org/mrc

auto-correlation array of expert-enriched state in Xi microstruc-
ture.3 It is important to note that the two-point statistics reflect 
the directional dependencies of the extracted microstructure 
measures. However, the dimensionality of this feature array is 
large—same order as the input microstructure.

Representation layer one (RL2): This layer corresponds to a 
“concentration of information”, where the number of features is 
reduced, ideally without degrading the predictive power of the 
SP model being built. This is an important step in constructing 
surrogate models, because interpolation theory suggests that for a 
fixed number of samples, more accurate interpolants can be con-
structed when the number of features is smaller.[28,29] However, 
identifying a proper salient features is challenging. First, there 
is no uniqueness guarantee for a set of salient features. Different 
data-driven approaches could result in different sets of salient 
features. Second, the set of salient features can be incomplete.4 
Finally, there is no guarantee that the salient features are inter-
pretable, thus precluding an easy generation of insight.

We broadly identify three approaches used for salient fea-
ture selection: (a) expert-based selection, (b) supervised fea-
ture selection, and (c) unsupervised feature engineering. Fig-
ure 1 visually lays out this classification at RL2. The first two 
approaches are used on human-derived features, while the last 
approach is applied on machine-derived features.

In the first approach, an expert defines the vector of salient 
features, denoted as d̂E . In Fig. 1, this approach is marked with 
the blue box. The vector d̂E ( d̂E ∈ d

′ ) can be derived using a 
hypothesis-driven approach or, as in our case, an unsupervised 
approach relying on the correlation studies. Here, the vector 
of expert-derived salient features consists of three features: 
d̂
E = {d10, d2, min(d20, d21)} . These salient features are d10—

the volume fraction of electron-donor phase (as this is the phase 
that contributes to the light absorption), d2—the weighted frac-
tion of the electron-donor phase (where weighting is applied to 
the shortest distance to the interface and captures the efficacy of 
exciton diffusion), and finally min(d20, d21) the minimal contact 
area with the electrode (donor with an anode, and acceptor with 
cathode). The product of three descriptors correlates well with 
the short circuit current, but identifying this vector of features 
required tedious, manual, and time-consuming investigations 
by a domain expert. These three features are used to construct 
our reference model ME (cf. Fig. 1).

In the second approach, three types of off-the-shelf feature 
selection techniques[30] are applied: filter methods, wrapper 
methods, and embedded methods. For each type of method, we 
choose one technique that we briefly describe here in the main 
document and provide more details in Supplementary Infor-
mation. The filter methods are the simplest to use. Here, we 
select the maximum Relevance Minimal Redundancy method 

(mRMR). Iteratively, this technique seeks to select down a small 
set of features that have a strong correlation with the targeted 
properties and a low redundancy with other features selected in 
previous iterations. It is a relatively simple technique that does 
not involve any SP model construction but only looks at the 
basic correlation between variables (either descriptors/features 
or property). As a result, the input features are ordered based on 
their score, capturing relevance and redundancy. The scoring is 
then used to decide on the number of salient features used as 
inputs to the SP model. Once the number of salient features is 
selected, any model construction strategy can be used.

In wrapper methods, feature selection and machine learning 
are coupled. Forward selection (FS) is a representative method 
used in this paper, and it involves an iterative process that starts 
with an empty set of features. In each iteration, the feature that 
best improves the model is added until the addition of a new 
feature does not improve the model’s performance. Because 
these two steps are linked, this type of method is prone to 
overfitting. Moreover, for a large pool of descriptors, wrapper 
methods may be computationally demanding.

Finally, embedded methods, such as Random Forrest (RF) 
used in this work, are the most complex feature selection 
methods. The Random Forest algorithm constructs hundreds 
of decision trees, each building a SP mapping over a random 
extraction of the observations from the dataset with a random 
combination of the input features. As a consequence, RF is less 
prone to overfitting at the expense of computational cost. The 
feature selection (or scoring) is computed from each decision 
tree and averaged over all the trees. When training an indi-
vidual tree, the output variance is minimized at each node of the 
particular tree. In this method, an individual feature’s relevance 
is based on the decrease in its variance.

All feature selection methods described above are char-
acterized as supervised methods. In some cases, the salient 
feature selection is tightly coupled with the model. This is 
the case for forward selection and random forest models. In 
Fig. 1, we highlight the tight link by drawing the green boxes 
around salient features and the models. In filter methods, the 
model construction is independent of the feature selection. The 
importance score is computed to capture correlation with the 
property. In Fig. 1, we highlight the weak link between model 
and property with a vertical line. In this paper, mRMR, FS and 
RF are applied to two vectors of descriptors d and d ′ to derive 
the corresponding salient feature vector d̂ = {d̂1, d̂2, ..., d̂S} 
of size S ≪ l  . The vectors with salient features are denoted 
with the superscript of the method used: d̂mRMR and d̂ ′mRMR , 
d̂
FS , d̂ ′FS , d̂RF , and d̂ ′RF . The vectors of salient features 

with superscript prime are selected from the vector d̂ ′ (e.g., 
d̂
′mRMR = {d̂1, d̂2, ...d̂S : d̂i ∈ d

′} ), and the vectors of salient 
feature without the superscript are selected from the vector d 
(e.g., d̂mRMR ∈ d).

In the third approach—unsupervised feature engineer-
ing—salient features are identified independent of the prop-
erties. Principal Component Analysis (PCA) is commonly 
used for this purpose. PCA seeks to rotationally transform 

3  Expert-enriched features are scaled through standardization (or 
Z-score normalization) before the feature engineering step to elimi-
nate bias toward the subset with highest variance.
4  Completeness is difficult to confirm even for hypothesis-driven 
selection approaches.
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the data while maximizing the variance capture in the data-
set in any selected (low) number of dimensions. The num-
ber of salient features is chosen based on the unexplained 
(residual) variance in the dataset (or can be selected using the 
performance of the SP model). In this paper, we apply PCA 
to the machine-derived features ( X f  and X f

′ ) from RL1 to 
derive salient features f̂ = {PC1(X

f ), ..., PCS(X
f )} and 

f̂
′ = {PC1(X

f
′
), ..., PCS(X

f
′
)} , where PCi(X

f ) is the principal 
score of X f  and PCi(X

f
′
) is the principal score of X f

′ . We also 
apply PCA directly to the raw data from RL0 (X) to derive 
x̂ = {PC1(X ), ..., PCS(X )}.

Microstructure‑property models
This study aims to compare the predictive power of the differ-
ent salient features computed in RL2. Toward this goal, differ-
ent SP models are constructed and their predictive accuracy is 
evaluated (see also Fig. 1). The model ME is considered as the 
reference model. The parametric form of this model is grounded 
in the process of the current generation in OPV that involves a 
sequence of three steps, where the outcome of each subsequent 
step depends on the previous step. Hence, the property (P or 
Jsc ) is modeled as the product of powers of three salient fea-

tures: P =
3∏

i=1

d̂
Ai

i
 . Taking logarithm of both sides, the model 

form is expressed as log(P) =
∑

3

i=1
Ailog(d̂i) , allowing the 

application of linear regression methods for building the 
desired model.

All other models in the paper are also constructed using 
linear regression. In the simplest case, the model takes the form 
of: P =

∑
S

i
Aid̂i , where d̂ = {d̂1, d̂2, ..., d̂S} are the salient fea-

tures, and A = {A0,A1, ...,AS} are the influence coefficients cap-
turing the SP map. This form is used in models M1 , M2 , M3 , 
M

′
1
 , M ′

2
 , M ′

3
 , M4 , M ′

4
 , and M5 . In the first six models, the salient 

features correspond to the human-derived salient features, in 
the next two models the salient features corresponds to the PC 
scores of machine-derived features (  f̂  , f̂ ′ ). Model M5 uses 
the PC scores obtained directly from the raw data ( x̂  ). We also 
augment the salient features d̂ with monomials of order up to 
q. Here, the surrogate model is expressed as P =

∑
Ŝ

q
Aqd̃

q , 
where d̂q = d̂

q1
d̂
q2
...d̂

q
S̃ are power products (monomials) of 

the salient features, and A = {A0,A1, ...,A
S̃
} are the influence 

coefficients capturing the SP map. For example, for vector 
d̂ = {d̂1, d̂2} , and q = 2 , the extended vector of features (mono-
mials) would be: d̃ = {1, d̂1, d̂2, d̂

2

1
, d̂

2

2
, d̂1d̂2} . The size of the 

extended feature vector is S̃  . The monomial-augmented vec-
tors are formed for salient features d̂mRMR , d̂ ′mRMR and f̂  , f̂ ′ 
to form the corresponding vectors d̃mRMR , d̃ ′mRMR and f̃  , f̃ ′ . 
The SP maps constructed using the extended vectors of features 
are denoted with tilde and include M̃1 , M̃ ′

1
 , M̃4 and M̃ ′

4
 . In the 

first two of these models, the salient features correspond to the 
descriptor vectors d̃mRMR and d̃ ′mRMR , while for the last two 
models, the salient features correspond to the vectors f̃  and f̃ ′.

Figure 1 lays out all models below the corresponding 
salient features and methods used to derive them. Note 
that all models with the prime superscript correspond to 

the expert-enriched features ( d ′ , f ′ ), while models without 
these superscripts correspond to the smaller features (d, f). 
Models with subscripts one, two, and three use the salient 
features from mRMR, FS, and RF, respectively. All mod-
els with subscript four correspond to the machine-derived 
features projected into a low dimensional embedding using 
PCA. Model with subscript five operated directly on the raw 
data projected into low dimensional embedding using PCA. 
All models with tilde correspond to the features space aug-
mented with monomials.

Results and analysis
This study compares the capabilities of various featuriza-
tion methods (creation, selection, engineering) of the micro-
structure to enable robust data-driven SP mapping between 
OPV microstructure and its short circuit current. Altogether, 
thirteen different SP models are constructed and evaluated 
against each other. Table I presents a summary of the com-
parisons, while Figs. 2 and 3 depict the results of feature 
selection and feature engineering methods on the SP model 
performance. We report the number of salient features S, the 
salient features, and the performance measure ( R2 ) for pre-
diction.5 The accuracy is evaluated using the physics-based 
computational model as the ground-truth.

Our results indicate that model ME offers very good perfor-
mance among all models built. This model is the expert-derived 
model with only three salient features manually selected by 
the expert in repeated trials. The R2 value for model ME is 
0.97. The superior performance is consistent across training, 
validation, and prediction. Nevertheless, models with compa-
rable performance can be constructed for both human-derived 
and machine-derived features only if features are enriched with 
expert knowledge and suitably augmented (using monomials in 
the present study). Note the good performance of models (M̃ ′

1
 

and M̃ ′
4
 in Table I). Next, we compare and contrast various set-

tings of model construction to answer the three major questions 
raised in the abstract.

We begin by comparing various feature selection methods 
to construct a SP model. Figure 2 depicts the results for models 
M

′
1
 , M ′

2
 , M ′

3
 for the expert-enriched vector of descriptors d ′ . 

Three panels of the figure depict the order of descriptors from 
d
′ with the decreasing importance score (except for the forward 

selection method where the score is not computed explicitly). 
Each panel also reports the change in model performance as 
one includes systematically the identified important features in 
the model building. Clearly, the improvement in the R2 values 
is minimal with the less important features. These characteris-
tics are evident from all three panels. For example, in the right 

5  Results in Supplementary Information additionally report the nor-
malized mean absolute errors (NMAEs) for fivefold validation and 
prediction.
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panel of Fig. 2, the R2 increases significantly for the first four 
features, whose importance scores are considerably higher than 
the rest of the features. These four features correspond to the 
salient features identified by the method. The selected number 
of features is marked with the vertical red line for guidance. 
The number of salient features is chosen based on the gap in 
the score value between subsequent features (mRMR, RF) 
or asymptotic behavior of R2 (FS). Interestingly, these three 
methods select a similar number of salient features: four or 
five. Tables 1 and 2 in Supplementary Information provide the 
number of salient features S for all models. It is seen that all 
three types of feature selection methods (mRMR, FS, RF) offer 
a comparable performance of R2 = 0.88–0.93 (see values for 
models M ′

1
 , M ′

2
 , M ′

3
 in Table 2 of the Supplementary Informa-

tion). Moreover, the salient feature/descriptors in the three vec-
tors (see Table I) are consistent. The interfacial area ( d3 ), the 
donor contact area with the anode ( d20 ), and the acceptor con-
tact area with the cathode ( d21 ) have been the most commonly 

selected feature among these three models. These descriptors 
match or are strongly correlated with the expert-derived sali-
ent features (see Fig. 1 in the Supplementary Information). 
This demonstrates that for this particular application feature 
selection is agnostic to the selection method. This is important 
because it demonstrates that when the featurization of micro-
structure is performed well, the machine-learning model can 
be constructed with good performance and minimal additional 
intervention from the domain expert. Moreover, it affirmatively 
answers the question of whether a small set of features can be 
selected to train a predictive model of SP.

We note that the features used to construct these models 
include two expert-crafted features ( d20 and d21 ). To ask the 
question on the importance of expert involvement in the pro-
cess of creating the features, we constructed the analogous 
models ( M1 , M2 and M3 ) with the smaller pool of descriptors 
d. For the same number of salient features, the performance 
decreases consistently across three types of methods (mRMR, 

Table I.   Performance of SP models using feature selection and feature engineering applied on four types features: expert-derived features (sec-
ond column), human-derived features (third and forth column), machine-derived features (fifth and sixth column), and raw data (last column).

Bold value indicates the highest R2 value among all models.
Model performance is reported as R2 on testing set.

Expert-derived features 
and model

Feature selection (mRMR) on human-derived 
features

Feature engineering (PCA) on 
machine-derived features

PCA 
on raw 
data

RL1 features d ′ d d ′ f f ′ X
RL2 features (d10, d2, min(d20, d21)) (d3, d10, d8, d15, d19, d11) (d3, d10, d21, d8, d20) f̂ f̂ ′ x̂

S ( S̃) 3 6 (28) 5 (21) 7 (36) 7 (36) 11

Model ME M1 ( M̃1) M
′
1
(M̃ ′

1
) M4 ( M̃4) M

′
4
 ( M̃ ′

4
) M5

Performance 0.97 0.81 (0.83) 0.89 (0.98) 0.75 (0.85) 0.87 (0.95 ) 0.60

Figure 2.   Performance of feature selection on human-derived features d′ and the associated model of SP: (left) filter method (mRMR) and 
model M′

1
 , (middle) wrapper method (forward selection) and model M′

2
 , and (right) embedded method (random forest) and model M′

3
 . The 

red vertical line corresponds to the number of features selected for the final model used to report the accuracy values in Table I. Note that 
all methods consistently choose similar salient features (the number and the descriptors d3,d20,d21,d10 ) for which models offer optimal 
performance.
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FS, RF). The R2 of prediction decreased by 0.08 for forward 
selection, 0.05 for mRMR, and 0.10 for the random forest 
regression model. Moreover, the performance behavior for an 
increasing number of features increases only gradually (see 
Supplementary Information Figs. 4, 6 and 7) without a clear 
asymptotic behavior. Even with the full set of nineteen features, 
the built SP model cannot reach a comparable performance of 
models with salient features selected from the full vector d ′ . 
Finally, the lost performance cannot be compensated for by 
monomial-augmented features. The R2 values for M̃1 model 
increases by only 0.02 compared to the M1 model.6 In contrast, 
when the same model with augmented features is applied on the 
feature vector d ′ , the R2 increases to 0.98 (model M̃ ′

1
 ), which 

is the highest performance among all models. These consistent 
results reiterate the importance of the input features, and rein-
force the value of expert-enrichment to the data representation 
and featurization. Moreover, our results demonstrate that the 
addition of expert-derived features can significantly improve 
the model performance and these improvements cannot be 
reproduced by increasing the complexity of the model without 
expert-enriched features.

In the second part of this study, four different SP models 
( M4, M ′

4
,  M̃4,  M̃ ′

4
 ) with machine-derived featurization are 

produced and compared. Models M4 and M ′
4
 are models with 

regular machine-derived features and expert-enriched machine-
derived features. M̃4 , M̃ ′

4
 correspond to models with monomial-

augmented models with regular machine-derived features and 
expert-enriched machine-derived features. These SP models are 
constructed with increasing number of principal components to 
evaluate their influence on model performance. Figure 3 depicts 
the performance of these models where the prediction (test set) 

R
2 scores are presented as functions of the number of PC scores 

used. The results indicate that the models perform better with 
increasing number of PC scores (used for model building) up 
to 7 PC scores. The first seven PC scores are found to explain 
> 95 % of the entire OPV dataset. Therefore, only the first seven 
PC scores from each workflow are used for establishing SP 
models with machine-derived features. As seen from the Table I 
and Fig. 3, using expert guidance in machine-derived features 
consistently improved prediction performance on all models. 
This observation suggests that significant improvements in the 
model accuracy can be achieved by adding expert-guided fea-
tures to the base features. This improvement in accuracy cannot 
be reproduced by increasing the model complexity or adding 
more machine-derived features.

It is also clear that both workflows with machine-derived 
features and expert-guided machine-derived features are capa-
ble of producing robust and reliable SP models with high pre-
diction and cross validation performance. In the case of mod-
els using machine-derived features, the monomial-augmented 
feature set model consistently perform better than the basic set 
of features. This situation is expected given that simple linear 
models are insufficient for capturing the complex relationship 
between low dimensional microstructure features and the short 
circuit current ( Jsc ) property.

Conclusions
We show using an open-source dataset that feature selection 
is a valuable approach to constructing SP maps, and that—
for a rich-enough feature set—any feature selection approach 
can be used to train a good SP model. However, machine-only 
feature engineering and selection methods alone (without 
human intervention) do not offer the optimal solution to sali-
ent feature identification. Our results demonstrate the value of 
expert knowledge embedded during the featurization step of 
the structure-property map construction. We have demonstrated 
that for the application studied here (organic solar cells) SP 
models employing a combination of machine-learning methods 
and expert knowledge can achieve similar performance to a 
time-consuming, entirely hand-crafted SP model used in previ-
ous work. This makes the case for development of principled 
approaches that incorporate expert knowledge into the featuri-
zation step during the construction of SP maps.
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Figure 3.   The correlation coefficient against the number of PCA 
components for different versions of model M4 . The features used 
in M4 are derived from two-point correlations of the phase distri-
bution and then transformed via a PCA into a lower dimensional 
representation (seven components are used for data reported in 
Table I).

6  Here, we use the monomial function of order two. See Supplemen-
tary Information for more results.
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Nomenclature
X 	� Raw dataset with microstructures
d̂i	� Salient feature
d̂	� Vector of salient features
d̂
E	� Vector of salient features derived by the expert

d̂
′mRMR	� Vector of salient features derived using the mRMR 

method from d ′
d̂
FS	� Vector of salient features derived via forward 

selection from d.
d̂
mRMR	� Vector of salient features derived using the mRMR 

method from d.
d̂
RF	� Vector of salient features derived via random forest 

method from d.
f̂ 	� Salient features derived via PCA from f
f̂
′	� Salient features derived via PCA from f ′

x̂ 	� Salient features derived via PCA from X
d̃	� Vector of monomial-augmented salient features
d̃
′mRMR	� Vector of monomial-augmented d̂ ′mRMR

d̃
mRMR	� Vector of monomial-augmented d̂mRMR

f̃ 	� Monomial-augmented f̂
f̃
′	� Monomial-augmented f̂ ′

M̃
′
4
	� SP model mapping f̃ ′ to Jsc

M̃4	� SP model mapping f̃  to Jsc
M̃1	� SP model mapping d̃ ′mRMR to Jsc
A	� Influence coefficients capturing the SP map
d	� Vector of descriptors
d
′	� Expert-enriched vector of descriptors

di	� Descriptor/feature
Fi	� Autocorrelation array of microstructure Xi

F	� Function mapping the salient features to property
F
′
i
	� Array of microstructure Xi auto-correlation with 

state enriched by the expert knowledge
Jsc	� The short circuit current ( A/m2)
m(s)	� A state of the microstructure at the location s in X
M1	� SP model mapping d̂mRMR to Jsc
M

′
1
	� SP model mapping d̂ ′mRMR to Jsc

M2	� SP model mapping d̂FS to Jsc
M

′
2
	� SP model mapping d̂ ′FS to Jsc

M3	� SP model mapping d̂RF to Jsc
M

′
3
	� SP model mapping d̂ ′RF to Jsc

M4	� SP model mapping the salient features derived 
using low dimensional embedding of f.

M
′
4
	� SP model mapping the salient features derived 

using low dimensional embedding of f ′
M5	� SP model mapping x̂  to Jsc
ME	� SP model derived by the expert
N 	� Total number of microstructures in X
P	� Material property of interest, here Jsc
PCi	� Principal component
q	� Order of monomial functions
RL0	� Representation layer zero: raw data
RL1	� Representation layer one: input features
RL2	� Representation layer two: salient features
X 	� Microstructure data point in X
X

f 	� Dataset featurized using machine-derived approach
X

f ′	� Dataset featurized using machine-derived approach 
and enriched with expert knowledge

S	� Size of salient features vector
S̃	� Size of salient extended features vector
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