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Upper Esophageal Sphincter Opening Segmentation
with Convolutional Recurrent Neural Networks in

High Resolution Cervical Auscultation
Yassin Khalifa, Cara Donohue, James L. Coyle, and Ervin Sejdić, Senior, IEEE

Abstract—Upper esophageal sphincter is an important anatom-
ical landmark of the swallowing process commonly observed
through the kinematic analysis of radiographic examinations
that are vulnerable to subjectivity and clinical feasibility issues.
Acting as the doorway of esophagus, upper esophageal sphincter
allows the transition of ingested materials from pharyngeal into
esophageal stages of swallowing and a reduced duration of
opening can lead to penetration/aspiration and/or pharyngeal
residue. Therefore, in this study we consider a non-invasive
high resolution cervical auscultation-based screening tool to
approximate the human ratings of upper esophageal sphincter
opening and closure. Swallows were collected from 116 patients
and a deep neural network was trained to produce a mask
that demarcates the duration of upper esophageal sphincter
opening. The proposed method achieved more than 90% accuracy
and similar values of sensitivity and specificity when compared
to human ratings even when tested over swallows from an
independent clinical experiment. Moreover, the predicted opening
and closure moments surprisingly fell within an inter-human
comparable error of their human rated counterparts which
demonstrates the clinical significance of high resolution cervical
auscultation in replacing ionizing radiation-based evaluation of
swallowing kinematics.

Index Terms—Swallowing Accelerometry, Swallowing Vibra-
tions, Cervical Auscultations, Dysphagia, Upper Esophageal
Sphincter, Signal Processing, Deep Learning, Supervised Learn-
ing, Convolutional Recurrent Neural Networks, GRU.

I. INTRODUCTION1

SWALLOWING is a complex process that involves the2

coordination of various anatomical structures, muscles,3

and the biomechanical events they perform, in a somewhat4

sequential order to safely and efficiently transport food and5

liquids from the oral cavity to the stomach [1], [2]. Because6

swallowing requires the coordination of multiple subsystems7

of the body, a variety of medical or surgically related con-8

ditions can cause swallowing impairments, also known as9
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dysphagia [2]–[4]. Dysphagia is prevalent with approximately 10

16%-22% of people over the age of 50, 12%-13% of short- 11

term care patients, and up to 60% of nursing home residents 12

experiencing swallowing difficulties [5]–[7]. Dysphagia can 13

result in aspiration, or the entry of food and/or liquid into 14

the airway below the level of the vocal folds. Aspiration of 15

food and liquids is concerning, especially silent aspiration 16

(Asymptomatic), because it can lead to adverse outcomes 17

including pneumonia, malnutrition, and dehydration [7]–[9], 18

as well as reduced quality of life [10]–[17]. 19

Among the most important physiologic correlates of healthy 20

swallowing function is the duration of upper esophageal 21

sphincter (UES) opening. UES opening enables food and 22

liquid to enter the esophagus [18]–[21]. Reduced UES opening 23

diameter, delayed onset of opening, or premature closure 24

attenuate UES opening duration and can result in pharyngeal 25

residue that in turn can enter the upper (laryngeal penetration) 26

or lower (aspiration) airway, which are known risk factors 27

for pneumonia and airway obstruction [22]. UES opening is 28

the product of hyolaryngeal excursion, bolus propulsion, and 29

neural inhibitory relaxation of the UES itself [21], [22]. UES 30

dysfunction may occur due to neurological diseases that alter 31

the timing of UES relaxation and the delivery of muscular 32

traction forces that act to distend the relaxed UES during 33

swallowing, or due to impaired propulsive forces applied by 34

the oropharyngeal pump [19], [22]. 35

Table I summarizes the different diagnostic modalities that 36

can generate images and signals for the assessment of UES 37

function [19], [24], [25]. The modalities include videofluo- 38

roscopic swallow studies (VFSSs), fast pharyngeal CT/MRI, 39

fiberoptic endoscopic evaluation of swallowing (FEES), and 40

non-imaging instrumental tests such as pharyngeal manome- 41

try and Electromyography (EMG). Most of these modalities 42

require expertise to perform and highly trained clinicians 43

to interpret. VFSSs are most frequently and actually the 44

best modality to clinically assess swallow kinematic events 45

such as UES opening, because of the ability to dynamically 46

visualize the UES during all phases of the swallow and give 47

exact estimates of the moments when UES opens and closes 48

[18], [19]. However, VFSSs, which use ionizing radiation to 49

produce radiographic images with full temporal resolution, 50

are unavailable or undesirable to many patients, are relatively 51

expensive, and require specialized instrumentation and trained 52

clinicians to perform and interpret, leaving many patients un- 53

diagnosed or inaccurately diagnosed, and exposed to ongoing 54

risk of dysphagia-related complications [18]. 55
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TABLE I
SUMMARY OF TOOLS USED FOR DIAGNOSTIC ASSESSMENT OF UES.

Modality Strengths Weaknesses
VFSS [19] - Dynamically visualize UES

during all phases of swallow-
ing
- Provides the exact moments
when UES opens and closes

- Subjective interpretation
- Radiation exposure

FEES [23] - Direct visualization of swal-
lowing pharyngeal stage

- Limited in describing UES
activity (either probe is covered
with bolus or already through
UES)

CT/MRI [19] - Panoramic and full-thickness
visualization of oropharyngeal
structures

- Hard to conduct
- Radiation exposure (CT)
- Require synchronization with
patient behavior (MRI)
- Limited availability

Manometry
[19]

- Monitor UES pressure during
swallowing
- Detect UES impaired relax-
ation/distension

- Invasive
- Subjective interpretation
- Limited availability

EMG [19] - Monitor muscle activations
during swallowing
- Detect UES impaired relax-
ation/distension

- Can’t tell the exact moments
when UES opens/closes
- Subjective interpretation

The holy grail of dysphagia clinical evaluation methods56

has long been a noninvasive and clinically feasible method of57

accurately identifying the biomechanical events of swallowing58

that contribute to airway protection such as UES opening. The59

availability of such methods would enable the development60

of a screening tool that can differentiate between impaired61

and healthy swallowing with a high degree of sensitivity and62

specificity without the uncertainty of clinical examinations or63

the lack of availability of imaging studies [21], [26]–[29].64

To address the obstacle of insufficient access to instrumental65

testing of swallowing function universally, high resolution66

cervical auscultation (HRCA) is currently being investigated as67

an affordable, feasible, non-invasive bedside assessment tool68

for dysphagia. HRCA combines the use of vibratory signals69

from an accelerometer with acoustic signals from a micro-70

phone attached to the anterior neck region during swallowing.71

Following collection of signals, advanced machine learning72

techniques are used to examine the association between HRCA73

signals and physiological events that occur during swallowing74

[30], [31].75

HRCA has shown strong associations with multiple factors76

that affect the UES opening process. For instance, HRCA has77

been used in multiple studies to monitor the pharyngeal bolus78

propulsion during swallowing from the moment the bolus79

passes the mandible till the UES closes [32]–[35]. Further-80

more, hyolaryngeal excursion has been investigated to be the81

origin of HRCA signals in many occasions [36]–[38], and later82

they were successfully used to actually track the location of the83

hyoid bone during swallowing [31]. The formerly mentioned84

events are all parts of the UES opening mechanism which85

proves the potential of HRCA signals in detection of UES86

opening. While previous studies have monitored changes in87

HRCA signal features at the moments of UES opening and88

closure [39]. ], no studies have used HRCA signals to measure89

the time of UES opening and closure within a swallow.90

As mentioned previously, UES opening is the result of a91

mechanism that is controlled by multiple events occurring92

during swallowing, which necessitates the temporal modeling 93

of the whole swallow for the purpose of UES opening detec- 94

tion. Recurrent neural networks (RNNs) have been extensively 95

employed for the time series modeling in the recent years, 96

due to their capability of carrying information from arbitrarily 97

long contexts, selective information transfer across time steps, 98

and affordable scalability [40], [41]. RNNs are seemingly 99

efficient in modeling temporal contexts in time series data 100

and have been used in event detection for many biomedical 101

signals like ECG and EEG [42], [43], but nevertheless using 102

RNNs on raw signals is extremely hard to optimize because 103

of the propagating error signals through huge number of 104

time steps [44], [45]. To overcome this, convolutional neu- 105

ral networks (CNNs) have been utilized for the perception 106

of short contexts and more abstraction before feeding into 107

RNNs for the perception of longer temporal contexts [44]. 108

Known as representation learning, such hybrid architectures 109

allow feeding the machines with raw data to automatically 110

discover representations necessary for the detection problem 111

[45]. These models were first conceived for computer vision 112

applications [44], [46]; however, similar designs are being 113

adopted recently for event detection in biomedical signals [47], 114

[48] in addition to numerous applications in audio and speech 115

signal processing [49]. 116

In this study, we propose an implementation that uses 117

HRCA acceleration signals to estimate the moments at which 118

the UES opens and re-closes during swallowing and compare 119

the estimates to gold-standard judgments of UES opening 120

duration in videofluoroscopic images. The proposed method 121

relies on convolutional recurrent neural networks to extract the 122

dynamics of the swallowing vibrations from HRCA signals 123

and use them to infer the moments when the UES first 124

opens and re-closes during swallowing. Verifying the ability 125

of HRCA signals to demarcate the UES opening among other 126

swallowing physiological events, will promote a new non- 127

invasive sensor-based swallowing assessment technology that 128

is widely available and doesn’t add financial or relocation 129

burdens to patients. Moreover, it will help patients get a 130

consistent feedback about their swallowing, while they are 131

swallowing; a feature that will not only help improve the 132

clinic-based swallowing evaluation, but will also be a of a 133

great benefit for the patients towards feeling the progress of 134

the rehabilitation process and maintaining safe swallowing. 135

II. METHODOLOGY 136

A. Materials and Methods 137

Permission for this study was granted by the institutional 138

review board of the University of Pittsburgh and all partici- 139

pating patients provided informed consents including consent 140

to publish before enrollment. A total of one hundred and 141

sixteen patients (72 males, 44 females, age: 62.7± 15.5) with 142

suspected dysphagia resulting from a variety of diagnoses, un- 143

derwent an oropharyngeal swallowing function evaluation by a 144

speech language pathologist using VFSS at the University of 145

Pittsburgh Medical Center Presbyterian Hospital (Pittsburgh, 146

PA). Of the sample, 15 patients were diagnosed with stroke 147

while the remaining 101 patients were diagnosed with different 148

medical conditions unrelated to stroke. 149
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Fig. 1. The experimental setup of the study. (a) An X-Ray tube that resides
in a table is adjusted in a vertical position to be parallel to the swallowing
path. (b) The human subject is standing or comfortably seated between the
x-ray tube and the image intensifier with the HRCA sensors attached to the
anterior neck. (c) The image intensifier is positioned and adjusted according
to the subject height, so that the produced frames capture all of the important
anatomical landmarks of the oropharyngeal swallow (jaws, pharynx, and
esophagus). (d) The sensors are connected to the electronic circuit that supplies
power and performs analog amplification and filtration and then to the NI DAQ
for sampling. (e) The video feed is taken directly from the image intensifier to
the X-Ray control workstation where clinicians and radiologists create, save
, and view the exams. (f) The video feed from the image intensifier is cloned
into the video capture card installed on the research workstation which is also
connected to the NI DAQ and runs LabView for means of data collection and
synchronization.

Swallows for this study, were collected as a part of standard150

clinical care rather than for research purposes alone. As151

a result, speech language pathologists who conducted the152

VFSSs, had the ability to alter the evaluation protocol based153

on the patient’s clinical manifestation of dysphagia. This154

included how the boluses were administered to patients (i.e.155

spoon, cup), the volume and viscosity/texture of each bolus156

of food and liquids, the number of trials, and head position157

during swallowing (i.e. head/neck flexion, head rotation, head158

neutral). The following consistencies were used during VF-159

SSs: thin liquid (Varibar thin, Bracco Diagnostics, Inc., < 5160

cPs viscosity), mildly thick liquid (Varibar nectar, 300 cPs161

viscosity), puree (Varibar pudding, 5000 cPs viscosity), and162

Keebler Sandies Mini Simply Shortbread Cookies (Kellogg163

Sales Company). Boluses were either self-administered by164

patients via a cup or a straw or administered by the clinician165

through the use of a spoon (3− 5 mL).166

This study yielded 710 swallows (132 from patients di-167

agnosed with stroke and 578 from patients with other diag-168

noses) with an average duration of pharyngeal bolus transit of169

869.5±221 msec and an average DUESO of 604.9±150 msec.170

The collected swallows were classified into three categories:171

single (single bolus swallowed with one swallow), multiple172

(single bolus swallowed using more than one swallow), or173

sequential (multiple boluses swallowed sequentially in a rapid174

manner). The final data included 224 single, 477 multiple, and175

9 sequential swallows.176

B. Data Acquisition 177

The general experimental setup is illustrated in Fig. 1. 178

During all recording sessions, VF equipment was controlled 179

by a radiologist and the patients were comfortably seated 180

with the swallowing sensors attached to the anterior neck 181

region using double sided tape. VF was conducted in the 182

lateral plane using a Precision 500D system (GE Healthcare, 183

LLC, Waukesha, WI) at a pulse rate of 30 pulses per second 184

(PPS) and with the images acquired a frame rate of 30 185

frames per second (FPS) [50]. The video stream was captured 186

and digitized using an AccuStream Express HD video card 187

(Foresight Imaging, Chelmsford, MA) into movie clips with a 188

resolution of 720× 1080 at 60 FPS. 189

A tri-axial accelerometer (ADXL 327, Analog Devices, 190

Norwood, Massachusetts) and a contact microphone (model 191

C 411L, AKG, Vienna, Austria) were used to collect swal- 192

lowing vibratory and acoustic signals. The accelerometer was 193

mounted into a small plastic case with a concave surface 194

that fits on neck curvature and the case was attached to 195

the skin overlying the cricoid cartilage using a tape. The 196

accelerometer was attached such that its main axes are aligned 197

parallel to the cervical spine, perpendicular to the coronal 198

plane, and parallel to the axial/transverse plane. These axes 199

are referred to as superior-inferior (S-I), anterior-posterior (A- 200

P), and medial-lateral (M-L) respectively. The microphone 201

was mounted towards the right lateral side of the larynx to 202

avoid contact noise with the accelerometer and guarantee a 203

clear radiographic view of the upper airway. Attaching the 204

sensors around the area of cricoid cartilage is logical given 205

that most of the pharyngeal swallowing activity is produced 206

by the anatomical structures present at this level and it has 207

been reported to yield the best signal-to-noise ratio for the 208

acquisition of swallowing signals [34], [35], [51], [52]. 209

The accelerometer has a bandwidth of 1600 Hz after which 210

the response falls to -3dB of the response to low frequency 211

acceleration. In other words, the accelerometer has a low pass 212

filter with a cut-off frequency at 1600 Hz. The contact micro- 213

phone was chosen as well so that it produces a flat frequency 214

response over the entire range of audible sounds which was 215

proved to pass most of the frequencies encountered during 216

swallowing [52]–[54]. The signals from both the accelerometer 217

and microphone were hardware band-limited to 0.1-3000 Hz 218

with an amplification gain of 10. The cut-off frequencies for 219

the band-limiting filter were chosen so that most of body sway 220

components below 0.2 Hz are suppressed and the signal com- 221

ponents with the vast majority of energy are passed [34], [54]– 222

[56]. The signals were sampled using a National Instruments 223

6210 DAQ at a sampling rate of 20 kHz. Both signals and 224

video were acquired simultaneously using LabView’s Signal 225

Express (National Instruments, Austin, Texas) with a complete 226

end-to-end synchronization. 227

C. VF Image Analysis 228

Video clips were segmented based on individual swallow 229

events by tracking the bolus in a frame by frame manner. 230

The onset of the pharyngeal swallow event was defined as 231

the frame in which the head of the bolus passes the shadow 232
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of the posterior border of the ramus of the mandible and the233

offset as the frame in which the bolus tail passes through the234

UES [57], in order to capture the entire duration of pharyngeal235

bolus flow. Three expert judges trained in swallow kinematic236

judgments, identified the video frame of first UES opening and237

the video frame of first UES closure in the segmented videos.238

All raters who segmented swallowing videos and analyzed239

UES opening and closure established a priori intra- and inter-240

rater reliability with ICC’s over 0.99. All raters maintained241

intra- and inter-rater reliability throughout measurements on242

10% of swallows with ICC’s over 0.xx and were blinded243

to participant demographics and diagnosis and any bolus244

condition information.245

D. Signals Preprocessing246

Numerous physiologic and kinematic events such as cough-247

ing and breathing occur in close temporal proximity to the248

pharyngeal swallow event. These events can contribute to the249

collected vibratory and acoustic signals [33]. As a first step250

to overcome confounding noise in the signals due to multi-251

source environmental data collection and other measurement252

errors, the signals accrued at a sampling rate of 20 kHz253

were down-sampled to 4 kHz. A more intense down-sampling254

could have been adopted as previous studies reported that255

the frequency with the maximum energy for swallowing256

accelerometry signals occurs below 100 Hz and the central257

frequency almost below 300 Hz [34], [58]–[60]. However, we258

chose down-sampling to 4 kHz so that we match twice the max259

frequency component present in the acceleration signals (1600260

Hz). Down-sampling was performed through applying an anti-261

aliasing low pass filter then picking up individual samples to262

match the new rate.263

The baseline outputs of accelerometer and microphone (pro-264

duced by zero-physical input) were recorded earlier before the265

main data collection procedure and device noise was charac-266

terized through modified covariance auto-regressive modeling267

[58], [61]. The order of the auto-regressive model was 10 and268

it was determined using the Bayesian information criterion269

[58]. The coefficients of the auto-regressive model were then270

used to create a finite impulse response filter (FIR) to remove271

the device noise from the recorded swallowing signals [58].272

Afterwards, the low-frequency noise components and motion273

artifacts were eliminated from accelerometer signals using274

fourth-order least-square splines [62], [63]. Particularly, we275

used fourth-order splines with a number of knots equivalent276

to N×fl
fs

, where N is the data length and fs is the sampling277

frequency. fl is called the lower sampling frequency and it is278

proportional to the frequency associated with motion artifacts.279

The values for fl were calculated and optimized in previous280

studies [62]. Finally, the effect of broadband noise on signals281

was reduced through wavelet denoising [64]. Specifically, we282

used tenth-order Meyer wavelets and soft thresholding. The283

threshold was calculated using σ
√

2 logN , where N is the284

number of samples and σ is the estimated standard deviation285

of the noise (calculated through down-sampling the wavelet286

coefficients) [64], [65].287

E. System Design 288

Due to the fact that there is no specific rule of thumb to 289

calculate the number of layers and layer sizes for a certain 290

problem, the used architecture was fine-tuned based on an 291

experimental approach and by following the best network 292

configurations that achieved good results in similar problems 293

[47], [49], [66]. Particularly, we tested multiple architecture 294

depths that included more layers of CNN (3, 4, and 5 layers) 295

with up to 32 filters per channel and more RNN unit sizes up to 296

128. The chosen architecture was found to be the most stable 297

among the tested configurations. In other words, it included 298

the smallest number of parameters to be optimized while 299

achieving a detection accuracy that doesn’t sharply change 300

when adding more layers or increasing the layer sizes. The 301

used architecture employed also dropout between layers as 302

well as early stopping techniques to control the network from 303

over-fitting to the training data [67]. 304

The longest swallow event duration in the collected dataset 305

was around 1500 msec (90 frames of VF). The signals were 306

divided into chunks 16.67 msec in length (equivalent to one 307

frame in VF or 66 samples in signals). Each signal chunk 308

is composed of 3 axes of acceleration which makes the 309

dimensions 66 samples × 3 channels. The chunks were fed 310

into a 1D convolutional neural network that included two 311

convolutional layers with a max pooling layer in between as in 312

Fig. 2. Both convolutional layers were followed by a rectified 313

linear unit (ReLU). The first convolutional layer applied 16 314

”1 × 5” filters per channel which produced 3 ”62 features × 315

16 channels”. The max pooling layer applied a window of size 316

2 with 2 strides and reduced the features into ”31 features × 317

48 channels”. The last convolutional layer was identical to the 318

first one except that it used only one filter per channel which 319

produced ”27 features × 48 channels”. 320

The complete sequence of features x1:T (for a full swallow) 321

coming out of the convolutional layer was then fed into a 3- 322

layers dynamic RNN with gated recurrent units (GRUs) as 323

building blocks each of 64 units and a sequence of 90 time 324

steps. The RNN computed an output sequence ŷ1:T using the 325

following nonlinear model: 326

r
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The output sequence ŷ1:T coming out of the RNN was 328

masked (ones/zeros mask) before being fed in to the fol- 329

lowing stages to balance for the shorter swallows (less than 330

90 frames). Furthermore, the length of each swallow was 331
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Fig. 2. The architecture and data flow in the UES opening detection system. (a) This part is where the 3-channel acceleration signals from each swallow are
denoised and split into equal chunks each of 66 samples (equivalent to 1 VF frame). (b) This part shows the operation of the CNN network part per data
chunk. The architecture of the used 1D CNN which is comprised of two layers, the first applies 16 filters on each channel and produces 48 channels. The
first CNN layer is followed by a max pooling layer and another CNN layer identical to the fist except that it applies 1 filter per channel then a max pooling
layer reduces the size of the features. (c) This is an illustration for the operation of the CNN after training that shows a chunk of 3-channel acceleration
pushed throw the first layer of CNN to produce 16 feature-channels per original channel. The length of chunks is shorter after this layer due to convolution
on the edges of the chunks (no padding is used). (d) This is an illustration that shows the architecture of the GRU unit with the reset and update parts that
help propagate states across time steps. (e) (x1:T ) is the output train from the CNN for chunks (1 : T ) which is fed into the RNN units. (f) The architecture
of the 3-layer RNN used for time sequence modeling. (g) The output sequence from the last layer of the RNN (ŷ1:T ) is flattened and fed into the first fully
connected layer. (h) A diagram of the 3 fully connected layers (each of 128 units) used to combine the features coming out of the RNN. (i) The output layer
of the network which composed of 90 units (y1:T ) that resemble the UES opening mask.
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considered in the architecture of the RNN and the same mask332

was used in the calculation of the cost function for the whole333

problem. The sequence was then fed in to 4 fully connected334

layers in order to fuse the temporal features from RNN into a335

meaningful UES opening segmentation mask. This part of the336

network featured 3-ReLU activated layers with 128 units and337

an output layer that assembled 90 units, one for each time step338

in the swallow as shown in Fig. 2 plus Sigmoid activation for a339

zeros and ones segmentation mask. Each two fully connected340

layers were separated by a dropout layer with a drop rate of341

20%.342

The final cost function was defined as the mean squared343

error between the zero-padded ground truth ȳ1:T labeled by344

the expert judges and the masked output coming from the345

final connected layer ŷ1:T as follows:346

MSE =
1

T

T∑
i=1

[(ȳi − ŷi)×maski]2 (1)

where maski is the mask used to compensate for short347

swallows. We used the Adam optimizer to train the network348

due to its superiority in convergence without fine tuning for349

hyper-parameters [68].350

Fig. 3. The evaluation procedure for each swallow. (a) The UES opening
mask created from the expert manual segmentation in VF images. (b) The
UES opening mask as predicted by the proposed algorithm. (c) Comparison
is performed between the masks from (a) and (b) to create a confusion
matrix. The confusion matrix is created in this way for each swallow included
in testing. The values of accuracy, sensitivity, and specificity are calculated
through this confusion matrix.

F. Evaluation351

The dataset was randomly divided into 10 equal subsets352

in terms of the number of swallows. A holdout method was353

repeated 10 times by training with 9 subsets and testing with354

the remaining one (10-fold cross validation). The results of355

the proposed system are in the form of a segmentation mask356

that tells when the UES opens and closes with respect to the357

start (onset) of the swallow segment as shown in Fig. 3 (b).358

This mask is calculated for approximately each swallow in359

the dataset when passed as a test sample through the trained 360

system. In order to acquire a solid evidence about the detection 361

quality of the system, a confusion matrix is constructed for 362

each swallow based on the predicted segmentation mask and 363

the reference mask as labeled by judges. The confusion matrix 364

is then used to calculate accuracy, sensitivity, and specificity 365

as follows: 366

Accuracy = TP+TN
TP+FP+TN+FN

Sensitivity = TP
TP+FN

Specificity = TN
FP+TN

where TP stands for True Positive, TN stands for True 367

Negative, FP stands for False Positive, and FN stands for False 368

Negative. Furthermore, the difference between the actual and 369

predicted UES opening and UES closure was measured, so that 370

we could compare it to the human judges’ tolerance reported 371

in the literature. 372

G. Clinical Validation 373

In order to evaluate the proposed system in a clinical 374

environment, it was tested during the workflow of an ongoing 375

clinical experiment performed on 15 (8 males, 7 females, 376

age: 63.7 ± 6.2), community dwelling healthy adults who 377

provided informed consent, and who had no reported current 378

or prior swallowing difficulties. Participants in this validation 379

sample also had no history of neurological disorder, surgery 380

to the head or neck region, or chance of being pregnant based 381

on participant report. The experimental setup of this clinical 382

experiment relied on the same equipment and hardware used 383

for the collection of the main dataset as shown in Fig. 1. This 384

included recording VF in the lateral plane using a Precision 385

500D system (GE Healthcare, LLC, Waukesha, WI) at a pulse 386

rate of 30 pulses per second (PPS) and with the images 387

acquired a frame rate of 30 frames per second (FPS). The 388

video stream was captured and digitized using an AccuStream 389

Express HD video card (Foresight Imaging, Chelmsford, MA) 390

at 60 FPS. Swallowing vibratory and acoustic signals were 391

acquired concurrently with VF using the same tri-axial ac- 392

celerometer and microphone (ADXL 327, Analog Devices, 393

Norwood, Massachusetts andmodel C 411L, AKG, Vienna, 394

Austria). The sensors were attached to the same location on the 395

anterior neck to the skin overlying the cricoid cartilage. The 396

signals from both sensors were also band-limited between 0.1- 397

3000 Hz and amplified with a gain of 10 then sampled at a rate 398

of 20 kHz via a National Instruments 6120 DAQ through Lab- 399

View’s Signal Express (National Instruments, Austin, Texas). 400

The participants in this clinical experiment were community 401

dwelling adults without report of current or prior swallowing 402

difficulties. Therefore, only ten thin liquid boluses (5 at 403

3mL by spoon, 5 unmeasured self-selected volume cup sips) 404

administered in a randomized order in order to limit x-ray 405

radiation exposure. For all spoon presentations, participants 406

were instructed by the researcher to ”Hold the liquid in 407

your mouth and wait until I tell you to swallow it.” Liquid 408

bolus presentations by cup varied in volume by participant, 409

because participants were instructed by the researcher to 410

”Take a comfortable sip of liquid and swallow it whenever 411
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(a)

(b)
Fig. 4. Distribution of per swallow based performance measurements in each testing batch of the 10-fold cross validation process and a sample visual
of the detection in one of the swallows. A sample of figures showing the timing difference between the automatically detected DUESO by our algorithm
and the actual DUESO observed from VF (in frames) for both opening and closure. (a) Distribution for accuracy, sensitivity, and specificity in each batch
(min, average, and max). (b) shows a sample full swallow with both the predicted (in red) and the actual DUESO (in blue) marked on the A-P acceleration
component and video frames.

you’re ready.” Fifty swallows, selected randomly from this412

independent clinical experiment, were used to test the system413

for UES opening detection after being trained over the full414

710 swallows dataset.415

III. RESULTS416

A chunk of 3D acceleration (3×133) was first preprocessed417

to achieve denoising and artifact removal as shown in Fig. 2.418

After preprocessing, the filtered acceleration segments were419

fed into the convolutional network (CNN) part of the system as420

in the snapshot shown in the lower part of Fig. 2. The snapshot421

represents a sample feature map across the CNN that shows the422

evolution of inputs (low-level features) into high level features423

at the final layer of the CNN. The later helps identify more424

complex features in the input signals and promote distinctive425

traits while the insignificant features disappear.426

Fig. 4 (a) shows the performance of the proposed system427

across the 10-folds of the whole set of swallows. The values428

presented, represent the distribution of sensitivity, accuracy,429

TABLE II
SUMMARY OF THE PERFORMANCE MEASUREMENTS THAT THE PROPOSED
SYSTEM ACHIEVED FOR BOTH THE MAIN PATIENT AND THE INDEPENDENT

CLINICAL DATASETS.

Main dataset Independent dataset
Average Accuracy 0.9093 0.8880
Average sensitivity 0.9145 0.8559
Average specificity 0.9119 0.9356
% of swallows with UES
opening error < 3 VF frames 82.6 84

% of swallows with UES
opening error < 4 VF frames 90 88

% of swallows with UES
closure error < 3 VF frames 72.3 66

% of swallows with UES
closure error < 4 VF frames 80 74

and specificity in each fold. Each vertical line has 3 main 430

points that represent the min average and maximum respec- 431

tively from bottom up. The average accuracy of all folds across 432

the whole dataset was 0.9039 with 0.9145 sensitivity and 433
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(a) (b)

(c) (d)
Fig. 5. The timing difference between the automatically detected DUESO by the proposed system and the actual DUESO observed from VF (in frames)
for both opening and closure in the whole dataset and the clinically independent data. The differences between the detected opening frame and the opening
frame marked by the judges are highlighted in (a) for the 10 folds within the original dataset and in (c) for the clinically independent data. The differences
between the detected closure frame and the closure frame marked by the judges are highlighted in (b) for the 10 folds within the original dataset and in (d)
for the clinically independent data. The Positive values indicate that the actual UES opening and closure preceded the predicted UES opening and closure.

0.9119 specificity. Fig. 4 (b) depicts a comparison between434

DUESO detection from the proposed system against the man-435

ual labeling by experts through the use of VF. On average, the436

network detected UES opening 33 msec earlier and closure437

16 msec earlier than true opening and closure as measured438

by swallow kinematic analysis. The outcome of the algorithm439

for the whole set of swallows, was calculated and compared440

to the VF based labels and the differences are shown through441

the histograms in Fig. 5 (a-b) and Table II. The comparison442

shows that for 82.6% of the swallows, the opening of UES443

was detected within a 100 msec (≈ 3 frames at 30 FPS) of444

the human ratings, and within a 133 msec (≈ 4 frames at445

30 FPS) for 90% of the swallows (Fig. 5 (a)). Likewise, the446

network accurately detected UES closure within a 100 msec447

(≈ 3 frames at 30 FPS) for 72.3% of the swallows and within448

a 133 msec (≈ 4 frames at 30 FPS) for more than 80% of449

the swallows (Fig. 5 (b)). The accepted tolerance for human450

frame selection ≈ ± 2.48 frames at 30 FPS [57].451

The system also presented similar results when tested using452

the swallows from the independent clinical experiment as in453

Table II. for the 50 swallows, the system achieved an average454

per swallow accuracy of 0.8880, an average per swallow455

sensitivity of 0.8559, and an average per swallow specificity456

of 0.9356. Fig. 5 (c-d) show histograms for the difference457

between the automatic detection and the reference manual458

labeling of the DUESO in terms of opening and closure 459

frames. The results showed that UES opening and closure were 460

detected within a 100 msec tolerance in around 84% and 66% 461

of the swallows in the independent test set respectively. 462

IV. DISCUSSION 463

The main purpose of this study was to test the feasibility 464

of HRCA in detecting the exact timing of UES opening and 465

closure during swallowing using non-invasive neck-attached 466

sensors independent of VFSS images and to compare the 467

accuracy to human ratings of the DUESO. We have established 468

the fact that UES opening can be best visualized using VF 469

which is clinically impractical due to the delivered radiation 470

doses and unavailability outside clinical care settings. We 471

have also demonstrated the critical rule that UES plays during 472

swallowing and how monitoring its opening and closure will 473

help identify the risks leading to unsafe swallowing. As a 474

necessary part of the optimal goal to create a non-invasive 475

swallowing monitoring system, UES opening/closure detection 476

should help patients with brainstem parts, responsible for 477

swallowing regulation, damaged and/or surgically removed 478

to rehabilitate and relearn how to swallow. These patients 479

will have a consistent feedback to tell if they are correctly 480

performing swallowing compensation maneuvers in which 481

they are taught to improve the hyolaryngeal excursion which 482



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XY, NO. XY, MAY 2020 9

would in turn reflect on UES duration/diameter and airway483

protection in order to maintain a safe function.484

Prior studies have only addressed indicators and changes485

in HRCA signal features at the UES opening and closure486

moments or during the passage of the bolus through UES, but487

non of them offered a direct way to detect the DUESO during488

swallowing. Some of these studies reported the presence of489

localized maxima of some HRCA signal features at UES490

opening and closure times [39], [69]. One study also observed491

changes in the acoustic component of HRCA signals while the492

bolus passed through the UES [70]. Although these studies493

were essential for establishing the association between UES494

opening and HRCA signals, they were just descriptive analyses495

about the patterns in signal features at certain points of time496

when physiological events occurred. Therefore, in this study497

we aimed to explore a more advanced predictive profile to498

detect the DUESO from HRCA signal through considering499

the time dependency along the swallowing segment. As such500

we have demonstrated the system’s feasibility on detecting501

DUESO without VFSS image verification.502

One major disadvantage of human ratings is the subjectivity503

which creates an inter-rater tolerance of 82 msec (≈ ± 2.48504

frames at 30 FPS) as reported for measuring swallowing kine-505

matic events [57]. Human ratings of swallow kinematic events506

can also drift over time and necessitates that raters maintain507

ongoing intra and inter-reliability over time to maintain an508

appropriate error tolerance. Having an automated system that509

is capable of rating the swallowing kinematic events with a510

comparable human rater accuracy and impregnable to changes511

over time, is advantageous for swallowing analysis when512

imaging technology is unavailable, not feasible, or otherwise513

impractical for evaluating swallowing physiology. Based on514

the results, we can clearly see that the proposed system515

accurately detected up to 93.6% of the actual DUESO with516

low rates of false positives and negatives occurring only at517

the borders of DUESO as shown in Fig. 4 (b). These results518

were also achieved regardless of gender, age, or diagnosis of519

the subjects which assures the wide applicability of the system.520

The system also showed robust performance when applied521

to a completely independent set of swallows that were col-522

lected from a different group of participants with different523

conditions and never seen in the training dataset. In terms524

of global measurements, the system achieved a close testing525

accuracy compared to the validation done through the folds526

of the original dataset (0.888 vs. 0.9035) and the same for527

sensitivity and specificity. It didn’t come short either on the528

side of temporal properties of the DUESO, where it captured529

the UES opening and closure within a 100 msec tolerance530

in most of the swallows in the independent test set. This531

confirms that the high quality of DUESO detection can be532

carried over to completely unseen data and assures a high533

degree of generalization in the proposed system.534

It is important to bear in mind that the accuracy of any535

physiological event detector cannot be judged only through536

comparison with human ratings which are subject to error too.537

The sub-events occurring during or after the detected event and538

their importance to the whole physiological process, control539

the limits to which the system can be considered accurate540

because one doesn’t want to detect an event with 50 msec 541

accuracy to look for another sub-event that happens within 542

10 msec of the original event. Previous studies have shown 543

that the important UES events happen slightly after the initial 544

UES opening [21]. For example, in general, entry of the bolus 545

head into the sphincter defines UES opening; however, in 20% 546

of swallows, air precedes entry of the bolus by 30-60 msec 547

[21]. Maximal values of A-P UES diameter were found also to 548

be reached after 70-170 msec of UES opening, depending on 549

the bolus size and other factors [21]. So, it could be argued 550

that a delayed detection of UES opening is not completely 551

inaccurate if it happens within 100 msec (≈ 3 frames at 552

30 FPS) after the actual opening. Conversely, anatomic ab- 553

normalities leading to reduced DUESO (e.g. cricopharyngeal 554

bar, Zenker diverticulum, hypopharyngeal lesions) would be 555

completely undetectable without imaging leading to the need 556

for further research to determine if HRCA can classify patterns 557

of DUESO that indicate the need for imaging to rule out an 558

anatomic diagnosis reducing DUESO. 559

In Summary, this study along with others, demonstrates 560

advancements in HRCA signal processing and provides sub- 561

stantial evidence that HRCA signals predominantly reflect the 562

patterns in DUESO and combined with our overall growing 563

research portfolio, swallowing physiological activity. These 564

advancements show the capability of HRCA to provide insight 565

into diagnostic physiological aspects of swallow function and 566

push towards the development of more accessible tools for 567

dysphagia screening within clinical settings. Future research 568

directions for this study include enhancing the detection qual- 569

ity of DUESO while reducing the error between the predicted 570

and actual DUESO and investigating whether characteristic 571

differences in HRCA signal signatures may reflect underlying 572

anatomic or other etiologic explanations warranting investiga- 573

tion with imaging. This point is crucial in that some causes 574

of dysphagia are indeed anatomically based, however in situa- 575

tions in which such diagnoses are suspected and imaging is not 576

available immediately, HRCA certainly shows promise toward 577

providing interim information that can guide management. 578

Further, the scope of the study will be expanded to include 579

the detection of maximal A-P UES diameter and its time of 580

occurrence solely from HRCA signals. 581

V. CONCLUSION 582

In this paper, we proposed an ambitious deep architecture 583

for the temporal identification of the DUESO during swallows 584

by using HRCA signals. Swallows from 116 patients were 585

collected under a standard clinical procedure for different 586

swallowing tasks and materials. 3D acceleration signals of full 587

length swallows, were denoised and fed into a network com- 588

posed of a two-layer CNN, a 3-layer GRU-based RNN, and 3 589

fully connected layers to generate the temporal mask marking 590

the time of UES opening and closure during swallows. The 591

proposed system yielded an average accuracy of more than 592

90% of the swallow width and more than 91% of the DUESO 593

width (sensitivity) with a low false positive rate. Moreover, 594

the system showed nearly identical performance when used on 595

an independent testing set from an ongoing clinical trial. Our 596
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results have provided substantial evidence that HRCA signals597

combined with a deep network architecture can be used to598

demarcate important physiological events that occur during599

swallowing.600
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