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Upper Esophageal Sphincter Opening Segmentation
with Convolutional Recurrent Neural Networks 1n
High Resolution Cervical Auscultation

Yassin Khalifa, Cara Donohue, James L. Coyle, and Ervin Sejdié, Senior, IEEE

Abstract—Upper esophageal sphincter is an important anatom-
ical landmark of the swallowing process commonly observed
through the kinematic analysis of radiographic examinations
that are vulnerable to subjectivity and clinical feasibility issues.
Acting as the doorway of esophagus, upper esophageal sphincter
allows the transition of ingested materials from pharyngeal into
esophageal stages of swallowing and a reduced duration of
opening can lead to penetration/aspiration and/or pharyngeal
residue. Therefore, in this study we consider a non-invasive
high resolution cervical auscultation-based screening tool to
approximate the human ratings of upper esophageal sphincter
opening and closure. Swallows were collected from 116 patients
and a deep neural network was trained to produce a mask
that demarcates the duration of upper esophageal sphincter
opening. The proposed method achieved more than 90% accuracy
and similar values of sensitivity and specificity when compared
to human ratings even when tested over swallows from an
independent clinical experiment. Moreover, the predicted opening
and closure moments surprisingly fell within an inter-human
comparable error of their human rated counterparts which
demonstrates the clinical significance of high resolution cervical
auscultation in replacing ionizing radiation-based evaluation of
swallowing Kinematics.

Index Terms—Swallowing Accelerometry, Swallowing Vibra-
tions, Cervical Auscultations, Dysphagia, Upper Esophageal
Sphincter, Signal Processing, Deep Learning, Supervised Learn-
ing, Convolutional Recurrent Neural Networks, GRU.

I. INTRODUCTION

WALLOWING is a complex process that involves the

coordination of various anatomical structures, muscles,
and the biomechanical events they perform, in a somewhat
sequential order to safely and efficiently transport food and
liquids from the oral cavity to the stomach [1], [2]. Because
swallowing requires the coordination of multiple subsystems
of the body, a variety of medical or surgically related con-
ditions can cause swallowing impairments, also known as
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dysphagia [2]-[4]. Dysphagia is prevalent with approximately
16%-22% of people over the age of 50, 12%-13% of short-
term care patients, and up to 60% of nursing home residents
experiencing swallowing difficulties [5]-[7]. Dysphagia can
result in aspiration, or the entry of food and/or liquid into
the airway below the level of the vocal folds. Aspiration of
food and liquids is concerning, especially silent aspiration
(Asymptomatic), because it can lead to adverse outcomes
including pneumonia, malnutrition, and dehydration [7]-[9],
as well as reduced quality of life [10]-[17].

Among the most important physiologic correlates of healthy
swallowing function is the duration of upper esophageal
sphincter (UES) opening. UES opening enables food and
liquid to enter the esophagus [18]-[21]. Reduced UES opening
diameter, delayed onset of opening, or premature closure
attenuate UES opening duration and can result in pharyngeal
residue that in turn can enter the upper (laryngeal penetration)
or lower (aspiration) airway, which are known risk factors
for pneumonia and airway obstruction [22]. UES opening is
the product of hyolaryngeal excursion, bolus propulsion, and
neural inhibitory relaxation of the UES itself [21], [22]. UES
dysfunction may occur due to neurological diseases that alter
the timing of UES relaxation and the delivery of muscular
traction forces that act to distend the relaxed UES during
swallowing, or due to impaired propulsive forces applied by
the oropharyngeal pump [19], [22].

Table I summarizes the different diagnostic modalities that
can generate images and signals for the assessment of UES
function [19], [24], [25]. The modalities include videofluo-
roscopic swallow studies (VFSSs), fast pharyngeal CT/MRI,
fiberoptic endoscopic evaluation of swallowing (FEES), and
non-imaging instrumental tests such as pharyngeal manome-
try and Electromyography (EMG). Most of these modalities
require expertise to perform and highly trained clinicians
to interpret. VFSSs are most frequently and actually the
best modality to clinically assess swallow kinematic events
such as UES opening, because of the ability to dynamically
visualize the UES during all phases of the swallow and give
exact estimates of the moments when UES opens and closes
[18], [19]. However, VFSSs, which use ionizing radiation to
produce radiographic images with full temporal resolution,
are unavailable or undesirable to many patients, are relatively
expensive, and require specialized instrumentation and trained
clinicians to perform and interpret, leaving many patients un-
diagnosed or inaccurately diagnosed, and exposed to ongoing
risk of dysphagia-related complications [18].
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TABLE I
SUMMARY OF TOOLS USED FOR DIAGNOSTIC ASSESSMENT OF UES.

Modality Strengths Weaknesses

VESS [19] - Dynamically visualize UES - Subjective interpretation
during all phases of swallow- - Radiation exposure
ing
- Provides the exact moments
when UES opens and closes

FEES [23] - Direct visualization of swal- - Limited in describing UES
lowing pharyngeal stage activity (either probe is covered

with bolus or already through
UES)

CT/MRI [19] - Panoramic and full-thickness - Hard to conduct
visualization of oropharyngeal - Radiation exposure (CT)
structures - Require synchronization with

patient behavior (MRI)
- Limited availability

Manometry - Monitor UES pressure during - Invasive

[19] swallowing - Subjective interpretation
- Detect UES impaired relax- - Limited availability
ation/distension

EMG [19] - Monitor muscle activations - Can’t tell the exact moments
during swallowing when UES opens/closes
- Detect UES impaired relax- | - Subjective interpretation
ation/distension

The holy grail of dysphagia clinical evaluation methods
has long been a noninvasive and clinically feasible method of
accurately identifying the biomechanical events of swallowing
that contribute to airway protection such as UES opening. The
availability of such methods would enable the development
of a screening tool that can differentiate between impaired
and healthy swallowing with a high degree of sensitivity and
specificity without the uncertainty of clinical examinations or
the lack of availability of imaging studies [21], [26]-[29].
To address the obstacle of insufficient access to instrumental
testing of swallowing function universally, high resolution
cervical auscultation (HRCA) is currently being investigated as
an affordable, feasible, non-invasive bedside assessment tool
for dysphagia. HRCA combines the use of vibratory signals
from an accelerometer with acoustic signals from a micro-
phone attached to the anterior neck region during swallowing.
Following collection of signals, advanced machine learning
techniques are used to examine the association between HRCA
signals and physiological events that occur during swallowing
[30], [31].

HRCA has shown strong associations with multiple factors
that affect the UES opening process. For instance, HRCA has
been used in multiple studies to monitor the pharyngeal bolus
propulsion during swallowing from the moment the bolus
passes the mandible till the UES closes [32]-[35]. Further-
more, hyolaryngeal excursion has been investigated to be the
origin of HRCA signals in many occasions [36]-[38], and later
they were successfully used to actually track the location of the
hyoid bone during swallowing [31]. The formerly mentioned
events are all parts of the UES opening mechanism which
proves the potential of HRCA signals in detection of UES
opening. While previous studies have monitored changes in
HRCA signal features at the moments of UES opening and
closure [39]. ], no studies have used HRCA signals to measure
the time of UES opening and closure within a swallow.

As mentioned previously, UES opening is the result of a
mechanism that is controlled by multiple events occurring

during swallowing, which necessitates the temporal modeling
of the whole swallow for the purpose of UES opening detec-
tion. Recurrent neural networks (RNNs) have been extensively
employed for the time series modeling in the recent years,
due to their capability of carrying information from arbitrarily
long contexts, selective information transfer across time steps,
and affordable scalability [40], [41]. RNNs are seemingly
efficient in modeling temporal contexts in time series data
and have been used in event detection for many biomedical
signals like ECG and EEG [42], [43], but nevertheless using
RNNSs on raw signals is extremely hard to optimize because
of the propagating error signals through huge number of
time steps [44], [45]. To overcome this, convolutional neu-
ral networks (CNNs) have been utilized for the perception
of short contexts and more abstraction before feeding into
RNNs for the perception of longer temporal contexts [44].
Known as representation learning, such hybrid architectures
allow feeding the machines with raw data to automatically
discover representations necessary for the detection problem
[45]. These models were first conceived for computer vision
applications [44], [46]; however, similar designs are being
adopted recently for event detection in biomedical signals [47],
[48] in addition to numerous applications in audio and speech
signal processing [49].

In this study, we propose an implementation that uses
HRCA acceleration signals to estimate the moments at which
the UES opens and re-closes during swallowing and compare
the estimates to gold-standard judgments of UES opening
duration in videofluoroscopic images. The proposed method
relies on convolutional recurrent neural networks to extract the
dynamics of the swallowing vibrations from HRCA signals
and use them to infer the moments when the UES first
opens and re-closes during swallowing. Verifying the ability
of HRCA signals to demarcate the UES opening among other
swallowing physiological events, will promote a new non-
invasive sensor-based swallowing assessment technology that
is widely available and doesn’t add financial or relocation
burdens to patients. Moreover, it will help patients get a
consistent feedback about their swallowing, while they are
swallowing; a feature that will not only help improve the
clinic-based swallowing evaluation, but will also be a of a
great benefit for the patients towards feeling the progress of
the rehabilitation process and maintaining safe swallowing.

II. METHODOLOGY
A. Materials and Methods

Permission for this study was granted by the institutional
review board of the University of Pittsburgh and all partici-
pating patients provided informed consents including consent
to publish before enrollment. A total of one hundred and
sixteen patients (72 males, 44 females, age: 62.7 & 15.5) with
suspected dysphagia resulting from a variety of diagnoses, un-
derwent an oropharyngeal swallowing function evaluation by a
speech language pathologist using VFSS at the University of
Pittsburgh Medical Center Presbyterian Hospital (Pittsburgh,
PA). Of the sample, 15 patients were diagnosed with stroke
while the remaining 101 patients were diagnosed with different
medical conditions unrelated to stroke.
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(a) X-Ray tube. (b) Human subject.  (d) The electronic circuit with (f) LabView workstation.
analog amplifier and filter
followed by NI DAQ for
digitization.

Fig. 1. The experimental setup of the study. (a) An X-Ray tube that resides
in a table is adjusted in a vertical position to be parallel to the swallowing
path. (b) The human subject is standing or comfortably seated between the
x-ray tube and the image intensifier with the HRCA sensors attached to the
anterior neck. (c) The image intensifier is positioned and adjusted according
to the subject height, so that the produced frames capture all of the important
anatomical landmarks of the oropharyngeal swallow (jaws, pharynx, and
esophagus). (d) The sensors are connected to the electronic circuit that supplies
power and performs analog amplification and filtration and then to the NI DAQ
for sampling. (¢) The video feed is taken directly from the image intensifier to
the X-Ray control workstation where clinicians and radiologists create, save
, and view the exams. (f) The video feed from the image intensifier is cloned
into the video capture card installed on the research workstation which is also
connected to the NI DAQ and runs LabView for means of data collection and
synchronization.

Swallows for this study, were collected as a part of standard
clinical care rather than for research purposes alone. As
a result, speech language pathologists who conducted the
VESSs, had the ability to alter the evaluation protocol based
on the patient’s clinical manifestation of dysphagia. This
included how the boluses were administered to patients (i.e.
spoon, cup), the volume and viscosity/texture of each bolus
of food and liquids, the number of trials, and head position
during swallowing (i.e. head/neck flexion, head rotation, head
neutral). The following consistencies were used during VF-
SSs: thin liquid (Varibar thin, Bracco Diagnostics, Inc., < 5
cPs viscosity), mildly thick liquid (Varibar nectar, 300 cPs
viscosity), puree (Varibar pudding, 5000 cPs viscosity), and
Keebler Sandies Mini Simply Shortbread Cookies (Kellogg
Sales Company). Boluses were either self-administered by
patients via a cup or a straw or administered by the clinician
through the use of a spoon (3 — 5 mL).

This study yielded 710 swallows (132 from patients di-
agnosed with stroke and 578 from patients with other diag-
noses) with an average duration of pharyngeal bolus transit of
869.5+221 msec and an average DUESO of 604.9+150 msec.
The collected swallows were classified into three categories:
single (single bolus swallowed with one swallow), multiple
(single bolus swallowed using more than one swallow), or
sequential (multiple boluses swallowed sequentially in a rapid
manner). The final data included 224 single, 477 multiple, and
9 sequential swallows.

B. Data Acquisition

The general experimental setup is illustrated in Fig. 1.
During all recording sessions, VF equipment was controlled
by a radiologist and the patients were comfortably seated
with the swallowing sensors attached to the anterior neck
region using double sided tape. VF was conducted in the
lateral plane using a Precision 500D system (GE Healthcare,
LLC, Waukesha, WI) at a pulse rate of 30 pulses per second
(PPS) and with the images acquired a frame rate of 30
frames per second (FPS) [50]. The video stream was captured
and digitized using an AccuStream Express HD video card
(Foresight Imaging, Chelmsford, MA) into movie clips with a
resolution of 720 x 1080 at 60 FPS.

A tri-axial accelerometer (ADXL 327, Analog Devices,
Norwood, Massachusetts) and a contact microphone (model
C 411L, AKG, Vienna, Austria) were used to collect swal-
lowing vibratory and acoustic signals. The accelerometer was
mounted into a small plastic case with a concave surface
that fits on neck curvature and the case was attached to
the skin overlying the cricoid cartilage using a tape. The
accelerometer was attached such that its main axes are aligned
parallel to the cervical spine, perpendicular to the coronal
plane, and parallel to the axial/transverse plane. These axes
are referred to as superior-inferior (S-I), anterior-posterior (A-
P), and medial-lateral (M-L) respectively. The microphone
was mounted towards the right lateral side of the larynx to
avoid contact noise with the accelerometer and guarantee a
clear radiographic view of the upper airway. Attaching the
sensors around the area of cricoid cartilage is logical given
that most of the pharyngeal swallowing activity is produced
by the anatomical structures present at this level and it has
been reported to yield the best signal-to-noise ratio for the
acquisition of swallowing signals [34], [35], [51], [52].

The accelerometer has a bandwidth of 1600 Hz after which
the response falls to -3dB of the response to low frequency
acceleration. In other words, the accelerometer has a low pass
filter with a cut-off frequency at 1600 Hz. The contact micro-
phone was chosen as well so that it produces a flat frequency
response over the entire range of audible sounds which was
proved to pass most of the frequencies encountered during
swallowing [52]-[54]. The signals from both the accelerometer
and microphone were hardware band-limited to 0.1-3000 Hz
with an amplification gain of 10. The cut-off frequencies for
the band-limiting filter were chosen so that most of body sway
components below 0.2 Hz are suppressed and the signal com-
ponents with the vast majority of energy are passed [34], [54]—
[56]. The signals were sampled using a National Instruments
6210 DAQ at a sampling rate of 20 kHz. Both signals and
video were acquired simultaneously using LabView’s Signal
Express (National Instruments, Austin, Texas) with a complete
end-to-end synchronization.

C. VF Image Analysis

Video clips were segmented based on individual swallow
events by tracking the bolus in a frame by frame manner.
The onset of the pharyngeal swallow event was defined as
the frame in which the head of the bolus passes the shadow
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of the posterior border of the ramus of the mandible and the
offset as the frame in which the bolus tail passes through the
UES [57], in order to capture the entire duration of pharyngeal
bolus flow. Three expert judges trained in swallow kinematic
judgments, identified the video frame of first UES opening and
the video frame of first UES closure in the segmented videos.
All raters who segmented swallowing videos and analyzed
UES opening and closure established a priori intra- and inter-
rater reliability with ICC’s over 0.99. All raters maintained
intra- and inter-rater reliability throughout measurements on
10% of swallows with ICC’s over 0.xx and were blinded
to participant demographics and diagnosis and any bolus
condition information.

D. Signals Preprocessing

Numerous physiologic and kinematic events such as cough-
ing and breathing occur in close temporal proximity to the
pharyngeal swallow event. These events can contribute to the
collected vibratory and acoustic signals [33]. As a first step
to overcome confounding noise in the signals due to multi-
source environmental data collection and other measurement
errors, the signals accrued at a sampling rate of 20 kHz
were down-sampled to 4 kHz. A more intense down-sampling
could have been adopted as previous studies reported that
the frequency with the maximum energy for swallowing
accelerometry signals occurs below 100 Hz and the central
frequency almost below 300 Hz [34], [58]-[60]. However, we
chose down-sampling to 4 kHz so that we match twice the max
frequency component present in the acceleration signals (1600
Hz). Down-sampling was performed through applying an anti-
aliasing low pass filter then picking up individual samples to
match the new rate.

The baseline outputs of accelerometer and microphone (pro-
duced by zero-physical input) were recorded earlier before the
main data collection procedure and device noise was charac-
terized through modified covariance auto-regressive modeling
[58], [61]. The order of the auto-regressive model was 10 and
it was determined using the Bayesian information criterion
[58]. The coefficients of the auto-regressive model were then
used to create a finite impulse response filter (FIR) to remove
the device noise from the recorded swallowing signals [58].
Afterwards, the low-frequency noise components and motion
artifacts were eliminated from accelerometer signals using
fourth-order least-square splines [62], [63]. Particularly, we
used fourth-order splines with a number of knots equivalent
to w, where N is the data length and f; is the sampling
frequéncy. fi is called the lower sampling frequency and it is
proportional to the frequency associated with motion artifacts.
The values for f; were calculated and optimized in previous
studies [62]. Finally, the effect of broadband noise on signals
was reduced through wavelet denoising [64]. Specifically, we
used tenth-order Meyer wavelets and soft thresholding. The
threshold was calculated using o+/2log N, where N is the
number of samples and o is the estimated standard deviation
of the noise (calculated through down-sampling the wavelet
coefficients) [64], [65].

E. System Design

Due to the fact that there is no specific rule of thumb to
calculate the number of layers and layer sizes for a certain
problem, the used architecture was fine-tuned based on an
experimental approach and by following the best network
configurations that achieved good results in similar problems
[47], [49], [66]. Particularly, we tested multiple architecture
depths that included more layers of CNN (3, 4, and 5 layers)
with up to 32 filters per channel and more RNN unit sizes up to
128. The chosen architecture was found to be the most stable
among the tested configurations. In other words, it included
the smallest number of parameters to be optimized while
achieving a detection accuracy that doesn’t sharply change
when adding more layers or increasing the layer sizes. The
used architecture employed also dropout between layers as
well as early stopping techniques to control the network from
over-fitting to the training data [67].

The longest swallow event duration in the collected dataset
was around 1500 msec (90 frames of VF). The signals were
divided into chunks 16.67 msec in length (equivalent to one
frame in VF or 66 samples in signals). Each signal chunk
is composed of 3 axes of acceleration which makes the
dimensions 66 samples x 3 channels. The chunks were fed
into a 1D convolutional neural network that included two
convolutional layers with a max pooling layer in between as in
Fig. 2. Both convolutional layers were followed by a rectified
linear unit (ReLU). The first convolutional layer applied 16
”1 x 5” filters per channel which produced 3 762 features x
16 channels”. The max pooling layer applied a window of size
2 with 2 strides and reduced the features into ”31 features x
48 channels”. The last convolutional layer was identical to the
first one except that it used only one filter per channel which
produced 727 features x 48 channels”.

The complete sequence of features x1.p (for a full swallow)
coming out of the convolutional layer was then fed into a 3-
layers dynamic RNN with gated recurrent units (GRUs) as
building blocks each of 64 units and a sequence of 90 time
steps. The RNN computed an output sequence ;.7 using the
following nonlinear model:

oW [aD), 2] + D), -1,
SB) _
*)
oW [n), hED] 4 b0, k=23
(W [aD),we] + 60, -1,
L)
) _
(W [n® nE D] 4 0), k=2, 3
tanh(W(l) {Til)hiljl,xt} —&-b“))7 k=1,

B
tanh(W(k) [rik)hik;)l,hgk_l)} + b(k)), k=2, 3

R = R g lR) k=1, 2,3

U + ¢

Ot

The output sequence ;.7 coming out of the RNN was
masked (ones/zeros mask) before being fed in to the fol-
lowing stages to balance for the shorter swallows (less than
90 frames). Furthermore, the length of each swallow was
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(c) High-level flow of information within the layers of CNN

Fig. 2. The architecture and data flow in the UES opening detection system. (a) This part is where the 3-channel acceleration signals from each swallow are
denoised and split into equal chunks each of 66 samples (equivalent to 1 VF frame). (b) This part shows the operation of the CNN network part per data
chunk. The architecture of the used 1D CNN which is comprised of two layers, the first applies 16 filters on each channel and produces 48 channels. The
first CNN layer is followed by a max pooling layer and another CNN layer identical to the fist except that it applies 1 filter per channel then a max pooling
layer reduces the size of the features. (c) This is an illustration for the operation of the CNN after training that shows a chunk of 3-channel acceleration
pushed throw the first layer of CNN to produce 16 feature-channels per original channel. The length of chunks is shorter after this layer due to convolution
on the edges of the chunks (no padding is used). (d) This is an illustration that shows the architecture of the GRU unit with the reset and update parts that
help propagate states across time steps. (e) (z1.7) is the output train from the CNN for chunks (1 : 7") which is fed into the RNN units. (f) The architecture
of the 3-layer RNN used for time sequence modeling. (g) The output sequence from the last layer of the RNN (g;.7) is flattened and fed into the first fully
connected layer. (h) A diagram of the 3 fully connected layers (each of 128 units) used to combine the features coming out of the RNN. (i) The output layer
of the network which composed of 90 units (y;.7) that resemble the UES opening mask.
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considered in the architecture of the RNN and the same mask
was used in the calculation of the cost function for the whole
problem. The sequence was then fed in to 4 fully connected
layers in order to fuse the temporal features from RNN into a
meaningful UES opening segmentation mask. This part of the
network featured 3-ReLU activated layers with 128 units and
an output layer that assembled 90 units, one for each time step
in the swallow as shown in Fig. 2 plus Sigmoid activation for a
zeros and ones segmentation mask. Each two fully connected
layers were separated by a dropout layer with a drop rate of
20%.

The final cost function was defined as the mean squared
error between the zero-padded ground truth 7;.r labeled by
the expert judges and the masked output coming from the
final connected layer g;.7 as follows:

T
1
MSE = - ; (7 — i) x mask;]® (1)
where mask; is the mask used to compensate for short
swallows. We used the Adam optimizer to train the network
due to its superiority in convergence without fine tuning for
hyper-parameters [68].

- === — = — — — — Entire swallow- — ———————— — — — — — — >

- ———— — — — UES opening duration— — — — — — — — >

(a) Expert reference labels

(b) Predicted labels

-

i

‘*TN*JN* 77777777777 P ——— »,FN,«—TNf»‘

(c) Difference between (a) & (b)

Fig. 3. The evaluation procedure for each swallow. (a) The UES opening
mask created from the expert manual segmentation in VF images. (b) The
UES opening mask as predicted by the proposed algorithm. (c) Comparison
is performed between the masks from (a) and (b) to create a confusion
matrix. The confusion matrix is created in this way for each swallow included
in testing. The values of accuracy, sensitivity, and specificity are calculated
through this confusion matrix.

FE. Evaluation

The dataset was randomly divided into 10 equal subsets
in terms of the number of swallows. A holdout method was
repeated 10 times by training with 9 subsets and testing with
the remaining one (10-fold cross validation). The results of
the proposed system are in the form of a segmentation mask
that tells when the UES opens and closes with respect to the
start (onset) of the swallow segment as shown in Fig. 3 (b).
This mask is calculated for approximately each swallow in

the dataset when passed as a test sample through the trained
system. In order to acquire a solid evidence about the detection
quality of the system, a confusion matrix is constructed for
each swallow based on the predicted segmentation mask and
the reference mask as labeled by judges. The confusion matrix
is then used to calculate accuracy, sensitivity, and specificity
as follows:

— __ TP+TN
Accuracy = TPYFELTNTFN
SenSZtZ'UZty = mﬁ
Speci ficity = FPZ_%

where TP stands for True Positive, TN stands for True
Negative, FP stands for False Positive, and FN stands for False
Negative. Furthermore, the difference between the actual and
predicted UES opening and UES closure was measured, so that
we could compare it to the human judges’ tolerance reported
in the literature.

G. Clinical Validation

In order to evaluate the proposed system in a clinical
environment, it was tested during the workflow of an ongoing
clinical experiment performed on 15 (8 males, 7 females,
age: 63.7 £ 6.2), community dwelling healthy adults who
provided informed consent, and who had no reported current
or prior swallowing difficulties. Participants in this validation
sample also had no history of neurological disorder, surgery
to the head or neck region, or chance of being pregnant based
on participant report. The experimental setup of this clinical
experiment relied on the same equipment and hardware used
for the collection of the main dataset as shown in Fig. 1. This
included recording VF in the lateral plane using a Precision
500D system (GE Healthcare, LLC, Waukesha, WI) at a pulse
rate of 30 pulses per second (PPS) and with the images
acquired a frame rate of 30 frames per second (FPS). The
video stream was captured and digitized using an AccuStream
Express HD video card (Foresight Imaging, Chelmsford, MA)
at 60 FPS. Swallowing vibratory and acoustic signals were
acquired concurrently with VF using the same tri-axial ac-
celerometer and microphone (ADXL 327, Analog Devices,
Norwood, Massachusetts andmodel C 411L, AKG, Vienna,
Austria). The sensors were attached to the same location on the
anterior neck to the skin overlying the cricoid cartilage. The
signals from both sensors were also band-limited between 0.1-
3000 Hz and amplified with a gain of 10 then sampled at a rate
of 20 kHz via a National Instruments 6120 DAQ through Lab-
View’s Signal Express (National Instruments, Austin, Texas).

The participants in this clinical experiment were community
dwelling adults without report of current or prior swallowing
difficulties. Therefore, only ten thin liquid boluses (5 at
3mL by spoon, 5 unmeasured self-selected volume cup sips)
administered in a randomized order in order to limit x-ray
radiation exposure. For all spoon presentations, participants
were instructed by the researcher to “Hold the liquid in
your mouth and wait until I tell you to swallow it.” Liquid
bolus presentations by cup varied in volume by participant,
because participants were instructed by the researcher to
”Take a comfortable sip of liquid and swallow it whenever
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Fig. 4. Distribution of per swallow based performance measurements in each testing batch of the 10-fold cross validation process and a sample visual
of the detection in one of the swallows. A sample of figures showing the timing difference between the automatically detected DUESO by our algorithm
and the actual DUESO observed from VF (in frames) for both opening and closure. (a) Distribution for accuracy, sensitivity, and specificity in each batch
(min, average, and max). (b) shows a sample full swallow with both the predicted (in red) and the actual DUESO (in blue) marked on the A-P acceleration

component and video frames.

you’re ready.” Fifty swallows, selected randomly from this
independent clinical experiment, were used to test the system
for UES opening detection after being trained over the full
710 swallows dataset.

III. RESULTS

A chunk of 3D acceleration (3 x 133) was first preprocessed
to achieve denoising and artifact removal as shown in Fig. 2.
After preprocessing, the filtered acceleration segments were
fed into the convolutional network (CNN) part of the system as
in the snapshot shown in the lower part of Fig. 2. The snapshot
represents a sample feature map across the CNN that shows the
evolution of inputs (low-level features) into high level features
at the final layer of the CNN. The later helps identify more
complex features in the input signals and promote distinctive
traits while the insignificant features disappear.

Fig. 4 (a) shows the performance of the proposed system
across the 10-folds of the whole set of swallows. The values
presented, represent the distribution of sensitivity, accuracy,

TABLE II
SUMMARY OF THE PERFORMANCE MEASUREMENTS THAT THE PROPOSED
SYSTEM ACHIEVED FOR BOTH THE MAIN PATIENT AND THE INDEPENDENT
CLINICAL DATASETS.

Main dataset | Independent dataset
Average Accuracy 0.9093 0.8880
Average sensitivity 0.9145 0.8559
Average specificity 0.9119 0.9356
% of swallows with UES
opening error < 3 VF frames 826 84
% of swallows with UES 9 88
opening error < 4 VF frames
% of swallows with UES
closure error < 3 VF frames 723 66
% of swallows with UES 30 74
closure error < 4 VF frames

and specificity in each fold. Each vertical line has 3 main
points that represent the min average and maximum respec-
tively from bottom up. The average accuracy of all folds across
the whole dataset was 0.9039 with 0.9145 sensitivity and
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Fig. 5. The timing difference between the automatically detected DUESO by the proposed system and the actual DUESO observed from VF (in frames)
for both opening and closure in the whole dataset and the clinically independent data. The differences between the detected opening frame and the opening
frame marked by the judges are highlighted in (a) for the 10 folds within the original dataset and in (c) for the clinically independent data. The differences
between the detected closure frame and the closure frame marked by the judges are highlighted in (b) for the 10 folds within the original dataset and in (d)
for the clinically independent data. The Positive values indicate that the actual UES opening and closure preceded the predicted UES opening and closure.

0.9119 specificity. Fig. 4 (b) depicts a comparison between
DUESO detection from the proposed system against the man-
ual labeling by experts through the use of VE. On average, the
network detected UES opening 33 msec earlier and closure
16 msec earlier than true opening and closure as measured
by swallow kinematic analysis. The outcome of the algorithm
for the whole set of swallows, was calculated and compared
to the VF based labels and the differences are shown through
the histograms in Fig. 5 (a-b) and Table II. The comparison
shows that for 82.6% of the swallows, the opening of UES
was detected within a 100 msec (= 3 frames at 30 FPS) of
the human ratings, and within a 133 msec (= 4 frames at
30 FPS) for 90% of the swallows (Fig. 5 (a)). Likewise, the
network accurately detected UES closure within a 100 msec
(= 3 frames at 30 FPS) for 72.3% of the swallows and within
a 133 msec (=~ 4 frames at 30 FPS) for more than 80% of
the swallows (Fig. 5 (b)). The accepted tolerance for human
frame selection ~ =+ 2.48 frames at 30 FPS [57].

The system also presented similar results when tested using
the swallows from the independent clinical experiment as in
Table II. for the 50 swallows, the system achieved an average
per swallow accuracy of 0.8880, an average per swallow
sensitivity of 0.8559, and an average per swallow specificity
of 0.9356. Fig. 5 (c-d) show histograms for the difference
between the automatic detection and the reference manual

labeling of the DUESO in terms of opening and closure
frames. The results showed that UES opening and closure were
detected within a 100 msec tolerance in around 84% and 66%
of the swallows in the independent test set respectively.

IV. DISCUSSION

The main purpose of this study was to test the feasibility
of HRCA in detecting the exact timing of UES opening and
closure during swallowing using non-invasive neck-attached
sensors independent of VFSS images and to compare the
accuracy to human ratings of the DUESO. We have established
the fact that UES opening can be best visualized using VF
which is clinically impractical due to the delivered radiation
doses and unavailability outside clinical care settings. We
have also demonstrated the critical rule that UES plays during
swallowing and how monitoring its opening and closure will
help identify the risks leading to unsafe swallowing. As a
necessary part of the optimal goal to create a non-invasive
swallowing monitoring system, UES opening/closure detection
should help patients with brainstem parts, responsible for
swallowing regulation, damaged and/or surgically removed
to rehabilitate and relearn how to swallow. These patients
will have a consistent feedback to tell if they are correctly
performing swallowing compensation maneuvers in which
they are taught to improve the hyolaryngeal excursion which
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would in turn reflect on UES duration/diameter and airway
protection in order to maintain a safe function.

Prior studies have only addressed indicators and changes
in HRCA signal features at the UES opening and closure
moments or during the passage of the bolus through UES, but
non of them offered a direct way to detect the DUESO during
swallowing. Some of these studies reported the presence of
localized maxima of some HRCA signal features at UES
opening and closure times [39], [69]. One study also observed
changes in the acoustic component of HRCA signals while the
bolus passed through the UES [70]. Although these studies
were essential for establishing the association between UES
opening and HRCA signals, they were just descriptive analyses
about the patterns in signal features at certain points of time
when physiological events occurred. Therefore, in this study
we aimed to explore a more advanced predictive profile to
detect the DUESO from HRCA signal through considering
the time dependency along the swallowing segment. As such
we have demonstrated the system’s feasibility on detecting
DUESO without VFSS image verification.

One major disadvantage of human ratings is the subjectivity
which creates an inter-rater tolerance of 82 msec (= =+ 2.48
frames at 30 FPS) as reported for measuring swallowing kine-
matic events [57]. Human ratings of swallow kinematic events
can also drift over time and necessitates that raters maintain
ongoing intra and inter-reliability over time to maintain an
appropriate error tolerance. Having an automated system that
is capable of rating the swallowing kinematic events with a
comparable human rater accuracy and impregnable to changes
over time, is advantageous for swallowing analysis when
imaging technology is unavailable, not feasible, or otherwise
impractical for evaluating swallowing physiology. Based on
the results, we can clearly see that the proposed system
accurately detected up to 93.6% of the actual DUESO with
low rates of false positives and negatives occurring only at
the borders of DUESO as shown in Fig. 4 (b). These results
were also achieved regardless of gender, age, or diagnosis of
the subjects which assures the wide applicability of the system.

The system also showed robust performance when applied
to a completely independent set of swallows that were col-
lected from a different group of participants with different
conditions and never seen in the training dataset. In terms
of global measurements, the system achieved a close testing
accuracy compared to the validation done through the folds
of the original dataset (0.888 vs. 0.9035) and the same for
sensitivity and specificity. It didn’t come short either on the
side of temporal properties of the DUESO, where it captured
the UES opening and closure within a 100 msec tolerance
in most of the swallows in the independent test set. This
confirms that the high quality of DUESO detection can be
carried over to completely unseen data and assures a high
degree of generalization in the proposed system.

It is important to bear in mind that the accuracy of any
physiological event detector cannot be judged only through
comparison with human ratings which are subject to error too.
The sub-events occurring during or after the detected event and
their importance to the whole physiological process, control
the limits to which the system can be considered accurate

because one doesn’t want to detect an event with 50 msec
accuracy to look for another sub-event that happens within
10 msec of the original event. Previous studies have shown
that the important UES events happen slightly after the initial
UES opening [21]. For example, in general, entry of the bolus
head into the sphincter defines UES opening; however, in 20%
of swallows, air precedes entry of the bolus by 30-60 msec
[21]. Maximal values of A-P UES diameter were found also to
be reached after 70-170 msec of UES opening, depending on
the bolus size and other factors [21]. So, it could be argued
that a delayed detection of UES opening is not completely
inaccurate if it happens within 100 msec (=~ 3 frames at
30 FPS) after the actual opening. Conversely, anatomic ab-
normalities leading to reduced DUESO (e.g. cricopharyngeal
bar, Zenker diverticulum, hypopharyngeal lesions) would be
completely undetectable without imaging leading to the need
for further research to determine if HRCA can classify patterns
of DUESO that indicate the need for imaging to rule out an
anatomic diagnosis reducing DUESO.

In Summary, this study along with others, demonstrates
advancements in HRCA signal processing and provides sub-
stantial evidence that HRCA signals predominantly reflect the
patterns in DUESO and combined with our overall growing
research portfolio, swallowing physiological activity. These
advancements show the capability of HRCA to provide insight
into diagnostic physiological aspects of swallow function and
push towards the development of more accessible tools for
dysphagia screening within clinical settings. Future research
directions for this study include enhancing the detection qual-
ity of DUESO while reducing the error between the predicted
and actual DUESO and investigating whether characteristic
differences in HRCA signal signatures may reflect underlying
anatomic or other etiologic explanations warranting investiga-
tion with imaging. This point is crucial in that some causes
of dysphagia are indeed anatomically based, however in situa-
tions in which such diagnoses are suspected and imaging is not
available immediately, HRCA certainly shows promise toward
providing interim information that can guide management.
Further, the scope of the study will be expanded to include
the detection of maximal A-P UES diameter and its time of
occurrence solely from HRCA signals.

V. CONCLUSION

In this paper, we proposed an ambitious deep architecture
for the temporal identification of the DUESO during swallows
by using HRCA signals. Swallows from 116 patients were
collected under a standard clinical procedure for different
swallowing tasks and materials. 3D acceleration signals of full
length swallows, were denoised and fed into a network com-
posed of a two-layer CNN, a 3-layer GRU-based RNN, and 3
fully connected layers to generate the temporal mask marking
the time of UES opening and closure during swallows. The
proposed system yielded an average accuracy of more than
90% of the swallow width and more than 91% of the DUESO
width (sensitivity) with a low false positive rate. Moreover,
the system showed nearly identical performance when used on
an independent testing set from an ongoing clinical trial. Our

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596



597

598

599

600

601

602

603

604

605

606

607

608

609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XY, NO. XY, MAY 2020 10

results have provided substantial evidence that HRCA signals
combined with a deep network architecture can be used to
demarcate important physiological events that occur during
swallowing.
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