
https://doi.org/10.1007/s10846-022-01598-0

SHORT PAPER

Path Exploration in Unknown Environments Using Fokker-Planck
Equation on Graph

Haoyan Zhai1 ·Magnus Egerstedt2 ·Haomin Zhou1

Received: 30 June 2021 / Accepted: 12 February 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This paper introduces a graph-based, potential-guided method for path planning problems in unknown environments,
where obstacles are unknown until the robots are in close proximity to the obstacle locations. Inspired by the Fokker-
Planck equation and the intermittent diffusion process, the proposed method generates a tree connecting the initial and
target configurations, and then finds a path on it using the available environmental information. The tree and path are
updated iteratively when newly encountered obstacle information becomes available. The resulting method is a deterministic
procedure proven to be complete, i.e., it is guaranteed to find a feasible path, when one exists, in a finite number of iterations.
The method is scalable to high-dimensional problems. In addition, our method does not search the entire domain for the path,
instead, the algorithm only explores a sub-region that can be described by the evolution of the Fokker-Planck equation on
graph with a changing of diffusion coefficient intermittently. We demonstrate the performance of our algorithm via several
numerical examples with different environments and dimensions, including high-dimensional cases.

Keywords Path planning · Unknown environment · Optimal transport · Fokker-Planck equation · Intermittent diffusion

1 Introduction

This paper considers path exploration for a robot, or a
group of robots moving simultaneously, in an unknown
environment. In other words, a set of robots in given initial
configurations are tasked with finding a feasible path to the
target configuration, while avoiding collisions with obsta-
cles. We consider scenarios where the number of robots
is fixed and where obstacles are detected when they are
within detection range to one of the robots in the group.
We assume that the system employs a broadcast strategy
in the sense that the obstacle information, once available,

� Haoyan Zhai
haoyanzhai@gmail.com

Magnus Egerstedt
magnus@uci.edu

Haomin Zhou
hmzhou@math.gatech.edu

1 School of Mathematics, Georgia Institute of Technology,
Atlanta, GA 30332, USA

2 Samueli School of Engineering, University of California,
Irvine, Irvine, CA 92697, USA

is shared among the group immediately. Compared to the
path planning problem in known environments, there are
several significant challenges when the problem is posed
in unknown environments. First of all, due to lacking envi-
ronmental information, path re-exploration while moving
becomes inevitable when an established path is blocked by
newly detected obstacles. This is an intrinsic nature of the
problem that must be faced by any algorithm dealing with
unknown environments. Secondly, there are livelock con-
cerns, i.e., the robots may end up moving back and forth,
or in loops, and never reach the target even when there
exist feasible paths. Thirdly, there may be narrow pathways
between obstacles, which poses hurdles to identify them
in the search process. More importantly, for problems with
unknown environments, optimality becomes less meaning-
ful or can only be addressed in the currently known envi-
ronment. Hence, one may have to accept feasible solutions
after all. In addition, for multi-robot systems, the configura-
tion space may be high-dimensional, especially when there
are a large number of robots. For example, a 2-dimensional
d-robot-planning problem yields a 2d configuration space,
since the position of each robot contributes two variables
and they must be considered simultaneously. In this case,
grid-like discretizations often lead to intractable computa-
tions. Working with graphs is a viable option to reduce the

/ Published online: 9 April 2022

Journal of Intelligent & Robotic Systems (2022) 104: 71

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01598-0&domain=pdf
http://orcid.org/0000-0003-2787-937X
mailto: haoyanzhai@gmail.com
mailto: magnus@uci.edu
mailto: hmzhou@math.gatech.edu

computation burden. However, the cost can still be high if
the graph has to span everywhere in the high-dimensional
space.

There exists an extensive literature on path planning
and exploration. For example, the well-known Probabilistic
Road Map (PRM) method generates a random graph that
does not intersect with obstacles and then finds a path over
the graph to connect the initial and target configurations
[2, 27, 44, 49]. PRM guarantees a connection between the
initial and target configurations when the graph is dense
enough in the configuration space. Many additional PRM
have been reported in the past decades, see [4–6, 20]
for details. The Rapidly-exploring Random Tree (RRT) is
another influential method that utilizes randomness and
tree structures for path exploration [31]. The algorithm has
been adopted to path finding in unknown environments [50,
56] and has some recent improvements such as RRT∗ as
reported in [26, 42]. The Artificial Potential Field (APF)
assigns the robot and obstacles positive charges while the
target configuration a negative one [28]. This drives the
robot towards the target while avoiding collisions with
the obstacles. However, a known limitation of APF is the
creation of unnecessary local minima due to the presence
of obstacles, which may fail the algorithm. In recent years,
there are reported improvements of APF, see [1, 9, 39, 46]
and the references therein.

The family of Bug Algorithms, starting from the original
Bug0, Bug1 and Bug2 [35, 36] to the later developments,
such as TangentBug [24], DistBug [23] and many other
variants, adopt two basic modes as their design principle:
motion-to-goal mode and boundary-following mode. They
are powerful tools, with theoretical convergence guarantees,
especially suitable for path planning and exploration in
unknown environments in 2-dimensional working space.
Some recent survey and performance comparison studies
can be found in [38, 41].

In addition, widely known graph based methods, like
A∗ [17], D∗ [47], Focused D∗ [48] and D∗ lite [29] can
be used for path planning and exploration in both known
and unknown environments [45]. When applied to the
problems in unknown environments, they often require to
cover the entire region by discrete lattice grids, on which the
algorithms are performed to find paths. In literature, there
are other types of algorithms such as genetic algorithm [32,
54], evolutionary programming [12], fuzzy logic [19, 55],
neural network [37], network simplex method [18], method
of evolving junctions [34], fast marching tree [21], and a
few hybrid approaches that combine different methods [16,
51], and also many more swarm strategies for multi-agent
systems in recent years [13, 14, 53].

In this paper, we present a potential guided, tree-based
path exploring method inspired by the evolution of Fokker-
Planck Equation (FPE), which has been studied intensively

in optimal transport theory [52]. Optimal transport the-
ory is a branch of mathematics studying how to transport
one probability distribution to another with the optimal
cost. There are different ways to formulate the theory
such as using linear programming [25], or partial differ-
ential equations (PDEs) [7, 8] etc. A remarkable result
stemmed from optimal transport theory is that the FPE
can be viewed as the gradient flow of a free energy, con-
sisting of potential energy and entropy, in the probability
space equipped with the so-called Wasserstein metric (opti-
mal transport distance) [22, 43]. Using the optimal transport
theory, one can show that FPE can escape the traps of
any local minima in a potential field and reach the Gibbs
distribution which concentrates on the global minimizer.
Incorporating this property and advantages of several exist-
ing algorithms, we design a novel method for path explo-
ration in unknown environments. Our goal is providing
an alternative algorithm that can work efficiently, espe-
cially for problems with high dimensional configuration
spaces, such as multi-agent systems. When designing our
algorithm, we introduce a potential field, defined by the
distance to the target configurations in this paper. The
unique global minimum of the potential field is at the target
configurations. Unlike APF, the obstacles do not contribute
to the potential field, instead, they define the infeasible
regions. We generate a graph that has a tree structure origi-
nated from the initial configuration, growing in a determin-
istic manner guided by the flow direction of FPE towards
the target configuration. Our algorithm has the following
features:

1. The algorithm is a tree based deterministic procedure
with guaranteed convergence, meaning that the algo-
rithm terminates in a finite number of steps, and returns
a feasible path if there exists one. Thus, the algorithm
is complete. We highlight that the convergence of our
algorithm is deterministic, in contrast to the proba-
bilistic, asymptotic convergence results shared by many
methods using randomness. If the algorithm does not
find a feasible path, it indicates that there is no feasible
path within the current resolution.

2. The number of new nodes added to the tree grows lin-
early with respect to the dimension of the configuration
space in the algorithm. Together with the dimension
reduction techniques proposed to rapidly escape local
traps, the algorithm can efficiently handle high dimen-
sional problems.

3. The algorithm only explores a limited region defined by
the solution of the FPE, even when the obstacles are not
known a priori. However, the algorithm does not require
to solve the FPE on graph numerically.

4. The exploration region, which the algorithm doesn’t need
to know in advance, is constructed by an intermittent

71 Page 2 of 18 J Intell Robot Syst (2022) 104: 71

diffusion process [11] that alternates the diffusion
coefficient in FPE between 0 and a positive number.

We want to note that optimal transport theory has been
considered in several recent studies for path planning and
exploration. For example, swarming robots are modeled by
a distribution, and their optimal transport map is calculated
by linear programming in [3]. A different swarming model,
based the Kantorovick-Rubinstein relaxation formulation
from optimal transport, is proposed to solve the robot
deployment by using PDEs [30]. Our method is different in
that we directly use the evolution of FPE on graph to guide
the path construction.

In the next section, we present the details of the algorithm
with the finite step stopping property. In Section 3, we show
some numerical examples to illustrate the performance
in both low and high dimensional configuration spaces.
Section 4 gives strategies for dimension reduction near local
minima to further lower the computational cost. In Section 5
the relationship between the algorithm and optimal transport
theory is discussed. The convergence proof is given in
Section 6. We end the paper with a brief conclusion in the
last section.

2 Algorithm

Let the configuration space Ω be a bounded connected
domain in R

n. We assume that the robots can alter configu-
rations freely, with a linear dynamics ẋ = u where x ∈ Ω

is the configuration variable and u ∈ R
n is the control vari-

able, in Ω as long as the change does not violate the required
constraints. There are two types of constraints we consider
in this paper. One is the constraints known in advance, for
example, two robots can’t be too close or too far away from
each other in the multi-agent system. We denote those con-
straints by φ = (φ1, φ2 · · · , φk1), where φi is real valued
function, and a configuration x ∈ Ω does not satisfy the
constraints when φi(x) < 0 for some i ∈ {1, · · · , k1}.
The other type of constraints is given by unknown envi-
ronments, such as unknown obstacles. We represent them
by ψ = (ψ1, ψ2 · · · , ψk2), and ψi(x) < 0 for some
i ∈ {1, · · · , k2} means the constraints being violated. We
assume that ψ(x) can only be detected if robots are close
enough to the obstacles. This implies that the knowledge
of ψ(x) must be updated dynamically while the robots are
in motion. For the simplicity in discussion, we also assume
that both φ and ψ are continuous.

To illustrate the setups, we give a single robot example
in Fig. 1. The configuration space is a square, all the gray
bars are the obstacles that the robot cannot collide with.
The light gray indicates undetected obstacles. Like in the
second picture in Fig. 1, if the robot moves horizontally

but not too far away from its initial configuration, there is
no detected obstacle. As the robot moves, more obstacles
are recognized. Our goal is finding a path from the initial
configuration xs (red diamond in Fig. 1) to the target
configuration xt (red circle). More precisely, we want to find
a feasible path

γ (t) : [0, T] → Ω,

satisfying φ(γ (t)) ≥ 0 and ψ(γ (t)) ≥ 0 for all t ∈ [0, T],
such as the red path in Fig. 1, while ψ(x) is updated with
newly detected obstacles as γ (t) changes.

To describe the dynamical change of the unknown con-
straints while moving along a path, we mark a configuration
x as part of the detected obstacles if (ψi(x) < 0) and x is
within distance R to the current configuration of the robot.
The distance function is induced as dist (x, y) = ‖x − y‖
given x, y ∈ Ω , where ‖ · ‖ can be any norm defined on Ω .
To be precise, we define

˜ψ(x, t, γ)=
{

ψ(x) if ‖x−γ (τ)‖≤R for some τ ≤ t

0 otherwise
(1)

as the detected part of the environment along the path.
For the convenience of discussion, we assume there

exists at least a feasible path connecting the initial and
target configurations, and this feasible path is contained in
a tubular obstacle-free region T with radius L as shown by
the shadow part in the first picture in Fig. 1. This assumption
is a technique requirement that is used for the proof of the
convergence and can be rewritten as the following equation

sup
γ∈Γ

inf
t∈[0,T] sup

r≥0
{r : B(γ (t), r) ∩ O = ∅} = L > 0, (2)

where O = {x ∈ Ω : ψi(x) < 0 or φj (x) < 0 for some
i, j} is an open set. B(x, r) = {y ∈ Ω : ‖x − y‖ < r} is
also open. We denote S(x, r) = {y ∈ Ω : ‖x − y‖ = r}
as the boundary of B(x, r), and ∂O as the boundaries of O
separating the constrained regions from the feasible regions.

Let us define the set of all possible paths from xs to xt in
the full time interval [0, T] as

Γ = {γ : γ (0) = xs, γ (t) = xt , ∀t ≥ T0,

for some T0 ≤ T , γ ∩ O = ∅} . (3)

and denote the currently known constraint set as

Oc ={x ∈Ω : ˜ψi(x, T0, γ)<0 or φj (x)<0 for some i, j
}

.

Then our dynamical path exploration algorithm is given in
Algorithm 1:

In the remaining part of this section, we discuss, assisted
with examples, the three major steps in detail.

Page 3 of 18 71J Intell Robot Syst (2022) 104: 71

Fig. 1 The obstacles are the light and dark gray regions (light as undetected and dark as detected). In (a), the red diamond and circle are the start
and target configurations. The shaded tubular region T is obstacle-free. (b)–(e) are snap shots of a robot moving along a path

Algorithm 1: Path exploration in unknown environ-
ment.
Data: initial configuration xs , target configuration xt ,

initially known constraints O0

1 Current configuration xc = xs

2 Current known constraints Oc = O0

3 while xc �= xt do
4 Graph Generating: Generate a connected graph

G containing xc, xt with all edges and vertices not
in Oc

5 Path Finding: Find a (shortest) path γ on G from
xc to xt

6 Environment Updating: Moving along γ while
updating Oc, if γ is blocked by Oc, stop at x near
the block point, otherwise let xc = xt

7 end

2.1 Graph Generating

The first step is to generate a graph G = (V , E), where V is
the vertex set and E is the edge set, connecting the current
configuration xc and the target xt with currently known
environment. The vertices are configurations in Ω while the
edge (u, v) linking u, v ∈ V is the straight line segment
between u and v. Meanwhile, we would like to create the
graph satisfying two properties: 1) the graph does not violate
any known constraints; 2) the graph cannot contain too
many vertices due to the computation complexity concern
in the high dimensional cases. To achieve these goals, we
introduce a convex potential function p(x), admitting a
unique global minimizer xt , to help choosing the vertices.
We select an n-dimensional orthonormal basis N (here n is
the dimension of Ω) to determine the directions used to add
new vertices to V . For simplicity, we take p(x) = ‖x − xt‖,
the distance to the target, as the potential, and the standard
coordinate axes N = {ej }nj=1 as the orthonormal basis in
this paper.

At the first generating step, we have V = {xc} and
E = ∅. In each step afterward, a vertex v ∈ V with the

lowest potential is chosen. We pick 2n new points {vi}2n
i=1

along the orthonormal basis N originated at v, with distance
l to v, and use them as the candidates to expand V (first
figure in Fig. 2a). Before adding those points into the vertex
set, we first delete all candidates that violate the currently
known constraints (φk(vi) < 0 or ˜ψj (vi, γ, T0) < 0 for
some k ∈ {1, · · · , k1} and j ∈ {1, · · · , k2}, γ is the
previous trajectory of the robots). For example, the robot
shown in Fig. 2a stops at the red diamond position and
generates four points around it. Among them, the point in
the obstacle is removed. Next, we delete vertices whose
edges violate the constraints as shown in Fig. 2b. In this
case, there exists a point x ∈ (vi, v) such that x is not in
the feasible region. In addition, to avoid repeating vertices,
we remove those already included in V from the candidate
list, as shown in Fig. 2c. After these deleting steps, we add
all remaining candidates, and their associated edges, to V

and E respectively. This process is repeated until the target
xt is within a small neighborhood of a vertex in V . For
example, the final graph after several iterations is plotted in
Fig. 2d. The graph generating procedure can be written in
Algorithm 2. We call x the ancestor of y if x is picked to
generate nodes, and y is added to the vertex set as newly
generated node.

Remark 1 The choice of the generating radius l can be
arbitrary, although L and l must satisfy an inequality to
have the convergence guarantee theoretically (as is shown
in Section 2.4). Larger l leads to fewer vertices in V while
smaller l giving a finer search in Ω . For simplicity, we
treat those obstacles with distance less than l to be a single
obstacle by ignoring the gaps among them in our theoretical
analysis. In practice, as shown in our experiments, the graph
generation can still create nodes passing through the gap
between obstacles with distance less than L or even l.
Similarly, the orthonormal basis N can be replaced by other
vector sets as long as the number of the vectors depends
on the dimension n linearly and the conclusion of Lemma
3 in Section 6 is achievable by the vector sets. In this
case, the computational complexity and completeness of the
algorithms remain unchanged.

71 Page 4 of 18 J Intell Robot Syst (2022) 104: 71

Fig. 2 graph generating steps

2.2 Path Finding

After generating the graph G = (V , E, p), the next step is
to find a feasible path moving from the current configuration
to the target using only vertices and edges on the graph.
Our goal is to minimize the total travel distance. The graph
generated by Algorithm 2 has the following property:

Proposition 1 There exists a unique path from the current
configuration xc to the target xf over the generated graph
G. If the path is denoted by {xi}qi=1 ⊂ V with xc = x1 →
x2 → · · · → xq = xf , in which xi is the ancestor of xi+1.

This proposition is guaranteed by the tree structure of the
graph. To make the proof complete, we show the detailed
proof in the Section 6.3.

By our graph generation algorithm, if there is an edge
between two nodes, one of them must be the unique ancestor
of the other. This suggests a simple strategy to identify the
path: from the target configuration, we simply back trace
the ancestor of each node in the path until reaching starting
configuration xc.

Other algorithms can be applied to find the path as well.
For example, we can define the distance of the edge eij

linking vertices vi, vj as kij = len((i, j)) = ‖vi−vj‖. Then
the well-known Dijkstra method, or its improvements, can
be used to obtain the path with computational complexity
O(|E| + |V | log |V |) where |V | is the number of vertices
and |E| is the number of edges [15].

Another way is to assign each edge distance 1 which
is equivalently to introduce the modified adjacency matrix
K = (kij) on the graph G, where

kij =
{

1 if (i, j) ∈ E

∞ otherwise.

Then the Breadth First Search (BFS) can be used to find the
path with the complexity O(|E| + |V |) [40, 57], which is
faster than Dijkstra. Other graph-based path planning and
exploration algorithms, such as A∗, D∗ or D∗ lite, can be
used too.

It is worth mentioning that if we assume the path has 	

nodes, the suggested back-tracing approach is of complexity

O(). While the generated graph has at least O(n) nodes.
Obviously the complexities of BFS and Dijkstra methods
are higher than our back-tracing strategy.

2.3 Environment Updating

While robots move along a path γi in the configuration
space, the knowledge of constraints is updated at the same
time by Eq. 1. If a point on the path intersects the boundary
of a newly detected constrained region, we stop the motion
at a point before arriving the intersection.

To be more precise, let us denote the environment update
at each time step as

Ot
c = Oc ∪ {x ∈ Ω : ˜ψj(x, t, γi)

< 0 for some j ∈ {1, · · · , k2}} .

If the path is found activating constraints while moving at
time Ts , i.e. γi ∩ OTs

c �= ∅, we define

Tb = inf{t : γi(t) ∈ OTs
c }

as the first intersection time. Then γ (Tb) must be on the
boundary of OTs

c , i.e. γ (Tb) ∈ ∂OTs
c . When this happens,

we can always pick a stopping time Ti ≤ Tb such that
the distance from γ (Ti) to the nearest obstacle is smaller
than the detection radius R. Then we update Oc = OTi

c ,
assign the initial configuration as xc = γ (Ti) and go back
to the graph generating step. Each time a new path γi is
produced when the current path is blocked. We collect all
paths produced in Algorithm 1 as {γi}mi=1, and their stopping
time set as {Ti}mi=1. From our choices of stopping time, we
can require that there exists a positive constant q satisfying
q < R, and for all ε > q, B(γi(Ti), ε) has non-empty
intersection with Oc for every i = 1, · · · , m. Such selected
stopping time set satisfies the following property

sup
i

inf
ε

{

ε : B(γi(Ti), ε) ∩ OTi
c �= ∅

}

= q < R, (4)

in which the detectable region at configuration x, using
Eq. 1, is defined as a closed set by B̄(x, R) = {y ∈
Ω : d(x, y) ≤ R}. We emphasize that q can be selected
uniformly. For example, we can simply let robots stop at a
position that has a distance of R/2 to the obstacles each time

Page 5 of 18 71J Intell Robot Syst (2022) 104: 71

Algorithm 2: Graph generation.
Data: The starting configuration xc, target

configuration xt , the potential function p,
currently known environment Oc, graph
generating radius l and a set of orthonormal
basis N

Result: G=(V,E,p)
1 V = {xc}, Q = V, E = ∅
2 while xt �∈ V do
3 point add = False

4 while not point add do
5 v = arg minx∈V p(x)

6 if p(v) < +∞ then
7 K = {q : q = v ± l × y, y ∈

N, (v, q) ∩ Oc = ∅, q /∈ Oc}
8 K = K\V
9 V = V ∪ K

10 E = E ∪ {(v, q) : q ∈ K}
11 if K �= ∅ then
12 point add = T rue

13 p(v) = +∞
14 end
15 for q ∈ K do
16 if ‖q − xt‖ ≤ L and (q, xt) ∩ Oc = ∅

then
17 V = V ∪ {xt }
18 E = E ∪ {(q, xt)}
19 end
20 end
21 else
22 return G = ∅
23 end
24 end
25 end
26 return G = (V , E, p)

when the path is blocked. In this setup, q = R/2 < R. In
general, we can select different stop positions. The finite-
step convergence property, presented in the next Section, is
guaranteed as long as Eq. 4 is satisfied.

2.4 Convergence and Complexity

The proposed algorithms terminate in finite steps with
guaranteed convergence, which is stated in the following
main theorems.

Theorem 1 Assuming that Eq. 2 is true and l < (2L)/
√

n,

where n is the dimension of Ω , the graph generation
algorithm (Algorithm 2) stops in finite steps. That is, the
loop in the algorithm terminates in finite iterations, the

generated graph G = (V , E, K, p) is connected and has a
finite number of vertices |V | < ∞. Furthermore, xs, xt ∈ V

if Γ �= ∅.

Theorem 2 Let {γi}mi=1 be the paths produced by Algorithm
1 with {Ti}mi=1 being the stopping time set. If the assumptions
in Theorem 1 and Eq. 4 hold, then m < ∞.

Theorem 1 shows that, given the currently known envi-
ronment, the graph generating procedure stops in finite
steps. Theorem 2 tells that our algorithm breaks the loop
in Algorithm 1 in finite steps. The two theorems together
ensure that Algorithm 1 is convergent in finite steps and
guarantees a feasible path with the condition (2). There-
fore, the algorithm is complete. We leave the proofs of both
theorems in Section 6.

Furthermore, if the configuration space Ω is of dimension
n, there are at most 2n new points generated at each step in
Algorithm 2, hence the growth rate for the size of the graph
V is O(n) at each iteration. The complexity of the Updating
Environment step relies on the techniques used to detect
the environment, so we do not consider it here. Overall,
the proposed algorithms are scalable to high dimensional
problems, because the growth of the graph is controlled
linearly with respect to the dimension n and it stops in
finite steps. Moreover, the algorithm merely searches part
of the region. This searching region of the algorithm is
theoretically bounded by the evolution trajectory of the
Fokker-Planck equation, while the algorithm itself does not
involve in any computation of the PDE. This property will
be discussed further in Section 5. Before that, we present
several numerical examples to illustrate the completeness of
the algorithm in the next section.

3 Numerical Examples

We set the working space to be [0, 1] × [0, 1] in all
examples and denote the graph generating radius as l. In
this section, we show various low and high dimensional
experiments with different environments. In all examples,
the start configurations are always marked as red diamonds
while the targets are the red circles.

3.1 Low Dimensional Cases

The first example is one robot moving in an unknown
environment (Fig. 3). The configurations are the physical
locations of the robot, so this is a two-dimensional problem.
We take l = 0.03 in our graph generating algorithm.
Initially, the robot is at the bottom right corner. It only has
the knowledge of a few nearby obstacles at the beginning,
while other obstacles are not known. Hence, the graph

71 Page 6 of 18 J Intell Robot Syst (2022) 104: 71

Fig. 3 The graph produced in
the one robot case with
generating radius l = 0.03 and
light (dark) gray the undetected
(detected) obstacles. The graph
expands greedily towards the
target. If obstacles are on the
greedy direction, it searches
around the obstacles and
generates new nodes with
potential as low as possible.
(a)–(d) are graphs that cross
undetected obstacles so the
robot stops while moving on
those graphs. With enough
environment knowledge, (e) is a
graph containing a true feasible
path from the current initial
configuration and the target

expands towards the target greedily until reaching the
destination as shown in Fig. 3a. The first path is shown
in Fig. 4a. However, while moving, the robot detects that
the path is blocked. It stops before reaching the obstacle
boundary and starts a new round of graph generating,
path finding and environment updating steps. During the
process, the robot generates several graphs (Fig. 3b,c, and
d) and updates the environment while moving along the
corresponding paths as shown in Fig. 4b,c,d, all of which
fail to reach the destination. In the end, it generates a
graph (Fig. 3e) and finds a path (Fig. 4e) to the target. The
complete path from initial to target is plotted in Fig. 4f.

3.2 High Dimensional Cases

In the next few examples, we calculate the paths for several
multiple-agent systems. In addition to the constraints imposed
by the obstacles, we also enforce that the robots cannot be
too close or too far away from each other. The constraints
are introduced to avoid collision—they cannot be too close,
or model communication restrictions if this is needed. For
example, robots in the group have short communication
range and they cannot be too far away in order to stay
connected. In our examples, we set that any two robots
must keep their distance between 0.03 and 0.13 while in

Fig. 4 The paths calculated
based on the results in Fig. 3.
(a)–(d) are middle steps that the
robot stops because of the newly
detected obstacles while moving
and (e) is the path on which the
robot get to the target. (f) gives
the complete path of the robot

Page 7 of 18 71J Intell Robot Syst (2022) 104: 71

Fig. 5 Moving path for two robots with l = 0.03 with linking of each two robots not blocked by obstacles. The initial configuration is indicated
by the red box. The target configuration is in the red ellipse. The robots move into a local trap first, and then move out of it before reaching the
target configuration

motion. Besides, the link between each pair of robots cannot
be blocked by obstacles. All examples are accompanied by
youtube videos, with the web links given in the footnotes. In
Fig. 5, a 2-robot (4 dimensional) system is used. From the
pictures, we observe that the robots move up until trapped,
because they always choose the fastest potential-decaying
direction in the known environment. Then they retreat back
and eventually find the correct way.1 The next example is a
3-robot system (6 dimensional problem). The environment
allows a direct path from the initial to the target. The
algorithm immediately finds this direct path and avoids
taking other sideways.2 Finally, a 5-robot system is shown
to demonstrate that the algorithm is capable of solving a 10-
dimensional problem with complicated environment with
video given,3 in which the robots need to twist so that they
can successfully pass through the gaps between obstacles.
Another example of a 10-robot system (with 20 dimensional
configuration space) can also be found online.4 We would
like to note that it takes about 1 minute to finish the entire
computation (including the generation of the movie) for
this 10-robot system by using Matlab on a regular laptop
(a Macbook Pro with 2.9 GHz Intel Core i5 CPU) with no
particular effort being made to optimize the implementation
of the algorithm.

In addition to the displayed paths, we illustrate the per-
formance of the algorithms by using several other measure-
ments. Table 1 shows the collective information about the

1Video at https://youtu.be/6wKe7wnlG58
2Video at https://youtu.be/q84VhKfYUyo
3Video at https://youtu.be/H5lfzAYbfRA
4Video at https://youtu.be/gVinTsto7pE

number of vertices in graphs generated during the proce-
dure. “Figure” column indicates the corresponding figures
of the examples, “num of robots” represents the number of
robots, and “l” is the step size used in generating graphs.
To show the efficiency of our algorithms, we use the aver-
age number of nodes in the graphs, represented in “avg”,
and the maximum number of vertices amongst all graphs
which is listed in the column “max”. We can see that as the
dimension of the problem (indicated in the “dim” column)
increases, the size of the graphs increases, but not as fast as
the exponential growth with respect to the dimensionality.

Furthermore, we observe that the algorithm generates
the particular graph with the maximum number of vertices
when the robots are trapped in local minimizer (shown in
“trapped” column). In the 6 dimensional example, the robots
do not encounter any local minimizer, which results in much
fewer vertices. In fact, the sizes of graphs are smaller than
those in the four-dimensional case. We also observe that
the number of graphs generated by the algorithm (“num
of G” column) highly relies on the environments and the
choices of the orthonormal bases. Thus it is not used as a
criterion to judge the efficiency of the algorithm. Overall,
our algorithm is relatively efficient especially when dealing
with high dimensional problems. The most costly part is to
escape the local traps, and we propose a couple of strategies
to improve the performance in the next section.

4 Escaping Local Traps Rapidly

From the experiments conducted, we notice that the number
of generated vertices increases when the robots are trapped

71 Page 8 of 18 J Intell Robot Syst (2022) 104: 71

https://youtu.be/6wKe7wnlG58
https://youtu.be/q84VhKfYUyo
https://youtu.be/H5lfzAYbfRA
https://youtu.be/gVinTsto7pE

Table 1 Information about numbers of vertices for the examples

Figure Num of robots l dim avg max Trapped Num of G

Figures 3 and 4 1 0.03 2 81.2 149 Yes 5

Figure 5 2 0.03 4 606.7 3433 Yes 9

No Figure 3 0.02 6 632.4 1183 No 5

No Figure 5 0.03 10 2178.4 6938 Yes 7

in local minimizers, and the number of nodes at each local
trap is proportional to the volume of the trap. This is not
a surprise because the nearly exhausted search is used to
escape local traps. In order to reduce cost, we present two
different strategies. Before doing so, we need to identify
local minimizers and define their trap regions. We say that
a node point x is a local minimizer if no lower-potential
points around x can be generated by Algorithm 2. Since
a local trap can only be created by constraints because of
the convexity of the potential function, we define the trap
region as a set enclosed by the boundary of local constraints
and the level curve (hyper-surface in high dimensional
problems) of potential function. To this ends, without loss
of generalization, we assume the distance between two
disconnected obstacles is greater than the graph generation
radius l. If not, we can easily construct a new patch of
obstacle to connect them. Under this assumption, the trap is
only related to one connected obstacle, and we denote it as
O(x), where x is a local minimizer. Now we define the trap
region as

L(x) = {c ∈ Ω : ¯cxt ∩ O(x) �= ∅, p(c) ≥ p(x)}, (5)

where ¯cxt is the straight line between c and xt .
When a local trap is identified, our goal is to find points,

starting from where the gradient flow trajectory to the target
configuration is no longer blocked by the currently known
environment as quickly as possible, and then continue to
generate vertices outside of the trap region. Here we intro-
duce two different dimension reduction methods to achieve
this goal.

Keep the robot near obstacles: We know that some of
the constraints in φ, ψ must be nearly activated around
the local minimizer x ∈ ∂O. For the ease of presentation,
we denote those nearly activated constraints as gi(x) ≤ ε

for some integer i where ε is a small positive number and
gi is some φj or ψk . For example, it can be chosen as

ε = min

(

min
k=1,2,··· ,k1

φk(x), min
k=1,2,··· ,k2

ψk(x)

)

.

We modify the algorithm so that it only generates points
satisfying the inequalities, that is, only add points v such

that gi(v) ≤ ε to V until there is a vertex x ∈ E
with

E = {x ∈ B(y,
√

2l) : ∃z ∈ {c ∈ (x ± N)\V : p(c)

< p(x)}\O},
where N is the substituted set of orthonormal basis for
N in the subspace, V is the current vertex set, y =
arg maxgi (z)≤ε p(z) and gi is the constraint mentioned
above. After this point, we go back to Algorithm 2. With
the same assumptions as stated in Theorems 1 and 2,
we can show that this method find the path in finite
steps, and the proof of the convergence follows the same
arguments as provided in Section 6. Since gi(x) = ε is
continuous locally, the modified search is conducted in a
low-dimensional subspace if ε is chosen appropriately.
Fix the shape formed by robots: A different way
to get out of the local traps is to introduce a set of
new constraints {h1(x) = 0, · · · , hk(x) = 0} on the
robots so that they restrict the graph generation in a low
dimensional subspace Ω̂ . For example, one may fix the
pairwise distance between robots, so hi(x) = 0 indicates
that the distance between a certain pair of robots is a
given value. In 2-D or 3-D workspace, those restrictions
often lead to a fixed shape formed by the robots. Each
hi reduces the search dimension by one because the new
vertices added to V must satisfy hi(x) = 0. Similar
to the previous strategy, we stop this procedure when a
vertex x ∈ E is generated, which indicates the robots
moved out of the known local trap. On the other hand,
it is possible that after adding new constraints, there
is no feasible way to move out. In this case, no new
vertex can be generated in V , then we remove one of the
added constraints, and continue with the graph generating
algorithm in a subspace which is one dimension higher
than the previous subspace. The procedure is repeated
if necessary. For this method, if we further assume
that there is a feasible tube in the low dimensional
subspace defined by all constraints, including the added
ones hi = 0, we can use the same proof to show its
convergence in a finite number of steps. In this paper, we
implement this dimension reduction strategy in our high
dimensional examples.

Page 9 of 18 71J Intell Robot Syst (2022) 104: 71

In the two and five robots cases demonstrated in Section 3,
we fix the distance between each pair of robots when a
local minimizer is encountered. To compare the results,
we carry out several new experiments, in which all set-
ups including initial and target configurations, the obstacles
and all parameters are the same. The final path and how
the robots move can be found in videos.5 The information
on the generated graphs is displayed in Table 2. When
comparing the number in Table 2 with the numbers shown
for 2 and 5 robots cases in Table 1, we can see that the
number of vertices, both average and maximum numbers,
decreases significantly. In the 5 robots case, the largest
graph is no longer produced at local traps. Instead, the
first generated graph contains more nodes because of the
long distance from initial to target configurations. In our
examples, we observe that nodes needed around the local
minimizers are reduced from O(αn) to O(α2), where α is
the edge length assuming the local trap is a square and n is
the dimension of Ω .

We also observe a common feature in all examples: the
environment is not entirely explored, and the generated
graphs are greedily expanding towards the target configu-
ration. This special feature is not by accident. In fact, it
is determined by the Fokker-Planck equation in optimal
transport theory. We give a thorough discussion on their
connections in the next section.

5 Relation to FPE on Graph

The design of the graph generating algorithm, Algorithm
2, is inspired by the evolution of FPE, which determines
a region Rf where the search is conducted. Although the
algorithm does not require the knowledge of the region
a priori, the region provides critical information for our
understanding of the algorithmic behavior. In this section,
we describe in detail on how the region evolves following
the solution of FPE,
⎧

⎨

⎩

∂ρ
∂t

(x, t) = ∇ · (ρ(x, t)∇p(x)) + βΔρ(x, t)

ρ(x, 0) = ρ0(x)

∇ρ(x, t) · n = 0, ∀x ∈ ∂Ω

, (6)

where ρ0 is a given distribution, ∂Ω is the boundary of the
configuration space Ω , n is the normal vector of ∂Ω , and
p(x) is the potential function. Based on Eq. 6, the region
Rf is constructed by an intermittent diffusion process,
meaning we take β to be 0, so that the density is transported
greedily along the negative gradient direction, while we
adjust β > 0 to trigger a diffusion process when trapped in
a local minimizer. For simplicity, we call β = 0 the gradient

5Video for two robots with the improved algorithm at https://youtu.be/
od5fmuo8cR8 and video for five at https://youtu.be/vVHThxmtmf8

Table 2 The numbers of vertices for selected examples using the
escaping local traps algorithm

Num of robots l dim avg max Num of G

2 0.03 4 212.4 295 8

5 0.03 10 1307 2492 7

As we can see, the algorithm generates much fewer vertices compared
to the 2 and 5 robots cases in Table 1

part and β > 0 the diffusion part. However, since our
graph generating algorithm only choose new points along
the given orthonormal directions N , we must replace ∇p(x)

in Eq. 6 by its projection onto N :

u(x) =
∑

y∈H(x)

Py∇p(x),

where Py is the projection operator to y, and H(x) is defined
as,

H(x) = arg min
y∈A

〈∇p(x), y〉
‖∇p(x)‖

with A = {y : y ∈ N or − y ∈ N and x + λy /∈ O∀λ ∈
(0, ξ) for some ξ > 0}. The resulting equation is
⎧

⎨

⎩

∂ρ
∂t

(x, t) = ∇ · (ρ(x, t)u(x)) + βΔρ(x, t)

ρ(x, 0) = ρ0(x)

∇ρ(x, t) · n = 0, ∀x ∈ ∂Ω

. (7)

We note that both Eqs. 6 and 7 can be rewritten as

∂ρ

∂t
(x, t) = ∇ · {ρ(x, t)

[

v(x) + ∇(β log ρ(x, t))
]}

,

where v = ∇p for Eq. 6 and v = u for Eq. 7. This
expression can be approximated by the following upwind
discretization of Eq. 6 on a lattice grid GL ⊂ Ω\O (here
we assume that xi is one of the grid points), with mesh size
Δx and orientation aligned with the orthonormal basis N

used in Algorithm 2 [10],

∂ρj

∂t
=
⎛

⎝

∑

k∈Nb(j)

(Fk−Fj)+ρkdjk

−
∑

k∈Nb(j)

(Fj −Fk)+ρjdjk

⎞

⎠

1

(Δx)2
, (8)

where (·)+ = max(·, 0), ρj = ρ(xj , t), Nb(j) is the set of
all adjacent nodes (neighbors) of node xj on the grid GL,
Fj = ∂

∂ρj
F(ρ, β), in which F(ρ, β) is the free energy

F(ρ, β) =
N
∑

j=1

(

p(xj)ρj + βρj log ρj

)

, (9)

and djk = dkj = 1 for Eq. 6. A similar discretization can be
derived for Eq. 7. The value of djk in the discretization of u,

71 Page 10 of 18 J Intell Robot Syst (2022) 104: 71

https://youtu.be/od5fmuo8cR8
https://youtu.be/od5fmuo8cR8
https://youtu.be/vVHThxmtmf8

which, if assume φ(xj) > φ(xk) without loss of generality,
can be defined as

djk =
{

1
〈

xj − xk, ∇p(xj)
〉 = min{i∈Nb(j):p(xi)<p(xj)}

〈

xj − xi, ∇p(xj)
〉

0 otherwise
. (10)

If the projection is not involved as is in the diffusion part,
we simply let djk = 1 for all j, k.

In the rest of this section, we show how to build Rf

using Eq. 8 with Δx = l. The strategy is that we alternate
the procedures between the gradient (β = 0) and diffusion
(β �= 0) to grow the region. When a new part of region
is formed each time, we simply union it with the existing
one. We want to mention that at any point we change the
procedures (β from 0 to a nonzero value, or vice versa), we
reinitialize the density before evolving (7). We terminate the
procedure, if the target configuration is included in Rf .

5.1 Gradient Part ofRf

For the gradient case, the points on the grid expand along
the projection of the negative gradient of the potential
function onto N . We evolve Eq. 8 with β = 0 and the initial
condition

ρ(x, 0) = δxi
=
{

1 x = xi

0 x �= xi
,

where xi is the starting point of the current gradient pro-
cedure. Until reaching the steady state, the solution ρ(x, t)

on the grid GL can be calculated. The steady state solution
satisfies for the following property,

Proposition 2 ρ(x,∞) = δVloc
, where Vloc ⊂ GL is a

subset of local minimizers of p(x) on the given grid.

Then we select points such that

R1(xi)=
{

x ∈ GL : ∂

∂t
ρ(x, t)>0 for some t >0

}

, (11)

Once R1(xi) is determined, we merge it to the set R
constructed in the previous steps (we use empty at the first
step), i.e. R = R

⋃

R1. If xi �= xf , we continue to
amend the set R with the diffusion procedure described in
Section 5.2.

5.2 Diffusion Part ofRf

We assume that the previously constructed set is Rp = R.
In the diffusion part, since β > 0, log ρ is involved in the

calculation. To avoid blowing up in the computation, we
initialize the density β for Eq. 8 as below:

ρ(x, 0) = δRp
=
{

1
|Rp | (1 − ε) x ∈ Rp

1
|GL\Rp |ε x ∈ GL\Rp

,

where ε can be an arbitrarily small positive real number.
With this initialization, we calculate ρ(x, t) in Eq. 8 until
reaching the stationary solution ρ(x,∞). Now following
ρ(x,∞), we choose points on the grid as:

Rs
2 =

⎧

⎨

⎩

x = arg max
y∈GL\⋃s−1

j=0 R
j
2

ρ(y,∞) :

Rs−1
2

⋂

Nb(x) �= ∅
⎫

⎬

⎭

,

R0
2 = Rp, and R2 =

W
⋃

s=0

Rs
2,

where W is defined by

W = arg min
s

{

s : z ∈ Rs
2, ∃y ∈ Nb(z)\

(

s
⋃

τ=1

Rτ
2

)

with p(y) < p(z)

}

.

We union R2 into R by defining R = R
⋃

R2. In the newly
selected R2, we pick

xi = arg min
y

{p(y) : y ∈ Nb(x)\R for some x ∈ R} . (12)

This xi is the new starting point for the next gradient
procedure, and we return to the gradient part as described in
Section 5.1.

By alternating the procedures to obtain R1 and R2 until
xf is included, we define the final region

Rf =
⋃

x∈R
Box(x, l)

where Box(x, l) is the closed box centered at x with edge
length 2l. With the constructed Rf , we have the following
theorem.

Page 11 of 18 71J Intell Robot Syst (2022) 104: 71

Theorem 3 Assuming that the robots only stops on node
points with assumptions in Theorem 2 andR>L, the complete
path γ generated by the algorithm satisfies γ ⊂ Rf .

The proofs of Theorem 3 and Proposition 2 are given in
Section 6.

We show two examples in Fig. 6 with initial configura-
tions indicated by red diamonds and target red circles. The
gray region is calculated by the gradient and diffusion pro-
cedures described in this section. The computation is done
on a grid with mesh size Δx = l. As we can see clearly
in Fig. 6a, starting from the right middle part of Ω , the
graph G first expands along the x-axis, which is the pro-
jected negative gradient direction on the lattice grid, until
it hits an obstacle. Then the procedure is switched to the
diffusion case, and produces a region in front of the obsta-
cle following the Gibbs’ distribution until finding a way
out. After that, the procedure changes back to the gradient
case and moves to the target greedily. This time, the pro-
jected negative gradient direction coincides with the actual
one. Again, the diffusion case kicks in when a local mini-
mizer is encountered. The procedure repeats until the target
is reached. Figure 6b shows another example with more
complicated set ups.

We would like to mention that we use the forward Euler
method to discretize Eq. 8 in time,

ρn+1
j = ρn

j +
⎛

⎝

∑

k∈Nb(j)

(Fk − Fj)+ρn
k djk

−
∑

k∈Nb(j)

(Fj − Fk)+ρn
j djk

⎞

⎠

Δt

(Δx)2
. (13)

To make the scheme convergent, we need the following propo-
sition, which can be regarded as the Courant-Friedrichs-Lewy
(CFL) conditions for numerical PDE schemes.

Proposition 3 Given the lattice grid with grid size Δx,
Eq. 13 is stable if

Δt < min

{

1

maxj∈GL

∑

k∈Nb(j)(Fj − Fk)+djk

,

min
j∈GL

1 − ρj
∑

k∈Nb(j)(Fk − Fj)+ρkdjk

}

(Δx)2, (14)

Proof To make the scheme stable, we need

{

ρj +∑

k∈Nb(j)(Fk − Fj)+ρkdjk
Δt

(Δx)2 < 1

ρj −∑

k∈Nb(j)(Fj − Fk)+ρjdjk
Δt

(Δx)2 > 0

=⇒
⎧

⎨

⎩

Δt < 1
∑

k∈Nb(j)(Fj −Fk)+djk
(Δx)2

Δt <
1−ρj

∑

k∈Nb(j)(Fk−Fj)+ρkdjk
(Δx)2

for all j ∈ GL. This leads to Eq. 14. In addition, following
the proof of Theorem 3 in [33], we can obtain ρi(t) ≥ ε

for a fixed grid. Therefore (Fj − Fk)+ and (Fj − Fk)+ρk

are bounded from above for all edges {(j, k)} in GL. This
implies that the right hand side of Eq. 14 is bounded from
below by a positive real number, so Δt can stay strictly
positive.

Remark 2 For each given l, we can get a region Rf (l).
If we let l go to 0, which means that the lattice GL

approaches to the continuous space, we can define Rf (0) =
lim supl→0 Rf (l) . The graph G produced by our algorithm
must satisfy G ⊂ Rf (l). In fact, Rf (0) is the smallest
bounded region in which the search is conducted. We want
to re-iterate that our algorithm neither involves solving the
FPE on graph, nor needs to know the region in advance. The
region that we constructed here is only used to understand
the behavior of the algorithm, and for the proof of the
convergence.

Fig. 6 In both (a) and (b), there
exists gradient and diffusion
part. The gray shadow is Rf

and the blue part is the graph G

71 Page 12 of 18 J Intell Robot Syst (2022) 104: 71

6 Convergence Analysis

6.1 Convergence of the Algorithm

In this section, we give detailed proofs for the Theorems 1
and 2. To do this, we first prove several lemmas. We begin
with showing that the set of all feasible path Γ is compact
in a finite time interval [0, T] (Lemma 1) and there exists a
feasible path in Γ within a tubular region T that is clear of
obstacles (Lemma 2).

Lemma 1 If there exists at least a feasible path, Γ is non-
empty and compact with respect to the L∞ norm given by
dΓ (γ1, γ2) = maxt∈[0,T] ‖γ1(t) − γ2(t)‖, where γ1 and γ2

are two paths in Γ .

Proof Let us denote the feasible path as γ : [0, T0] → Ω . If
we define γ (t) = xt for all t ∈ (T0, T], we have γ ∈ Γ . To
prove Γ is compact, we assume there is a sequence of paths
{γi}∞i=0 ⊂ Γ such that limi→∞ dΓ (γi, γ) = 0. Since Ω is
compact and O is open, it implies that (Ω\O) is compact.
Therefore for any t ∈ [0, T], γi(t) → γ (t) as i → ∞, we
have γ (t) ∈ (Ω\O). This includes

γ (0) = lim
i→∞ γi(0) = xs, γ (T) = lim

i→∞ γi(T)

= xt , γ (t) ⊂ (Ω\O),

which gives γ ∈ Γ , and Γ is a close set. In addition,
since Ω is compact, Γ is bounded, we conclude that Γ is
compact.

Lemma 2 Assume that Eq. 2 is true, there must exist a
feasible path γ ∈ Γ satisfying

(∪t∈[0,T]B(γ (t), L)
) ∩ O =

∅, where O is the constrained set.

Proof Because of Eq. 2, there exists a sequence of paths
{γn} ⊂ Γ satisfying

lim
n→∞ inf

t∈[0,T] sup
r∈[0,∞)

{r : B(γn(t), r) ∩ O = ∅} = L.

From Lemma 1, we know that Γ is compact, therefore
limn→∞ γn = γ0 ∈ Γ . For an arbitrary t ∈ [0, T], denote

L(t) = sup
r∈[0,∞)

{r : B(γ0(t), r) ∩ O = ∅}

As the whole space Ω is compact, the limit L(t) < ∞.
Since inft∈[0,T] L(t) = L, one has L ≤ L(t) for arbitrary
time t ∈ [0, T]. That is, fix the curve γ0 defined as
above, for all t ∈ [0, T], B(γ0(t), L) ∩ O = ∅ and
thus

(∪t∈[0,1]B(γ0(t), L)
) ∩ O = ∅, which proves the

lemma.

In the next few lemmas, we prove several results that
ensure the generating graph algorithm (Algorithm 2) creat-
ing new points in the feasible region when the radius l is

small enough compared to L, and the process does not stop
until reaching a neighborhood of the target configuration.

Lemma 3 Given a point x on an n-dimensional Euclidean
space and L > 0. Let y ∈ S(x, L), and N be a set
containing n orthonormal vectors, then ∃z ∈ K = {y± lN :
y ± le, e ∈ N} such that z ∈ B(x, L) if 0 < l < (2L)/

√
n.

Proof Without loss of generality, we assume x = (0, · · · ,

0). Let us denote y = (y1, · · · , yn), we can rewrite K =
{zk = (y1, · · · , yk ± l, · · · , yn)}nk=1. Since y ∈ S(x, L),
then ∃k ∈ {1, · · · , n}, so that |yk| ≥ L/

√
n. Consider the

point zk = (y1, · · · , yk − sign(yk)l, · · · , yn), then

‖zk − x‖2 =
∑

i �=k

y2
i + (yk − sign(yk)l)

2

= L2 + l2 − 2sign(yk)ykl

= L2 + l2 − |yk|l ≤ L2 + l2 − (2Ll)/
√

n.

One has L2 + l2 − (2Ll)/
√

n < L2 if 0 < l < (2L)/
√

n.
So zk ∈ B(x, L).

Lemma 4 Given a continuous path γ and a closed set V ⊂
Ω with γ (0) = x, γ (T) = y, and x ∈ V and y /∈ V , then
there exists z ∈ γ such that z ∈ ∂V and γ ∩ ∂V is closed.

Proof We use the signed distance function f (u,V) with
f > 0 if u ∈ V and f < 0 when u /∈ V . It is clear that f is
continuous with respect to u. Hence,

g = f ◦ γ : [0, T] → Ω

is also continuous with g(0) ≥ 0 and g(T) ≤ 0 since γ (T)

= y /∈ V and γ (0) = x ∈ V . As a result, there is at least
one point t1 ∈ [0, T] so that g(t1) = 0, hence γ (t1) ∈ ∂V .
In fact, all points satisfying f (u) = 0 are on ∂V .

Assume γ ∩ ∂V is open, B = (f ◦ γ)−1(γ ∩ ∂V) must
be open, because (f ◦ γ) is continuous. This implies that B
is the disjoint union of some open intervals. Take one of the
open interval, say (a, b), we have a /∈ B and f ◦γ ((a, b)) =
0. Due to the continuity of f ◦ γ , we have f ◦ γ (a) = 0,
which means a ∈ B, and this is a contradiction. Therefore,
γ ∩ ∂V must be closed.

Lemma 5 Assume that Eq. 2 holds. Graph G = (V , E, K,

p) is generated by Algorithm 2 with l ≤ 2L√
n
. If xt /∈ V , then

the graph generating step of Algorithm 2 does not stop, and
there exists at least one point in the feasible region that can
be added to G by the algorithm.

Proof Let us assume that the graph generating algorithm
terminates after finite steps, returning a connected graph
G = (V , E) containing xs . We denote C = ∪v∈V B̄(v, L),

which is a closed set with xs ∈ C. First we want to prove
xt ∈ C by contradiction. Let us assume xt /∈ C. Take

Page 13 of 18 71J Intell Robot Syst (2022) 104: 71

the path γ in Lemma 2, it is true that γ (0) = xs ∈ C

while γ (T0) = xt /∈ C. Since γ is continuous, there exists
at least one point that γ intersects with ∂C by Lemma 4,
and we denote it as {γ (ti)}. Let x = supti

γ (ti) be the last
intersection point along the path. By Algorithm 2, we can
find a vertex vc ∈ V such that x ∈ S(vc, L), which is the
sphere centered at vc with radius L. Since x ∈ γ and by
Eq. 2, we know that B(x, L) ⊂ (Ω\O). Further we claim
that there is no v ∈ V ∩ B(x, L), otherwise, x ∈ B(v, L)

implies x ∈ Co, which is a contradiction with x ∈ ∂C.
Since the algorithm stopped, all current vertices v ∈ V

must have been tried to generate points around them. When
the vertex vc is chosen, by Lemma 3, at least one point p can
be generated in B(x, L), which means either the algorithm
should not terminate without having p, or p already exists
before, which contradicts there is no vertex of G in B(x, L).
Therefore, we conclude that xt ∈ C if the algorithm stops.

If xt ∈ C, since xt = γ (T0), B(xt , L) ⊂ (Ω\O), then
there is at least one vertex v ∈ B(xt , L), by the algorithm,
an edge between xt and v should be added to the graph
G. Thus, if the algorithm stops, xt and xs are in the same
connected component in the graph G.

Now, we are ready to prove the main theorems.

Proof (Proof of Theorem 1) Since Ω is compact and the
graph G is a subset of grid points with length l in Ω , G

must contain a finite number of vertices. Otherwise, there
is a cluster point in the vertex set, which implies that there
exist two vertices in G whose distance is strictly smaller
than the generating radius l regardless how small l is. This
contradicts to the fact that that G is a subset of a grid with
the smallest distance between any two points is l. From
the construction mechanism, G is always connected. Then
Lemma 5 implies that G connects xs and xt .

Proof (Proof of Theorem 2) We denote the detected con-
straints after step i as Oi

c. If the algorithm does not stop
in finite steps, it means m = ∞. Because Ω is compact
and Oi

c is open for every i, then Ω\Oi
c is also compact.

Thus, there exists a cluster point for the stopping point
set {γk(Tk)}∞k=1. For an arbitrary ε > 0, i can be cho-
sen so that ‖γi(Ti) − γj (Tj)‖ < ε for all j > i. Choose
ε < R − q. Without loss of generality, one can assume that
γi is obtained before γj , and at j -th step, the algorithm stops
because Oc ∩ γj �= ∅. Even more,

B̄(γi(Ti), R) ∩ Oc ∩ γj �= ∅.

And since

B̄(γi(Ti), R) ∩ Oc = Oi
c,

it is true that

Oi
c ∩ γj �= ∅

which is a contradiction since for each generated graph
G = (V , E, p) at step j ,

V ∩ Oi
c = ∅ and E ∩ Oi

c = ∅
for all i < j , which concludes m < ∞.

6.2 Proof of the Bounded Searching Region

In this section, we prove Theorem 3 and related propo-
sitions. First, we give a detailed proof for the following
lemma.

Lemma 6 Given β ≥ 0, Eq. 8 is convergent with F(ρ, β),
given in Eq. 9, being a Lyapunov function. When β �= 0,
Eq. 8 converges, with any given initial condition, to the
Gibbs’ distribution

ρ(x) = 1

K
exp

(

−p(x)

β

)

,

where K is the normalization constant making ρ a density
function.

Proof Taking the derivative along the solution ρ(x, t) of
Eq. 8, we have

d

dt
F(ρ(t))

=
|V |
∑

j=1

Fj

dρj

dt
=

|V |
∑

j=1

∑

k∈Nb(j)

((Fk − Fj)+ρkdjkFj

−(Fj − Fk)+ρjdjkFj)

=
|V |
∑

j=1

∑

k∈Nb(j)

(Fj − Fk)+ρkdjkFk −
|V |
∑

j=1

∑

k∈Nb(j)

(Fj − Fk)+ρjdjkFj

= −
|V |
∑

j=1

∑

k∈Nb(j)

(Fj − Fk)
2+ρkdjk ≤ 0

Because F(ρ, β) is bounded from below, Eq. 8 is conver-
gent. One can check directly that the Gibbs’ distribution is
the stationary solution of Eq. 8, and it is also the minimizer
of F(ρ, β).

Proof (Proof of Proposition 2) First of all, by Lemma 6,
Eq. 8 converges when β = 0. We assume that the support of
one stationary solution ρ(x) contains a point other than local
minimizers, say x0 ∈ GL. Then there exists z ∈ Nb(x0)

with p(z) < p(x0). By the definition of dij , there must be an
edge linking x0 and z such that dx0z = 1 and p(z) < p(x0).
We construct

ρ̂(x) =
⎧

⎨

⎩

ρ(x) x �= x0, x �= z

0 x = x0

ρ(z) + ρ(x0) x = z

71 Page 14 of 18 J Intell Robot Syst (2022) 104: 71

It is easy to check F(ρ̂) < F(ρ), which leads to a
contradiction that ρ is the minimizer of F(ρ).

Given an arbitrary environment O, let us denote Gf =
(Vf , Ef) the graph generated by Algorithm 2 with Oc = O
all the time. We show that any node in Vf must be in the
region Rf constructed in Section 5.

Lemma 7 If x ∈ Vf , then x ∈ Rf .

Proof Since the grid size of GL is l, we have Gf ⊂ GL,
meaning all vertices in Gf are grid points on GL. In fact
every node generated by the algorithm must be a grid point
on GL. By the definition of Rf , we only need to prove that
Vo ⊂ R, where Vo is the set of vertices which are chosen
to generate new nodes by Algorithm 2. For convenience,
we call a node in Vo an interior point of Gf . We call x the
ancestor of y if y ∈ NbV (x), the neighborhood of x, and x

is generated earlier than y by Algorithm 2. Correspondingly
we call y the child of x. We call Algorithm 2 in gradient
steps if the potential of the newly chosen node is lower than
its ancestor, otherwise we call it in diffusion steps. We use
induction to prove the lemma. Because Gf contains a finite
number of nodes, the induction process stops after finite
steps. At the first step, xs ∈ Vo and xs ∈ R. We assume that
the first k generated nodes in Gf are contained in R. We
want to prove that the node z ∈ R, where z is the node to
generate new points at (k + 1)-th step. We assume w is the
ancestor of z that generates w. Obviously, w ∈ R by our
induction assumption. There are two cases.

Gradient case (p(z) < p(w)): by the construction of R

in Section 5.1, to prove z ∈ R, we only need to show
ρt (z, T) > 0 for some T . There are two scenarios. (1)
There exists T1 such that ρ(z, T1) > 0. In this case,
we must be able to find T2 ≤ T1 with ρt (z, T2) > 0,
because ρ(z, 0) = 0 initially. (2) ρ(z, t) = 0 for all
t ∈ [0, T1]. Because the algorithm picks the point that has
the lowest p value, we have p(w)−p(z) > p(w)−p(u)

for all u ∈ Nb(w), which gives dwz = 1 in Eq. 13.
Notice that w ∈ R, this means there exists T3 such that
ρt (w, T3) > 0, which implies that there is a time interval
I = [T3 −Δt, T3 +Δt], ρt (w, t) > 0 for all t ∈ I . Thus,
there must exist a T4 such that ρ(w, T4) > 0. By Eq. 8,
we have ρt (z, T4) > 0 if ρ(z, T4) = 0, which implies
z ∈ R.
Diffusion case (p(z) ≥ p(w)): We recall R2 = ⋃W

s=1
Rs

2. It is easy to see that if s > t , we have p(x) >

p(y) for arbitrary x ∈ Rs
2 and y ∈ Rt

2 because of
the property of the Gibbs’ distribution. Otherwise the
diffusion procedure for the set construction is stopped

according to the definition of W . We split the proof into
three steps for this case. Firstly, we let

x = arg min
z

{p(z) : z ∈
⋃

y∈RW
2

Nb(y)\R2}.

and xp ∈ Nb(x) ∩ R2. By the definition of W , we know
that x ∈ R, and x is the choice for the starting configu-
ration for the next step. And also, we claim that x exists.
Since xf ∈ GL has the lowest potential and GL is a con-
nected graph, there must be a node in R such that one of
the outside neighbor has a lower potential, otherwise the
construction of R do not stop.

Secondly, we claim that the part of the Vo generated by
the diffusion steps of graph generation is contained in R2,
and we simply use Vo to denote the diffusion part generated
by the algorithm. Otherwise, there exists z ∈ Vo\R2 with
its ancestor w ∈ Rs

2 for some s < W . Without loss of
generality, we assume z is the first node outside of R2

chosen by Algorithm 2. Because p(z) > p(w), we have
z /∈ ∪s

i=1Ri
2. Also, z is a candidate for all Ri

2 with i =
s + 1, · · · , W . Therefore, z /∈ R2 means that p(z) > p(u)

for all u ∈ R2. By Algorithm 2, this can happen only when
Ro

2 ⊂ Vo where

R̄o
2 = {

u : u ∈ R2, p(u) ≤ p(xp)
}

,

and Ro
2 ⊂ R̄o

2 is the connected component of R̄o
2 containing

xp. Otherwise there exists v ∈ NbV (a)\Vo for some a ∈ Vo

such that v ∈ R2. In this situation, the algorithm will
choose v instead of z because of p(v) < p(z). This cause a
contradiction with the fact z is the next node selected by the
algorithm. On the other hand, if Ro

2 ⊂ Vo holds, we have
x ∈ Vo and there exists y ∈ Vo such that p(y) ≤ p(x) <

p(z), leading to the fact that Algorithm 2 does not put z into
Vo. Thus, Vo ⊂ R2 ⊂ R.

At last, we claim that x ∈ Vo, which gives us that
the start node of the next gradient step shared by both the
construction of R and the graph generation in the algorithm.
That is, x is chosen by Algorithm 2 to generate new points.
Otherwise by the same argument for the existence of x, there
is some node y ∈ V such that Algorithm 2 generates a node
q based on y with p(q) < p(y) and p(y)−p(q) maximizes
the potential gap amongst all similar pairs. So, y ∈ Vo.
However, by the definition of x, it is the lowest potential
point has this property within the region R2. Thus y = x.
And in the next generation step, q will be generated, and
meanwhile, the region growing procedure will also choose
q as the start point of the next gradient step.

Proof (Proof of Theorem 3) Let Gf = (Vf , Ef) be the
graph generated by the algorithm with Oc = O all the time.

Page 15 of 18 71J Intell Robot Syst (2022) 104: 71

We denote G = (V , E) a graph generated with currently
known environment Oc and initial configuration at x. Since
x ∈ Gf at the first step, a simple induction argument can
show that every initial configuration x used to generate the
graph G must satisfy x ∈ Gf too. We claim that G and
Gf must be the same in the ball B(x, R), where we recall
R the detectable radius, i.e. G ∩ B(x, R) = Gf ∩ B(x, R),
because G and Gf are generated by the same algorithm
with the same knowledge of the environment in B(x, R).
We denote the connected common part of G and Gf as Go,
and further claim that the path γ is in Go. If not, there must
exist the first node generated in the graph generation step
y ∈ G\Go on the feasible trajectory on G. This implies
that y ∈ O\Oc since the ancestor of y is in Go, which
can not contain any node in the infeasible region. However
when the robots move along the path γ to the node before
y, the system can detect that y is infeasible because R > L,
and should stop before reaching y, which contradict with
the fact that y is on the feasible trajectory. This concludes
that the trajectory of the robots is restricted on Go ⊂ Gf in
arbitrarily given known environment Oc ⊂ O. By Lemma 7,
Gf is bounded by Rf , hence the trajectory of the system is
bounded by Rf .

6.3 Proof of Proposition 2.2

Proof The existence of a path from the current configu-
ration to the target is provided by the construction of the
graph. We note that if two nodes share an edge, one of
them is the ancestor of the other. Clearly, we have that xc

is the ancestor of x2. By induction, if we assume that xi is
the ancestor of xi+1, we claim that xi+1 is the ancestor of
xi+2. Otherwise, it implies that xi+2 must be the ancestor
of xi+1. This means that xi+i has two ancestors, which is a
contradiction with the graph generation strategy.

For the uniqueness of the path, we first notice that the
algorithm stops once an edge is linked to the target xf ,
from which we conclude that xf has unique ancestor. By
Algorithm 2, every node except xc has a unique ancestor.
If we assume that there are two paths γ and ξ , denoted by
{yi}m1

i=1 and {zi}m2
i=1 respectively, we must have y1 = z1 = xc

and ym1 = zm2 = xf . Because of the uniqueness of the
ancestor for each node, we must have ym1−1 = zm2−1. By
induction, we have m1 = m2 and yi = zi . Thus, γ = ξ and
the uniqueness is proven.

7 Conclusion

In this paper, an iterative algorithm is presented to solve the
pathfinding problem in unknown environments. The algo-
rithm is inspired by the evolution of FPE on graph in optimal
transport theory. It contains graph generating, path finding

and environment updating steps, among which graph gen-
erating is the key one. Guided by a potential function, the
graph generating algorithm creates a tree structure, orig-
inating from the initial configuration, and terminating at
the target configuration without solving the FPE numer-
ically. Our approach has several advantages. First of all,
the algorithm is deterministic and complete. It terminates
in finite steps, returning a path, if there exists one. Sec-
ondly, the number of added nodes in the generated tree
grows linearly with respect to the dimension of the con-
figuration space. Together with the dimension reduction
strategies for escaping the local traps, our algorithm can
be used to compute high dimensional problems. Lastly, as
proved by using FPE and intermittent diffusion, only part
of the configuration space needs to be searched. We also
emphasize that our assumption on the existence of a fea-
sible path is only a technical requirement for the proof of
the convergence. If such a path does not exist, the proposed
algorithm can recognize the situation and stop the calcula-
tion in a finite number of iterations. In this case, one may
conclude that there is not a feasible path which can be iden-
tified by using l as the search step size, or reduce l to further
refine the path exploration computation.

The proposed algorithm is our initial investigation of
using FPE for path exploration. Further improvements can
be made on many fronts. For example, one can speed up the
calculation in escaping the traps at local minima, by using
random graph generating strategies. This is very useful in
high dimensional situations. The graph generating radius l

can be adaptive. Longer steps can be taken in wide open
space and shorter step size is used when encountered narrow
corridors. Although the path discovered by the robots is only
a feasible one, the path and the environmental knowledge
gained during the exploration can be used as valuable prior
for the follow up groups of robots tasked to traverse the
same area. In that case, the path can be used as the baseline
to start iterative procedures that eventually create locally
optimal path for further usage. In our current study, we
don’t consider some practical scenarios such as each agent
is under slip or communication delay. The algorithm needs
to be adjusted to account for those constraints. In addition,
the proposed algorithms can be adapted to construct a
general strategy for control problems with constraints,
especially when some constraints are only available during
the processes. Those are directions that are worth further
studies, and we will report our findings in future papers.

Author Contributions All authors (Haoyan Zhai, Magnus Egerstedt
and Haomin Zhou) contributed to the study conception and design.
Experiment design, analysis and theory proof were performed by
Haoyan Zhai and Haomin Zhou. The first draft of the manuscript
was written by Haoyan Zhai and all authors commented on previous
versions of the manuscript. All authors read and approved the final
manuscript.

71 Page 16 of 18 J Intell Robot Syst (2022) 104: 71

Funding The research is partially support by grants NSF DMS-
1830225, DMS-1620345, and ONR N00014-18-1-2852.

Availability of data andmaterial Not applicable

Code Availability All source code can be accessed on https://github.
com/haoyanzhai/path planning.git

Declarations

Conflict of Interest We declare that we have no conflict of interest.

Ethics approval and consent to participate Not applicable

Consent for Publication Not applicable

References

1. Ahlin, K.: The secant and traveling artificial potential field
approaches to high dimensional robotic path planning. PhD
Thesis, Georgia Institute of Technology (2018)

2. Amato, N.M., Wu, Y.: A randomized roadmap method for path
and manipulation planning. In: Proceedings of IEEE International
Conference on Robotics and Automation, vol. 1, pp. 113–120.
IEEE (1996)

3. Bandyopadhyay, S., Chung, S.J., Hadaegh, F.Y.: Probabilistic
swarm guidance using optimal transport. In: 2014 IEEE Confer-
ence on Control Applications (CCA), pp. 498–505 (2014)

4. Barraquand, J., Kavraki, L., Latombe, J.C., Motwani, R., Li, T.Y.,
Raghavan, P.: A random sampling scheme for path planning. Int.
J. Robot. Res. 16(6), 759–774 (1997)

5. Boor, V., Overmars, M.H., Van Der Stappen, A.F.: The Gaussian
sampling strategy for probabilistic roadmap planners. In: 1999
IEEE International Conference on Robotics and Automation,
1999. Proceedings, vol. 2, pp. 1018–1023. IEEE (1999)

6. Branicky, M.S., LaValle, S.M., Olson, K., Yang, L.: Quasi-
randomized path planning. In: IEEE International Conference on
Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 2,
pp. 1481–1487. IEEE (2001)

7. Brenier, Y.: Décomposition polaire et réarrangement monotone
des champs de vecteurs. C. R. Acad. Sci. Paris sér. I Math. 305,
805–808 (1987)

8. Brenier, Y.: Polar factorization and monotone rearrangement of
vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–
417 (1991)

9. Chen, Y.B., Luo, G.C., Mei, Y.S., Yu, J.Q., Su, X.L.: Uav path
planning using artificial potential field method updated by optimal
control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)

10. Chow, S.N., Huang, W., Li, Y., Zhou, H.: Fokker–planck equations
for a free energy functional or markov process on a graph. Arch.
Ration. Mech. Anal. 203(3), 969–1008 (2012)

11. Chow, S.N., Yang, T.S., Zhou, H.M.: Global optimizations by
intermittent diffusion. In: Chaos, CNN, Memristors and Beyond:
a Festschrift for Leon Chua with DVD-ROM, Composed by
Eleonora Bilotta, pp. 466–479. World Scientific (2013)

12. Contreras-Cruz, M.A., Ayala-Ramirez, V., Hernandez-Belmonte,
U.H.: Mobile robot path planning using artificial bee colony and
evolutionary programming. Appl. Soft Comput. 30, 319–328 (2015)

13. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-auv
path planning for scalar field sampling using multidimensional rrt.
IEEE Trans. Syst. Man Cybern.: Syst. 46(7), 993–1004 (2016)

14. Das, P., Behera, H.S., Panigrahi, B.K.: A hybridization of an
improved particle swarm optimization and gravitational search
algorithm for multi-robot path planning. Swarm Evol. Comput. 28,
14–28 (2016)

15. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1(1), 269–271 (1959)

16. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path
planning for autonomous vehicles in unknown semi-structured
environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

17. Doran, J.E., Michie, D.: Experiments with the graph traverser
program. Proc. R. Soc. Lond. Ser.: A Mathematical and Physical
Sciences 294(1437), 235–259 (1966)

18. Ersson, T., Hu, X.: Path planning and navigation of mobile robots
in unknown environments. In: IROS, pp. 858–864 (2001)

19. Hassanzadeh, I., Sadigh, S.M.: Path planning for a mobile
robot using fuzzy logic controller tuned by ga. In: 6th
International Symposium on Mechatronics and Its Applications,
2009. ISMA’09, pp. 1–5. IEEE (2009)

20. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive
configuration spaces. In: 1997 IEEE International Conference on
Robotics and Automation, 1997. Proceedings, vol. 3, pp. 2719–
2726 (1997)

21. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching
tree: a fast marching sampling-based method for optimal motion
planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921
(2015)

22. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation
of the fokker–planck equation. SIAM J. Math. Anal. 29(1), 1–17
(1998)

23. Kamon, I., Rivlin, E.: Sensory-based motion planning with global
proofs. IEEE Trans. Robot. Autom. 13(6), 814–822 (1997)

24. Kamon, I., Rivlin, E., Rimon, E.: A new range-sensor based
globally convergent navigation algorithm for mobile robots. In:
Proceedings of IEEE International Conference on Robotics and
Automation, vol. 1, pp. 429–435. IEEE (1996)

25. Kantarovich, L.: Mathematical methods in the organization and
planning of production. Publication House of the Leningrad State
University. (Translated in Management Sc., vol. 66, pp. 366–422)
(1939)

26. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal
motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

27. Kavraki, L., Latombe, J.C.: Randomized preprocessing of
configuration for fast path planning. In: Proceedings of the 1994
IEEE International Conference on Robotics and Automation,
pp. 2138–2145. IEEE (1994)

28. Khatib, O.: Real-time obstacle avoidance for manipulators and
mobile robots. In: Autonomous Robot Vehicles, pp. 396–404.
Springer (1986)

29. Koenig, S., Likhachev, M.: Fast replanning for navigation in
unknown terrain. IEEE Trans. Robot. 21(3), 354–363 (2005)

30. Krishnan, V., Martı́nez, S.: Distributed optimal transport for the
deployment of swarms. In: 2018 IEEE Conference on Decision
and Control (CDC), pp. 4583–4588 (2018)

31. LaValle, S.M.: Rapidly-exploring random trees: a new tool for
path planning (1998)

32. Lei, L., Wang, H., Wu, Q.: Improved genetic algorithms based
path planning of mobile robot under dynamic unknown environ-
ment. In: 2006 International Conference on Mechatronics and
Automation, pp. 1728–1732. IEEE (2006)

33. Li, W.: A study of stochastic differential equations and Fokker-
Planck equations with applications. Ph.D. thesis, Georgia Institute
of Technology (2016)

34. Li, W., Lu, J., Zhou, H., Chow, S.N.: Method of evolving
junctions: a new approach to optimal control with constraints.
Automatica 78, 72–78 (2017)

Page 17 of 18 71J Intell Robot Syst (2022) 104: 71

https://github.com/haoyanzhai/path_planning.git
https://github.com/haoyanzhai/path_planning.git

35. Lumelsky, V., Stepanov, A.: Dynamic path planning for a mobile
automaton with limited information on the environment. IEEE
Trans. Autom. Control 31(11), 1058–1063 (1986)

36. Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of
arbitrary shape. Algorithmica 2(1-4), 403–430 (1987)

37. Luo, C., Yang, S.X.: A bioinspired neural network for real-time
concurrent map building and complete coverage robot navigation
in unknown environments. IEEE Trans. Neural Netw. 19(7),
1279–1298 (2008)

38. McGuire, K., de Croon, G., Tuyls, K.: A comparative study of bug
algorithms for robot navigation. arXiv:1808.05050 (2018)

39. Montiel, O., Orozco-Rosas, U., Sepúlveda, R.: Path planning for
mobile robots using bacterial potential field for avoiding static and
dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)

40. Moore, E.F.: The shortest path through a maze. In: Proceedings of
the International Symposium Switching Theory, pp. 285–292 (1959)

41. Ng, J., Bräunl, T.: Performance comparison of bug navigation
algorithms. J. Intell. Robot. Syst. 50(1), 73–84 (2007)

42. Noreen, I., Khan, A., Habib, Z.: Optimal path planning using
rrt* based approaches: a survey and future directions. Int. J. Adv.
Comput. Sci. Appl 7, 97–107 (2016)

43. Otto, F.: The geometry of dissipative evolution equations: the
porous medium equation (2001)

44. Overmars, M.H.: A random approach to motion planning, vol. 92.
Unknown Publisher (1992)

45. Podsedkowski, L., Nowakowski, J., Idzikowski, M., Vizvary, I.:
A new solution for path planning in partially known or unknown
environment for nonholonomic mobile robots. Robot. Auton. Syst.
34(2–3), 145–152 (2001)

46. Sfeir, J., Saad, M., Saliah-Hassane, H.: An improved artificial
potential field approach to real-time mobile robot path planning
in an unknown environment. In: 2011 IEEE International Sympo-
sium On Robotic and Sensors Environments (ROSE), pp. 208–213
(2011)

47. Stentz, A.: Optimal and efficient path planning for partially-
known environments. In: ICRA, vol. 94, pp. 3310–3317 (1994)

48. Stentz, A.: The focussed Dˆ* algorithm for real-time replanning.
In: IJCAI, vol. 95, pp. 1652–1659 (1995)

49. Svestka, P.: Robot motion planning using probabilistic roadmaps.
PhD Thesis, Universiteit Utrecht (1997)

50. Tian, Y., Yan, L., Park, G.Y., Yang, S.H., Kim, Y.S., Lee,
S.R., Lee, C.Y.: Application of Rrt-based local path planning
algorithm in unknown environment. In: International Symposium
on Computational Intelligence in Robotics and Automation. CIRA
2007, pp. 456–460. IEEE (2007)

51. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path plan-
ning and replanning in dynamic environments. In: Proceedings
2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006, pp. 2366–2371. IEEE (2006)

52. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer
Science & Business Media (2008)

53. Wagner, G., Choset, H.: Subdimensional expansion for multirobot
path planning. Artif. Intell. 219, 1–24 (2015)

54. Walker, M., Messom, C.H.: A comparison of genetic program-
ming and genetic algorithms for auto-tuning mobile robot motion
control. In: The First IEEE International Workshop on Electronic
Design, Test and Applications, 2002. Proceedings, pp. 507–509
(2002)

55. Wang, M.: Liu: fuzzy logic based robot path planning in unknown
environment. In: Proceedings of 2005 International Conference on
Machine Learning and Cybernetics, 2005, vol. 2, pp. 813–818.
IEEE (2005)

56. Yang, K., Keat Gan, S., Sukkarieh, S.: A gaussian process-based
rrt planner for the exploration of an unknown and cluttered
environment with a uav. Adv. Robot. 27(6), 431–443 (2013)

57. Zuse, K.: Der plankalkül. 63. Gesellschaft für Mathematik und
Datenverarbeitung (1972)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Haoyan Zhai received the B.S. degree in mathematics from Zhejiang
University in 2014, and the Ph.D. in mathematics degree from Georgia
Institute of Technology in 2019. His research interests include optimal
transport, and stochastic differential equations with applications in
robotics and machine learning.

Magnus Egerstedt is the Dean of Engineering in the Samueli
School of Engineering at the University of California, Irvine, with a
faculty appointment in the Department of Electrical Engineering and
Computer Science. Egerstedt received the M.S. degree in Engineering
Physics and the Ph.D. degree in Applied Mathematics from the
Royal Institute of Technology, Stockholm, Sweden, the B.A. degree
in Philosophy from Stockholm University, and spent a large part of
his career as a faculty member at the Georgia Institute of Technology.
Dr. Egerstedt conducts research in the areas of control theory and
robotics, with particular focus on control and coordination of complex
networks, such as multi-robot systems. Egerstedt is a Fellow of IEEE
and IFAC, and is a Foreign member of the Royal Swedish Academy
of Engineering Science. His teaching and research awards include the
Ragazzini Award, the O. Hugo Schuck Best Paper Award, and the
Alumni of the Year Award from the Royal Institute of Technology.

H.M. Zhou received the B.S. in pure mathematics from Peking
University, the M. Phil. in applied mathematics from the Chinese
University of Hong Kong, and the Ph.D in computational mathematics
from University of California, Los Angeles. He was a postdoctoral
scholar at California Institute of Technology for three years. He
has been a faculty member in the School of mathematics at
Georgia Institute of Technology since 2003. His research interests
include optimal transport, inverse problems, and stochastic differential
equations with applications in robotics and machine learning.

71 Page 18 of 18 J Intell Robot Syst (2022) 104: 71

http://arxiv.org/abs/1808.05050

	Path Exploration in Unknown Environments Using Fokker-Planck Equation on Graph
	Abstract
	Introduction
	Algorithm
	Graph Generating
	Path Finding
	Environment Updating
	Convergence and Complexity

	Numerical Examples
	Low Dimensional Cases
	High Dimensional Cases

	Escaping Local Traps Rapidly
	Relation to FPE on Graph
	Gradient Part of Rf
	Diffusion Part of Rf

	Convergence Analysis
	Convergence of the Algorithm
	Proof of the Bounded Searching Region
	Proof of Proposition 2.2

	Conclusion
	Declarations
	References

