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Abstract

Protein contact maps have proven to be a valuable tool in the deep learning revolu-

tion of protein structure prediction, ushering in the recent breakthrough by Alpha-

Fold2. However, self-assessment of the quality of predicted structures are typically

performed at the granularity of three-dimensional coordinates as opposed to directly

exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps.

Here, we present rrQNet, a deep learning method for self-assessment in 2D by con-

tact map quality estimation. Our approach is based on the intuition that for a contact

map to be of high quality, the residue pairs predicted to be in contact should be

mutually consistent with the evolutionary context of the protein. The deep neural

network architecture of rrQNet implements this intuition by cascading two deep

modules—one encoding the evolutionary context and the other performing evolu-

tionary reconciliation. The penultimate stage of rrQNet estimates the quality scores

at the interacting residue-pair level, which are then aggregated for estimating the

quality of a contact map. This design choice offers versatility at varied resolutions

from individual residue pairs to full-fledged contact maps. Trained on multiple com-

plementary sources of contact predictors, rrQNet facilitates generalizability across

various contact maps. By rigorously testing using publicly available datasets and com-

paring against several in-house baseline approaches, we show that rrQNet accurately

reproduces the true quality score of a predicted contact map and successfully distin-

guishes between accurate and inaccurate contact maps predicted by a wide variety

of contact predictors. The open-source rrQNet software package is freely available at

https://github.com/Bhattacharya-Lab/rrQNet.
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1 | INTRODUCTION

Deep neural networks (NNs) have led to a paradigm shift in protein

structure prediction.1–5 Most notably, the AlphaFold2 method from

DeepMind5 has demonstrated unprecedented performance level in

the 14th edition of the Critical Assessment of Structure Prediction

(CASP14) experiment6 through successful application of deep NNs,

paving the way toward highly accurate prediction of protein structural

models at proteome-wide scale.7 The core of AlphaFold2 consists of a

neural embedding of the evolutionary profile coupled with pairwise

relations of the various amino acid residues in the protein. This

embedding is used to predict the inter-residue interactions between

the amino acids by a collection of deep NN modules trained end-to-

end, leading to the final predicted three-dimensional (3D) structure.
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Inter-residue interactions can be represented as a binary two-

dimensional (2D) matrix, also known as a contact map, which distin-

guishes interacting residue pairs from the noninteracting ones using a

predefined distance threshold such as 8 Å. Typically, if the spatial

positioning of the Cβ (Cα in case of Glycine) atom of a residue i lies

within 8 Å of the Cβ (Cα in case of Glycine) atom of residue j, the resi-

due pair (i,j) is considered to be an interacting pair (contact). A contact

map has the advantage of being invariant to rotations and transla-

tions, while providing a 2D representation of a protein 3D structure.

Intuitively, the choice of the distance threshold affects the granularity

of a contact map, and the use of multiple distance thresholds results

in finer-grained binned distance distributions. Regardless of their reso-

lutions, contact maps encode inter-residue spatial proximity informa-

tion that can be turned into Cartesian coordinates, leading to the

predicted structure.8 As such, a 2D contact map can be considered as

a transitional state in the mapping from the one-dimensional amino

acid sequence to the 3D structure of a protein molecule.

In order for protein structure prediction to be practically useful, a

reliable self-assessment of the prediction is critically important.9,10

Such a calibrated self-assessment of the quality of the prediction is an

integral part of the AlphaFold2 system, which provides intrinsic model

accuracy estimates in the form of predicted local-distance difference

test and predicted global superposition metric template modeling

score (pTM). However, self-assessment of the quality of structure pre-

diction using the state-of-the-art protein structure prediction systems

typically rely on 3D coordinates as opposed to exploiting the residue

pair representation captured by a 2D contact map. That is, the granu-

larity of protein quality estimation is typically a predicted 3D structure

rather than a 2D contact map.

Performing self-assessment at the granularity of 2D contact maps

instead of 3D structures has several advantages. First, being invariant

to rotations and translations, contact maps and their estimated confi-

dence scores can be seamlessly integrated into geometric attention-

based deep learning models while implicitly ensuring invariance.5 Sec-

ond, the estimated quality score of a 2D contact map can be inte-

grated into the loss function of an end-to-end structure prediction

system. Third, such an integration enables error feedback11 to propa-

gate through the deep network for iterative optimization of the con-

tact maps, similar to the recycling updates performed in AlphaFold2.

Finally, a reliable quality estimate of a predicted contact map can

inform contact-driven homology detection and reconstruction

approaches.8,12–19

How can we get the representational benefits of self-assessment

of the prediction at the 2D contact map level, without necessarily

turning the contact map into 3D coordinates? Here, we explore a

potential solution of estimating the contact map quality by deep evolu-

tionary reconciliation. Our approach is based on the intuition that for a

contact map to be of high quality, the residue pairs predicted to be in

contact should be mutually consistent with the evolutionary context

encoded in the multiple sequence alignment (MSA) of the target pro-

tein sequence. The deep NN architecture of rrQNet directly imple-

ments this intuition by cascading two deep modules—one encoding

the evolutionary context and the other performing evolutionary

reconciliation. The penultimate stage in rrQNet is a rough estimate of

the predicted confidence score at the level of interacting residue pairs,

which is subsequently aggregated for scoring a predicted contact

map. We rigorously test rrQNet on publicly available datasets by com-

paring against several baseline approaches and conducting pseudo-

blind assessment using protein targets from the latest rounds of CASP

experiments for several 100 predicted contact maps generated by a

wide variety of contact predictors. The experimental results show that

our method can accurately reproduce the true quality score of a pre-

dicted contact map and can successfully distinguish between accurate

and inaccurate contact prediction. Our generalizable deep learning

model is versatile for confidence estimation at varying granularities

from individual residue-pair to full-fledged contact map. The open-

source rrQNet software package is freely available at https://github.

com/Bhattacharya-Lab/rrQNet.

2 | MATERIALS AND METHODS

2.1 | Model architecture

As shown in Figure 1, our deep learning model for protein contact

map quality estimation consists of two major modules, each being a

residual neural network (ResNet).20

The first module is the evolutionary module, which conducts a series

of 2D convolutional transformations on the evolutionary context

extracted from the covariational signal encoded in the MSA. The output

of the evolutionary module is then converted to a 2D matrix and then

fed into the second module together with the predicted contact maps.

The second module is the reconciliation module, which performs a series

of 2D convolutional transformations of the evolutionary context-

integrated contact maps. Finally, the output of the reconciliation module

is utilized to predict the correctness of contacts at the residue pair level,

which can be subsequently aggregated for estimating the overall quality

of the predicted contact map.

2.1.1 | Inputs for training and inference

The inputs to rrQNet comprise of a predicted contact map and MSA for

the target protein sequence. MSA is generated by searching against

diverse sequence sources after merging sequences from whole-genome

sequence databases and from metagenome database.21 From the MSA,

an inverse covariation matrix (or precision matrix)22 is generated which

captures dependent conditional correlations among pairwise variables. A

precision matrix contains L ! L blocks (L is the length of the protein

sequence) and each block contains 21 ! 21 matrix for direct couple cor-

relation for a particular pair of residues23 (i.e., having dimension of

21 ! 21 = 441 for each pair of residues). We reshape the 441 ! L ! L

precision matrix to L ! L ! 441 before feeding into the evolutionary

module. During training, the input MSA is used for generating a diverse

array of contact maps using seven different methods: CCMpred,24

FreeContact,25 PSICOV,26 MetaPSICOV,27 DeepConPred2,28
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DNCON2,29 and ResPRE.23 CCMpred is a pseudo-likelihood

maximization-based approach30,31 for contact prediction optimized for

performance. FreeContact is a speed-optimized implementation of

EVfold-mfDCA.12 PSICOV uses sparse inverse covariation estimation32

for predicting protein contact map. MetaPSICOV is a two-stage contact

predictor that employs a combination of approaches for obtaining MSA-

derived covariation signal and various statistics computed from the MSA

for contact prediction. DeepConPred2 is an improved reoptimized ver-

sion of the deep learning-based approach DeepConPred.33 DNCON2

employs a two-level deep convolutional NN for contact prediction.

ResPRE leverages ResNet architecture coupled with precision matrix to

predict contact maps. All methods are locally installed and run with

default parameter settings to generate contact maps and top L contacts

(L is the length of protein sequence) are fed to the reconciliation module.

Following CASP standard of contact map assessment and to ensure a fair

comparison between the contact predictors, we consider top L contacts

for all methods. Our approach can be easily adapted for any number of

contact pairs including all residue pairs. During inference, rrQNet takes

only one contact map as input predicted by any method (including but

not limited to the seven contact predictors used for training) along with

the MSA.

2.1.2 | Evolutionary module

The evolutionary module is preceded by a gate (InGate 1) comprising

of a 2D convolutional layer with a kernel size of 1 ! 1, batch

normalization, and a nonlinear transformation called exponential linear

unit (ELU). The input to this gate is the reshaped precision matrix of

size L ! L ! 441, which is transformed to a size of L ! L ! 64, using a

1 ! 1 convolutional layer with a filter size of 64. This input gate is fol-

lowed by a stack of 55 ResNet blocks. Each residual block in this

ResNet stack consists of three 2D convolutional layers with a filter

size of 64. The number of ResNet blocks is determined through vali-

dation on the independent CASP11 dataset to avoid overfitting, as

discussed later. The first convolutional layer with kernel size 1 ! 1 is

used to restore the dimensionality of the feature vector and is fol-

lowed by batch normalization. The second convolutional layer with

kernel size of 5 ! 5 is followed by ELU activation unit and batch nor-

malization. The third convolutional layer with kernel size of 5 ! 5 is

the output layer of a ResNet block having a shortcut connection to

the input layer for skipping the intermediate layers. This output propa-

gates to the next ResNet block through a nonlinear transformation via

the ELU unit.

2.1.3 | Reconciliation module

Similar to the evolutionary module, the reconciliation module is pre-

ceded by a gate (InGate 2) consisting of a 2D convolutional layer hav-

ing a kernel size of 3 ! 3 and filter of 1, followed by a different

transformation called rectified linear unit to transform the size to

L ! L ! 1, before concatenating with the input contact map. The rec-

onciliation module leverages a stack of 40 ResNet blocks having

F IGURE 1 rrQNet architecture overview. Left to right: The evolutionary context extracted from the covariational signal encoded in the MSA
is fed to the evolutionary module, which conducts a series of 2D convolutional transformations. The output of the evolutionary module is then
converted to a 2D matrix and then fed into the reconciliation module together with the predicted contact map to perform evolutionary
reconciliation. Finally, the output of the reconciliation module is utilized to predict the correctness of contacts at the residue pair level, which can
be subsequently aggregated for estimating the overall quality of the full-fledged contact map.
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architecture similar to the evolutionary module determined through

validation on the independent CASP11 dataset to avoid overfitting, as

discussed later.

2.1.4 | Quality estimation

The reconciliation module is followed by a gate (OutGate) comprising

of a 2D convolutional layer having a kernel size of 3 ! 3 followed by

sigmoidal transformation, whose output leads to a 2D matrix of pre-

dicted confidence score at the level of a pair of interacting amino acid

residues from the input contact map. The 2D matrix of predicted con-

fidence score is then subsequently aggregated for estimating the final

quality score q^ � [0, 1] of the full-fledged input contact map as:

q^= Σpij/L, where L is the number of residues, pij is 1 if the average

predicted likelihood of residue pair (i,j), and the residue pair ( j,i) is

greater than the threshold of 0.5 and 0 otherwise. As such, q^is analo-

gous to the precision of the input contact map.

2.2 | Training and implementation details

Our method is implemented using Keras with TensorFlow34 backend

and trained using Quadro RTX 5000 GPU with 16 GB memory. We

train our model for 50 epochs and use checkpoint for saving the best

model on each epoch. Models are trained on a batch size of two, shuf-

fling the training data, using ADAM optimizer35 with a learning rate of

0.001 and binary cross-entropy loss function. While training, we crop

(or pad) the input dimension to 256, but the trained model can esti-

mate the quality score for any input length.

2.3 | Datasets for training and performance
evaluation

For training the deep learning model, we use a total of 3073 contact

maps of varying qualities predicted by seven different contact predic-

tion methods previously discussed using a non-redundant dataset of

439 proteins including 421 protein targets from the DeepCov36 data-

set and 18 free modeling (FM) target domains from the 7th through

10th editions of the Critical Assessment of Protein Structure Predic-

tion (CASP7-CASP10) experiments. We consider protein chains hav-

ing no more than 35% pairwise sequence identity to remove

redundancy in the training set.

For performance evaluation, we use a test set of 280 contact maps

predicted by the seven locally installed contact prediction methods for

40 FM target domains with publicly available experimental structures

from the 12th and 13th editions of CASP experiments (CASP12 and

CASP13) to perform benchmark assessment; and 660 contact maps pre-

dicted by 30 fully automated server predictors participating in the con-

tact prediction category of the 14th edition of CASP (CASP14) for

22 FM targets to perform pseudo-blind assessment. Additionally,

210 contact maps predicted by the locally installed seven contact

prediction methods for 30 FM target domains from the 11th edition of

CASP (CASP11) are used as a validation set. Both the test and validation

sets are structurally independent from the training set, having TM-align

score <0.5.37 For the benchmark assessment on CASP12 and CASP13

sets as well as validation on CASP11 set, we run the seven locally

installed contact predictors with default parameter settings using MSA

generated by searching against diverse sequence sources including

whole-genome sequence databases (Uniclust3038 and UniRef9039) and

metagenome database (Metaclust40) using DeepMSA21 pipeline with

default parameters. Top L predicted contacts (L is the length of the pro-

tein sequence) are then fed into rrQNet for contact map quality estima-

tion. For CASP14 pseudo-blind assessment, we download the contact

predictions submitted by the server predictors directly from the CASP

web site and feed them into rrQNet along with the corresponding MSAs

for quality estimation.

2.4 | Comparison against other baseline
approaches

To evaluate the effectiveness of our method in the absence of other

competing approaches, we compare its performance against three in-

house baseline contact quality estimation methods: consensus, shallow

NN, and naïve Bayes (NB). The consensus-based baseline estimates the

quality of a predicted interacting residue-pair by a contact predictor

based on the average likelihood values of the predictions made for that

residue-pair by the other contact predictors. That is, the average esti-

mated confidence score across the other contact predictors for a

residue-pair is its consensus-based quality score. Following this approach,

we calculate a consensus score of each predicted contact in a contact

map to estimate the quality at the residue-pair level and subsequently

aggregate the resulting 2D matrix containing the consensus residue-pair

confidence scores for estimating the final quality score of the full-fledged

input contact map. The shallow NN baseline consists of two fully con-

nected layers. The precision matrix and the input contact map are

concatenated and passed to the first layer having 10 neurons. The sec-

ond layer consists of one neuron followed by a sigmoid activation func-

tion whose output leads to a 2D matrix of predicted confidence score at

the residue-pair level for subsequent aggregation and the final quality

estimation of the full-fledged input contact map. The NB baseline imple-

ments a Gaussian NB using the precision matrix concatenated with the

input contact map for contact map correctness estimation at the

residue-pair level to be subsequently aggregated for the final quality esti-

mation of the full-fledged input contact map. For a fair comparison

against the controls, the shallow NN and NB baselines are trained on the

same training dataset as used in rrQNet.

2.5 | Evaluation metrices

We employ two-fold evaluation criteria for the performance assess-

ment: (i) capability to reproduce the true quality score of a predicted

contact map and (ii) capability to distinguish between accurate and
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inaccurate contact prediction. Ground truth is quantified by comput-

ing the precision of a predicted contact map against the contact map

derived directly from the experimental 3D structure as:

precision = TP/(TP + FP), where TP (true positive) is the number of

correctly predicted contacts and FP (false positive) is the number of

incorrectly predicted contacts.

For the first evaluation criterion, we calculate Pearson (r), Spear-

man (ρ), and Kendal's tau (τ) correlation coefficients between the esti-

mated contact map quality and ground truth precision. We compute

the per-target average correlation coefficients (Per-target average r, ρ,

and τ) by pooling together all predicted contact maps for a specific

protein target, as well as the overall global correlation coefficients

(overall global r, ρ, and τ) by considering all predicted contact maps for

all targets. The higher the correlation is, the better the performance

is. The second evaluation criterion is measured by the area under the

receiver operating characteristic (ROC) curve with a ground truth pre-

cision cutoff of 0.6. The area under curve (AUC) assesses how well

the predicted quality score may distinguish accurate prediction from

inaccurate ones. The larger the AUC of ROC, the better the capability

is to distinguish between accurate and inaccurate contact prediction.

We also consider per-node strength correlation between the pre-

dicted and native contact maps, which is a graph-based evaluation

metric introduced in a recent CASP14 contact and distance prediction

assessment.41 A contact map can be considered as a graph, in which

the nodes represent the residues and the edges represent the pair-

wise contacts between the residues. In the context of a contact map,

the per-node strength of a node i can be determined simply by sum-

ming up its adjacent edges. We use the correlation between the per-

node strength of a predicted contact map and the per-node strength

of the native contact map to evaluate the predicted contact map, thus

applying a topological graph-based measure.

3 | RESULTS

3.1 | Quality estimation performance on CASP12
and CASP13 benchmark sets

Table 1 reports the performance of rrQNet as well as the baseline

approaches in reproducing the true quality scores of predicted contact

maps for 154 predicted contact maps for 22 FM target domains from

CASP12 and 126 predicted contact maps for 18 FM target domains

from CASP13. rrQNet consistently attains high positive correlations

between the estimated contact map quality and ground truth preci-

sion that are significantly better than all the baseline approaches. For

instance, rrQNet attains the highest per-target average Pearson corre-

lation (r) > 0.85, Spearman correlation (ρ) > 0.8, and Kendal's tau cor-

relation (τ) > 0.65; as well as the highest global Pearson and Spearman

correlations ~0.8 (p-value <3.9e"28) and Kendal's tau correlation

~0.6 (p-value <8.85e"23; see Table S1). Consistently better perfor-

mance of rrQNet compared to the baselines demonstrates the effec-

tiveness of the deep NN architecture adopted in rrQNet. For the

baseline approaches, it is interesting to note the performance tradeoff

between the per-target average correlations and the global correla-

tions. For example, the consensus-based baseline performs reasonably

well in terms of global correlations, but attains negative per-target

average correlations for both CASP12 and CASP13. The shallow NN

baseline achieves weak positive per-target average correlations on

both CASP12 and CASP13, but shows reasonable performance in

terms of global correlations. On further inspection, we find that the

consensus and the shallow NN baselines often misclassify most of the

true positive contacts and estimate low-quality scores for the full-

fledged contact maps when the ground truth quality scores are in fact

much higher, leading to poor per-target average correlations. For

example, the consensus approach misclassifies most of the true posi-

tive contacts for contact map predicted by ResPRE for the target

T0864-D1, resulting in a final quality score of 0.04 (lowest in the pool

of estimated quality scores for target T0864-D1), whereas the ground

truth score is 0.9 (highest in the pool of ground truth scores for the

target T0864-D1). On the other hand, for the contact map predicted

by PSICOV for target T0864-D1, the final quality estimation score by

consensus approach is 0.1 (highest in the pool of estimated quality

scores for the target T0864-D1), whereas the ground truth score is

0.28 (second lowest in the pool of ground truth scores for the target

T0864-D1). As such, the consensus-based baseline results in negative

correlations (r = "0.92, ρ = "0.88, and τ = "0.78) for the target

T0864-D1. Similarly, for the target T0968s1-D1, the consensus-based

method misses most of the true positive contacts predicted by

ResPRE and estimates ResPRE as lower quality (consensus-based

quality estimation score is 0.27, whereas the ground truth is 0.82)

TABLE 1 rrQNet performance in
reproducing true quality scores of
predicted contact maps on CASP12 and
CASP13 targets compared to our in-
house baseline approaches implementing
consensus, shallow NN, and NB.

Dataset Method Avg. r Avg. ρ Avg. τ Global r Global ρ Global τ

CASP 12 rrQNet 0.87 0.80 0.65 0.81 0.79 0.60

Consensus "0.49 "0.51 "0.41 0.72 0.72 0.53

NN 0.09 0.09 0.11 0.75 0.74 0.53

NB 0.75 0.69 0.51 "0.11 "0.06 "0.04

CASP 13 rrQNet 0.90 0.84 0.71 0.81 0.79 0.59

Consensus "0.54 "0.46 "0.39 0.49 0.55 0.40

NN 0.14 0.12 0.14 0.58 0.57 0.39

NB 0.64 0.57 0.44 "0.23 "0.22 "0.14

Note: Values in bold represent the best performance.
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than FreeContact (consensus-based quality estimation score is 0.29,

whereas the ground truth is 0.35), leading to negative correlations

(r = "0.91, ρ = "0.82, τ = "0.69). Likewise, the shallow NN baseline

misclassifies most of the true positive contacts for contact map pre-

dicted by MetaPSICOV for the target T0862-D1, resulting in negative

correlations (r = "0.83, ρ = "0.68, τ = "0.45). By contrast, the NB

baseline attains reasonable per-target average correlations, but nega-

tive global correlations. Closer inspection reveals that the negative

global correlations are caused by the NB baseline frequently estimat-

ing higher quality scores (>0.7) for contact maps predicted by ResPRE

for several targets including T0859-D1, T0862-D1, T0863-D1,

T0990-D2, and T0990-D3 when the ground truth scores are low

(<0.3); and lower quality scores (<0.4) for targets including T0864-D1,

T0912-D3, T0968s2-D1, and T1022s1-D1 when the ground truth

scores are high (>0.8). While the baseline methods exhibit perfor-

mance tradeoff, rrQNet consistently delivers high performance on

both global and per-target correlations. That is, rrQNet is able to accu-

rately reproduce the true contact map quality score across all assess-

ment metrics.

To investigate the capability of rrQNet against the baseline

approaches in distinguishing between accurate and inaccurate contact

prediction, we perform ROC analysis using all 280 contact predictions

from combined CASP12 and CASP13 set containing 40 FM target

domains. Figure 2 shows the rrQNet ROC curve with a high AUC

value of 0.94, which is better than all the baseline methods including

consensus, shallow NN, and NB. Except for NB, which has very low

AUC value since it frequently estimates higher quality scores for when

the ground truth scores are low and lower quality scores when the

ground truth scores are high, the other baselines achieve reasonable

AUC values, albeit much lower than rrQNet. Overall, the results dem-

onstrate that rrQNet attains superior performance in separating accu-

rate and inaccurate contact prediction compared to the baseline

approaches.

3.2 | Confidence prediction of contacts at residue-
pair resolution

While rrQNet ultimately provides an estimated quality score of a

full-fledged input contact map, the penultimate stage of the rrQNet

pipeline outputs a 2D matrix of predicted confidence score at the

level of individual residue-pairs from the input contact map. That is,

rrQNet intrinsically performs confidence prediction of individual

contacts at the residue-pair resolution to classify a contact as true

positive if the average predicted likelihood of the residue pair (i,j)

and the residue pair ( j,i) is greater than the threshold of 0.5. In

Figure 3A–F, we show the true positive contacts predicted by

rrQNet (lower triangles, green dots) out of the top L predicted con-

tacts (lower triangles, red dots) against the ground truth (upper trian-

gle, blue dots) for six representative targets from the CASP12 and

CASP13 benchmark sets. For targets T0864-D1, T0968s2-D1, and

T0969-D1, the contact maps predicted by ResPRE, MetaPSICOV,

and DeepConPred2, respectively, are shown as representative exam-

ples of accurate contact prediction. For each of the three contact

predictions shown in Figure 3A–C true positive contacts predicted

by rrQNet (green dots) cover almost all the contact patterns present

in the ground truth (blue dots). As such, the final estimated quality

scores predicted by rrQNet for the three targets are 0.87, 0.74, and

0.7, respectively, which are close approximations of the correspond-

ing ground truth precision scores of 0.9, 0.71, and 0.65, respectively.

On the other hand, for target domains T0904-D1, T0950-D1, and

T0980s1-D1 shown in Figure 3D–F, contact maps predicted by

FreeContact and PSICOV are examples of noisy contact prediction,

having ground truth precisions of 0.02, 0.01, and 0.09, respectively.

Here, rrQNet correctly recognizes most of these contacts as false

positives, leading to the final estimated quality scores of 0.03, 0.01,

and 0, respectively. In summary, rrQNet is useful in predicting the

confidence of contacts at the residue-pair resolution.

To investigate whether the performance of rrQNet generalizes

for the state-of-the-art contact and distance predictors such as

AlphaFold2,5 trRosetta,3 and RaptorX,1 we study rrQNet prediction

at the residue-pair resolution resulting from AlphaFold2, trRosetta,

and RaptorX. Figure 4A–C shows the performance of rrQNet at the

residue-pair resolution on three representative targets from

CASP12 and CASP13 benchmark sets. Similar to Figure 3, the

upper triangle (blue dots) represents the ground truth, and the

lower triangle represents the top L predictions (red dots) and true

positive contacts predicted by rrQNet (green dots). For targets

T0859-D1, T0866-D1, and T1022s1-D1, contact maps predicted

by AlphaFold2, trRosetta, and RaptorX, respectively are shown as

representative examples of high accuracy contact predictions. trRo-

setta and RaptorX contact predictions are obtained by summing up

the likelihood values of the predicted distance bins up to 8 Å,

and AlphaFold2 contact prediction is obtained from the file

“rank_1_model_1_ptm_seed_0.raw.txt” by running AlphaFold2 in

ColabFold's42 notebook. For all three cases in Figure 4A–C, rrQNet

(green dots) captures the majority of contact patterns that are pre-

sent in the ground truth (blue dots). All three contact maps are

F IGURE 2 ROC analysis. The ROC curve and the corresponding
AUC value are used to assess rrQNet performance compared to our
in-house baseline approaches implementing consensus, shallow NN,
and NB in distinguishing between accurate and inaccurate contact
prediction with a ground truth precision cutoff of 0.6 on 280 contact
maps predicted by the seven locally installed contact prediction
methods for 40 FM targets from CASP12 and CASP13.
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accurately predicted having the ground truth precisions of 0.87,

0.98, and 0.92, respectively, and graph-based per-node strength

correlations of 0.75, 0.76, and 0.81, respectively. The final esti-

mated scores by rrQNet are also high as 0.92, 0.84, and 0.83,

respectively. The results demonstrate the generalizability of rrQNet

for confidence prediction of contacts at the residue-pair resolution

for the state-of-the-art predictors, even when the train set of

rrQNet does not include these methods.

F IGURE 3 Confidence prediction of contacts. Six representative examples are shown. The upper triangle with blue dots represents the
ground truth, the lower triangle with red dots represents the top L predicted contacts using various predictors, and the lower triangle with green
dots represents the contacts classified by rrQNet as true positives.

F IGURE 4 Confidence prediction of contacts predicted by AlphaFold2, trRosetta, and RaptorX. Three representative examples are shown.
The upper triangle with blue dots represents the ground truth, the lower triangle with red dots represents the top L predicted contacts using
various predictors, and the lower triangle with green dots represents the contacts classified by rrQNet as true positives.
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3.3 | Pseudo-blind assessment on CASP14 contact
prediction experiment

To investigate the generalizability of rrQNet in accurately estimating

the qualities of contact maps beyond the seven locally installed con-

tact prediction methods used for training and benchmarking, we per-

form a pseudo-blind assessment by estimating the qualities of the

contact maps submitted by 30 server predictors participating in

CASP14 contact prediction category. Figure 5 shows the rrQNet esti-

mated quality score versus the CASP reported ground truth precision,

averaged overall targets submitted by various server predictors for

long-range, medium- and long-range, and short-range contacts.

rrQNet consistently achieves high positive correlations between the

estimated contact map quality and ground truth precision. For

instance, the Pearson correlation (r) for long-range only contacts is

0.83, combined medium- and long-range contacts are 0.88, and short-

range only contacts is 0.92. Spearman correlation (ρ) (and Kendal's

Tau correlation (τ)) for long-, medium- and long-, and short-range con-

tacts are 0.7 (and 0.53), 0.69 (and 0.53), and 0.7 (and 0.55), respec-

tively. It is interesting to note that rrQNet continues to deliver good

quality estimation performance for a wide variety of methods partici-

pating in CASP14, some of which are significantly improved versions

of contact predictors than those used in rrQNet training. The results

demonstrate that rrQNet can generalize well for estimating the quali-

ties of contact maps predicted by a diverse array of methods. This

suggests that the quality score of rrQNet can be potentially used as a

loss function of an end-to-end structure prediction system as well as

for iterative optimization of the contact maps by propagating the

feedback through the end-to-end architecture. Furthermore, contact-

driven homology detection and reconstruction approaches can benefit

from such a generalizable quality estimate of a contact map predicted

by external methods.

In Figure 6A–F, we show the performance of rrQNet at the

residue-pair resolution on contact maps predicted by different server

predictors for three representative CASP14 targets. For targets

T1047s1-D1, T1074-D1, and T1090-D1, contact maps predicted by

MULTICOM-DIST, PrayogRealDistance, and tFold-Cat are examples

of reasonably accurate predictions (Figure 6A–C), whereas contact

maps predicted by BrainFold and ICOS are noisy (Figure 6D–F). For all

the three high-quality predicted contacts, rrQNet (green dots) esti-

mates the majority of contact patterns present in the ground truth

(blue dots), leading to the final estimated quality scores of 0.9, 0.88,

and 0.83, for MULTICOM-DIST, PrayogRealDistance, and tFold-Cat

predictions, respectively, which are close approximation of their

ground truth precisions of 0.88, 0.73, and 0.9, respectively. On the

other hand, for noisy contact maps predicted by BrainFold and ICOS,

rrQNet correctly recognizes most of the false positives, resulting in

the final estimated quality scores of 0, 0.02, and 0.37, respectively,

which are close approximation of ground truth precision of 0.06, 0.13,

and 0.39, respectively. It is interesting to note that rrQNet correctly

recognizes the sparsely populated segment of accurate pattern in the

contact map predicted by ICOS, despite the noise in the overall pre-

dicted contact map. The results demonstrate the robustness of

rrQNet performance.

3.4 | Ablation study

To examine the contribution of various components used in our deep

learning-based contact map quality estimation method such as the deep

NN architecture adopted and the contact map prediction methods uti-

lized for the training, we perform an ablation study using an independent

validation set of 30 FM targets from CASP11. We follow the same MSA

generation protocol and the same training and inference procedure as

described before to perform head-to-head comparison.

3.4.1 | Contribution of deep NN architecture

rrQNet consists of the evolutionary and reconciliation modules, each

being a stack of ResNet blocks. We study the effect of the network

architecture on performance by gradually varying the number of

ResNet blocks in the evolutionary and reconciliation modules while

utilizing the same training dataset and evaluating quality estimation

F IGURE 5 Estimated quality score versus ground truth precision for CASP14*. rrQNet estimated quality score versus the CASP reported
ground truth precision, averaged over all targets submitted by various server predictors are shown for long-range, medium- and long-range, and
short-range contacts. *BrainFold method is discarded for the calculation of short-range contacts due to missing prediction.
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performance on the CASP11 validation set. As shown in Figure 7, the

global Pearson correlation steadily increases with the increasing num-

ber of the ResNet blocks and attains a value of 0.8 for 55 ResNet

blocks in the evolutionary module and 40 ResNet blocks in the recon-

ciliation module (hereafter called the 55/40 architecture), before

sharply dropping, possibly due to overfitting when deeper architec-

ture beyond 55/40 is used. The per-target average Pearson correla-

tion remains relatively steady while attaining the highest value of 0.91

for the 55/40 architecture. As such, this architecture is empirically

chosen as the de facto model used in rrQNet. When we replace the

ResNet blocks with standard convolutional blocks in the de facto

model, the global Pearson correlation drops from 0.8 to 0.77, thus jus-

tifying the choice of ResNet architecture used in rrQNet.

3.4.2 | Contribution of contact prediction methods
used for training

Our deep learning model is trained on seven contact predictors rang-

ing from pure coevolutionary methods to deep learning approaches. A

F IGURE 6 Confidence prediction of contacts predicted by different servers participating in CASP14. Six representative examples are shown
for three targets. The upper triangle with blue dots represents the ground truth, the lower triangle with red dots represents the top L predicted
contacts using various predictors, and the lower triangle with green dots represents the contacts classified by rrQNet as true positives.

F IGURE 7 Effect of deep NN architecture. Global and per-target
average Pearson correlations are shown for a gradually increasing
number of ResNet blocks in the evolutionary and reconciliation
modules. The arrow indicates the de facto model chosen in rrQNet.
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natural question to ask is can we improve the performance even fur-

ther by discarding the low-accuracy coevolutionary contact prediction

methods for training and instead exploiting cutting-edge approaches

for predicting finer-grained binned distance distributions, which can

lead to contact maps as a byproduct? To examine such question, we

retrain rrQNet after discarding pure coevolutionary methods PSICOV

and FreeContact and evaluate quality estimation performance on the

CASP11 validation set. The model retrained without PSICOV and

FreeContact underperforms (global Pearson correlation 0.78) the orig-

inal rrQNet (global Pearson correlation 0.8). We also independently

retrain rrQNet after adding two recent distance map predictors trRo-

setta3 and RaptorX1 and converting the binned distance distributions

into contact maps by summing up the likelihood values of the pre-

dicted distance bins up to 8 Å. The model retrained with trRosetta

and RaptorX still underperforms (global Pearson correlation 0.77) the

original rrQNet (global Pearson correlation 0.8). The results suggest

that pure coevolutionary methods used in rrQNet are useful, possibly

by calibrating the training data in terms of false positives, whereas

finer-grained distance map predictors may not bring additional value

for contact map quality estimation.

4 | DISCUSSION

We have introduced rrQNet, a deep learning method for contact map

quality estimation that can accurately perform self-assessment of pro-

tein structures at the residue pair representation captured by a 2D

contact map, without explicitly turning the contact map into 3D coor-

dinates. By performing deep NN-based reconciliation of the evolu-

tionary context-integrated contact maps, our trained classifier

distinguishes true positive from false positive contacts, ultimately

approximating the precision of an input contact map. We have shown

that its predictions achieve much better performance than our in-

house baselines, generalize well for contact maps generated by a wide

variety of contact predictors, and offer versatility for contact quality

estimation at varying granularities from individual residue-pair to full-

fledged contact map. The contact quality score predicted by our

method may help improve end-to-end protein structure prediction.

We may further improve the sensitivity of our method by extend-

ing the deep learning model to identify false negative contacts, which

can be probabilistically combined with the estimated true positives in

order to estimate the recall of a predicted contact map. Estimated

recall can be used together with the predicted precision for a more

rigorous evaluation of the input contact map. This will likely improve

the robustness of our method by approximating the F-score metric,

which can be calculated as the harmonic mean of the estimated preci-

sion and recall values. We may also improve the quality estimation

performance by combining both evolutionary and physical constraints.

For example, we may enforce a set of realistic physical constraints on

the contact map,43 along with the recognition of protein-like contact

patterns.44 Such integration of both evolutionary and physical con-

straints using a deep learning model could result in improved quality

estimation. Finally, instead of quality estimation of predicted contact

maps, our deep learning model can be extended to estimate the qual-

ity of an inter-residue distance matrix, which encodes finer-grained

information than contact maps and provides more physical constraints

of a protein structure and thus, potentially benefits protein structure

prediction more than the quality estimation of predicted contacts. In

this regard, the quality estimation of the inter-residue distance matrix

can include the evaluation of inter-domain accuracy in addition to

domain-level correctness by incorporating AlphaFold's Predicted

Aligned Error plot, in which each position (x, y) captures the expected

distance error in residue x's position when the prediction and true

structure are aligned on residue y. This should be useful in estimating

the correctness of relative domain orientations for large multidomain

protein structures.
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