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Abstract

Temperature is a major environmental factor affecting the
development and productivity of crop species. The ability to
cope with periods of high temperatures, also known as ther-
motolerance, is becoming an increasingly indispensable trait for
the future of agriculture owing to the current trajectory of
average global temperatures. From temperature sensing to
downstream transcriptional changes, here, we review recent
findings involving the thermal regulation of plant growth and the
effects of heat on hormonal pathways, reactive oxygen species,
and epigenetic regulation. We also highlight recent approaches
and strategies that could be integrated to confront the chal-
lenges in sustaining crop productivity in future decades.
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Introduction

Earth is on track to reach an average increase of as much
as 5.5 C in global surface temperatures by the end of the
century, depending on actions taken to mitigate COZ and
other harmful emissions by human activities [1]. This
will be accompanied by more frequent extreme weather
events such as floods and droughts that will negatively
impact crop productivity in many areas. As temperature
rises, the geographical distribution of plant species is

likely to shift, affecting growth in relation to day/night
temperatures, light intensity, and biotic stresses, among
other factors. The impact of a single degree-Celsius in-
crease in temperature is estimated to reduce maize, rice,
wheat, and soybean vyields between 3.1% and 7.4% [2],
and the severity of temperature-induced stresses is
exacerbated by the fact that environmental stresses are
often combined (e.g. heat and drought) [3]. For example,
during the severe 2012 heatwave in the United States
corn belt, combined with limited precipitation, maize,
and soybean, yield decreased ~22% and 17%, respec-
tively, versus trend yields [4]. Similarly, severe losses in
wheat and barley yields were recorded in 2018 in
Northern and Eastern Europe owing to extreme tem-
perature and reduced precipitations [5].

Different crop species and genotypes vary in their
optimal growth temperatures and heat tolerance at
various stages throughout their lifecycles. However,
because of natural fluctuations in daily and seasonal
temperatures, crops have robust mechanisms to adjust
their growth in response to temperature changes. Accel-
erated shoot and root growth as well as the transition to
flowering are well-known responses of plants to warm
ambient temperatures, collectively referred to as ther-
momorphogenesis. However, on exposure to heat shock,
plants typically experience stress, which impairs respira-
tion, photosynthesis, water and nutrient uptake, immu-
nity, membrane function, protein function, and hormone
and antioxidant metabolism. One of the major manifes-
tations of heat stress on plant development is sterility, in
particular male sterility [6], which causes widespread
yield losses. In crops such as maize, rice, and wheat, these
effects impact growth, reproductive potential, and grain
filling after fertilization. Because these species together
represent the largest contributors to human calorie
intake, it is essential to better understand how temper-
ature affects their growth and devise multiple integrated
strategies to develop thermotolerant varieties.

Plant thermotolerance is divided into basal and ac-
quired. Whereas basal thermotolerance refers to the
ability to survive high temperatures, acquired thermo-
tolerance refers to the ability to cope with lethal high
temperatures after an acclimatization period. At the
molecular level, some of the well-known responses to
heat stress include the induction of heat shock tran-
scription factors (HSFs), whose targets include heat
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2 Growth and Development

shock proteins (HSPs) and reactive oxygen species
(ROS)-scavenging enzymes [7,8]. HSPs generally
function as chaperons for denatured proteins and are
important factors for thermotolerance. For example, in
rice, acquired thermotolerance depends on OsHSP101
and OsHSA32 (HEAT STRESS-ASSOCIATED 32-KD
PROTEIN) [9], and tomato HSP40 protects the

Figure 1

synthesis of melatonin, a molecule involved in regula-
tion of abiotic tolerance under heat stress [10]. At high
temperatures, plants also accumulate protective pro-
teins that target misfolded proteins in the endoplasmic
reticulum, a process known as the unfolded protein
response (UPR). In a recent report in maize, the UPR
and heath shock response were connected by the
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Temperature perception and influence on plant development. (a) Recent insights into temperature perception include mRNA conformational changes
(PIF7 [19]) and phase changes in predicted prion domain-containing proteins (ELF3 and others; [18]), both occurring at warmer temperature. (b) Tem-
perature influences several hormonal pathways, including auxin signaling and transport via HSP90 [28,29], as well as ethylene signaling pathways [37,38].
HSP90 is also involved in thermostabilizing HOS1 that induces thermotolerance by activating DNA repair mechanisms [30]. (¢) ROS production increases

during heat stress, affecting core developmental pathways. Expressing the D1

subunit of photosystem Il (PSIl) from the nuclear genome enhances

thermotolerance in different species [51]. The maize mitochondria-localized FtsH protein NDL1 protects plants from temperature stress [49]. (d) Tem-
perature also influences histone H2A.Z removal [24,53] and transposable element activation via the RdDM pathway [55,61,62]. Depicted examples are
discussed in detail in the main text. ELF, EARLY FLOWERING 3; ROS, reactive oxygen species; RdDM, RNA-directed DNA methylation.
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activity of the transcription factor ('TF) bZIP60. bZ1P60
is activated by heat-induced splicing during the UPR
[11] and promotes the expression of a key ASFin maize
heat stress response [12]. Similarly, in rice, OsbZIP74
and the membrane-localized NAC TF OsN'T'L.3 are part
of a UPR-related regulatory circuit that promotes heat
tolerance [13].

Recent insights into temperature perception
Temperature sensing depends on a variety of cellular
mechanisms, including the activity of phytochromes at
warm temperatures, the induction of HSPs, and phys-
ical changes in lipid membranes occurring during heat
stress [14]. Phytochromes are a major type of plant
photoreceptors that respond to different light inputs
and coordinate growth. Recently, it was reported in
Arabidopsis that phytochrome B (phyB) signaling is also
responsive to heat and that perturbation of phyB
signaling is exacerbated by warm temperature during
early night [15,16]. Additional mechanisms for tem-
perature sensing recently uncovered in Arabidopsis
include EARLY FLOWERING3 (ELF3) and the bHLH
TF PHYTOCHROME INTERACTING FACTOR 7
(PIF7) (Figure 1a).

ELF3, a key component of temperature sensing that
functions as a repressor and negative regulator of ther-
momorphogenesis and whose binding to target genes
decreases as temperature rises [17], is a prion-like
thermosensor that changes phases as per temperature,
a process dependent on the presence and length of a
predicted prion domain (PrD). However, plant species
whose optimal growth is in temperate and warmer cli-
mates such as tomato and Brachypodium, either
completely lack or contain a shortened PrD region, do
not show phase changes and consequently lack ELLF3
thermal responsiveness [18]. On the other hand, the
translation of PIF7 is enhanced by conformational
changes in its RNA secondary structures in response to
higher temperatures. This thermosensing mechanism is
also shared by the heat shock transcriptional regulator
HSFA2 [19]. In both instances, it remains to be
determined whether similar thermosensory mecha-
nisms are found in crop species growing in warmer cli-
mates (e.g. presence of other PrD domain-containing
proteins) and whether they also play a role in response
to heat stress, as suggested by conformational changes
of H§FA2 mRNA.

Once temperatures rise above physiologically tolerated
levels, most plants begin to experience the detrimental
effects of heat stress. This triggers a set of signaling
pathways that are largely distinct from those of ther-
momorphogenesis  [20,21]. Upstream  perception
mechanisms triggering this response are not entirely
clear but appear to involve calcium and hydrogen
peroxide (H20;) signaling [14]. Heat stress also leads to
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an increase in membrane fluidity and instability, and
therefore these changes may be a signal themselves
[16]. Regardless of the upstream signal transduction,
downstream transcriptional responses are activated
within minutes of heat stress and result in rapid tran-
scriptional changes that include downregulation of
growth and metabolic genes, and induction of HSPs,
cochaperones and certain HSFs that bind to a highly
conserved cs-regulatory heat shock element (HSE)
containing the DNA sequence AGAAnnT'T'C'T or similar
motifs [21]. Genome-wide empirical identification of
HSF binding sites in crop species could be highly
beneficial because engineering of HSEs and upregula-
tion of certain HSFs may sensitize plants to increases in
heat, thereby triggering ‘priming’ to protect plants from
subsequent stresses [22].

Temperature influence on hormonal pathways

Plants rely on phytohormones to regulate every aspect of
development and to respond to constant environmental
challenges. Facing daily temperature changes and fluc-
tuations, plants actively engage hormones to regulate
thermomorphogenesis (e.g. auxin, brassinosteroids, and
ethylene) as well as to impart thermotolerance (e.g.
cthylene and abscisic acid). Exogenous application of
phytohormones can potentially mitigate heat-induced
damage and improve heat tolerance to improve agricul-
tural crop productivity and yield [23].

One of the most well-known effects of temperature on
plant development is the acceleration of the floral
transition in warmer temperatures. In Arabidopsis, this
is owing to PIF4-mediated activation of the florigen
FLOWERING LOCUS T (FT) [24]. PIF4,abHLH TE
is also involved in promoting auxin-dependent growth in
warm conditions by activating YUCCA flavin mono-
oxygenase auxin biosynthetic genes and early auxin-
induced SAUR genes [25,26]. To maintain robustness of
floral formation across varied temperatures, Arabidopsis
uses the meristem maintenance regulators CLAVATAZ
and CORYNE, a leucine-rich repeat (LRR) receptor-
like protein and a membrane-localized pseudokinase,
respectively. CLAVATA2/CORYNE function in flower
primordia formation at ambient and cooler tempera-
tures; at high temperature, however, this pathway is
bypassed by the activation of auxin biosynthesis via
PIF4, which in turn depends on the removal of ELF3, as
previously discussed [27] [17].

Another well-established connection between auxin and
temperature-regulated growth concerns Arabidopsis
HSP90, which promotes the stability of the auxin
coreceptor TIR1 thermomorphogenesis [28] and in-
fluences the localization of the polar auxin transporter
PIN1 [29] (Figure 1b). Intriguingly, HSP90 is also
involved in the thermal stabilization of HOS1 (HIGH
EXPRESSION OF OSMOTICALLY RESPONSIVE
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GENET1), a protein with E3 ubiquitin ligase activity with
important functions in regulating temperature response.
When stabilized, HOS1 increases thermotolerance by
activating DNA repair components [30] and is known to
negatively regulate PIF4 and repress the thermomor-
phogenesis response [31]. Root architecture is also
known to change in response to temperature, and auxin
contributes to the induction of root growth in warmer
temperature [32]. A recent study showed that increased
temperature decreases the abundance of the Arabi-
dopsis intracellular auxin carrier PILS6, a negative
regulator of organ growth that limits auxin availability in
the nucleus, therefore increasing auxin signaling for root
formation [33]. However, prolonged exposure to higher
temperature (29 °C) promotes primary root growth by
downregulating brassinosteroid (BR) signaling, inde-
pendently of auxin [34]. The TF BRASSINAZOLE
RESISTANT1 (BZR1) is a positive regulator of BR
signaling, and loss of function of BZR1 in tomato re-
duces expression of the NADPH oxidase-encoding
RBOHI (RESPIRATORY BURST OXIDASE HOMO-
LOGI) gene, involved in the regulation of apoplastic
ROS production, and weakens heat tolerance; over-
expression of BZR1, on the other hand, improves ther-
motolerance by enhancing H;O; levels [35]. Recently,
BR signaling was also shown to regulate thermomor-
phogenesis in conjunction with the membrane-bound
MAP4K4 kinase TOT3, which regulates thermal
response in wheat and Arabidopsis [36].

EIN3 (ETHYLENE-INSENSITIVE 3) is a key tran-
scriptional regulator of the gaseous hormone ethylene
signaling pathway. EIN3 protein levels are tightly
controlled by EBF1 and EBF2, part of the 26S
proteasome-mediated degradation pathway, which in
turn are regulated by SDIR1, a RING finger E3 ligase,
which targets them for ubiquitination and proteasome-
dependent degradation in a temperature-dependent
fashion. Consequently, higher temperatures promote
EIN3 activity [37]. Among the targets of EIN3-positive
regulations are the KTHYLENE RESPONSE FACTORs
ERF95 and ERF97. ERF95 and ERF97 are involved in
basal thermotolerance of Arabidopsis and regulate heat-
responsive genes including HSFA2, which as mentioned
previously may function as a thermosensor [19]
(Figure 1b). It remains to be determined how the ac-
tivity of both factors is regulated by temperature,
although heat stress strengthened dimerization of
ERF95 and ERF97 [38].

Abscisic acid (ABA) is a stress hormone that enables
plants to enhance thermal acclimation under various
stresses, in particular, via its well-known role in stomata
regulation in connection with ROS [39]. Under heat
stress, ABA concentrations increase owing to enhanced
biosynthesis, reduced degradation, or release from

conjugated forms [39]. ABA is an inducer of the tran-
scription factors ERF74 and ERF75, which on heat
stress are released from the plasma membrane and
translocate in the nucleus to directly regulate RBOHD
and induce thermotolerance [40]. ABA also induces the
expression of certain HSFand HSP genes, contributing
further to a complex network of thermotolerance
pathways [41,42].

Reactive oxygen species and temperature

ROS are toxic by-products of aerobic metabolism but
also serve as important signaling molecules that increase
under stress conditions and trigger acclimation re-
sponses [43,44]. Modulation of ROS levels via ROS-
scavenging enzymes in rice was shown to lead to stress
tolerance by affecting H,O, accumulation and conse-
quently regulating stomata aperture [45,46].

Recently, ROS have emerged as key regulators of stem
cell proliferation and differentiation in meristems. In
meristems, the superoxide anion (O3) is enriched in the
central zone of shoot apical meristems to maintain stem
cell fate, and H,O; accumulates primarily in the pe-
ripheral zone for stem cell differentiation [47,48]. In the
tomato shoot apical meristem, the distribution of H,0O,
resembles the expression pattern of the TERMINAT-
ING FIL.LOWER (TMF) gene, which encodes a TF that
promotes flowering independently of the florigen
pathway. The cysteine residues on the TMF protein are
oxidized by H,0; to form disulfide bonds that drive the
formation of the phase-separated TMF transcriptional
condensate, which reinforces the repression of an
important floral identity gene, directly linking ROS to
the regulation of floral transition [48]. It remains to be
determined whether rapid fluctuations in ROS levels
caused by changing temperatures affect TMF function
and meristem activity.

In a recent study, the maize temperature-sensitive
mutant zeedlel (ndll) was reported to hyper-accumulate
ROS owing to respiratory defects in mitochondria [49].
NDL1 is an FtsH mitochondria-localized ATP-depen-
dent metalloprotease that participates in the quality
control of oxidative phosphorylation complexes. #d/l
mutants showed defective meristem development and
markedly high levels of H,O; in inflorescence meristems,
owing to increased alternative respiration [50]. Elevated
H;0; levels correlated with decreased endogenous auxin
concentrations, leading to defective initiation of lateral
primordia and meristems in inflorescences. Interestingly,
nd/l mutants carry transcriptional signatures of enhanced
stress response when grown in warm temperature,
revealing many genes that may work under heat stress
during maize inflorescence development, including
several RBOHD genes, antioxidant enzymes, and tran-
scriptional regulators [49] (Figure 1c).
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ROS are also produced in chloroplasts under heat stress
and mainly prevent the translation of the D1 subunit by
the chloroplast psbéA gene. D1 functions to repair and
sustain photosystem II activity against thermal damage
(Figure 1c). Supplementing the chloroplast pool with
D1 of nuclear origin using the HSFAZ promoter was
shown to enhance thermotolerance in Arabidopsis, to-
bacco, and rice. Noticeably, the increased rate of
photosynthetic carbon fixation in rice transgenic plants
translated into enhanced biomass at harvest and
increased grain yield in field-grown plants [51]. These
results show how the use of a clever biotechnological
strategy can bypass the negative effect of excessive ROS
production in chloroplasts under heat stress.

Temperature-induced epigenetic changes

Epigenetic regulation plays an indispensable role in
plant development and in response to environmental
challenges. The plant epigenome appears to be highly
dynamic, and a variety of biotic and abiotic stimuli can
rapidly reshape genome-wide epigenetic modifications
[52]. In Arabidopsis, the removal of the histone variant
HZ2A.Z in warm temperatures, which allows PIF4 bind-
ing and the transcriptional activation of /7"as part of the
thermomorphogenesis response [24], is driven by the
association of the chromatin-remodeling complex
INO8O with PIF4 itself [53] (Figure 1d). Although
originally described as a thermosensor, this and other
evidence instead suggest that HZA.Z lacks the property
of a true thermosensor [16].

RNA-directed DNA methylation (RdDM) is a unique
pathway in plants involving noncoding RNA that directs
DNA methylation to specific DNA sequences and es-
tablishes H3K9me2 histone methylation [54]. Plants
use the RADM pathway to cope with heat stress, and
mutations in components of the RADM pathway are
hypersensitive to heat exposure [55]. The Arabidopsis
FLOWERING WAGENINGEN (FWA) gene is silenced
in wild-type plants owing to RdDM-mediated DNA
methylation of a transposable element in its promoter
region; and the removal of DNA methylation reactivates
its expression, leading to a late-flowering phenotype
[56,57]. Intriguingly, the activation of the FIWA gene is
also observed in wild-type plants under heat stress [58].
Normally, transposable elements are partially
suppressed by the RADM pathway in plants [59], but
their expression can be upregulated under abiotic stress
conditions, including heat stress [60,61] (Figure 1d),
suggesting that the heat-driven activation of the FIWA
gene could be owing to epigenetic changes. A recent
maize study also showed that the RdADM pathway can
buffer the effects of heat stress on transposable ele-
ments [62]. Another study in maize inbred lines
exposed to heat and cold stresses found that only certain
transposable elements show expression changes in
response to heat stress, and this response depended on
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methylation status as well as genomic variation [61],
highlighting the complexity of the response to stresses
in species with genome-wide proliferation of transpos-
able elements.

Heat shocks are also known to impact chromatin
accessibility, and genes with heat-activated DNase [
hypersensitive sites include those encoding HSPs and
TFs involved in heat stress response. Analysis of
enriched elements in their promoters revealed HSEs,
highlighting the importance of HSFs in driving the heat
shock response [21].

Conclusions and perspectives: improving
thermotolerance in crop species

As agriculture faces the pressing challenges forced by
climate change, different approaches should be simul-
taneously pursued to develop thermotolerant crop vari-
eties. These should include biotechnological strategies
targeted at increasing thermotolerance, the genetic and
genomic selection of tolerant varieties, as well as the
widespread adoption of resilient species. From percep-
tion to downstream temperature response regulation,
our increasing mechanistic knowledge provides oppor-
tunities to develop heat-tolerant crop varieties.
Although transcriptomic studies have been extensively
used to characterize the response to abiotic stresses, a
deeper mechanistic understanding of temperature
regulation and stress response specifically in crop spe-
cies grown under natural environmental conditions [63]
provides the potential to devise ad /oc biotechnological
strategies. For example, in potatoes, the FT homolog
SP6A was shown to be under control of a small RNA
upregulated by heat which inhibited tuberization. The
expression of a target mimicry construct to sequester
the endogenous small RNA promoted tuberization even
in the presence of continuous heat [64]. In rice, muta-
tions in the cytosolic tRNA 2-thiolation protein
SLENDER GUY1 involved in the post-transcriptional
modification of a tRNNA showed enhanced sensitivity
to high temperature in both vegetative and reproductive
development, whereas overexpression and natural vari-
ation existing in both promoter and coding sequences of
SLENDER GUYI in indica varieties promoted thermo-
tolerance [65]. This study adds to the growing evidence
for the role of RNA modifications in promoting ther-
motolerance [66,67]. Additional examples of the
importance of exploiting natural variation in developing
high-temperature tolerant varieties as well as the
adoption of heat-tolerant crops include Arabidopsis ac-
cessions with distinct £/LF3 variants [68], the African
rice proteasome 02 subunit involved in the degradation
of ubiquitinated proteins [69], the alternative splicing
of the tomato HSFA2 pre-mRNA [70], and the recent
characterization of a wild species of coffee tolerant to
high temperature, even though the basis for such
tolerance is presently unknown [71].

www.sciencedirect.com

Current Opinion in Plant Biology 2022, 65:102134


www.sciencedirect.com/science/journal/13695266

6 Growth and Development

As shown for developmental regulators in tomatoes and
maize [72,73], generating new cis-regulatory variants
presents another attractive avenue to improve crop
resilience. Recently, a machine learning approach was
applied to identify cis-regulatory elements associated
with heat-responsive gene expression and predict
expression changes in different maize inbreds [74].
Such loci could ultimately be targeted for specific
modifications using base editing to improve thermotol-
erance in various germplasms. The expanding genomic
and pangenomic resources, single-cell genomics, and
machine learning approaches coupled with precision
editing in crop species are likely to aid the breeding of
stress-tolerant varieties to confront the daunting chal-
lenges of the incoming decades.
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19. Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F,
ee Franaszek K, Marriott P, Brierley |, Firth AE, Wigge PA: An RNA
thermoswitch regulates daytime growth in Arabidopsis.

Native Plants 2020, 6:522—-532.

This paper shows that the translation of the Arabidopsis bHLH PIF7 is
enhanced in a temperature-dependent fashion and is necessary and
sufficient to activate genes during thermomorphogenesis. The 5UTR
of PIF7 mRNA forms a hairpin structure that is responsible for the
thermosensing translational response from 17 °C to 27 °C. A similar
mechanism is shared by two other regulators of thermal response,
HSFA2 and WRKY22.
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The temperature-sensitive nd/7 maize mutant was originally discovered
for its inflorescence phenotype, showing very similar defects to auxin-
related mutants when grown in high temperatures. Surprisingly, how-
ever, the causative mutation was found in a nuclear gene encoding a
mitochondria localized FtsH protease. FisH proteases in the mito-
chondria are involved in the quality control of membrane bound res-
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