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We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the dis-
tribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation.
Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists
for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with
those extracted via the ILT method for several values of the stretching exponent and at different levels
of experimental noise. The ILT accurately captures the distributions for bK0:7, and for signal to noise
ratios greater than � 40; however the ILT distributions tend to introduce artificial oscillatory compo-
nents. We further use the ILT approach to analyze stretched relaxation for spin I > 1=2 and find that
the distributions are accurately captured by the theoretical expression for I ¼ 1=2. Our results provide
a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched
exponential fits.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the most important quantities measured in magnetic
resonance is the spin lattice relaxation rate, T�1

1 . This quantity
probes the interaction between the nuclear spins and their envi-
ronment, and reveals information about the local dynamics at
the nuclear spin site. In conductors, the dominant contribution to
T�1
1 arises from the hyperfine coupling to the electron spins, and

in this case T�1
1 can be directly related to the dynamical spin sus-

ceptibility of the electrons [1]. This relationship has been exten-
sively utilized to study a number of correlated electron systems,
ranging from high temperature superconducting cuprates [2–6],
heavy fermion materials [7–9], iron-based superconductors [10–
12] and other exotic materials [8,13]. A common issue in correlated
electron systems is the presence of electronic inhomogeneity [14–
19]. Even in a single crystal, inhomogeneity may arise intrinsically
via frustration among competing orders, from the presence of
impurities, or via inhomogeneous electronic responses such as in
the mixed state of a type II superconductor. If the inhomogeneity
is purely static, then the nature of the inhomogeneous distribution
can often be studied via the effect on the NMR spectrum [20,21]. If
the inhomogeneity fluctuates, then the spectrum may be motion-
ally narrowed, precluding such investigations. However, in many
cases the dynamics of the inhomogeneity may be reflected in
T�1
1 , in which case there is a distribution of relaxation rates, rather

than a single homogeneous T�1
1 .

If each nucleus in a crystal relaxes with a different relaxation
rate,W1 rð Þ, where r describes the position of the nucleus in the lat-
tice, then the total magnetization measured experimentally exhi-
bits a complicated relaxation curve. If the distribution of
relaxation rates, P W1ð Þ, is sufficiently narrow, then the NMR mag-
netization recovery data can be fit to a exponential form,
exp �t=T1½ � (for a spin I ¼ 1=2 nucleus), where t is the recovery
time, and T�1

1 is the median of P W1ð Þ. On the other hand, if
P W1ð Þ is wide, then this exponential form will not fit the magneti-
zation recovery data well, making it difficult to extract a meaning-
ful value of T�1

1 . It is common practice to fit the recovery to a

stretched exponential form, exp � t=T1ð Þb
h i

, where b is the so-

called stretching exponent that provides a rough measures of the
width of P W1ð Þ, and satisfies 0 < b 6 1 [22,23]. In many glassy sys-
tems, it has been observed that b decreases from unity as the tem-
perature is reduced [24,25]. As b is reduced, the distribution P W1ð Þ
grows by several decades, and b is related to the logarithmic width
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of the distribution. Analyzing magnetization recovery data with a
stretched exponential is straightforward to implement and
requires only one extra fitting parameter.

A significant disadvantage to this approach, however, is that it
makes an implicit assumption about the shape of P W1ð Þ that
may or may not accurately reflect the true distribution. A more
direct method to extract the distribution is desirable, but is in fact
an ill-posed problem and is non-trivial to implement. The magne-
tization decay curve, M tð Þ, is related to P W1ð Þ via a Fredholm inte-
gral of the first kind [26,27]. For a spin-1/2 nucleus, P W1ð Þ reduces
to the inverse Laplace transform of M tð Þ. Such problems are noto-
riously difficult because even small experimental errors in the val-
ues of M tð Þ give rise to large variations in P W1ð Þ, and there is often
no unique solution for a given data set. Different approaches have
been developed to extract P W1ð Þ, such as the maximum entropy
method [28], and via linearization methods such as Tikhonov reg-
ularization [29]. The latter approach was adopted early on by
researchers studying pore size distribution of rocks in the petro-
chemical industry [30–33], for the investigation of dielectric spec-
tra in glasses [34], and recently has been used to analyze the glassy
NMR behavior of high temperature superconductors [35,36]. This
technique holds promise to shed light on many physical systems
of interest, but several questions concerning the limits of validity
of this approach remain outstanding. To better understand these
limits, we have conducted numerical studies comparing the
inverse Laplace transform (ILT) for stretched exponential decays
for several different nuclear spins (I ¼ 1=2; � � � ;9=2), different
levels of signal to noise ratios, and different numbers of measured
time points. We find that the ILT algorithm reproduces the theoret-
ical distribution for a spin 1/2 nucleus for small stretching expo-
nents b 6 0:8 when the distribution is not narrowly peaked. For
higher spin nuclei, we find that P W1ð Þ for stretched relaxation is
independent of I as long as the stretched relaxation curve is prop-
erly defined. These results provide important guidance for setting
up experiments with sufficient signal to noise to properly extract
the distribution of relaxation rates, and for interpreting the distri-
bution when the relaxation can be described by stretched
exponentials.

2. Methods

When a spin I ¼ 1=2 nucleus at lattice position r is not in ther-
mal equilibrium, the magnetization component along the quanti-
zation axis (typically the magnetic field direction) relaxes as:

mz r; tð Þ ¼ m0 1� /e�W1 rð Þt� �
; ð1Þ

where m0 is the equilibrium magnetization, and / is a parameter
that describes the initial condition and depends on the pulse
sequence employed in the measurement. We assume that W1 rð Þ
depends on position, r. All of the nuclei contribute to the measured
signal, so that

M tð Þ ¼ R
V mz r; tð Þdr

¼ M0
R1
0 K W1; tð ÞP W1ð ÞdW1;

ð2Þ

where V is the volume of the sample, and M0 ¼ N0m0, where N0 is
the number of nuclei in the crystal. In the second line, rather than
integrating over real space we express the integral as a distribution
over a normalized distribution of W1 and kernel function
K W1; tð Þ ¼ 1� /e�W1t . This kernel function changes for higher spins,
I > 1=2, as described below, however the general approach to solv-
ing for P W1ð Þ remains the same. For I ¼ 1=2,

M tð Þ �M0ð Þ=/ ¼
Z 1

0
e�W1tP W1ð ÞdW1 ð3Þ
2

is equivalent to the Laplace transform of P W1ð Þ. Thus in principle,
the distribution can be obtained by simply taking the inverse Laplace
transform of the measured data. The ILT approach offers a powerful
method to determine P W1ð Þ, however it requires a number of
assumptions. To determine the distribution, the problem is first
linearized:

Mi ¼ M tið Þ ¼
X
j

KijPj þ ei ð4Þ

where i 2 1; � � � ;Nf g are the measured time points,
Kij ¼ K W1;j; ti

� �
; ei are experimental errors, Pj ¼ P W1j

� �
, and

j 2 1; � � � ; Lf g with L > N are the points in the distribution. Since
L > N, there are in fact more points in the distribution than exper-

imentally measured, and the vector P
!

is underdetermined. Tikho-
nov regularization [29] offers a method to obtain a solution by
minimizing the functional:

U P
!� �

¼ 1
2
j~K � P!�M

!j2 þ 1
2
a P
!��� ���2 ð5Þ

subject to the condition that every element Pj P 0. Here a is the

Tikhonov regularization parameter that enforces P
!

to have a stable
solution. This procedure ensures that the distribution is positive
definite, hence physically realistic, but has the effect of broadening
and smoothing the distribution, depending on the choice of a

[27,37]. The solution of (5) is P
!¼ ~H � ~Ky � c!, where y means trans-

pose, and the matrix ~H has elements Hij ¼ H ~Ky � c!
� �

j

� �
if i ¼ j

and 0 otherwise, and H xð Þ is the Heaviside function: H xð Þ ¼ 1 if
x > 0 and H xð Þ ¼ 0 otherwise. The vector c! satisfies:

c! að Þ ¼ ~K � ~H c! að Þ
� �

� ~Ky þ a~I
� ��1

�M! ð6Þ

where I is the identity matrix. This equation can be solved itera-
tively [36]. The sum of the residuals is:

v að Þ ¼ jM!� K � P!j ¼ aj c! að Þj: ð7Þ
The distribution clearly depends on the choice of a, and becomes
broader and smoother as a increases. The optimal value of a is usu-
ally determined by the so-called self-consistency method [36,27], in
which a is chosen as the minimum of either a1 or a2, where
a1 ¼ j e!j, the sum of the experimental errors of the measurements

of M
!
, and a2 satisfies:

d lnv að Þ
da

����
a2

¼ 0:1: ð8Þ

We use the IGOR Pro software environment to solve for c! numer-

ically using a set of M
!

data, for various numbers of N data points,
and with M ¼ 128 logarithmically-spaced values of W1. By comput-
ing v að Þ for a broad range of a, we find the optimal regularization

parameter and use this to determine the distribution P
!

for a given
data set, ti;Mif g with measurements errors ei.

3. Results

To determine the effectiveness of the ILT method, it is valuable
to test the algorithm to extract known distributions from test data
sets. It is also instructive to determine the optimal experimental
conditions to get the most accurate measurement of P W1ð Þ. For
example, the number of data points in a typical experiment lies
between N � 5� 20. However, the major constraint is the total
experimental time, texpt ¼ Nt1, where t1 is the measurement time
for a single point. For Gaussian noise, the measurement error

ei � t�1=2
1 � N1=2, for a fixed texpt , therefore fewer points would



Fig. 1. (a) Linear-log plot of spin I = 1/2 M(t) with stretched exponential form given
by Eq. 10 with N ¼ 15 time points and ei ¼ 0 for b ranging from 0.3 to 1 in 0.1
increments. (b) Linear-log plot of the theoretical distribution Pb W1ð Þ given by Eq. 11
with corresponding b values.

Fig. 2. Linear-log plot of P W1ð Þ ILT estimations of M(t) given by Eq. 10 with N ¼ 15
time points and ei ¼ 0 and the theoretical distribution Pb W1ð Þ given by Eq. 11 for b
values ranging from 0.3 to 1.0 in 0.1 increments.
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result in lower measurement noise. An interesting question is
whether it is better to have more points, N, with higher noise, or
fewer points with lower noise, in order to determine P W1ð Þ with
the best fidelity.

3.1. Stretched relaxation of a Spin 1/2

We first consider the case of stretched exponential relaxation of
a spin I ¼ 1=2, with the kernel function:

K t;W1ð Þ ¼ 1� 2e� W1tð Þ; ð9Þ
with the corresponding magnetization recovery vector:

M tið Þ ¼ 1� 2e� W�
1tið Þb þ ei; ð10Þ

where W�
1 is a characteristic rate scale. This function is shown in

Fig. 1(a) on a linear-log scale with W�
1 ¼ 1. The distribution

Pb W1ð Þ can be expressed analytically as an infinite series:

Pb W1ð Þ ¼ 1
p
X1
n¼1

�1ð Þnþ1C nbþ 1ð Þ
n! W1=W

�
1

� �nbþ1 sin npbð Þ ð11Þ

where C xð Þ is the Gamma function [23]. Fig. 1 shows the distribu-
tions corresponding to stretched relaxation for several values of b.
Note that because the W1 values are distributed on a logarithmic
scale, it is necessary to multiply Pb W1ð Þ by W1 to properly normal-
ize the distribution. The distributions are centered close to W�

1,
which is approximately equal to the median of the distribution.
The distribution approaches a delta function as b ! 1. As b is
reduced, the distribution broadens considerably, and is several dec-
ades in width once b 6 0:5.

Fig. 2 shows the distributions extracted using the ILT method
for several values of b with zero noise (ei ¼ 0) and with N ¼ 15
time points. There is relatively good agreement for intermediate
values of b, but once bJ0:8, the distribution narrows and the ILT
method fails to capture the narrow width. To measure the effec-
tiveness of the approach, we compute the sum of the squares of
the residuals, S2, defined as:

S2 ¼
XM
j¼1

Pj � Pb W1j
� �� �2 ð12Þ

where P
!

is determined by ILT. As shown in Fig. 3, S2 generally
increases as b approaches unity. However, S2 has inflated values
at b < 0:5 due to domain constraints. For lower b recoveries, the
complete magnetization recovery is not captured within the given
time domain. As a result, artificial higher relaxation rates are pro-
duced in the ILT distributions of lower b recoveries, resulting in lar-
ger S2 values.

3.2. Optimal number of measurements

To understand how well the algorithm behaves with different
numbers of measured time points, we compare the extracted dis-
tribution for different values of N. As shown in Fig. 4 for b ¼ 0:8,
including a greater number of measured recovery points improves
the quality of the ‘fit’ such that the ILT distribution more accurately
reproduces the exact solution. In each case, the mean of the distri-
bution is correct, but the width is too wide for N ¼ 6 points. For 15
points, the agreement is better, but there is an oscillation present
in the upper tail of the ILT distribution that is not present in the
exact solution. The behavior of these oscillations depends on the
N when NJ12� 15, but there are no obvious trends. In fact, for
N ¼ 30 the oscillations appear somewhat larger than for N ¼ 15.
To quantify the difference between the ILT and the exact distribu-
tions, we compute S2 for various values of b and N as shown in
3

Fig. 5. This quantity appears to reach an asymptotic value by
approximately N ¼ 12 to 15. For smaller values of N; S2 oscillates
between larger and smaller values for N odd or even values, respec-
tively. The origin of this behavior is not understood.



Fig. 3. Log-linear plot of S2, given by Eq. 12, of P(W1) ILT estimations of M(t) given
by Eq. 10 with N ¼ 15 time points, and ei ¼ 0 for b values ranging from 0.3 to 1.0 in
0.1 increments versus b.

Fig. 4. Linear-log plot of P(W1) ILT estimations of M(t) given by Eq. 10 with
N ¼ 6;15;30 time points and ei ¼ 0 and the theoretical distribution Pb W1ð Þ given by
Eq. 11 for b = 0.8.

Fig. 5. Plot of S2, given by Eq. 12, of P(W1) ILT estimations of M(t) with N ranging
from 6 to 30 time points and ei ¼ 0 versus the number of M(t) recovery points for b
= 0.7, 0.8, 0.9.
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3.3. Sensitivity to noise

In order to understand the effect of experimental noise, we
added random values ei to each Mi value, where each ei is sam-
pled from a Gaussian distribution centered at zero with second
moment r2

n, such that the signal to noise ratio SNR ¼ r�1
n . A sam-

ple set of magnetization recovery points N ¼ 15ð Þ with b ¼ 0:8,
and the corresponding ILT distributions are shown in Fig. 6. Intro-
ducing noise clearly affects the ability of the ILT algorithm to
accurately reproduce the known distribution. As shown in
Fig. 7, there is an approximate power law relationship:
S2 � SNR�s, where s increases as b decreases. Extra structures,
such as spurious peaks and shoulders are apparent in the ILT dis-
tributions. These artifacts persist even up to SNR levels of 100,
although the overall shape of the distribution is qualitatively
correct.

3.4. Relaxation of higher spins

For spins greater than I ¼ 1=2, the kernel function consists of
multiple exponential decays reflecting the normal modes relax-
ation of the spin system. If the nuclei experience only a Zeeman
interaction, the energy splittings between the states are all equal.
However, it is common that a quadrupolar interaction will further
split these states such that the spectrum consists of 2I resonances
[38]. For the central (Iz ¼ þ1=2 $ �1=2) transition in the presence
of magnetic fluctuations, K W1; tð Þ ¼ 1� /f W1tð Þ, where f xð Þ is
given by:

f xð Þ ¼
X
j

cj exp �ajx
� � ð13Þ

and the coefficients cj are given in Table 1, and the ai are
a1 ¼ 1;a2 ¼ 6;a3 ¼ 15;a4 ¼ 28 and a5 ¼ 45.

For stretched relaxation, however, it is unclear how these
functions should be modified. Past researchers have tended to
either modify each exponential term with the same stretching
exponent:

f b xð Þ ¼
X
j

cj exp � ajx
� �b� �

; ð14Þ

or simply use the spin-1/2 expression of Eq. 9 [24,39,40]. The prob-
lem with these ad hoc approaches is that P W1ð Þ should be indepen-
dent of the nuclear spin so that it reflects the intrinsic dynamics of
the environment, but it is unclear what fitting function should be
used. In order to better understand the distributions for higher spin
nuclei, we convoluted Pb W1ð Þ in Eq. 11 for spin 1/2 with the various
Kernel functions in Eq. 13 for different I, and compared with Eq. 14,
as shown in Fig. 8. Surprisingly, there is near perfect agreement
between the two curves, indicated by the low values of residuals
squared across all time points. The larger values of residuals
squared at the beginning and end of the time domain are most
likely due to the limits of the computed magnetization recovery
using Eq. 10 as the exponent term prohibits the recovery to com-
pletely reach values of �1 and 1. We further analyzed the various
decay curves given by f b xð Þ (Eq. 14) with the ILT algorithm using
the appropriate kernels (given by Eq. 13) to extract P W1ð Þ distribu-
tions for each value of I, as shown in Fig. 9. Although there are oscil-
lations introduced by the ILT algorithm, the general shape of the
distributions for all of the spins are similar to one another and
well-described by Pb W1ð Þ.

Although the relaxation function in Eq. 13 for higher spins is
multiexponential, for the central transition the coefficients cj are
such that the relaxation is dominated by one exponential. On the
other hand, for the satellite transitions (jIzj $ jIzj � 1, with
1=2 < jIzj 6 I), the relative weights of the different exponentials



Fig. 6. (a) Linear-log plot of M(t) given by Eq. 10 with N ¼ 15 time points, SNR = 10,
20, 100, and b = 0.8. (b) Linear-log plot of comparison between P(W1) ILT
estimations of M(t) in (a) and the theoretical distribution Pb W1ð Þ given by Eq. 11 for
b = 0.8.

Fig. 7. Log-log plot of S2, given by Eq. 12 of P(W1) ILT estimations of M(t) given by
Eq. 10 with N ¼ 15 time points and SNR ranging from 10 to 100 versus SNR for b =
0.7, 0.8, 0.9.

Table 1
Coefficients in f xð Þ for higher spins.

I ¼ 3=2 I ¼ 5=2 I ¼ 7=2 I ¼ 9=2

c1 1=10 1=35 1/84 1/165
c2 9/10 8/45 3/44 24/715
c3 0 50/63 75/364 6/65
c4 0 0 1224/1716 1568/7293
c5 0 0 0 7938/12155
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are more evenly distribution. The coefficients cj are given for the
different satellite transitions in Table 2 for the case of I ¼ 7=2. In
this case the ai are given by a1 ¼ 1;a2 ¼ 3;a3 ¼ 6;a4 ¼ 10;
5

a5 ¼ 15;a6 ¼ 21, and a7 ¼ 28. Fig. 10 compares the extracted dis-
tributions with Pb W1ð Þ, and the magnetization recovery using the
convoluted Pb W1ð Þ with the stretched expression, Eq. 14, for the
central and three satellite transitions for I ¼ 7=2. Once again, there
is good agreement. These studies indicate that Eq. 14 is the proper
form for stretched exponential relaxation so that the distribution is
independent of nuclear spin, I.
4. Discussion

The ILT algorithm appears to be most effective at accurately
capturing the true distribution of relaxation rates when the distri-
bution is sufficiently broad to begin with. For stretched exponen-
tial relaxation, when b P 0:8, or when the width of the
distribution is less than about one decade, the ILT algorithm over-
estimates the width. This observation reflects that fact that the
Tikhonov regularization acts to smooth the distribution. Efforts
to invert noisy data of ill-posed problems typically result in large
fluctuations of the distribution function that are not physical,
hence the effort to ‘regularize’ the solution [26,37]. Smoothing of
a distribution is a necessary side-effect of the ILT algorithm, and
will lead to overestimates of the distribution width when the dis-
tribution is intrinsically narrow (such that b P 0:8).

Choosing the optimal number of measured recovery points, N, is
important to accurately capture the distribution, and our simula-
tions indicate that N should be at least 12–15. Choosing a greater
number of points improves the accuracy, but may lead to a reduc-
tion in signal to noise if the total experimental time is constrained.
Signal to noise ratios above � 40 are necessary to capture the sali-
ent features of a distribution, but we find that unphysical artifacts
in the distribution persist even up to higher SNR values. This fact
should be taken into account when interpreting distributions
obtained from experimental systems.

The ILT algorithm artificially introduces discontinuities in
dP W1ð Þ=dW1 when P W1ð Þ approaches zero because the Heaviside

function forces P
!

to vanish if it becomes negative. This behavior
is somewhat problematic because it would be more physically-
realistic if the tails of P W1ð Þ asymptotically approached zero
smoothly. Such artificial cut-offs may not accurately capture the
physics of glassy systems where the fluctuations are expected to
exhibit power law distributions with long tails [41,42]. However,
our analysis clearly demonstrates that fitting the magnetization
recovery directly with the stretched exponential expression (Eq.
14) and inferring the distribution using the theoretical expression
(Eq. 11) provides a straightforward description of the distribution
of relaxation rates. This approach is valid for any nuclear spin, is
easier to implement, and does not suffer from the introduction of
artifacts. In such cases, all of the relevant physical information
about the distribution is captured by the parameters W�

1 and b.
Note that the ILT approach may still be necessary for cases in
which the distribution is not well-described by a stretched expo-
nential, for example a bimodal distribution of relaxation rates, or
when the distribution is not expected to be well-approximated
by Pb W1ð Þ. The latter distribution is biased towards high W1 val-



Fig. 10. (Upper panel) Distributions extracted from stretched relaxation curves
using f b xð Þ (Eq. 14) for the central (1=2 $ �1=2), first (j1=2j $ j3=2j), second
(j3=2j $ j5=2j) and third satellites (j5=2j $ j7=2j) for I ¼ 7=2. (Lower panel)
Comparison between the computed magnetization recovery and the stretched
expression (Eq. 14) for the same transitions for b ¼ 0:8.

Fig. 8. (a) Comparison between the computed magnetization recovery M tð Þ (Eq. 3)
with Pb W1ð Þ given by Eq. 11 for various values of the nuclear spin Iwith N = 15 time
points. (b) Corresponding residuals squared between M tð Þ and the stretched
exponential recovery function (Eq. 14).

Fig. 9. Distributions of P W1ð Þ extracted from stretched relaxation curves using f b xð Þ
(Eq. 14) for I ¼ 1=2;3=2;5=2;7=2 and 9/2, for b ¼ 0:8. The dashed line is the
theoretical distribution Pb W1ð Þ (Eq. 11).

Table 2
Coefficients in f xð Þ for different satellite transitions of a spin 7/2 nucleus for magnetic
fluctuations.

j1=2j $ j3=2j j3=2j $ j5=2j j5=2j $ j7=2j
c1 196/429 49/429 4/429
c2 49/132 49/132 3/44
c3 1/1092 100/273 75/364
c4 9/77 25/308 25/77
c5 1/33 1/132 3/11
c6 1/84 1/21 3/28
c7 1/84 1/84 1/84
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ues, and thus stretched exponential fits would not be appropriate
when the distribution is expected to be more symmetric or biased
towards low W1 values.
6

5. Conclusion

The ILT algorithm is a powerful method to extract distributions
from time-series data sets, which has grown in popularity in recent
years. A priori, this method makes no assumptions about the nat-
ure of the distribution, and is thus useful to study materials with
complex inhomogeneous behavior. However, the algorithm does
‘filter out’ sharp features of a distribution, leading to artificial
broadening and oscillatory components. These features are espe-
cially pronounced when the time-series data has significant levels
of noise. On the other hand, many researchers have traditionally fit
the time-series data directly with stretched exponentials of various
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forms, which are easier to implement and more direct. A drawback
of this method has been poor understanding of the nature of the
distribution, particularly for the case of I > 1=2. Our study indi-
cates that the stretched exponential form described by Eq. 14 accu-
rately captures the distribution independent of the spin I. This
result implies that if the time-series data of any nucleus can be
fit by this form, the full distribution P W1ð Þ can be inferred without
the need to invert the data with a complicated algorithm such as
the ILT.
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