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Abstract

Staggered adoption of policies by different units at
different times creates promising opportunities for
observational causal inference. Estimation remains
challenging, however, and common regression meth-
ods can give misleading results. A promising alternative
is the synthetic control method (SCM), which finds a
weighted average of control units that closely balances
the treated unit’s pre-treatment outcomes. In this paper,
we generalize SCM, originally designed to study a sin-
gle treated unit, to the staggered adoption setting. We
first bound the error for the average effect and show
that it depends on both the imbalance for each treated
unit separately and the imbalance for the average of the
treated units. We then propose ‘partially pooled” SCM
weights to minimize a weighted combination of these
measures; approaches that focus only on balancing one
of the two components can lead to bias. We extend this
approach to incorporate unit-level intercept shifts and
auxiliary covariates. We assess the performance of the
proposed method via extensive simulations and apply
our results to the question of whether teacher collec-
tive bargaining leads to higher school spending, finding
minimal impacts. We implement the proposed method
in the augsynth R package.
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1 | INTRODUCTION

Jurisdictions often adopt policies at different times, creating promising opportunities for ob-
servational causal inference. In our motivating application, 33 states passed laws between
1964 and 1987 mandating that school districts bargain with teachers’ unions (Hoxby, 1996;
Paglayan, 2019); our goal is to estimate the impact of these laws on teacher salaries and school
expenditures.

However, estimating causal effects under staggered adoption remains challenging. Workhorse
methods, such as the regression-based two-way fixed effects model, rely on strong modelling as-
sumptions and can give misleading estimates when treatment timing varies (Borusyak et al., 2021;
Goodman-Bacon, 2021; Sun & Abraham, 2020). A promising alternative is the synthetic control
method (SCM; Abadie et al., 2010, 2015). SCM estimates the counterfactual untreated outcome via a
weighted average of untreated units, with weights chosen to match the treated unit’s pre-treatment
outcomes as closely as possible. SCM, however, was developed for settings where only a single unit
is treated, and proposals for extending SCM to the staggered adoption case have been ad hoc. One
common strategy is to estimate SCM weights separately for each treated unit and then average the
estimates (see, e.g., Donohue et al., 2019; Dube & Zipperer, 2015). However, this relies on being able
to find good synthetic controls for every treated unit, which is not possible in our application.

In this paper, we develop SCM for the staggered adoption setting. Under two common data
generating processes for panel data, an autoregressive model and a linear factor model, we bound
the error of a weighting estimator for the average effect and show that it depends on both the
unit-specific imbalance for each treated unit and the imbalance for the average of the treated
units. This leads to our main proposal, partially pooled SCM, which minimizes a weighted aver-
age of the two imbalances. This approach nests two special cases: separate SCM, which reflects
the current practice of estimating weights that separately minimize the pre-treatment imbalance
for each treated unit; and pooled SCM, which instead minimizes the average pre-treatment im-
balance across all treated units. Both special cases have drawbacks. Separate SCM can lead to
poor fit for the average, leading to possible bias when the average treatment effect is the estimand
of interest. Pooled SCM, by contrast, can achieve nearly perfect fit for the average treated unit
but can yield substantially worse unit-specific fits. This can lead to poor estimates of unit-level
treatment effects and to bias for the average effect if the data generating process varies over time.
Partially pooled SCM moves smoothly between these two extremes, with a hyperparameter de-
noting the relative weight of the two balance measures in the optimization problem. We discuss
how to select weights to trade-off between these two quantities in practice.

We then explore several extensions. First, we incorporate an intercept shift into the SCM prob-
lem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto (2021). The
resulting treatment effect estimator has the form of a weighted difference-in-differences estima-
tor, connecting our proposed approach to a large econometric literature (Callaway & Sant’Anna,
2020; Sun & Abraham, 2020). We recommend this approach as a reasonable default in practice; it
amounts to applying our partially pooled SCM estimator to de-meaned outcome series. Second,
we modify the SCM problem to incorporate auxiliary covariates alongside lagged outcomes. We
also briefly address inference for SCM-like estimates in the staggered adoption setting. We im-
plement the proposed methodology in the augsynth package for R, available at https://github.
com/ebenmichael/augsynth.

We apply our methods to estimating the impact of mandatory teacher collective bargaining
and show that they achieve better pre-treatment balance than existing approaches. We find no
impact of teacher collective bargaining laws on either teacher salaries or student expenditures,


https://github.com/ebenmichael/augsynth
https://github.com/ebenmichael/augsynth

BEN-MICHAEL ET AL. | 353

consistent with several recent papers (Frandsen, 2016; Paglayan, 2019) but counter to earlier
claims (most notably Hoxby, 1996).

1.1 | Related work

Our paper contributes to several methodological literatures. First, there is a large and active ap-
plied econometrics literature on challenges and remedies for two-way fixed effects models with
multiple treated units; see Borusyak et al. (2021); Sun and Abraham (2020); Athey and Imbens
(2021); Goodman-Bacon (2021); Callaway and Sant’Anna (2020); Roth and Sant’Anna (2021).
See also Xu (2017) and Athey et al. (2021) for recent generalizations of these models.

SCM has also attracted a great deal of attention; see Abadie (2019) for a review. Several recent
papers have explored SCM with multiple treated units. In the case where all units adopt treat-
ment at the same time, some propose to first average the units and then estimate SCM weights
for the average, analogous to our fully pooled SCM estimate; for discussion, see Kreif et al. (2016);
Robbins et al. (2017). An alternative is Abadie and L’'Hour (2021), who instead propose to esti-
mate separate SCM weights for each treated unit. In particular, they propose a penalized SCM
approach that aims to reduce interpolation bias, allowing for weights that move continuously
between standard SCM and nearest-neighbour matching. Our approach complements these pa-
pers by adapting some of these ideas to the staggered adoption setting. For some other examples
of SCM under staggered adoption, see also Dube and Zipperer (2015); Shaikh and Toulis (2021);
Donohue et al. (2019); Cao and Lu (2019).

1.2 | Motivating example: Teacher collective bargaining

The United States, like other developed countries, spends substantial resources on public ed-
ucation. Approximately 80% of education spending goes to teacher salaries and benefits (U.S.
Department of Education, National Center for Education Statistics, 2018), and research points
to teacher quality as a key determinant of student outcomes (Jackson et al., 2014). Over recent
decades, the teacher employment relationship has changed dramatically via the introduction of
unions and collective bargaining agreements (Goldstein, 2015). Critics identify these as a ‘harm-
ful anachronism’ and ‘the most daunting impediments’ to education reform (Hess & West, 2006),
while proponents argue that collective bargaining raises pay and thereby helps to attract and re-
tain high-quality teachers. A major 2018 Supreme Court decision, Janus v AFSCME, is expected
to weaken teachers’ unions, bringing renewed attention to this area and raising interest in under-
standing the effects of teacher collective bargaining.

Since 1964, a number of states have passed laws mandating that school districts bargain with
teachers’ unions.! Given the strong criticism directed at teachers’ unions, there is surprisingly little
evidence that they, or the mandatory bargaining laws, have any effect at all. In a seminal study,
Hoxby (1996) uses state-level changes in collective bargaining laws to argue that teacher collective
bargaining raises teacher salaries and school expenditures but reduces student outcomes. However,
several more recent papers have disputed Hoxby’s conclusions. Using a panel of school districts,
Lovenheim (2009) finds little effect of unionization on teacher pay or class size. Frandsen (2016)

! Another 10 states allow but do not require collective bargaining, while seven prohibit it. We focus on estimating the
effects of mandates.
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Year of Mandatory Collective Bargaining Law
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FIGURE 1 Staggered adoption of mandatory collective bargaining laws from 1964 to 1990 [Colour figure
can be viewed at wileyonlinelibrary.com|

similarly finds little effect of state unionization laws on teacher pay. Finally, Paglayan (2019) ex-
tends the historical state-level data set from Hoxby (1996). Using a variant of the two-way fixed
effect model, she finds precisely estimated zero effects of mandatory bargaining laws on per-pupil
school expenditures® and teacher salaries. Motivated in part by recent criticisms of such models
(Goodman-Bacon, 2021), we revisit the Paglayan (2019) analysis using different methods.

Figure 1 shows adoption times of state mandatory bargaining laws between 1964 and 1990.
Adoptions were spread across 14 separate years, although 16 states adopted laws between 1965
and 1970. Following Paglayan (2019), our main outcomes of interest are per-pupil student expen-
ditures and teacher salaries, both measured in 2010 dollars and log transformed. We observe these
outcomes back to 1959 for 49 states; we exclude Wisconsin, which adopted a mandatory bargain-
ing law in 1960 and thus has only one year of pre-intervention data, as well as Washington, DC.
This gives between 6 and 28 years of data before the adoption of mandatory bargaining, with an
average of 13 years.

1.3 | Paper roadmap

Section 2 lays out the technical background and introduces the synthetic control estimator for a
single treated unit. Section 3 bounds the estimation error for general weighting estimators under
two families of data generating process, an autoregressive model and a linear factor model, with
staggered adoption. Section 4 introduces partially pooled SCM as a solution to the problem of
minimizing estimation error and considers two special cases, separate SCM and pooled SCM.
Section 5 proposes several important extensions, including incorporating an intercept shift and

“paglayan (2019) defines this as ‘the total current operational expenditures (regardless of funding source) that are
devoted to public schools in a state divided by the number of public school students in that state’.
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auxiliary covariates, and briefly discusses inference. Section 6 describes a calibrated simulation
study. Section 7 gives additional results for the teacher collective bargaining application. Finally,
Section 8 discusses some directions for future work. The appendix includes further analyses and
technical results. In particular, we provide an alternative motivation for our proposed partially
pooled estimator, which we show is based on partially pooling parameters in the Lagrangian dual
of the SCM constrained optimization problem.

2 | PRELIMINARIES
21 | Setup and notation
We consider a panel data setting where we observe outcomes Yj, for i = 1, ..., N units over

t=1, ..., Ttime periods. In the teacher collective bargaining application, N = 49 and T = 39 years.
Some but not all of the units adopt the treatment during the panel; once units adopt treatment,
they stay treated for the remainder of the panel. Let T; represent the time period that unit i re-
ceives treatment, with T; = oo denoting never-treated units. Without loss of generality, we order
unitsso thatT; < T, < ... < Ty. We assume that there are a non-zero number of never-treated
units, Ny = 3,17, - o and weletJ = N =Ny = 3,17, To clearly differentiate units that are
eventually treated, we index them by j =1, ..., J.

We adopt a potential outcomes framework to express causal quantities (Neyman, 1923; Rubin,
1974) and assume stable treatment and no interference between units (SUTVA; Rubin, 1980). In
principle, each unit i in each time t might have a distinct potential outcome for each potential
treatment time s, Y;,(s), for s = 1, ..., T, oc. Following Athey and Imbens (2021), we assume that
prior to treatment, a unit’s potential outcomes are equal to its never-treated potential outcome
(see also Abbring & Van den Berg, 2003):

Assumption1 (No anticipation). Y;(s) = Y;,(c0) for t < s, with treatment time s.

This assumption generalizes the consistency assumption typically employed in
cross-sectional studies. We maintain it throughout. With it, the observed outcome is
Y = 1{t < T;}Yj(00) + 1{t > T;}Yi(Ty).

2.2 | Estimands

As is common in many panel data settings, we focus on effects a specified duration after treatment
onset, known as event time. For treated unit j, we index event time relative to treatment time T; by
k = t — T;. The unit-level treatment effect for treated unit;j at event time k is the difference between
the potential outcome at time T} + k under treatment at time 7; and under never treatment:

Tk = Y4k (Tj) = Yy 44(0).

By Assumption 1, 7 = 0 for any k < 0.

The unit-specific effects, 7, are often the central quantities of interest in many synthetic con-
trols analyses. In addition to these effects, we also focus on their average. Our primary averaged
estimand is the average treatment effect on the treated (ATT) k periods after treatment onset:
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J J
1 1
ATTk = j Z Tjk = 7 Z Y}Tj+k(T]) - YJTJ_}.k(OO)
= =1

We are also interested in the average post-treatment effect, averaging across
k: ATT = —— ZK_ ATT,. Our methods generalize to many other estimands; see Callaway
K+1 “~k=0

and Sant’Anna (2020) for examples in this setting.

A challenge for staggered adoption analyses is that a panel that is balanced in calendar time
is necessarily imbalanced in event time. That is, we observe outcomes ¢ periods before treatment
only for units treated after period ¢, and we observe outcomes k periods after treatment only for
treated units treated before T — k. This means that populations of treated units over which one
can average treatment effects vary with k, as do the possible donors. To minimize this problem,
we assume that all treated units are observed for at least several periods before being treated (i.e.
T, > 1) and for at least K > 0 periods after treatment (T; < T — K). For treated unit j, we will
consider outcomes up to L; < T; — 1 periods before treatment, with L = max;;L; denoting the
maximum number of lagged outcomes.

With this, the challenge in estimating ATT), for k < K is to impute the average of the missing
never-treated potential outcomes. We define the set of possible ‘donor units’ for treated unit j at event
time k as those units i for which we observe Y;r (o), which we denote Dy = {i: T; > T; + k}.
The composition of Dy, varies with both treated unit j and event time k; in particular, unit i with
T; < coisin Dy fork < T; — T;jbutnot fork > T; — T;. We focus on fixed donor pools Djg rather
than allowing the donor pools to vary with k. This limits the number of potential donors, but
ensures that estimated counterfactual outcomes do not vary spuriously across event time due to
changing composition of the donor pool. Our proposed estimator does not require this restric-
tion, but it greatly simplifies exposition. If K > T; — T; then Dy will only include never treated
units as donors; otherwise Dj, will include both never treated and not-yet-treated units.

In our empirical application we exclude Wisconsin—which adopted a mandatory collective
bargaining law in the second year of the sample—so the first treated state is Connecticut with
T, = 7. We follow Paglayan (2019) in considering treatment effects only up to event time K = 10,
and use as potential donors for treated state j any states that are not treated by T; + 10.

2.3 | Restrictions on the data generating process

We now detail various restrictions on the data generating process that we will consider below.
Because we are interested in treatment effects on treated units—and observe potential outcomes
under treatment—we will place restrictions only on the potential outcomes under the never
treated condition Y (o0) (see, e.g. Borusyak et al., 2021). Throughout, we follow Chernozhukov
et al. (2021) and Ben-Michael et al. (2021) and write these potential outcomes as a model com-
ponent plus additive noise.

We consider two alternative restrictions on the model terms and noise terms, corresponding
to two common data generating processes for Y;(c0): a time-varying autoregressive process and
a linear factor model.

Assumption 2 (Data generating processes). We consider the following:

(a) The untreated potential outcomes Y;(co) follow a time-varying AR(L) process with co-
efficients at time ¢ (pq, ..., py) € RE:
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L

Yi(00) = D pisYig_p(o0) + 4 (1)
=1

where g, are mean zero and independent across units and time, with g;,,, L 1{T; =s}fork >0
foralli=1, ..., N.

(b) There are F latent time-varying factors, where F is typically small relative to both N and T.
The factors, u, € RF, are bounded, max,||4,||, < M. Each unit has a vector of time-invariant
factor loadings ¢; € RF, and the untreated potential outcomes Y;(co) are generated as:

Yi(oo) = ;- p; + €4, @)

where ¢;, are mean zero, independent across units and time and ¢; L T; for all i = 1, ..., N,
t=1,..,T.

Assumptions 2a and 2b impose different restrictions on the noise terms. Assumption 2b rules
out correlation between treatment timing and the noise terms for any period while Assumption
2a only excludes correlation for noise terms after treatment. Therefore, under Assumption 2b
treatment timing and pre-treatment outcomes are only dependent through the factor loadings,
while under Assumption 2a there is no restriction on their dependence.

Finally, under each process, we assume that the noise terms do not have fat tails.

Assumption 3. ¢; are sub-Gaussian random variables with scale parameter .

We use this restriction on the tail behaviour for the finite sample estimation error bounds we
introduce in Section 3.

2.4 | The synthetic control method

In the synthetic control method (SCM), the counterfactual outcome under control is estimated
from a weighted average, known as a synthetic control, of untreated units, where weights are
chosen to minimize the squared imbalance between the lagged outcomes for the treated unit and
the weighted control (‘donor’) units.

We consider a modified version of the original SCM estimator of Abadie et al. (2010, 2015)
for a single treated unit j. In this version, the SCM weights ?j are the solution to a constrained
optimization problem:

1 L N 2 N
min  — Yir_,— Y viYir_ + Ay
sem iTi=¢ jriT=¢ ’
7€ LjZi( ! ;‘ ! ) l; Y (3)
. ~ / N——

objective regularization

wherey; € Aj?cm has elements {y;; } that satisfy y;; > 0 for all i, Eﬂ’ij =1,and y; = O whenever i is

not a possible donor, i ¢ Di.
Given an N-vector of weights ?j that solve Equation (3), the SCM estimate of the missing
potential outcome for treated unit j at event time k, YjTj +i(o0), is:
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N

Yjr i(00) = > ViYir i
i1

with estimated treatment effect 7 = = Yir sk = JT +k(o0). This formulation can also be applied

when k < 0, generating placebo treatment effect estlmates often referred to as ‘gaps’ We denote the
vector of placebo pre-treatment effect estimates as r = (7 H(=L)> - %‘(—1)) € RL, where we define

rj(_f) to be zero for# > L; With this notation, the synthetlc controls objective in Equation (3) is the
mean squared placebo treatment effect on pre-treatment outcomes:

L N 2
1 A
7L, Z ( B ;ViinTj—f> - @)

(g7 = Llj “Apre

The optimization problem in Equation (3) modifies the original SCM proposal in two key
ways. First, where Abadie et al. (2010, 2015) balance auxiliary covariates, we focus exclusively
on lagged outcomes; we re-introduce auxiliary covariates in Section 5.2. Second, following a sug-
gestion in Abadie et al. (2015), we include a term that penalizes the weights towards uniformity,
with hyperparameter 4. While we penalize the sum of the squared weights, there are many op-
tions, for example, an entropy or elastic net penalty (see Abadie & L'Hour, 2021; Doudchenko &
Imbens, 2017). In settings where it is possible to achieve perfect balance, selecting 1 > 0 ensures
that Equation (3) has a unique solution. This is not the case in our setting, however, and so we
largely view this term as a technical convenience.

Abadie (2019) gives several reasons for preferring SCM to outcome models such as linear re-
gression or directly fitting the factor model. In particular, SCM weights are guaranteed to be non-
negative, and are generally sparse and interpretable. By contrast, alternatives based on explicit
models for Y;,(c0) often imply negative weights and thus unchecked extrapolation outside the sup-
port of the donor units. Outcome modelling can also be sensitive to model mis-specification, such
as selecting an incorrect number of factors in a factor model. Finally, as we emphasize in our theo-
retical results in the next section, SCM can be appropriate under multiple data generating processes
(e.g. both the autoregressive model and the linear factor model) so that it is not necessary for the
applied researcher to take a strong stand on which is correct.

A central question for SCM is how to assess whether YjTj +k(00) is a reasonable estimate for
YjTj +k(00). A minimal condition is that the SCM weights achieve a low root mean squared pla-

cebo treatment effect, that is, qj(?j) is close to zero. If it is not cloie to zero, there is a concern that
estimated effects also capture systematic differences between YjTj 4+k(o0) and YjTj +k(o0). Under
versions of either Assumptions 2a or 2b and for a single treated unit, Abadie et al. (2010) show
that if qj(?j) = 0 then the bias will tend to zero as Lj — oo Ben-Michael et al. (2021) bound the
estimation error of %\jk in terms of qj(?j). Abadie et al. (2010, 2015) recommend that researchers
only proceed with an SCM analysis if the pre-treatment fit is excellent, while Ben-Michael et al.
(2021) propose an augmented SCM estimator that attempts to salvage cases where it is not.

3 | ESTIMATION ERROR UNDER STAGGERED ADOPTION

In order to extend SCM to the staggered adoption setting, we first develop appropriate balance
measures for synthetic control-style weighting estimators under staggered adoption. We use
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these to develop bounds on the estimation error for the ATT for our two example data generat-
ing processes. These bounds in turn motivate our proposal for partially pooled SCM as a way to
choose weights under staggered adoption.

3.1 | Weights and measures of balance

With multiple treated units, we can generalize the above setup to allow for weights for each
treated unit. For each j < J, let y; € A¥™ be an N-vector of weights on potential donor units,
where y;; is the weight on unit i in the synthetic control for treated unit j. We collect the weights
into an N-by-J matrix I" = [y, ..., y;] € A*™, where AS™ = AJ™ x ... x A¥™. The estimated
treatment effect on unit j at event time k is then 7, as defined above, and the estimated ATT aver-
ages over the unit-level effect estimates:

\<>

7 7 N 7 N T

= 1 A 1

ATTy = f Ty = 7 Z lY}TjH{ - Z ViniTj+k‘| =7 zf Yir 4k — Z Z 7 Yirse (5
Jj=

]_ j=1 i=1 i=1 =1

Equation (5) highlights two equivalent interpretations of the estimator: as the average of unit-
specific SCM estimates and as an SCM estimate for the average treated unit.

Using the two interpretations of the ATT estimator in Equation (5), we construct goodness-
of-fit measures for the ATT by aggregating ?]I.’re in two ways. First, we consider the root mean

2
<]Tf Zylez,”)‘

This is a useful measure of overall imbalance when SCM is estimated separately for each treated unit
and generalizes the objective for the single synthetic control problem. Second, we consider the pre-
treatment fit for the average of the treated units,

square of the pre-treatment fits across treated units,

[

st

J J
~ 1 ~ 1~
gP (D) = 7 Z PO = 4| 2 fj||TJI,’re“§ =
= =

—
R
H|>—l

||M\.

2

L
QPOOI(F)_ ZApre = %Z JZ iT—¢ — Z}’U iT—¢

=1 T; >t

We refer to this interchangeably as the pooled or global fit.

Both gP°! and ¢*¢P are on the same scale as the estimated treatment effect, ATT . However, the
measures differ in whether they average before or after evaluating the pre-treatment fit. Thus, we
typically expect (qP°°)? <« (g*¢P)?, since the lagged outcomes for the average of the treated units
are less extreme than the lagged outcomes for the units themselves. In practice, we therefore con-
sider normalizing the imbalance measures by their values computed with weights % the set of
solutions to Equation (3) applied separately to each treated unit. We define normalized measures
GPoOL ) = gPool(1) /qPool(T°P) and §5eP(I) = geP(I") /gseP (T **P), and use them in our proposed esti-
mator in Section 4 below.

Ideally, both g*P and qP°°! would be close to zero; indeed if 5P =0 then gP° is also
zero. When this is not possible, there is a trade-off between these two sources of imbalance.
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Our proposed ‘partially pooled’ SCM estimator generalizes Equation (3) to minimize a weighted
average of their normalized squares, v(§P°°)? + (1 — v)(§%P)?, where v is a hyperparameter se-
lected by the researcher. To motivate this and to inform the choice of v, we develop error bounds
for SCM-style weights under our two data generating models.

3.2 | Error bounds

3.2.1 | Autoregressive model

We first bound the estimation error for the ATT under the autoregressive process in Assumption
2a. To simplify notation and concepts, we initially focus on the ATT at event time k = 0, ATT,,.
Two summaries of the autoregressive coefficients are important to our analysis: p = } Zle 1

the average autoregression coefficient across the J treatment times, and Sg = % Zle ||ij —5”%»

the corresponding variance; this variance is zero under simultaneous adoption, Sﬁ =0.

Theorem 1. Under Assumptions 2a and 3withL; = L < Tl/fg j=1..1, forIA“ € AS™ where ?j
is independent of E.Tytho and for any & > 0, the error for ATT is

ATT, - ATTy| < VLIl @) + VLS, ¢*(@)+ f—; (1+171F)
S ~ -/ " ~ J J
pooled fit unit — specific fit ——

noise
2

&
with probability at least 1 — 2e” 2, where for a matrix A € R™™ | A|lp = /XL, Z;Zl Aizj is the

Frobenius norm.

Theorem 1 shows that the error for the ATT is bounded by several distinct terms, giving guid-
ance for the choice of the weights I'. First, error arises from the level of both the global fit and
the unit-specific fits. The relative importance of these fits is governed by the ratio of the average
coefficient value||p||, and the standard deviation S, for the autoregressive coefficients over time.

Second, there is error due to post-treatment noise, inherent to any weighting method. Because
the weights are independent of post-treatment outcomes, this term has mean zero and enters
the finite sample bound above through the standard deviation, which is proportional to the
Frobenius norm of the weight matrix, || Il r Thus, when selecting among weight matrices that
yield similar unit-specific and pooled balance, we should prefer the one that minimizes || f|| o
This motivates a penalty term similar to that in Equation (3).

Finally, we can extend the bound in Theorem 1 to ATT) by noting that the autoregressive
structure implies that Yir ke = Zﬁﬂ pf’;)YiT,._,foo + ZI;:O nék)emﬂ for some set of coefficients
pg‘), /’EILC) and n(0k>, ngck). We can then apply Theorem 1 to obtain bounds for |mk - ATTk| by

(k)

defining p and S, in terms of the new coefficients p,,

and replacing ¢ with ¢4/1+ ¥, (ngm)z.
Similarly, we can obtain bounds for the overall ATT = KLH >, ATT}, by noting that the aver-

age outcome over K+1 periods following treatment can again be written as a weighted sum of the
last L outcomes before treatment plus a weighted sum of the K + 1 errors following treatment.
Thus, with suitable redefinition of the parameters, Theorem 1 continues to apply.
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3.2.2 | Linear factor model

Next we consider the linear factor model in Assumption 2b and begin by defining additional
notation. Let Q; € RIXF denote the matrix of factor values for time Tj—LtoT;—1, and denote
PV = \/Z(Q}Qj)‘lﬂj’. € RF*L as the scaled projection matrix from outcomes to factors. Analogous

to the autoregressive process above, the average (projected) factor value across the J treatment

times, u), = } z;=1 P(f)’yTj+k, and the variance, Si = } j=1 ||P(i)/”Tj+k — Tty ||§, determine the rela-

tive importance of the pooled and unit-specific fits respectively.

. . 1 . .
Theorem 2. Assume that Q; is non-singular and || ﬁgjllz =1forj=1,..,J. WithL; =L <T,

forji=1,.,1 7, ....,7; € AS™ where ?j is independent of E.T4b k>0, and 8 > 0, under
Assumptions 2b and 3 the error for mk is

—_— A A 2 A

ATT, - ATT| < 1Tl @)+ 8, 2@ + 225 (35+2loghd ) + 2Z (14 1)
—_— —— L VI

pooled fit unit—specific fit - ~ 7\ ~ 4

approximation error noise

52
with probability at least1 — 6e” 2, where max, || #; || o < M.

Theorem 2 shows that under the linear factor model the error for the ATT can again be con-
trolled by the level of pooled fit and unit-specific fits. As in Theorem 1, the relative importance
of these fits is governed by the ratio of the average factor value y; and the standard deviation Sj;
similarly, under simultaneous adoption, S, = 0 and %P does not enter the bound.

Unlike in Theorem 1, this bound also includes an approximation error that arises due to
balancing—and possibly over-fitting to—noisy outcomes rather than to the true underlying fac-
tor loadings. In the worst case, the J synthetic controls match on the noise rather than the factors.
Constraining the weights to lie in the simplex reduces the impact of this worst case, however, and
the error decreases as more lagged outcomes are balanced; see Abadie et al. (2010); Ben-Michael

et al. (2021); Arkhangelsky et al. (2019) for further discussion.
Finally, we can extend Theorem 2 to the estimation error of the overall post-treatment effect,
ATT = KLH Zf:o ATT,, by noting that the average post-treatment potential outcome also fol-

. . 1 vk . 1 vK
lows a linear factor structure with factor values Tl Do HT 4k and noise term ) Do EiT,+e

Thus the pooled- and unit-specific fit terms and the approximation error will depend, respec-
tively, on the average, variance and maximum of the (projected) average post-treatment factor
value, and the noise term will be reduced by a factor of L

VK+1

4 | PARTIALLY POOLED SCM

We now turn to our main proposal, partially pooled SCM. Motivated by the finite sample error
bounds in Theorems 1 and 2, this chooses SCM weights to minimize a weighted average of the
(squared) pooled and unit-specific pre-treatment fits:

: 2
in, AT

(6)
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The hyperparameter v € [0, 1] governs the relative importance of the two objectives; higher values
of v correspond to more weight on the pooled fit relative to the separate fit. In Appendix A.3, we
show that intermediate values of v correspond to a partial pooling solution for the weights in the
dual parameter space, motivating our choice of a name.

The optimization in Equation (6) differs from the bounds in Section 3 in two practical ways.
First, we minimize the normalized imbalance measures (e.g. qPOOl rather than qPOOI), so that the
minimum with v = 0 and 4 = 0 is indexed to 1. This ensures that the two objectives are on the
same scale, regardless of the number of treated units, and makes it easier to form intuition about
v. Second, we minimize the squared imbalances, which permits a computationally feasible qua-
dratic program. As with the single synthetic controls problem in Equation (3), we penalize the
sum of the squared weights, [|T'[|2.

4.1 | Special cases: Separate SCM (v = 0) and Pooled SCM (v = 1)

We first consider two special cases of Equation (6), which correspond to extreme values of the
hyperparameter v, and then consider intermediate cases.

To date, common practice for staggered adoption applications of SCM is to estimate separate
SCM fits for each treated unit, then estimate the ATT by averaging the unit-specific treatment
effect estimates. This approach, which we refer to as separate SCM, minimizes g*P alone and is
equivalent to our proposal in Equation (6) with v = 0. Since this separate SCM strategy prioritizes
the unit-specific estimates, ?jk, an important question is when this approach will also give rea-
sonable estimates of ATT,. From The/orims 1 and 2, we can see that if the unit-specific fits are all
excellent, then the estimation error |ATTk — ATT, | will be small. However, this is not the case in
our application. Figure 2a shows SCM ‘gap plots’ of ’r\jf against ¢ for three illustrative treated
states, taken one at a time. While Ohio shows relatively good pre-treatment fit, there are no syn-
thetic controls that closely track Illinois or New York’s pre-treatment outcomes. Thus, simply aver-
aging the estimated treatment effects across these three states without attention to the overall fit
does not yield a convincing estimate. Other recent applications also face the same issue where sev-
eral treated units have poor pre-treatment fit (see e.g. Dube & Zipperer, 2015; Donohue et al., 2019).?

The other extreme case, which we refer to as pooled SCM, instead sets v = 1, finding weights
that minimize gP°, the root mean squared placebo estimate of the ATT. This ignores the unit-
specific pre-treatment fits in the objective, resulting in poor unit-level synthetic controls and, in
turn, leading to poor estimates of the unit-level treatment effects ;. Furthermore, even if the
ATT is the only estimand of interest, Theorems 1 and 2 indicate that separate SCM is unlikely to
control the error. In particular, if the pooled weights do a poor job of matching individual treated
units, the pooled synthetic control may involve a great deal of interpolation and the component
of the error bound due to separate imbalance can be large. In Section 6 we validate through sim-
ulation that pooled SCM leads to substantially worse unit-level estimates than separate SCM, and
also that there are indeed settings where the bounds in Theorems 1 and 2 do bind, leading to large
error in pooled SCM estimates of the ATT. See Abadie and L’'Hour (2021) for further discussion
on interpolation bias in synthetic control settings.

However, there are special cases where only controlling g°°°! with pooled SCM is sufficient.
Theorems 1 and 2 indicate that only the across treated unit variation in PT 4k and HT,+k leads to

*0One way to address this is to trim the sample and drop treated units with poor pre-treatment fit, noting that this
changes the estimand.
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FIGURE 2 (a) SCM pre-treatment fit for three states: (i) Ohio, with good overall fit, (ii) Illinois, where SCM
fails to match an important pre-treatment trend, and (iii) New York, with pre-treatment imbalance roughly an
order of magnitude larger than typical estimates for the impact of teacher mandatory bargaining. (b) SCM fits by
state show that Separate SCM gives better pre-treatment fit than Pooled SCM for all treated states [Colour figure
can be viewed at wileyonlinelibrary.com]
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unit-specific fits contributing to the error bounds. Thus, when this variation is zero, the ATT
error bound is minimized with v = 1. As we discuss above, under simultaneous adoption, with
T, = ... =T, S, = 0in the autoregressive model and S; = 0 in the linear factor model. The
same arises in staggered adoption settings where the data generating process is homogeneous
over time—for example, where p, = p in the autoregressive model. It also holds approximately
when the average autoregressive coefficient or factor values are large relative to the standard
deviations—that is, S , < p or S <y, which could justify a choice of v = 1. Finally, when units
are treated in cohorts (with T; = Ty for units in the same cohort), there is no variation in p, and
U, across units in the same cohort. This suggests fully pooling (i.e. averaging) units that are treated
at the same time, even if there is only partial pooling across treatment cohorts. We discuss this
modification in Appendix A.2.

Figure 2b plots the state-level pre-treatment imbalances in our application for separate SCM
versus pooled SCM. The separate SCM fit is better for all treated states, and so leads to more cred-
ible unit-level estimates. However, these fits are far from perfect and so the results from Section
3 imply that there is room for improvement by controlling the pooled fit. Figure 3a shows the
implied placebo estimates for the overall ATT using the separate and pooled approaches: they are
consistently positive for separate SCM weights and are all nearly zero for pooled SCM weights.
At the same time, Figure 3b shows that pooled SCM has very poor unit-level fit, leading to the
potential for error for both the overall ATT estimate and the unit-level estimates. This motivates
choosing an intermediate choice of v & (0, 1).

4.2 | Intermediate choice of v

As we have seen, it is important to control both the pooled fit (for the ATT) and the unit-level
fits (for both the ATT and the unit-level estimates). The hyper-parameter v controls the relative
weight of these in the objective.

One approach to choosing v is to return to the error bounds in Theorems 1 and 2. The optimi-
zation problem in Equation (6) can be seen as a first-order approximation to the squares of the
error bounds. Therefore, if the parameters of those bounds are known—and our only goal is to
estimate the ATT—we can use these to choose an appropriate v.* Unfortunately, these will gen-
erally be infeasible as the analyst will not know these parameters, although in some applications
it may be possible to obtain pilot estimates.

An alternative approach is to directly assess the implications of the choice of v for the imbalance
criteria for both the overall ATT and the unit-level effects. Figure 4 provides two views of this for the
teacher collective bargaining application. Figure 4a shows the balance possibility frontier: the y-axis
shows the pooled imbalance gP°® and the x-axis shows the unit-level imbalance g%P. The curve traces
out how these change as we vary v from the separate SCM solution at the upper left to the pooled
solution at the lower right. The relationship is strongly convex, indicating that by accepting a very
small increase in pooled imbalance from the fully pooled solution we can obtain large reductions in
unit-level imbalance, and vice versa starting from the separate v = 0 solution. See King et al. (2017)
and Pimentel and Kelz (2020) for other examples of balance frontiers in observational settings.

Figure 4b plots the two imbalances, here normalized as §P°°! and §*P, to put them on com-
parable scales, against v. As v rises, pooled imbalance falls while unit-level imbalance rises,

*For example, in the autoregressive model, lettinga = ||ﬁ||2qp°°1(f“sep) andb = S pqsep(fsep), we could choose

2
v = aZaW’ with comparable quantities for the linear factor model.
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FIGURE 3 (a) Series of estimated pre- and post-treatment effects A/”Fl“f and (b) state-level pre-treatment
1 Zia
L =17j

although this is highly nonlinear, as the convex frontier in Figure 4a suggests. Moving from
the separate SCM estimate of v = 0 to a partially pooled SCM estimate of v = 0.5 reduces
the pooled imbalance by 80%, with more modest further reductions as v — 1. Meanwhile,
the unit-level imbalance declines quickly as v falls from 1 to 0.9, then more slowly as v de-
clines further. Even a very small deviation from the pooled SCM solution, such as moving
from v = 1 to v = 0.99, cuts the unit-level imbalance by 30% with essentially no change in
the pooled fit. Due to the number of degrees of freedom involved, the pooled imbalance
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FIGURE 4 (a) The trade-off between pooled imbalance (gP°®) and unit-specific imbalance (q*P) as v varies,
where v = 0 is the separate SCM solution and v = 1 is the pooled SCM solution. (b) g% and gP°* versus v, each
normalized by their values for separate SCM. The dashed red line indicates v. The large distance in unit-level
imbalance between v = 0.99 and v = 1 suggest meaningful gains in balance from deviating from the complete
pooling estimate even by a small amount [Colour figure can be viewed at wileyonlinelibrary.com]

will often be near zero for v = 1, and the objective function gP°! will be relatively flat in
the neighbourhood of the pooled solution. Therefore we expect that in many cases it will
be possible to trade-off a small increase in pooled imbalance for a large decrease in the
unit-level imbalance, yielding a better estimator of both the overall ATT and the unit-level
estimates at relatively little cost. We view the balance possibility frontier plot in Figure 4a as
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an important tool for using partially pooled SCM in practice. By tracing out the curve, prac-
titioners can see the trade-offs between the pooled and unit-level fit, and choose v according
to the trade-off they desire.

In our application, we use a simple heuristic to set v based on the pooled fit of separate SCM,
qP°°1(1A“S€p), which we also use to normalize our objective function in Equation (6). We set v to be
the ratio of the pooled fit to the average unit-level fit: = /L gPol("")/ % Zle VL qj(?;el’), This
is bounded above by 1 due to the triangle inequality.’ The key idea is that, if the separate SCM
problem with v = 0 achieves good pooled fit on its own, then we want to select a small v, which
will ensure both good unit-specific and pooled fit. Conversely, if the pooled fit of separate SCM is
poor, then there can be substantial gains to giving gP°! higher priority by setting v to be large. In
Section 6 we find through simulation that this heuristic results in weights that significantly re-
duce both the estimation error for the ATT relative to separate SCM and the estimation error of
the unit-level effects relative to pooled SCM.

In the teacher bargaining example, our heuristic yields V ~ 0.44 for the per-pupil expen-
diture outcome, and we label this point in Figure 4a. The heuristic choice has similar global
pre-treatment imbalance to the fully pooled estimator, v = 1, with only a modest increase in
unit-level imbalance relative to the separate SCM estimate, v = 0. This is reflected in Figure 3,
which also shows the placebo ATT estimates for partially pooled SCM. While the imbalance
for the ATT is slightly larger than for pooled SCM, it is substantially better than for separate
SCM.

There are many other potential choices for v, and, even if we focus solely on the ATT, this one
is unlikely to be optimal. An alternative strategy when the balance possibility frontier exhibits a
strong ‘kink’ shape is to choose v to be the point after which small improvements to the pooled fit
lead to substantially worse unit-level fits. Another heuristic is to choose v to be the point where
the tangent of the frontier is equal to the slope between the end pointsaty =0andv =1 (v = .84
in the teacher bargaining application).

In the end, the nonlinear relationship between v and {g*P, gP°°! } in Figure 4b suggests that the
loss from choosing a suboptimal v is likely to be small, so long as we do not choose something too
close to 0 or 1. We also recommend inspecting the sensitivity of estimates to the particular choice
of v in practice; we do this in Section 7.

5 | EXTENSIONS

We now add two elaborations to the basic setup. First, we incorporate an intercept shift into the
SCM problem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto
(2021). Second, we incorporate auxiliary covariates alongside lagged outcomes. We conclude by
briefly addressing inference in this setting.

51 | Incorporating intercept shifts

We have established that the partially pooled SCM estimator achieves nearly as good over-
all balance as the fully pooled estimator, while achieving much better balance for each unit.

5If the SCM fits with =0 are perfect for each unit, } Zf:l VL g =0, then the overall fit will also be perfect,
\/Z gP°° = 0, and our heuristic sets ¥ = 0. This is not a common situation.
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Nevertheless, unit-level balance is often imperfect. Particularly when the scale of the outcome
varies across units, it can be difficult to construct an adequate synthetic control, as one needs to
match both the overall level and patterns over time. Several recent papers have proposed modify-
ing SCM for a single treated unit by allowing for an intercept shift between the treated unit and its
synthetic control (Abadie, 2019; Doudchenko & Imbens, 2017; Ferman & Pinto, 2021). We can
adapt this approach to the staggered adoption setting by including an additional parameter vec-
tora € R/, where a;jis an intercept term for unit j. We include this intercept in the counterfactual
estimate as

N
Vi) =aj+ 2 vyYu
i=1

and in the separate and pooled imbalance measures as

J 1 L N 2
2
(@*P(a,T))* = Vi Z L_szi <YjTj—f‘ —aj— 21 7iniTj—f> ,
= i=

and
2

L
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Again we can define normalized versions of these objectives, §P°°!(a, I") = gP°°!(a, I")/qP°°!(@°*P, P,

~ ~Sse .. . .
where &P and T © are the minimizers of (¢*P(a,T))% As above, we then form an overall objective
function as a convex combination of the normalized squares:

min v (37 e, 1)? + (1 = v) (§%P(a, 1)) + AlIT[Z. 7)

aeRJ e Asm

The intercept @ that solves Equation (7) has a closed form in terms of the solution for the weights, f*;
&j is the average pre-treatment difference between treated unit j and its synthetic control,

uMZ

1Y 1S G
b=, Ve 2 R in-e (8)

Plugging this value of @ into Equation (7), we see that this procedure is equ%valent to solving the
partially pooled SCM problem (6) using the residuals YiTj —¢=Yirp - < Z Lj_l Yir, - The result-
L &=

ing treatment effect estimates have a particularly useful form:

L.

o 1%
T;k=fz l(YjTﬁk JT f) ZVU( iTj+k — YiY}—f)]’ (9)

J =1
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We can view this as a weighted difference-in-differences (DiD) estimator. In the special case
with uniform weights over units, ?Z =1/|ID;|l, Equation (9) is the simple average over all two-
period, two-group DiD estimates, averaging over all pre-treatment lags ¢ and donor units i.
This is equivalent to recent proposals for DiD estimators that allow for treatment effect het-
erogeneity with a fixed donor set per treatment time cohort (see Callaway & Sant’Anna, 2020;
Sun & Abraham, 2020, among others). With non-uniform weights, ?;k compares the change in
outcomes for treated unit j to the change for the synthetic control, rather than the average
change across all potential donors. Equation (10) averages these estimates across treated units
j to form A/T\T;:

Figure 5 shows the value of including an intercept to improving pre-treatment fit in the
teacher collective bargaining application. Figure 5a presents this as a balance possibility frontier
for SCM with the weights alone and with the intercept, as well as the implied imbalance for the
DiD estimator alone. Here, simple unweighted DiD achieves unit-level and pooled balance that
improves on the no-intercept SCM possibility frontier. However, the intercept-shifted estimator
dominates both DiD and no-intercept SCM estimates on both criteria, for all but the largest v.
We see similar results when examining the state-specific fits. Figure 5b shows the unit-level fit
for both partially pooled SCM and the intercept-augmented version. Two states, New York and
Alaska, have especially bad pre-treatment fits without including an intercept because they have
the highest per-pupil expenditures of all the states for many years (see Appendix Figure B.5).
Accounting for the pre-treatment average through the intercept dramatically improves the fits
for these states.

52 | Incorporating auxiliary covariates

We have focused thus far on matching pre-treatment values of the outcome variable. In practice,
we typically observe a set of auxiliary covariates X; € R% as well. In our collective bargaining ap-
plication, we consider five covariates, measured as of the start of the sample in 1959-1960: in-
come per capita, the student to teacher ratio, the per cent of the population with 12+ and 13+
years of education, and the female labour force participation rate.® We standardize all five covari-
ates to have mean zero and variance one.

There are several ways to incorporate auxiliary covariates in the setting with a single treated
unit. Here we directly include them into the optimization problem. Analogous to above, we de-
fine both the unit-level imbalance and pooled imbalance of X,

2

N
a'0)= X~ L 74

s

~|=

J
j=1

°Due to missing data for these auxiliary covariates, we restrict our analysis here to the contiguous United States. Note
that this drops Alaska, which we have seen is far outside the convex hull of its donor units.
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FIGURE 5 (a)The balance possibility frontier for SCM with and without an intercept, as well as the implied
imbalance for DiD. Incorporating unit-level fixed effects leads to substantial improvements in balance. For

DiD, we compute the implied balance as |/ 3% _| , the RMSE of the placebo estimates, from Equation
(9) with uniform weights. (b) The distribution of state level fits (in terms of RMSE) with and without an
intercept and covariates; dashed lines show the pooled pre-treatment RMSE [Colour figure can be viewed at
wileyonlinelibrary.com]|

and another for the pooled synthetic control,
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with normalized versions qifp(r) and q§’(°°‘(r).7 We then include these in our objective, with an addi-
tional hyper-parameter &:

min v (@@ 0P + @R + 1 =) (@@ D)+ E@EPM)?) + AINIE. (1)

aeRITe Ascm

While we write this optimization problem with an intercept shift, we could also include auxiliary co-
variates but no intercept. The choice of £ determines the relative importance of the outcomes and the
auxiliary covariates. Setting £ = 0 recovers the optimization problem (7) without auxiliary covariates,
while in the extreme case setting & = oo will, if feasible, enforce exact balance on the auxiliary covari-
ates. We decide to give equal priority to both terms. Since the auxiliary covariates are standardized,
we set £ to be the sample variance of the pre-T; outcomes for the never treated units. This equally
weights both components in the objective functions, and reduces the number of hyper-parameters
and specification choices. Finally, we can incorporate time-varying covariates by including the val-
ues at time periods before the first treatment time T into the vector X;.

Figure 6 shows the level of covariate balance between each treated unit and its synthetic
control, as well as for the average across treated units. Before weighting there are large differ-
ences between the treated units and their donor sets, and weighting on the outcomes alone
does little to alleviate these differences. Including the auxiliary covariates into the optimi-
zation procedure finds weights that give nearly perfect covariate balance for the pooled syn-
thetic control (indicated as the black squares), while also significantly improving covariate
balance for the individual treated units (indicated as boxplots). Figure 5b shows that this

Ascp

"Specifically, let &° and T be the mlmmlzers of (q%P(a, 1)) + &(g}T ()%, and (C5P)? = (g=P@*P, ")) + é(qsep(Asw))z
and (CPool)2 = (gPool (3P, Py + &(q POl *Py12 e the combined separate and pooled imbalances. We define the
normalized objectives as ~p'ml(l“) g " (0)/CPooL, 2P (IN) = g (I")/C**P, and slightly abuse notation by re-defining
92,1 = g7, 1)/ P and 9(a, T) = g7 T/
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improved covariate balance comes at a small cost to the fit on the pre-treatment outcomes:
the distribution of unit-level pre-treatment root mean square error (RMSE) shifts slightly to
the right.

5.3 | Inference

There is a growing literature on inference for SCM-type estimators, although no proposed
approach is fully satisfactory for all cases. In settings where multiple units adopt treatment
simultaneously, Abadie and L’Hour (2021) propose an extension of the original permutation
procedure of Abadie et al. (2010), and Arkhangelsky et al. (2019) propose resampling-based
approaches. In a staggered adoption setting, Shaikh and Toulis (2021) propose a weighted
permutation approach based on a Cox proportional hazards model. This is not appropri-
ate in our application, however, since multiple units have the same treatment time, which
is incompatible with the Cox model. Finally, Cao and Lu (2019) propose an Andrews test
for inference with intercept-shifted SCM under staggered adoption. Building on the existing
literature, we consider constructing confidence intervals via the wild bootstrap. We briefly
describe this method here; we address asymptotic Normality and inference via the jackknife
in Appendix A.1.

The wild bootstrap approach we implement adapts the proposal from Otsu and Rai (2017) for
bias-corrected matching estimators; see also Imai et al. (2019). First, we can re-write mk as the
following average over units:

N
SR 00| (D GRS 0 B D RS

i=1 g=T; l=1
This bootstrap procedure draws a sequence of random variables W(b) W(b) independently

with P(W, = —(v/5-1)/2) = (v/5+ 1)/2y/5 and POW, = (v/5+ 1)/2) = (v/5 - /25 for

b =1, ..., B, and computes the boostrap statistic:

N
s® = % > w® (- ATT,), (13)
i=1

for each draw. Letting q,, da/2 and q;_, j2det denote the /2 and 1—a/2 quantiles of S®), we construct con-
fidence intervals via [ATT, — q;_, /25 ATT) + 4, /»}- Importantly, we keep the weights and outcomes
fixed, and only re-sample the multiplier variables W ™.

In the next section, we evaluate the coverage of the wild bootstrap with a simulation study that
mimics the structure of the collective bargaining application. In Appendix A.1, we take an alter-
native route and motivate the use of resampling methods via asymptotic Normality. In particular,
we provide a set of sufficient conditions for Kﬁk — ATT, to be asymptotically Normal. We con-
sider an asymptotic regime in which J, N, — oo, with the number of lags L fixed and the number

of control units growing faster than the number of treated units F — oo. We also adapt a gener-
0

alization of the conditional parallel trends assumption in Abadie (2005) to the staggered adoption
setting. However, there are several ways such asymptotic results can be misleading. First, our re-
sult assumes that the synthetic control weights can achieve perfect fit within treatment time
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cohorts, which ensures that the distribution of mk is centred around ATT;. Poor fit, either over-
all or across time cohorts, can lead to under-coverage. Second, the asymptotic approximation can
be poor when there are relatively few total units, and the use of resampling methods can exacer-
bate this. Thus, while we show that these approaches yield reasonable results in simulations, we
suggest interpreting any confidence intervals for typical applications with caution.

6 | SIMULATION STUDY

We now consider the performance of different approaches in a simulation study calibrated to the
collective bargaining data set; we turn to the impacts of mandatory teacher collective bargaining
laws in the actual data in the next section. We evaluate performance with three different data
generating processes. First, we generate never treated outcomes according to a two-way fixed
effects model,

Y;(c0) = int + unit; + time; + ¢;;, (14)

with both unit and time effects are normalized to have mean zero. This model satisfies the parallel
trends assumption needed for the DiD estimator we consider below. We estimate (14) using only the
never- treated observations, and extract the estlmated Varlance of the unit effects, £, and of the error
term, o- We then generate unit; ~N (0, 2) and g ~N (0,5

Second, we use a factor model with a two- d1mens1ona1 latent time-varying factor y, € R? and
unit-specific coefficients ¢; € R%

Y;/(c0) = int + unit; + time, + ¢y, + ;. (15)

We estimate (15) using the R package gsynth (Xu, 2017) for the untreated units and time periods,
then estimate the variance— covarlance matrix of the unit fixed effects and factor loadlngs £, and the
varlance of the error termo a Here we use the estimated { tlmet, A}, and draw {unit;, ¢;} ~ MVN(O b))
and 51: <N 0,

Finally, we have a random effects autoregressive model:

3

Yy(oo) = Z p¢Yi—e(0) + &, p~ Ny, 02), (16)
7=

that we fit using 1me4 (Bates et al., 2015) to obtain estimates 7 ,and c ,» In order to increase the
level of heterogeneity across time, we simulate from this hierarchical model with eight times the
standard deviation 85 ,. For all three outcome processes we generate simulated data sets with the
same dimensions as the data, N = 49 and T = 39, and impose a sharp null of no treatment effect,
Yit(s) l[(oo) - ll

A key component of the simulation model is selection into treatment. We fix the treatment
times to be the same as in the teacher unionization application. For each treatment time, we as-
sign treatment to those units not already treated with probability z;, sweeping through the fixed
set of treatment times. For the two-way fixed effects model, we set the probability that unit i is
treated at each treatment time to be z; = logit(f, + 6; - unit;), with §, = —2.7and 6; = -1,
yielding around 30 units that are eventually treated in each simulation draw. For the factor model



374 BEN-MICHAEL ET AL.

l_

= Two-way Fixed Effects Factor Model Autoregressive Model
<.(. 0.9 1 1.1 )
c 0.5

Rel 08

.g 0.4 ’ [ J 0.9

) 4

a 0.7

[0 0.34 0.7

5 0.6

Q 24

8 051 051 L

To1lg® | N \/

g e : 1 ] J 044, : . : { : ! .
g 0.4 0.6 0.8 1.0 1:2 1.2 1.4 1.6 1.8 2.0 1.5 1.8 21

Mean Absolute Deviation: Individual Estimates

@ DD @ Factor Model @ P.Pooled SCM w/Intercept @ Partially Pooled SCM

FIGURE 7 Monte Carlo estimates of the MAD for the overall ATT vs the MAD for the individual ATT
estimates. The lines trace out values for v € [0, 1], the solid points are the average value using the heuristic V.
In the two-way fixed effects and factor model simulations, the estimated factor model is the oracle estimator.
Among the alternatives, the intercept-shifted partially pooled SCM has lowest MAD for both the overall ATT
and the individual ATT estimates [Colour figure can be viewed at wileyonlinelibrary.com]

we choose z; = logit(6, + 0,(unit; + ¢;; + ¢;,)), and setf, = —2.7and §; = — 1so that around
32 units are eventually treated in each simulation draw, following the distribution of the data. For
the autorefressive process we allow selection to depend on the three lagged outcomes

7; = logit (6, + 6, 2221 Yy » ), where 6, = log0.04and 9, = —2.

Estimation. We consider several estimators for the average post-treatment effect ATT. Figure 7
shows four: (1) A difference-in-differences estimator following Equation (9) with uniform
weights, (2) the partially pooled SCM estimator, as we vary v between 0 and 1, (3) partially pooled
SCM with an intercept, again varying v and (4) directly estimating the factor model. Solid points
indicate the heuristic choice of ¥ above. The vertical axis of each panel shows the mean absolute

deviation (MAD) for the ATT, E HATT — mu while the horizontal axis shows the average of

the individual post-treatment effect estimates, E [% Zle Iz — ’T\Jl] Appendix Figures B.1 and B.2

show the analogous results for the bias and RMSE.

There are several key takeaways from Figure 7. First, under each data generating process there
is a trade-off between estimating the ATT and the individual effects, with v = 1 at the top left of
the ‘MAD frontier’ and v = 0 at the bottom right. Partially pooled SCM significantly reduces the
bias for the overall ATT relative to separate SCM, and a small amount of pooling also leads to
slightly better individual ATT estimates. The gains to pooling, however, diminish for v close to 1,
with the fully pooled SCM yielding poor individual ATT estimates under all three models. Under
a two-way fixed effects model there is no penalty to pooling in terms of MAD for the overall ATT.
This comports with Theorem 2, which shows that targeting the pooled pre-treatment fit is suffi-
cient under a two-way fixed effects model. However, under the factor model and AR process the
fully pooled estimator leads to worse MAD for the overall ATT estimates than partially pooled
SCM. Second, when mis-specified, the DiD estimator does not do particularly well at controlling
the MAD for either overall ATT or the unit-level estimates. Third, the intercept-shifted estimator
dominates either of the alternatives in terms of both overall and unit-level estimates. Here again
there are gains to partially pooling SCM, albeit with the possibility for a large amount of error
from over-pooling. Fourth, our heuristic choices of v perform reasonably well at selecting a point
close to the value that minimizes the MAD for the ATT, while also reducing the MAD for the
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FIGURE 8 Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =0, ..., 9
periods after treatment. The solid line indicates the coverage for the overall ATT estimate averaged across all
post-treatment periods [Colour figure can be viewed at wileyonlinelibrary.com]|

individual estimates. Finally, the partially pooled SCM estimator with an intercept shift performs
as well as or better than fitting the factor model directly.

Inference. We conclude by examining the finite-sample coverage of approximate 95% confi-
dence intervals from the wild bootstrap. Figure 8 shows the coverage of approximate confidence
intervals for partially pooled SCM with an intercept shift, using the wild bootstrap to construct
the intervals. Under the two-way fixed effects model, in which there is no bias from inexact fit,
the wild bootstrap has close to 95% coverage. Under both the linear factor model and the autore-
gressive model, however, the wild bootstrap is somewhat conservative.® Overall, the wild boot-
strap appears to be a reasonable, if conservative, choice.

7 | IMPACTS OF MANDATORY TEACHER COLLECTIVE
BARGAINING LAWS

We now return to measuring the impact of mandatory teacher collective bargaining. The left of
Figure 9a shows the placebo estimates from Equation (9), where k < 0.” We see that along with
the good unit-specific fits shown in Figure 5b and the good covariate balance shown in Figure 6,
the pooled synthetic control estimate is near zero for k < 0. The right side of the figure shows the
estimated impact on per-pupil current expenditures, with approximate 95% confidence intervals
computed via the wild bootstrap.

Consistent with Paglayan (2019), we find weakly negative effects of mandatory teacher col-
lective bargaining laws on student expenditures. Pooled across the 11 years after treatment adop-
tion, the overall estimate is ATT = - 0.03, or a 3% decrease in per-pupil expenditures, with an
approximate 95% confidence interval of [—0.06, +0.005]. In Appendix Figure B.7 we show the

8 Appendix Figure B.3 shows the analogous results for partially pooled SCM without including an intercept. In this case,
the wild bootstrap is extremely conservative.

“These placebo checks differ from those typically performed in traditional event studies, which test for the parallel
trends assumption by comparing pre-treatment outcomes between treated and control units. These tests generally have
low power, however; see, for example, Roth (2018); Bilinski and Hatfield (2018); Kahn-Lang and Lang (2019). In
contrast, the intercept-shifted estimator uses pre-treatment outcomes to select donor units that best balance the treated
units, in effect optimizing for the placebo test. It is still possible to inspect pre-treatment fit, as in standard SCM, but
this is best seen as an assessment of the quality of the match rather than as a formal placebo test.
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FIGURE 9 Estimates of the ATT on per-pupil current expenditures (log, 2010 $) and placebo estimates
re-indexing treatment time to 2 and 4 years before the true treatment time. The placebo effects are very
close to zero and are indistinguishable from zero at this level of precision [Colour figure can be viewed at
wileyonlinelibrary.com|

average post-treatment effect for each state and the unit-level fits. For those states with good pre-
treatment fit, we find small positive and negative effects, while we estimate larger negative effects
for those with worse fit. These estimates are in stark contrast to the results from Hoxby (1996),
who argues for a 12% positive effect, although she gives a range of estimates. One possible expla-
nation for this is that school districts are able to divert funds from other purposes to fund higher
teacher salaries with minimal net effect on total expenditures. In Appendix Figure B.7 we show
estimates of the effect on teacher salaries, finding evidence against a positive effect.
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We can assess the strength of evidence by conducting robustness and placebo checks. First,
following Abadie et al. (2015), we begin by assessing out-of-sample validity via in time placebo
checks. These checks hold out some pre-treatment time periods by re-indexing treatment time to
be earlier (i.e. setting Tj’ = T; —x for some x), then estimate placebo effects for the held-out pre-

intervention time periods. Figure 9b shows the placebo estimates for the intercept-shifted par-
tially pooled SCM estimator with covariates using a placebo treatment time two and four periods
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before the true treatment time. Both estimators achieve excellent pre-treatment fit and estimate
placebo effects that are indistinguishable from zero.

Another important check that we recommend in practice is to gauge the sensitivity of the
ATT estimates to the particular choice of pooling parameter v. Figure 10a shows the overall ATT
estimates varying v from separate SCM v = 0 to pooled SCM v = 1. No choice of v substantively
changes the conclusions, and each rules out large positive effects. Finally, we consider the re-
sult of trimming states with poor pre-treatment fit, following common practice in the matching
and SCM literatures. Figure 10b shows the overall ATT estimates when removing an increasing
number of treated units with poor fits, in order of decreasing unit-level fit. Overall, omitting the
worst-fit states decreases the magnitude of the estimated effect, and increases the variability of
the estimate. However, all estimates still rule out large positive effects.

An important feature of SCM-based methods over model-based methods is that we can di-
rectly inspect the weights, and that these weights are non-negative and sum to one. Appendix
Figures B.8 and B.9 show the state-specific weights over donor states for each treated unit for
partially pooled SCM without an intercept and with both an intercept and auxiliary covariates
respectively. Without the intercept, both Illinois and Wyoming are consistently important donor
states. Both states had relatively high levels of per-pupil expenditures throughout the study pe-
riod and several synthetic controls place nearly all of the weight on these two states in order to
match the level. However, after removing pre-treatment averages via an intercept, the weights
are much more evenly distributed across the donor pool, suggesting that estimates are not overly
reliant on a single control unit.

8 | DISCUSSION

In this paper, we develop a new framework for estimating the impact of a treatment adopted
gradually by units over time. In our motivating example, 33 states have enacted laws mandating
school districts to bargain with teachers’ unions (Paglayan, 2019), and we seek to estimate the
effects of these laws on educational expenditures. To do so, we adapt SCM to the staggered adop-
tion setting. We argue that current practice of estimating separate SCM weights for each treated
unit is unlikely to yield good results, but also that fully pooled SCM may over-correct; our pre-
ferred approach, partially pooled SCM, finds weights that balance both state-specific and overall
pre-treatment fit. We then extend this basic approach to incorporate an intercept shift as well as
auxiliary covariates. We apply this approach to the teacher bargaining example and, consistent
with recent analyses, find weakly negative estimates on student expenditures.

We briefly note some directions for future work. First, we could extend these ideas to other
settings with multiple treated units, such as where treatment can ‘shut off” for some units (Imai
& Kim, 2021), or where all units are eventually treated (Athey & Imbens, 2021). This would likely
require additional assumptions. We could similarly incorporate other structure from our appli-
cation. For example, in staggered adoption settings where multiple units adopt treatment at the
same time, we could add a layer in the hierarchy and more closely pool units treated at the same
time while still partially pooling different treatment cohorts. See Appendix A.2.

Second, many SCM analyses explore multiple outcomes. As in other SCM studies, we treat
each outcome separately, choosing different synthetic control weights for each. In many settings,
however, lagged values from one outcome may predict future values of another, suggesting that
balancing multiple outcome variables would be useful. This seems especially important in set-
tings like ours with relatively few units.
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Finally, we could adapt recent proposals for bias correction and other ‘doubly robust’ estima-
tors to this setting, which will be important for both estimation and inference (Abadie & L'Hour,
2021; Arkhangelsky et al., 2019; Ben-Michael et al., 2021). Existing approaches have largely been
limited to the case with a single treated unit or, if multiple units are treated, to a single adop-
tion time. More complex models are possible and may be desirable in the staggered adoption
setting. For example, Fesler and Pender (2019) apply the Ridge Augmented SCM proposal in
Ben-Michael et al. (2021) to a staggered adoption setting, modelling each treated unit separately.
Partial pooling may be helpful here. In another direction, we might consider an outcome model
that incorporates the time weights used in Arkhangelsky et al. (2019). We anticipate that, unlike
in the simple case with unit fixed effects, these augmented approaches likely require more elab-
orate shrinkage estimation, such as via matrix penalties.
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“Synthetic Controls with Staggered Adoption”

A Additional theoretical results

A.1 Further discussion of inference

We now continue the discussion of inference from the main text in Section 5.3. Our goal here
is to discuss the conditions under which the proposed estimator is asymptotically Normal. Since
asymptotic theory is not the focus of our paper, we leave for future work a rigorous derivation of
the validity of the wild bootstrap procedure, in particular, adapting the proof of the main theorem
in Otsu and Rai (2017) and showing that the additional conditions in that proof are satisfied with
our proposed procedure.

In order to discuss inferential procedures for partially pooled SCM with an intercept shift, we
will consider a generalization of parallel trends. For each time period g, we assume that the expected
differences between post-g and pre-g outcomes do not depend on whether unit 7 is treated at time
g, conditional on auxiliary covariates X; and the vector of pre-g residuals Yig = (Yig—r,..-,Yig—1)—

1 L
T 24:1 Y%g—ﬁ-

Assumption A.1 (Conditional parallel trends). With L < T1, for all K > 0 and £ > 1
E[Yig41(00) = Yig—e(00) | Ty = 9, Y, Xi] = E[Yig4(00) = Yig—e(00) | Y7, Xi] = mgre(VY, Xi)

Assumption A.1 is a generalization of the conditional parallel trends assumption in Abadie
(2005) to the staggered adoption setting, including the pre-treatment residuals Yig . It loosens the
usual parallel trends assumption by allowing trends to differ depending on the auxiliary covariates
and the deviation of lagged outcomes from their baseline value. Thus, we are essentially conditioning
on pre-treatment “dynamics,” rather than pre-treatment levels. For instance, even if two states
have very different levels of student expenditures, under conditional parallel trends we can compare
them so long as they have similar pre-treatment trends and shocks. See Hazlett and Xu (2018) and
Callaway and Sant’Anna (2020) for related conditional parallel trends assumptions. In addition,
we will assume that the conditional expectation of the post- and pre-g differences is linear.

Assumption A.2. . ‘
mgke (Y, Xi) = Bape - Vi + Bae - Xi

We make two further assumptions that allow for asymptotic normality as the number of units
grows while the number of lags L stays fixed. First, we assume that the synthetic controls have
perfect fit when averaged within time-cohorts; second, we assume that the sum of the squared
weights is bounded.



Assumption A.3 (Exact balance within treatment cohorts and bounded weights). Assume that

i ZZyijgand—ZX ZZ’YZ] )

Mg T,= i=1Tj=g i=1Tj=g
for all g =T1,...,Ty. Furthermore, |92 < \/LNT) for all j =1,...,J and some constant C.

Note that by transforming from the penalized optimization problem (7) to the constrained form,
there is a choice of A that guarantees that the constraint on the weights are satisfied, if there
exists a feasible solution. Finally, we make two assumptions on the noise terms e;g;, = Y;g41(00) —
% Zle Yig—e(o0) —% ZeL:1 mee(g, Yig, X;). First, we assume that they are independent across units;
second, we assume that they are sufficiently regular so that their average satisfies a central limit
theorem.

Assumption A.4. gy are independent across units ¢ = 1,..., N, and for some ¢ > 0, the 2 + sth

2+5}

moment exists, E [\Eigk\ < 00, and furthermore

2Tyt E [\&“mk\ﬂﬂ
lim
N—oco 9 1+
(ZTHAOO £ [EmkD

Under these assumptions, the estimate of the effect k periods after treatment, mk, will be
asymptotically normal as N grows with a fixed number of lags L, and where the number of control
units Ng grows more quickly than the number of treated units J.

=0.

[N

Theorem A.1. Assume that 3~ — 0 as both J, Ny — oo, with L fixed. Under Assumptions A.1,
A2 A3, and A4

Vi (mk _ ATT) Z eiry 1k + 0p(1).
T;éoo

ATT,—ATT 4 g 1),

Furthermore, -

2
T 2Tj#co E[aiTik]

Jackknife. Finally, we briefly discuss constructing confidence intervals via the leave-one-unit-out

jackknife approach, which proceeds as follows. Fix hyperparameter values v, £, and A; for each unit

i=1,...,N: drop unit ¢ and re-fit the intercepts and the weights via Equation (11) to obtain &=,
(=)

f(_i), and the synthetic control estimates YjTJ_ +x- Then compute the leave-one-unit-out estimate

m;ﬂ) = ﬁ ijl Lz {YjTﬁk — }A/J(sz)rk}, where J-) = J — 17,<00. The jackknife estimate
of the standard error is then:
. 2
szn_lz ATT, Z)——ZATT( 7 (A1)

no 2
=1 7=1

with an approximate 95% confidence interval mk +1.964/V}. We include Monte Carlo estimates
of the coverage under our simulation setup in Figures B.3 and B.4.



A.2 Fully pooling within time cohorts

As we discuss in Section 3, if all units are treated at the same time, T} = --- = T}, our error
bounds depend only on the pooled imbalance and do not include the unit-level imbalance. Thus, if
units are treated in cohorts (i.e., several units treated at the same time), then the bounds suggest
modeling variation in pre-treatment outcomes between treatment cohorts separately from the pooled
average. This leads to a natural modification of our partially pooled estimator: We can fully pool
within cohorts by applying the estimator to treatment cohorts rather than individual treated units,
optimizing a weighted average of the overall imbalance and the average cohort-level imbalance.
Concretely, let G be the number of distinct treatment times, which we denote T'(g), g = 1,...,G,
and let ng = Zf\il 1{T; = T(g)} be the number of units treated in time 7'(g). We can modify the
optimization problem to find G sets of weights, where the individual objective for treatment cohort

g is

L N N 2
1T 1 E
4 (1) " =\ T D (Z H{T; = T(9)}Yir(g)—¢ — Z%gYiT@—e) :
=1

9 ¢=1 \i=1
As before, we will restrict the set of donor units for cohort g to those not yet treated K periods
after T'(g), D(g) = {i : T; > T(g) + K}, and we will restrict the weights so that v, € A™(g)
satisfies v;y > 0 for all i, >, vig = ng, and ;g = 0if i & D(g). We then define the relevant separate
and pooled balance measures:

16 1 Lo (N N 2
P (T = I > i (Z W{T) = T(9)}Yir(g—e — Y %'gYiT(g)—z> ;
' i=1

g=1 "9 ¢=1 \i=1
and
2
1 maxg Lg 1 G N N
qP°°! Cohort(r) = | — Z = Z Z H{T; =T(9)}Yir(g)—e — Z VigYiT(g)—¢
maxgy Lgy e G g=1 i=1 i=1

We can then use these cohort-level measures of imbalance in the partially pooled SCM optimization
problem (6), and similarly can include an intercept as in (7). More generally, if we do not want to
fully pool within clusters, we can include three (or more) imbalance terms in our objective function
to capture unit-level, pooled, and intermediate cluster-level imbalance.

A.3 Partially pooled SCM: Dual shrinkage

We now inspect the Lagrangian dual problem to the partially pooled SCM problem in Equation (6),
showing that the optimization problem partially pools a set of unit-specific dual variables toward
global dual variables. We focus on balancing the first L; = L < T7 — 1 lagged outcomes, which are
observed for each treated unit.

For each treated unit j, the sum-to-one constraint induces a Lagrange multiplier a; € R, and the
state-level balance measure induces a set of Lagrange multipliers 3; € RE, with elements Bej- We
combine these dual parameters into a vector a = [as, ..., 5] € R’ and a matrix 8 = [p1,...,8] €
R/ In addition to the J sets of Lagrange multipliers — one for each treated unit — the pooled
balance measure in the partially pooled SCM problem Equation (6) induces a set of global Lagrange



multipliers ug € RE. As we see in the following proposition, in the dual problem the parameters
B1,..., By are regularized toward this set of pooled Lagrange multipliers, ps.

Proposition A.1. The Lagrangian dual to Equation (6) with un-normalized objevtices ¢°P and
qP°° with L; = L < Ty and A > 0 is:

J
. 1 e 2
i, £ 9) + 5 | gy 2o = ol Sl ) (A2)

where the dual objective function is

2

J L L
1
Lla,f) =5 S i+ BeYir—e| - (aj + ZﬁijjTle> : (A.3)
j=1 |ieD; =1 T =1
where [z]; = max{0,x}. For treated unit j, the synthetic control weight on unit i is 4;; =

~ L A
[aj + 2 5@;‘5?%4 o

Proposition A.1 highlights that the estimator partially pools the individual synthetic controls to
the pooled synthetic control in the dual parameter space, with v controlling the level of pooling.
When v = 0 in the separate SCM problem, the parameters (31, ... 3, are shrunk towards zero rather
than a set of global parameters. By contrast, when v = 1, B4,..., 8 are constrained to be equal
to pg, fitting a single pooled synthetic control in the dual parameter space. By choosing v € (0, 1),
we move continuously between the two extremes of J separate Lagrangian dual problems and a
single dual problem, regularizing the individual ;s toward the pooled jg, allowing for some limited
differences between the J dual parameters.



B Additional figures

B.1 Additional simulation results
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Figure B.1: Monte Carlo estimates of the bias for the overall ATT vs the MAD for the individual
ATT estimates.
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Figure B.2: Monte Carlo estimates of the RMSE for the overall ATT vs the RMSE of the individual
ATT estimates.
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Figure B.3: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0,...,9 periods after treatment using partially pooled SCM with an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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Figure B.4: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0,...,9 periods after treatment using partially pooled SCM without an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.



B.2 Additional results for the mandatory collective bargaining application
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Figure B.5: Per-pupil expenditures for US states over the study period.
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Figure B.6: Average post-treatment effect estimates %H Zszo 7k for the treated states, plotted
against the root-mean square pre-treatment fit g; (’ij).

Effect on Teacher Salary

o
e

ATT Estimate (log, 2010 $)
o
o

<)
o

15 10 5 0 5 10
Years relative to mandatory collective bargaining law

Figure B.7: Partially-pooled SCM with intercept shifts and covariates (& = 0.26), estimates of the
impact of mandatory collective bargaining laws on average teacher salary (log, 2010 $).
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Figure B.8: Partially pooled SCM weights. White cells indicate zero weight, black cells indicate a
weight of 1.
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Figure B.9: Partially pooled SCM weights when including an intercept. White cells indicate zero
weight, black cells indicate a weight of 1.
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C Proofs
C.1 Error bounds
Proof of Theorem 1. Defining & = p; — p, the error is
L
Tjo — Tjo = Z(ﬁ + &) | Yir,—0 — Z YijYir,—e | + | €51y — Z Yij€iT;

/=1 ’iEDj iED]'

So by the triangle and Cauchy-Schwarz inequalities,

2
L

%0 — ol < 1P+ &y lla, [ D | Yimy—e = > vigYiry—e | + |eimy — D viseiry
=1 i€D; i€D;

Since 4; is fit on pre-T; outcomes, the weights are independent of er;, and so the second term
above is sub-Gaussian with scale parameter o/1 + ||9;[|3 < (1 + ||9;]|2). This implies that

. . 52
P (e~ X e | 2 0+ 155l | < 200 (5)
iGDj

For the bound on mo, notice that

J J [
e 1 1 R R
ATTo — ATTo = > Fjo— 7o = 7 ST et &no) | Yim—e— D AiVir—e | + | gz = Y Auseary
j: jzl EZ]. iEDj iEDj
Lo,
= 2P 2 | Vitee = 2 AuYin

/=1 lEDj
1L
+jZZ§J ]T -4 — Z’YZ] i —L
j=1¢=1 i€D;
1 J
23 (o X e
7j=1 1€D;
(A.4)
By Cauchy-Schwarz the absolute value of the first term is
2

L J L J
> le Yir,—e— > AiYir—e || < llpll2, | D %Z Yir,—e — Y A Yir,—e

/=1 7j=1 ZED]' /=1 J=1 iGDj
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Similarly, the absolute value of the second term is

2

J L J L
ZZ Vi, o= 3 AV o || < 3 3 lenlla, | S [ Vin e = 3 3u¥in,
j=1

Jj=1/¢=1 ZEDj /=1 iEDj

1 J L
ZZ YJ Z’Y@] T —4

]:1 (=1 i€D;

| /\
.
’ﬂ
f'\

Finally, notice that + ZJ 1

so is itself sub-Gaussian with scale parameter W' However, 1 7 Z =1 ZieDj Yij€ir; is the weighted

g;1; 1s the average of J 1ndependent sub-Gaussian random variables and

average of sub-Gaussian variables that are independent over ¢ but not necessarily independent over
j, and so the weighted average is sub-Gaussian with scale parameter %HFH r. The two averages
are independent of each other, so

1 So 2
P33 (e - S awem | 2 52 (1400l | <20 (-5
J=1 i€D;
Putting together the pieces completes the proof. ]

Proof of Theorem 2. Following Abadie et al. (2010), we can re-write ¢; in terms of the lagged
outcomes as

L
¢ = (59;) " Z pery—e(Yir,—¢ — €i1;—0)
=1
. (A.5)
Z PO (Yiry—¢ — eiry—0)
where Q; € REXF is the matrix of factors from time t = Tj—L, ..., T;—1, %PKQ) = (Q;Qj)_l,uTj_g €
RY and ﬁP(j) = %[Pl(j), . ,P}j)] € RI*L, Using Equation (A.5), we can write the error for
the ATT as
— 1 L
ATT) — ATT), = ZT]k Tk = VI ZZM 1P | Yim—e — Z Vij Yir;—e
j=1t=1 i€D;
1 K& A
J7\/E Z Z HT +kP E5T—€ — Z Yij€iT;—¢ (A.6)
j=1 =1 i€D;
1< .
T3 Z €jTj+k — Z Vij€iTy+k
j=1 iEDj

From the proof of Theorem 1, we can bound the final term in Equation (A.6). We now bound
the first two terms. First, as in the proof of Theorem 1, we decompose the first term into a time

13



constant, and a time varying component:

.

J L
ZZMT-M:P Yir,—e —

]:1 /=1 ZED

N

J

Z’Y’L] =0 =

(%)

where fig = JZ] 1P 2

that
1 (1 i
‘(*)| < ”/j’kHQ EZ jzy}T -0 — Z ’Yzj iTj—L
/=1 7j=1 1€D;
11 i
< | 7ikl2 EZ jZYjTj—e =) i Yir,—e
=1 =1 i€D;

We now turn to the second term in Equation (A.6).

random variables and ﬁHMTJ P (j)H2 < M2 F

A
ZZF‘T-HcP E5Tj—| =

j:]. /=1

Next, since 41, ...

h

j=1 ¢=1 i€D;

where the final inequality holds with probability at least 1 — 2exp (——) by the standard tail
bound on the maximum of sub-Gaussian random variables.

union bound completes the proof.

C.2 Asymptotic normality

1 J L )
7zzﬂlﬂ+kpf(j) Z %jeiTj_f =

max
Jj€{l,...,J},i€D;

1 L

<.

w1

j=1

1

J
1
T3 Z &7 +xl2
j=1

Z '71] iT5—L

;. JL
+ﬁZZ§(Tj+k)e Yir,—e — Z%j i |

j=1 ¢=

1€D;

pry+ks and 7 gy = Pe(j)/uTj+k — fige- Now by Cauchy-Schwarz, we get

1
L

L
S Vi =D AiYiry -

=

1

ZED]'

1
JL

SoM?F
vJL

>3 (v

J

=1

Proof of Theorem A.1. Define B;/k = %Zle 5;;% and B;i = %Zngl

in Assumption A.2,

zg—‘rk:
Z:

Mh

ng
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(=1

;;g‘}ég+B;§€'Xi+€igk.

<2

L
1 .
VL D P e, | <
(=1

Z Yig Yi;—e

ZGDj

Since €5+ are independent sub-Gaussian

2
< 2exp (—2)

g € A %Z}Ll 17511 = 1, by Holder’s inequality

"AﬁF (Viog N7 + 6)

Putting together the pieces with a

O]

ﬁcg. Note that under linearity
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So the estimation error for the treatment effect for unit j at time k is

ik — Tjk = Yjr,4%(00 ZY}T —¢(o0 Z’m( iTj+k — LZY}T e>

(=1

— .T. N cT. —
:/B’}/}k <YJJ _Z’Yijyi J) +67)“§]g : ( Z’Y@] ) +53Tk ZV%]EZTk
i

%

Aggregating across treated units we see that

J
/\ 1 R
ATT), — ATT = 7 El Tik — Tik

1 ~y 1 ~x 1 1 R
o S B o S IDIL T POV S ) DPTELD 9p S
— Ng 7— Ng 7— Ng "= 77—
g=1 Ti=g 1=1Tj=g Ti=g i=1T;=g
1
+ JZ€jTjk Z%ﬁmjk,
7=1 A

where ny is the number of units treated at time ime g. Now from Assumption A.3, we have exact
balance within each cohort, so this reduces to ATT;.C —ATT = 5 Z =1 4Tk — > 'AyijsiTj k. We now

show that the second term is 0,(J~1/2). Denote 02, = max;, Var(g;gr). Since the noise terms
€ are independent across units ¢,

J J J
%Zzgii’“jk%j =E %ZZEZ‘Tjk% |[T'|| +Var [E %szigk%’ |r
j=1 4 i Jj=1 i Jj=1
[ J

=E |5 > Var [ > et | T

R =1
<E %Uﬁlax DO A

I PR

1 . N
<E 72 ZUIQnaX Z 195 1121195l 2

33"

022

max

No

2
> 5) < < %02 Now since Nio — 0, this

By Chebyshev’s inequality, P (’% Z;-Izl > EiT;kYij 52Ny

implies that v/.J (m r — AT Tk) = % ZTH&OO eiryk +0p(1). Applying the Lyapunov central limit
theorem to the first term and Slutsky’s theorem shows asymptotic normality. 0
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C.3 Partial pooling of dual parameters
Lemma A.1. The Lagrangian dual to Equation (6) with v =0, A >0, and L; = L < T} is

7 2

1
minZ> 12

j=1 |ieD;

L
aj + Z Be;Yir;—e

(=1

L J AL
- (%‘ +> %Yﬂa—e) +> 7”5]”3, (A7)
j=1

+ /=1

£(af)
The resulting donor weights are 4;; = [dj — ZZL:1 ngYiTj _4
_l’_

Proof of Lemma A.1. Notice that the separate synth problem separates into J optimization prob-
lems:

' . A,
-V S DI L
L N 2 NS (A.8)
:;W?An%m L;( iTi—t — Z%g iy e) + 2;%-2]-

Thus the Lagrangian dual objective is the sum of the Langrangian dual objectives of the individual
objectives in Equation (A.8). Inserting the dual objectives derived by Ben-Michael et al. (2021)
and scaling by % yields the result. O

Proof of Proposition A.1. We start be defining auxiliary variables, &), &1, ..., Ey € R where Ejo =
Yiz,—o — 8y yiYir,—¢ for j > 1 and &y = Yoy (ijj_e - leyiTj_g). Additionally we
rescale by % Then we can write the partially pooled SCM problem (6) as

JQL)\Z 0€+ 27\ ZL JE+ZZ %J

min
eV S0kl
71 YJ €0 J ] 1i=1

subject to  Ejp = Vi, ¢ — Z%‘jYz‘T]-—é

N
Eoo=> (YjTje -3 %‘jYiTje>
i=1

;>4
) scm
v € Aj

With Lagrange multipliers pug,(i,...,(; € RE and a,...,a; € R, the Lagrangian to Equation
(A.9) is
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Defining 3; = pg + ¢, the dual problem is:

J

L J L

L
1
- me{sz/\gﬂ Ejt(Bej —Mﬁz)}
/=1

L
& Soeﬂﬁe}

— min

s {zrmt

From Lemma A.1, we see that the first term is L£(«, ) and we have the same form for the
implied weights. The next two terms are the convex conjugates of a scaled L? norm. Using the
computation that the convex conjugate of %||z[|3 is 5 [lz||3. We then scale the whole dual problem
by % Finally, the primal problem (6) is still convex and a primal feasible point exists, so by Slater’s
condition strong duality holds. O
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