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Abstract
Staggered adoption of policies by different units at 
different times creates promising opportunities for 
observational causal inference. Estimation remains 
challenging, however, and common regression meth-
ods can give misleading results. A promising alternative 
is the synthetic control method (SCM), which finds a 
weighted average of control units that closely balances 
the treated unit’s pre-treatment outcomes. In this paper, 
we generalize SCM, originally designed to study a sin-
gle treated unit, to the staggered adoption setting. We 
first bound the error for the average effect and show 
that it depends on both the imbalance for each treated 
unit separately and the imbalance for the average of the 
treated units. We then propose ‘partially pooled’ SCM 
weights to minimize a weighted combination of these 
measures; approaches that focus only on balancing one 
of the two components can lead to bias. We extend this 
approach to incorporate unit-level intercept shifts and 
auxiliary covariates. We assess the performance of the 
proposed method via extensive simulations and apply 
our results to the question of whether teacher collec-
tive bargaining leads to higher school spending, finding 
minimal impacts. We implement the proposed method 
in the augsynth R package.
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1  |   INTRODUCTION

Jurisdictions often adopt policies at different times, creating promising opportunities for ob-
servational causal inference. In our motivating application, 33 states passed laws between 
1964 and 1987 mandating that school districts bargain with teachers’ unions (Hoxby, 1996; 
Paglayan, 2019); our goal is to estimate the impact of these laws on teacher salaries and school 
expenditures.

However, estimating causal effects under staggered adoption remains challenging. Workhorse 
methods, such as the regression-based two-way fixed effects model, rely on strong modelling as-
sumptions and can give misleading estimates when treatment timing varies (Borusyak et al., 2021; 
Goodman-Bacon, 2021; Sun & Abraham, 2020). A promising alternative is the synthetic control 
method (SCM; Abadie et al., 2010, 2015). SCM estimates the counterfactual untreated outcome via a 
weighted average of untreated units, with weights chosen to match the treated unit’s pre-treatment 
outcomes as closely as possible. SCM, however, was developed for settings where only a single unit 
is treated, and proposals for extending SCM to the staggered adoption case have been ad hoc. One 
common strategy is to estimate SCM weights separately for each treated unit and then average the 
estimates (see, e.g., Donohue et al., 2019; Dube & Zipperer, 2015). However, this relies on being able 
to find good synthetic controls for every treated unit, which is not possible in our application.

In this paper, we develop SCM for the staggered adoption setting. Under two common data 
generating processes for panel data, an autoregressive model and a linear factor model, we bound 
the error of a weighting estimator for the average effect and show that it depends on both the 
unit-specific imbalance for each treated unit and the imbalance for the average of the treated 
units. This leads to our main proposal, partially pooled SCM, which minimizes a weighted aver-
age of the two imbalances. This approach nests two special cases: separate SCM, which reflects 
the current practice of estimating weights that separately minimize the pre-treatment imbalance 
for each treated unit; and pooled SCM, which instead minimizes the average pre-treatment im-
balance across all treated units. Both special cases have drawbacks. Separate SCM can lead to 
poor fit for the average, leading to possible bias when the average treatment effect is the estimand 
of interest. Pooled SCM, by contrast, can achieve nearly perfect fit for the average treated unit 
but can yield substantially worse unit-specific fits. This can lead to poor estimates of unit-level 
treatment effects and to bias for the average effect if the data generating process varies over time. 
Partially pooled SCM moves smoothly between these two extremes, with a hyperparameter de-
noting the relative weight of the two balance measures in the optimization problem. We discuss 
how to select weights to trade-off between these two quantities in practice.

We then explore several extensions. First, we incorporate an intercept shift into the SCM prob-
lem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto (2021). The 
resulting treatment effect estimator has the form of a weighted difference-in-differences estima-
tor, connecting our proposed approach to a large econometric literature (Callaway & Sant’Anna, 
2020; Sun & Abraham, 2020). We recommend this approach as a reasonable default in practice; it 
amounts to applying our partially pooled SCM estimator to de-meaned outcome series. Second, 
we modify the SCM problem to incorporate auxiliary covariates alongside lagged outcomes. We 
also briefly address inference for SCM-like estimates in the staggered adoption setting. We im-
plement the proposed methodology in the augsynth package for R, available at https://github.
com/ebenm​ichae​l/augsynth.

We apply our methods to estimating the impact of mandatory teacher collective bargaining 
and show that they achieve better pre-treatment balance than existing approaches. We find no 
impact of teacher collective bargaining laws on either teacher salaries or student expenditures, 

https://github.com/ebenmichael/augsynth
https://github.com/ebenmichael/augsynth
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consistent with several recent papers (Frandsen, 2016; Paglayan, 2019) but counter to earlier 
claims (most notably Hoxby, 1996).

1.1  |  Related work

Our paper contributes to several methodological literatures. First, there is a large and active ap-
plied econometrics literature on challenges and remedies for two-way fixed effects models with 
multiple treated units; see Borusyak et al. (2021); Sun and Abraham (2020); Athey and Imbens 
(2021); Goodman-Bacon (2021); Callaway and Sant’Anna (2020); Roth and Sant’Anna (2021). 
See also Xu (2017) and Athey et al. (2021) for recent generalizations of these models.

SCM has also attracted a great deal of attention; see Abadie (2019) for a review. Several recent 
papers have explored SCM with multiple treated units. In the case where all units adopt treat-
ment at the same time, some propose to first average the units and then estimate SCM weights 
for the average, analogous to our fully pooled SCM estimate; for discussion, see Kreif et al. (2016); 
Robbins et al. (2017). An alternative is Abadie and L’Hour (2021), who instead propose to esti-
mate separate SCM weights for each treated unit. In particular, they propose a penalized SCM 
approach that aims to reduce interpolation bias, allowing for weights that move continuously 
between standard SCM and nearest-neighbour matching. Our approach complements these pa-
pers by adapting some of these ideas to the staggered adoption setting. For some other examples 
of SCM under staggered adoption, see also Dube and Zipperer (2015); Shaikh and Toulis (2021); 
Donohue et al. (2019); Cao and Lu (2019).

1.2  |  Motivating example: Teacher collective bargaining

The United States, like other developed countries, spends substantial resources on public ed-
ucation. Approximately 80% of education spending goes to teacher salaries and benefits (U.S. 
Department of Education, National Center for Education Statistics, 2018), and research points 
to teacher quality as a key determinant of student outcomes (Jackson et al., 2014). Over recent 
decades, the teacher employment relationship has changed dramatically via the introduction of 
unions and collective bargaining agreements (Goldstein, 2015). Critics identify these as a ‘harm-
ful anachronism’ and ‘the most daunting impediments’ to education reform (Hess & West, 2006), 
while proponents argue that collective bargaining raises pay and thereby helps to attract and re-
tain high-quality teachers. A major 2018 Supreme Court decision, Janus v AFSCME, is expected 
to weaken teachers’ unions, bringing renewed attention to this area and raising interest in under-
standing the effects of teacher collective bargaining.

Since 1964, a number of states have passed laws mandating that school districts bargain with 
teachers’ unions.1 Given the strong criticism directed at teachers’ unions, there is surprisingly little 
evidence that they, or the mandatory bargaining laws, have any effect at all. In a seminal study, 
Hoxby (1996) uses state-level changes in collective bargaining laws to argue that teacher collective 
bargaining raises teacher salaries and school expenditures but reduces student outcomes. However, 
several more recent papers have disputed Hoxby’s conclusions. Using a panel of school districts, 
Lovenheim (2009) finds little effect of unionization on teacher pay or class size. Frandsen (2016) 

 1Another 10 states allow but do not require collective bargaining, while seven prohibit it. We focus on estimating the 
effects of mandates.
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similarly finds little effect of state unionization laws on teacher pay. Finally, Paglayan (2019) ex-
tends the historical state-level data set from Hoxby (1996). Using a variant of the two-way fixed 
effect model, she finds precisely estimated zero effects of mandatory bargaining laws on per-pupil 
school expenditures2 and teacher salaries. Motivated in part by recent criticisms of such models 
(Goodman-Bacon, 2021), we revisit the Paglayan (2019) analysis using different methods.

Figure 1 shows adoption times of state mandatory bargaining laws between 1964 and 1990. 
Adoptions were spread across 14 separate years, although 16 states adopted laws between 1965 
and 1970. Following Paglayan (2019), our main outcomes of interest are per-pupil student expen-
ditures and teacher salaries, both measured in 2010 dollars and log transformed. We observe these 
outcomes back to 1959 for 49 states; we exclude Wisconsin, which adopted a mandatory bargain-
ing law in 1960 and thus has only one year of pre-intervention data, as well as Washington, DC. 
This gives between 6 and 28 years of data before the adoption of mandatory bargaining, with an 
average of 13 years.

1.3  |  Paper roadmap

Section 2 lays out the technical background and introduces the synthetic control estimator for a 
single treated unit. Section 3 bounds the estimation error for general weighting estimators under 
two families of data generating process, an autoregressive model and a linear factor model, with 
staggered adoption. Section 4 introduces partially pooled SCM as a solution to the problem of 
minimizing estimation error and considers two special cases, separate SCM and pooled SCM. 
Section 5 proposes several important extensions, including incorporating an intercept shift and 

 2Paglayan (2019) defines this as ‘the total current operational expenditures (regardless of funding source) that are 
devoted to public schools in a state divided by the number of public school students in that state’.

F I G U R E  1   Staggered adoption of mandatory collective bargaining laws from 1964 to 1990 [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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auxiliary covariates, and briefly discusses inference. Section 6 describes a calibrated simulation 
study. Section 7 gives additional results for the teacher collective bargaining application. Finally, 
Section 8 discusses some directions for future work. The appendix includes further analyses and 
technical results. In particular, we provide an alternative motivation for our proposed partially 
pooled estimator, which we show is based on partially pooling parameters in the Lagrangian dual 
of the SCM constrained optimization problem.

2  |   PRELIMINARIES

2.1  |  Setup and notation

We consider a panel data setting where we observe outcomes Yit for i  =  1,  …,  N units over 
t = 1, …, T time periods. In the teacher collective bargaining application, N = 49 and T = 39 years. 
Some but not all of the units adopt the treatment during the panel; once units adopt treatment, 
they stay treated for the remainder of the panel. Let Ti represent the time period that unit i re-
ceives treatment, with Ti = ∞ denoting never-treated units. Without loss of generality, we order 
units so that T1 ≤ T2 ≤ … ≤ TN. We assume that there are a non-zero number of never-treated 
units, N0 ≡

∑
i�Ti =∞, and we let J = N −N0 =

∑
i�Ti≠∞

. To clearly differentiate units that are 
eventually treated, we index them by j = 1, …, J.

We adopt a potential outcomes framework to express causal quantities (Neyman, 1923; Rubin, 
1974) and assume stable treatment and no interference between units (SUTVA; Rubin, 1980). In 
principle, each unit i in each time t might have a distinct potential outcome for each potential 
treatment time s, Yit(s), for s = 1, …, T, ∞. Following Athey and Imbens (2021), we assume that 
prior to treatment, a unit’s potential outcomes are equal to its never-treated potential outcome 
(see also Abbring & Van den Berg, 2003):

Assumption 1  (No anticipation). Yit(s) = Yit(∞) for t < s, with treatment time s.

This assumption generalizes the consistency assumption typically employed in 
cross-sectional studies. We maintain it throughout. With it, the observed outcome is 
Yit = �{t < Ti}Yit(∞) + �{t ≥ Ti}Yit(Ti).

2.2  |  Estimands

As is common in many panel data settings, we focus on effects a specified duration after treatment 
onset, known as event time. For treated unit j, we index event time relative to treatment time Tj by 
k = t − Tj. The unit-level treatment effect for treated unit j at event time k is the difference between 
the potential outcome at time Tj + k under treatment at time Tj and under never treatment: 

 By Assumption 1, � jk = 0 for any k < 0.
The unit-specific effects, � jk, are often the central quantities of interest in many synthetic con-

trols analyses. In addition to these effects, we also focus on their average. Our primary averaged 
estimand is the average treatment effect on the treated (ATT) k periods after treatment onset: 

� jk = YjTj+k(Tj) − YjTj+k(∞).



356  |      BEN-­MICHAEL et al.

We are also interested in the average post-treatment effect, averaging across 	
k: ATT =

1

K +1

∑K
k=0 ATTk . Our methods generalize to many other estimands; see Callaway 

and Sant’Anna (2020) for examples in this setting.
A challenge for staggered adoption analyses is that a panel that is balanced in calendar time 

is necessarily imbalanced in event time. That is, we observe outcomes ℓ periods before treatment 
only for units treated after period ℓ, and we observe outcomes k periods after treatment only for 
treated units treated before T − k. This means that populations of treated units over which one 
can average treatment effects vary with k, as do the possible donors. To minimize this problem, 
we assume that all treated units are observed for at least several periods before being treated (i.e. 
T1 ≫ 1) and for at least K ≥ 0 periods after treatment (TJ ≤ T − K). For treated unit j, we will 
consider outcomes up to Lj ≤ Tj − 1 periods before treatment, with L ≡ maxj≤JLj denoting the 
maximum number of lagged outcomes.

With this, the challenge in estimating ATTk for k ≤ K is to impute the average of the missing 
never-treated potential outcomes. We define the set of possible ‘donor units’ for treated unit j at event 
time k as those units i for which we observe YiTj+k(∞), which we denote jk ≡ {i: Ti > Tj + k} . 
The composition of jk varies with both treated unit j and event time k; in particular, unit i with 
Ti < ∞ is in jk for k < Ti − Tj but not for k ≥ Ti − Tj. We focus on fixed donor pools jK rather 
than allowing the donor pools to vary with k. This limits the number of potential donors, but 
ensures that estimated counterfactual outcomes do not vary spuriously across event time due to 
changing composition of the donor pool. Our proposed estimator does not require this restric-
tion, but it greatly simplifies exposition. If K ≥ TJ − T1 then jk will only include never treated 
units as donors; otherwise jk will include both never treated and not-yet-treated units.

In our empirical application we exclude Wisconsin—which adopted a mandatory collective 
bargaining law in the second year of the sample—so the first treated state is Connecticut with 
T1 = 7. We follow Paglayan (2019) in considering treatment effects only up to event time K = 10, 
and use as potential donors for treated state j any states that are not treated by Tj + 10.

2.3  |  Restrictions on the data generating process

We now detail various restrictions on the data generating process that we will consider below. 
Because we are interested in treatment effects on treated units—and observe potential outcomes 
under treatment—we will place restrictions only on the potential outcomes under the never 
treated condition Yit(∞) (see, e.g. Borusyak et al., 2021). Throughout, we follow Chernozhukov 
et al. (2021) and Ben-Michael et al. (2021) and write these potential outcomes as a model com-
ponent plus additive noise.

We consider two alternative restrictions on the model terms and noise terms, corresponding 
to two common data generating processes for Yit(∞): a time-varying autoregressive process and 
a linear factor model.

Assumption 2  (Data generating processes). We consider the following:

(a)	 � The untreated potential outcomes Yit(∞) follow a time-varying AR(L) process with co-
efficients at time t (�t1, …, �tL) ∈ ℝ

L: 

ATTk ≡
1

J

J∑
j=1

� jk =
1

J

J∑
j=1

YjTj+k(Tj) − YjTj+k(∞).
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where �it are mean zero and independent across units and time, with 𝜀is+k⊥⊥�{Ti = s} for k ≥ 0 
for all i = 1, …, N.

(b)	 � There are F latent time-varying factors, where F is typically small relative to both N and T. 
The factors, �t ∈ ℝ

F, are bounded, maxt‖�t‖∞ ≤M. Each unit has a vector of time-invariant 
factor loadings �i ∈ ℝ

F, and the untreated potential outcomes Yit(∞) are generated as: 

�where �it are mean zero, independent across units and time and 𝜀it⊥⊥Ti for all i  =  1,  …,  N, 
t = 1, …, T.

Assumptions 2a and 2b impose different restrictions on the noise terms. Assumption 2b rules 
out correlation between treatment timing and the noise terms for any period while Assumption 
2a only excludes correlation for noise terms after treatment. Therefore, under Assumption 2b 
treatment timing and pre-treatment outcomes are only dependent through the factor loadings, 
while under Assumption 2a there is no restriction on their dependence.

Finally, under each process, we assume that the noise terms do not have fat tails.

Assumption 3.  �it are sub-Gaussian random variables with scale parameter σ.

We use this restriction on the tail behaviour for the finite sample estimation error bounds we 
introduce in Section 3.

2.4  |  The synthetic control method

In the synthetic control method (SCM), the counterfactual outcome under control is estimated 
from a weighted average, known as a synthetic control, of untreated units, where weights are 
chosen to minimize the squared imbalance between the lagged outcomes for the treated unit and 
the weighted control (‘donor’) units.

We consider a modified version of the original SCM estimator of Abadie et al. (2010, 2015) 
for a single treated unit j. In this version, the SCM weights �̂ j are the solution to a constrained 
optimization problem: 

where � j ∈ Δscm
j

 has elements {� ij} that satisfy � ij ≥ 0 for all i, 
∑

i� ij = 1, and � ij = 0 whenever i is 
not a possible donor, i ∉jK.

Given an N-vector of weights �̂ j that solve Equation (3), the SCM estimate of the missing 
potential outcome for treated unit j at event time k, YjTj+k(∞), is: 

(1)Yit(∞) =

L∑
�=1

�t�Yit−�(∞) + �it,

(2)Yit(∞) = �i ⋅ �t + �it,

(3)
min

� j ∈Δscm
j

1

Lj

Lj∑
�=1

(
YjTj−� −

N∑
i=1

� ijYiTj−�

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
objective

+ �
N∑
i=1

�2ij

⏟⏟⏟
regularization

,
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with estimated treatment effect �̂ jk = YjTj+k − Ŷ jTj+k
(∞). This formulation can also be applied 

when k < 0, generating placebo treatment effect estimates, often referred to as ‘gaps’. We denote the 
vector of placebo pre-treatment effect estimates as �̂pre

j
= (�̂ j(−L), …, �̂ j(−1)) ∈ ℝ

L, where we define 
�̂ j(−�) to be zero for � > Lj. With this notation, the synthetic controls objective in Equation (3) is the 
mean squared placebo treatment effect on pre-treatment outcomes: 

The optimization problem in Equation (3) modifies the original SCM proposal in two key 
ways. First, where Abadie et al. (2010, 2015) balance auxiliary covariates, we focus exclusively 
on lagged outcomes; we re-introduce auxiliary covariates in Section 5.2. Second, following a sug-
gestion in Abadie et al. (2015), we include a term that penalizes the weights towards uniformity, 
with hyperparameter λ. While we penalize the sum of the squared weights, there are many op-
tions, for example, an entropy or elastic net penalty (see Abadie & L’Hour, 2021; Doudchenko & 
Imbens, 2017). In settings where it is possible to achieve perfect balance, selecting λ > 0 ensures 
that Equation (3) has a unique solution. This is not the case in our setting, however, and so we 
largely view this term as a technical convenience.

Abadie (2019) gives several reasons for preferring SCM to outcome models such as linear re-
gression or directly fitting the factor model. In particular, SCM weights are guaranteed to be non-
negative, and are generally sparse and interpretable. By contrast, alternatives based on explicit 
models for Yit(∞) often imply negative weights and thus unchecked extrapolation outside the sup-
port of the donor units. Outcome modelling can also be sensitive to model mis-specification, such 
as selecting an incorrect number of factors in a factor model. Finally, as we emphasize in our theo-
retical results in the next section, SCM can be appropriate under multiple data generating processes 
(e.g. both the autoregressive model and the linear factor model) so that it is not necessary for the 
applied researcher to take a strong stand on which is correct.

A central question for SCM is how to assess whether Ŷ jTj+k
(∞) is a reasonable estimate for 

YjTj+k(∞). A minimal condition is that the SCM weights achieve a low root mean squared pla-
cebo treatment effect, that is, qj(�̂ j) is close to zero. If it is not close to zero, there is a concern that 
estimated effects also capture systematic differences between Ŷ jTj+k

(∞) and YjTj+k(∞). Under 
versions of either Assumptions 2a or 2b and for a single treated unit, Abadie et al. (2010) show 
that if qj(�̂ j) = 0 then the bias will tend to zero as Lj → ∞; Ben-Michael et al. (2021) bound the 
estimation error of �̂ jk in terms of qj(�̂ j). Abadie et al. (2010, 2015) recommend that researchers 
only proceed with an SCM analysis if the pre-treatment fit is excellent, while Ben-Michael et al. 
(2021) propose an augmented SCM estimator that attempts to salvage cases where it is not.

3  |   ESTIMATION ERROR UNDER STAGGERED ADOPTION

In order to extend SCM to the staggered adoption setting, we first develop appropriate balance 
measures for synthetic control-style weighting estimators under staggered adoption. We use 

Ŷ jTj+k
(∞) =

N∑
i=1

�̂ ijYiTj+k ,

(4)(qj(�̂ j))
2 ≡

1

Lj

‖‖‖�̂
pre
j

‖‖‖
2

2
=

1

Lj

Lj∑
�=1

(
YjTj−� −

N∑
i=1

�̂ ijYiTj−�

)2

.
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these to develop bounds on the estimation error for the ATT for our two example data generat-
ing processes. These bounds in turn motivate our proposal for partially pooled SCM as a way to 
choose weights under staggered adoption.

3.1  |  Weights and measures of balance

With multiple treated units, we can generalize the above setup to allow for weights for each 
treated unit. For each j ≤  J, let � j ∈ Δscm

j
 be an N-vector of weights on potential donor units, 

where � ij is the weight on unit i in the synthetic control for treated unit j. We collect the weights 
into an N-by-J matrix Γ = [�1, …, �J ] ∈ Δscm, where Δscm = Δscm

1 ×…×Δscm
J

. The estimated 
treatment effect on unit j at event time k is then ̂� jk as defined above, and the estimated ATT aver-
ages over the unit-level effect estimates: 

Equation (5) highlights two equivalent interpretations of the estimator: as the average of unit-
specific SCM estimates and as an SCM estimate for the average treated unit.

Using the two interpretations of the ATT estimator in Equation (5), we construct goodness- 	
of-fit measures for the ATT by aggregating �̂pre

j
 in two ways. First, we consider the root mean 

square of the pre-treatment fits across treated units, 

This is a useful measure of overall imbalance when SCM is estimated separately for each treated unit 
and generalizes the objective for the single synthetic control problem. Second, we consider the pre-
treatment fit for the average of the treated units, 

We refer to this interchangeably as the pooled or global fit.
Both qpool and qsep are on the same scale as the estimated treatment effect, ÂTTk. However, the 

measures differ in whether they average before or after evaluating the pre-treatment fit. Thus, we 
typically expect (qpool)2 ≪ (qsep)2, since the lagged outcomes for the average of the treated units 
are less extreme than the lagged outcomes for the units themselves. In practice, we therefore con-
sider normalizing the imbalance measures by their values computed with weights Γ̂

sep
, the set of 

solutions to Equation (3) applied separately to each treated unit. We define normalized measures 
q̃pool(Γ) ≡ qpool(Γ)∕qpool(Γ̂

sep
) and q̃sep(Γ) ≡ qsep(Γ)∕qsep(Γ̂

sep
), and use them in our proposed esti-

mator in Section 4 below.
Ideally, both qsep and qpool would be close to zero; indeed if qsep = 0 then qpool is also 

zero. When this is not possible, there is a trade-off between these two sources of imbalance. 	

(5)ÂTTk =
1

J

J∑
j=1

�̂ jk =
1

J

J∑
j=1

[
YjTj+k −

N∑
i=1

�̂ ijYiTj+k

]
=
1

J

J∑
j=1

YjTj+k −

N∑
i=1

J∑
j=1

�̂ ij

J
YiTj+k .

qsep(Γ̂) ≡

�����1

J

J�
j=1

q2
j
(�̂ j) =

�����1

J

J�
j=1

1

Lj
‖�̂pre

j
‖2
2
=

�����1

J

J�
j=1

1

Lj

Lj�
�=1

�
YjTj−�−

N�
i=1

�̂ ijYiTj−�

�2

.

qpool(�Γ) ≡
1√
L

������
1

J

J�
j=1

�𝜏pre
j

������2
=

������ 1

L

L�
�=1

⎡⎢⎢⎣
1

J

�
Tj>�

YjTj−�−

N�
i=1

�𝛾 ijYiTj−�

⎤⎥⎥⎦

2

.
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Our proposed ‘partially pooled’ SCM estimator generalizes Equation (3) to minimize a weighted 
average of their normalized squares, �(q̃pool)2 + (1 − �)(q̃sep)2, where ν is a hyperparameter se-
lected by the researcher. To motivate this and to inform the choice of ν, we develop error bounds 
for SCM-style weights under our two data generating models.

3.2  |  Error bounds

3.2.1  |  Autoregressive model

We first bound the estimation error for the ATT under the autoregressive process in Assumption 
2a. To simplify notation and concepts, we initially focus on the ATT at event time k = 0, ATT0. 
Two summaries of the autoregressive coefficients are important to our analysis: � =

1

J

∑J
j=1 �Tj, 

the average autoregression coefficient across the J treatment times, and S2� ≡
1

J

∑J
j=1 ‖�Tj −�‖2

2
, 

the corresponding variance; this variance is zero under simultaneous adoption, S2� = 0.

Theorem 1.  Under Assumptions 2a and 3 with Lj = L < T1 for j = 1, …, J, for Γ̂ ∈ Δscm, where �̂ j 
is independent of �⋅Tj+k, and for any δ > 0, the error for ÂTT0 is 

with probability at least 1 − 2e−
�2

2 , where for a matrix A ∈ ℝ
n×m, ‖A‖F =

�∑n
i=1

∑m
j=1 A

2
ij
 is the 

Frobenius norm.

Theorem 1 shows that the error for the ATT is bounded by several distinct terms, giving guid-
ance for the choice of the weights Γ. First, error arises from the level of both the global fit and 
the unit-specific fits. The relative importance of these fits is governed by the ratio of the average 
coefficient value ‖�‖2 and the standard deviation S� for the autoregressive coefficients over time.

Second, there is error due to post-treatment noise, inherent to any weighting method. Because 
the weights are independent of post-treatment outcomes, this term has mean zero and enters 
the finite sample bound above through the standard deviation, which is proportional to the 
Frobenius norm of the weight matrix, ‖ Γ̂‖F. Thus, when selecting among weight matrices that 
yield similar unit-specific and pooled balance, we should prefer the one that minimizes ‖ Γ̂‖F. 
This motivates a penalty term similar to that in Equation (3).

Finally, we can extend the bound in Theorem 1 to ATTk by noting that the autoregressive 
structure implies that YiTj+k∞ =

∑L
�=1 �

(k)
t�
YiTj−�∞ +

∑k
s=0 �

(k)
s �iTj+s for some set of coefficients 

�(k)
t1
,…�(k)

tL
 and �(k)

0
, …, �(k)

k
. We can then apply Theorem 1 to obtain bounds for |||ÂTTk −ATTk

||| by 

defining � and S� in terms of the new coefficients �(k)
t�

 and replacing σ with �
�
1 +

∑
s

�
�(k)s

�2 . 

Similarly, we can obtain bounds for the overall ATT =
1

K +1

∑K
k=0 ATTk, by noting that the aver-

age outcome over K+1 periods following treatment can again be written as a weighted sum of the 
last L outcomes before treatment plus a weighted sum of the K + 1 errors following treatment. 
Thus, with suitable redefinition of the parameters, Theorem 1 continues to apply.

���ÂTT0 −ATT0
��� ≤

√
L‖�‖2qpool(Γ̂)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
pooled fit

+
√
LS� q

sep(Γ̂)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
unit− specific fit

+
��√
J

�
1 + ‖ Γ̂‖F

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise
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3.2.2  |  Linear factor model

Next we consider the linear factor model in Assumption 2b and begin by defining additional 
notation. Let Ωj ∈ ℝ

L×F denote the matrix of factor values for time Tj − L to Tj − 1, and denote 
P(j) =

√
L(Ω�

jΩj)
−1Ω�

j ∈ ℝ
F×L as the scaled projection matrix from outcomes to factors. Analogous 

to the autoregressive process above, the average (projected) factor value across the J treatment 
times, �k =

1

J

∑J
j=1 P

(j)��Tj+k, and the variance, S2
k
=

1

J

∑J
j=1 ‖P(j)��Tj+k−�k‖22, determine the rela-

tive importance of the pooled and unit-specific fits respectively.

Theorem 2.  Assume that Ωj is non-singular and ‖ 1√
L
Ωj‖2 = 1 for j = 1, …, J. With Lj = L < T1  

for j = 1, …, J, �̂1, …, �̂J ∈ Δscm where �̂ j is independent of �⋅Tj+k, k ≥ 0, and δ > 0, under 
Assumptions 2b and 3 the error for ÂTTk is 

with probability at least 1 − 6e−
�2

2 , where maxt‖�t‖∞ ≤M.

Theorem 2 shows that under the linear factor model the error for the ATT can again be con-
trolled by the level of pooled fit and unit-specific fits. As in Theorem 1, the relative importance 
of these fits is governed by the ratio of the average factor value �k and the standard deviation Sk; 
similarly, under simultaneous adoption, Sk = 0 and qsep does not enter the bound.

Unlike in Theorem 1, this bound also includes an approximation error that arises due to 
balancing—and possibly over-fitting to—noisy outcomes rather than to the true underlying fac-
tor loadings. In the worst case, the J synthetic controls match on the noise rather than the factors. 
Constraining the weights to lie in the simplex reduces the impact of this worst case, however, and 
the error decreases as more lagged outcomes are balanced; see Abadie et al. (2010); Ben-Michael 
et al. (2021); Arkhangelsky et al. (2019) for further discussion.

Finally, we can extend Theorem 2 to the estimation error of the overall post-treatment effect, 
ATT =

1

K +1

∑K
k=0 ATTk, by noting that the average post-treatment potential outcome also fol-

lows a linear factor structure with factor values 1

K +1

∑K
k=0 �Tj+k and noise term 1

K +1

∑K
k=0 �iTj+k. 

Thus the pooled- and unit-specific fit terms and the approximation error will depend, respec-
tively, on the average, variance and maximum of the (projected) average post-treatment factor 
value, and the noise term will be reduced by a factor of 1√

K +1
.

4  |   PARTIALLY POOLED SCM

We now turn to our main proposal, partially pooled SCM. Motivated by the finite sample error 
bounds in Theorems 1 and 2, this chooses SCM weights to minimize a weighted average of the 
(squared) pooled and unit-specific pre-treatment fits: 

���ÂTTk −ATTk
��� ≤ ‖�k‖2 qpool(Γ̂)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
pooled fit

+ Sk q
sep(Γ̂)

⏟⏞⏞⏟⏞⏞⏟
unit− specific fit

+
�M2F√

L

�
3� + 2

√
logNJ

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
approximation error

+
��√
J

�
1 + ‖ Γ̂‖F

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
noise

(6)
min

Γ∈Δscm
�(q̃pool(Γ))2 + (1 − �)(q̃sep(Γ))2 + �‖Γ‖2F .

pengdingpku
Highlight
But this seems rather ad hoc...

How do you choose nu?
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The hyperparameter ν  ∈  [0, 1] governs the relative importance of the two objectives; higher values 
of ν correspond to more weight on the pooled fit relative to the separate fit. In Appendix A.3, we 
show that intermediate values of ν correspond to a partial pooling solution for the weights in the 
dual parameter space, motivating our choice of a name.

The optimization in Equation (6) differs from the bounds in Section 3 in two practical ways. 
First, we minimize the normalized imbalance measures (e.g. q̃pool rather than qpool), so that the 
minimum with ν = 0 and λ = 0 is indexed to 1. This ensures that the two objectives are on the 
same scale, regardless of the number of treated units, and makes it easier to form intuition about 
ν. Second, we minimize the squared imbalances, which permits a computationally feasible qua-
dratic program. As with the single synthetic controls problem in Equation (3), we penalize the 
sum of the squared weights, ‖Γ‖2

F
.

4.1  |  Special cases: Separate SCM (ν = 0) and Pooled SCM (ν = 1)

We first consider two special cases of Equation (6), which correspond to extreme values of the 
hyperparameter ν, and then consider intermediate cases.

To date, common practice for staggered adoption applications of SCM is to estimate separate 
SCM fits for each treated unit, then estimate the ATT by averaging the unit-specific treatment 
effect estimates. This approach, which we refer to as separate SCM, minimizes qsep alone and is 
equivalent to our proposal in Equation (6) with ν = 0. Since this separate SCM strategy prioritizes 
the unit-specific estimates, �̂ jk, an important question is when this approach will also give rea-
sonable estimates of ATTk. From Theorems 1 and 2, we can see that if the unit-specific fits are all 
excellent, then the estimation error |||ÂTTk −ATTk

||| will be small. However, this is not the case in 
our application. Figure 2a shows SCM ‘gap plots’ of �̂ j� against ℓ for three illustrative treated 
states, taken one at a time. While Ohio shows relatively good pre-treatment fit, there are no syn-
thetic controls that closely track Illinois or New York’s pre-treatment outcomes. Thus, simply aver-
aging the estimated treatment effects across these three states without attention to the overall fit 
does not yield a convincing estimate. Other recent applications also face the same issue where sev-
eral treated units have poor pre-treatment fit (see e.g. Dube & Zipperer, 2015; Donohue et al., 2019).3

The other extreme case, which we refer to as pooled SCM, instead sets ν = 1, finding weights 
that minimize qpool, the root mean squared placebo estimate of the ATT. This ignores the unit-
specific pre-treatment fits in the objective, resulting in poor unit-level synthetic controls and, in 
turn, leading to poor estimates of the unit-level treatment effects � jk. Furthermore, even if the 
ATT is the only estimand of interest, Theorems 1 and 2 indicate that separate SCM is unlikely to 
control the error. In particular, if the pooled weights do a poor job of matching individual treated 
units, the pooled synthetic control may involve a great deal of interpolation and the component 
of the error bound due to separate imbalance can be large. In Section 6 we validate through sim-
ulation that pooled SCM leads to substantially worse unit-level estimates than separate SCM, and 
also that there are indeed settings where the bounds in Theorems 1 and 2 do bind, leading to large 
error in pooled SCM estimates of the ATT. See Abadie and L’Hour (2021) for further discussion 
on interpolation bias in synthetic control settings.

However, there are special cases where only controlling qpool with pooled SCM is sufficient. 
Theorems 1 and 2 indicate that only the across treated unit variation in �Tj+k and �Tj+k leads to 

 3One way to address this is to trim the sample and drop treated units with poor pre-treatment fit, noting that this 
changes the estimand.
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F I G U R E  2   (a) SCM pre-treatment fit for three states: (i) Ohio, with good overall fit, (ii) Illinois, where SCM 
fails to match an important pre-treatment trend, and (iii) New York, with pre-treatment imbalance roughly an 
order of magnitude larger than typical estimates for the impact of teacher mandatory bargaining. (b) SCM fits by 
state show that Separate SCM gives better pre-treatment fit than Pooled SCM for all treated states [Colour figure 
can be viewed at wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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unit-specific fits contributing to the error bounds. Thus, when this variation is zero, the ATT 
error bound is minimized with ν = 1. As we discuss above, under simultaneous adoption, with 
T1 = … = TJ, S� = 0 in the autoregressive model and Sk = 0 in the linear factor model. The 
same arises in staggered adoption settings where the data generating process is homogeneous 
over time—for example, where �t ≡ � in the autoregressive model. It also holds approximately 
when the average autoregressive coefficient or factor values are large relative to the standard 
deviations—that is, S𝜌 ≪ 𝜌 or Sk ≪ 𝜇k, which could justify a choice of ν = 1. Finally, when units 
are treated in cohorts (with Tj = Tk for units in the same cohort), there is no variation in �t and 
�t across units in the same cohort. This suggests fully pooling (i.e. averaging) units that are treated 
at the same time, even if there is only partial pooling across treatment cohorts. We discuss this 
modification in Appendix A.2.

Figure 2b plots the state-level pre-treatment imbalances in our application for separate SCM 
versus pooled SCM. The separate SCM fit is better for all treated states, and so leads to more cred-
ible unit-level estimates. However, these fits are far from perfect and so the results from Section 
3 imply that there is room for improvement by controlling the pooled fit. Figure 3a shows the 
implied placebo estimates for the overall ATT using the separate and pooled approaches: they are 
consistently positive for separate SCM weights and are all nearly zero for pooled SCM weights. 
At the same time, Figure 3b shows that pooled SCM has very poor unit-level fit, leading to the 
potential for error for both the overall ATT estimate and the unit-level estimates. This motivates 
choosing an intermediate choice of ν  ∈  (0, 1).

4.2  |  Intermediate choice of ν

As we have seen, it is important to control both the pooled fit (for the ATT) and the unit-level 
fits (for both the ATT and the unit-level estimates). The hyper-parameter ν controls the relative 
weight of these in the objective.

One approach to choosing ν is to return to the error bounds in Theorems 1 and 2. The optimi-
zation problem in Equation (6) can be seen as a first-order approximation to the squares of the 
error bounds. Therefore, if the parameters of those bounds are known—and our only goal is to 
estimate the ATT—we can use these to choose an appropriate ν.4 Unfortunately, these will gen-
erally be infeasible as the analyst will not know these parameters, although in some applications 
it may be possible to obtain pilot estimates.

An alternative approach is to directly assess the implications of the choice of ν for the imbalance 
criteria for both the overall ATT and the unit-level effects. Figure 4 provides two views of this for the 
teacher collective bargaining application. Figure 4a shows the balance possibility frontier: the y-axis 
shows the pooled imbalance qpool and the x-axis shows the unit-level imbalance qsep. The curve traces 
out how these change as we vary ν from the separate SCM solution at the upper left to the pooled 
solution at the lower right. The relationship is strongly convex, indicating that by accepting a very 
small increase in pooled imbalance from the fully pooled solution we can obtain large reductions in 
unit-level imbalance, and vice versa starting from the separate ν = 0 solution. See King et al. (2017) 
and Pimentel and Kelz (2020) for other examples of balance frontiers in observational settings.

Figure 4b plots the two imbalances, here normalized as q̃pool and q̃sep, to put them on com-
parable scales, against ν. As ν rises, pooled imbalance falls while unit-level imbalance rises, 

 4For example, in the autoregressive model, letting a = ‖�‖2qpool(Γ̂sep) and b = S�q
sep(Γ̂

sep
), we could choose 

� =
a2

a2 + b2
, with comparable quantities for the linear factor model.
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although this is highly nonlinear, as the convex frontier in Figure 4a suggests. Moving from 
the separate SCM estimate of ν = 0 to a partially pooled SCM estimate of ν = 0.5 reduces 
the pooled imbalance by 80%, with more modest further reductions as ν → 1. Meanwhile, 
the unit-level imbalance declines quickly as ν falls from 1 to 0.9, then more slowly as ν de-
clines further. Even a very small deviation from the pooled SCM solution, such as moving 
from ν = 1 to ν = 0.99, cuts the unit-level imbalance by 30% with essentially no change in 
the pooled fit. Due to the number of degrees of freedom involved, the pooled imbalance 

F I G U R E  3   (a) Series of estimated pre- and post-treatment effects ÂTT
�
 and (b) state-level pre-treatment 

RMSE 
�

1

L

∑L
�=1 �̂

2
j�  using separate, pooled, and partially pooled SCM [Colour figure can be viewed at 

wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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will often be near zero for ν =  1, and the objective function qpool will be relatively flat in 
the neighbourhood of the pooled solution. Therefore we expect that in many cases it will 
be possible to trade-off a small increase in pooled imbalance for a large decrease in the 
unit-level imbalance, yielding a better estimator of both the overall ATT and the unit-level 
estimates at relatively little cost. We view the balance possibility frontier plot in Figure 4a as 

F I G U R E  4   (a) The trade-off between pooled imbalance (qpool ) and unit-specific imbalance (qsep) as ν varies, 
where ν = 0 is the separate SCM solution and ν = 1 is the pooled SCM solution. (b) qsep and qpool versus ν, each 
normalized by their values for separate SCM. The dashed red line indicates �̂ . The large distance in unit-level 
imbalance between ν = 0.99 and ν = 1 suggest meaningful gains in balance from deviating from the complete 
pooling estimate even by a small amount [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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an important tool for using partially pooled SCM in practice. By tracing out the curve, prac-
titioners can see the trade-offs between the pooled and unit-level fit, and choose ν according 
to the trade-off they desire.

In our application, we use a simple heuristic to set ν based on the pooled fit of separate SCM, 
qpool(Γ̂

sep
), which we also use to normalize our objective function in Equation (6). We set ν to be 

the ratio of the pooled fit to the average unit-level fit: �̂ =
√
L qpool(Γ̂

sep
)∕ 1

J

∑J
j=1

√
Lj qj(�̂

sep
j
). This 

is bounded above by 1 due to the triangle inequality.5 The key idea is that, if the separate SCM 
problem with ν = 0 achieves good pooled fit on its own, then we want to select a small ν, which 
will ensure both good unit-specific and pooled fit. Conversely, if the pooled fit of separate SCM is 
poor, then there can be substantial gains to giving qpool higher priority by setting ν to be large. In 
Section 6 we find through simulation that this heuristic results in weights that significantly re-
duce both the estimation error for the ATT relative to separate SCM and the estimation error of 
the unit-level effects relative to pooled SCM.

In the teacher bargaining example, our heuristic yields �̂ ≈ 0.44 for the per-pupil expen-
diture outcome, and we label this point in Figure 4a. The heuristic choice has similar global 
pre-treatment imbalance to the fully pooled estimator, ν = 1, with only a modest increase in 
unit-level imbalance relative to the separate SCM estimate, ν = 0. This is reflected in Figure 3, 
which also shows the placebo ATT estimates for partially pooled SCM. While the imbalance 
for the ATT is slightly larger than for pooled SCM, it is substantially better than for separate 
SCM.

There are many other potential choices for ν, and, even if we focus solely on the ATT, this one 
is unlikely to be optimal. An alternative strategy when the balance possibility frontier exhibits a 
strong ‘kink’ shape is to choose ν to be the point after which small improvements to the pooled fit 
lead to substantially worse unit-level fits. Another heuristic is to choose ν to be the point where 
the tangent of the frontier is equal to the slope between the end points at ν = 0 and ν = 1 (ν = .84 
in the teacher bargaining application).

In the end, the nonlinear relationship between ν and {qsep, qpool} in Figure 4b suggests that the 
loss from choosing a suboptimal ν is likely to be small, so long as we do not choose something too 
close to 0 or 1. We also recommend inspecting the sensitivity of estimates to the particular choice 
of ν in practice; we do this in Section 7.

5  |   EXTENSIONS

We now add two elaborations to the basic setup. First, we incorporate an intercept shift into the 
SCM problem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto 
(2021). Second, we incorporate auxiliary covariates alongside lagged outcomes. We conclude by 
briefly addressing inference in this setting.

5.1  |  Incorporating intercept shifts

We have established that the partially pooled SCM estimator achieves nearly as good over-
all balance as the fully pooled estimator, while achieving much better balance for each unit. 

 5If the SCM fits with ν=0 are perfect for each unit, 1
J

∑J
j=1

√
Lj qj = 0, then the overall fit will also be perfect, √

L qpool = 0, and our heuristic sets �̂ = 0. This is not a common situation.
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Nevertheless, unit-level balance is often imperfect. Particularly when the scale of the outcome 
varies across units, it can be difficult to construct an adequate synthetic control, as one needs to 
match both the overall level and patterns over time. Several recent papers have proposed modify-
ing SCM for a single treated unit by allowing for an intercept shift between the treated unit and its 
synthetic control (Abadie, 2019; Doudchenko & Imbens, 2017; Ferman & Pinto, 2021). We can 
adapt this approach to the staggered adoption setting by including an additional parameter vec-
tor � ∈ ℝ

J, where �j is an intercept term for unit j. We include this intercept in the counterfactual 
estimate as 

 and in the separate and pooled imbalance measures as 

 and 

Again we can define normalized versions of these objectives, ̃qpool(�,Γ) ≡ qpool(�,Γ)∕qpool(�̂sep, Γ̂
sep
) , 

where �̂sep and Γ̂
sep

 are the minimizers of (qsep(�,Γ))2. As above, we then form an overall objective 
function as a convex combination of the normalized squares: 

The intercept ̂� that solves Equation (7) has a closed form in terms of the solution for the weights, ̂Γ
∗
 ; 

�̂j is the average pre-treatment difference between treated unit j and its synthetic control, 

Plugging this value of �̂ into Equation (7), we see that this procedure is equivalent to solving the 
partially pooled SCM problem (6) using the residuals Ẏ iTj−�

≡ YiTj−� −
1

Lj

∑Lj
�=1

YiTj−�. The result-

ing treatment effect estimates have a particularly useful form: 

Ŷ jt(∞) = �j +
N∑
i=1

� ijYit

(qsep(�,Γ))2 =
1

2J

J�
j=1

⎡⎢⎢⎣
1

Lj

Lj�
�=1

�
YjTj−� − �j−

N�
i=1

� ijYiTj−�

�2 ⎤⎥⎥⎦
,

(qpool(𝛼,Γ))2 =
1

L

L�
�=1

⎡⎢⎢⎣
1

J

�
Tj>�

�
YjTj−� − 𝛼j−

N�
i=1

𝛾 ijYiTj−�

�⎤⎥⎥⎦

2

.

(7)min
�∈ℝJ ,Γ∈Δscm

� (q̃pool(�,Γ))2 + (1 − �) (q̃sep(�,Γ))2 + �‖Γ‖2F .

(8)�̂j =
1

Lj

Lj∑
�=1

YjTj−� −
1

Lj

N∑
i=1

Lj∑
�=1

�̂∗ijYjTj−� .

(9)�̂∗jk =
1

Lj

Lj∑
�=1

[(
YjTj+k − YjTj−�

)
−

N∑
i=1

�̂∗ij

(
YiTj+k − YiTj−�

)]
,
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and 

We can view this as a weighted difference-in-differences (DiD) estimator. In the special case 
with uniform weights over units, ̂�∗ij = 1∕‖j ‖, Equation (9) is the simple average over all two-
period, two-group DiD estimates, averaging over all pre-treatment lags ℓ and donor units i. 
This is equivalent to recent proposals for DiD estimators that allow for treatment effect het-
erogeneity with a fixed donor set per treatment time cohort (see Callaway & Sant’Anna, 2020; 
Sun & Abraham, 2020, among others). With non-uniform weights, �̂∗jk compares the change in 
outcomes for treated unit j to the change for the synthetic control, rather than the average 
change across all potential donors. Equation (10) averages these estimates across treated units 
j to form ÂTT

∗

k.
Figure 5 shows the value of including an intercept to improving pre-treatment fit in the 

teacher collective bargaining application. Figure 5a presents this as a balance possibility frontier 
for SCM with the weights alone and with the intercept, as well as the implied imbalance for the 
DiD estimator alone. Here, simple unweighted DiD achieves unit-level and pooled balance that 
improves on the no-intercept SCM possibility frontier. However, the intercept-shifted estimator 
dominates both DiD and no-intercept SCM estimates on both criteria, for all but the largest ν. 
We see similar results when examining the state-specific fits. Figure 5b shows the unit-level fit 
for both partially pooled SCM and the intercept-augmented version. Two states, New York and 
Alaska, have especially bad pre-treatment fits without including an intercept because they have 
the highest per-pupil expenditures of all the states for many years (see Appendix Figure B.5). 
Accounting for the pre-treatment average through the intercept dramatically improves the fits 
for these states.

5.2  |  Incorporating auxiliary covariates

We have focused thus far on matching pre-treatment values of the outcome variable. In practice, 
we typically observe a set of auxiliary covariates Xi ∈ ℝ

d as well. In our collective bargaining ap-
plication, we consider five covariates, measured as of the start of the sample in 1959–1960: in-
come per capita, the student to teacher ratio, the per cent of the population with 12+ and 13+ 
years of education, and the female labour force participation rate.6 We standardize all five covari-
ates to have mean zero and variance one.

There are several ways to incorporate auxiliary covariates in the setting with a single treated 
unit. Here we directly include them into the optimization problem. Analogous to above, we de-
fine both the unit-level imbalance and pooled imbalance of X, 

(10)ÂTT
∗

k =
1

J
�̂∗jk =

1

J

J�
j=1

⎡
⎢⎢⎣
1

Lj

Lj�
�=1

��
YjTj+k − YjTj−�

�
−

N�
i=1

�̂∗ij

�
YiTj+k − YiTj−�

��⎤⎥⎥⎦
.

 6Due to missing data for these auxiliary covariates, we restrict our analysis here to the contiguous United States. Note 
that this drops Alaska, which we have seen is far outside the convex hull of its donor units.
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and another for the pooled synthetic control, 

q
pool
X

(Γ) =

‖‖‖‖‖‖
1

J

J∑
j=1

Xj−

N∑
i=1

� ijXi

‖‖‖‖‖‖2
,

F I G U R E  5   (a) The balance possibility frontier for SCM with and without an intercept, as well as the implied 
imbalance for DiD. Incorporating unit-level fixed effects leads to substantial improvements in balance. For 
DiD, we compute the implied balance as 

�∑L
�=1

�
ÂTT

∗

−�

�2
, the RMSE of the placebo estimates, from Equation 

(9) with uniform weights. (b) The distribution of state-level fits (in terms of RMSE) with and without an 
intercept and covariates; dashed lines show the pooled pre-treatment RMSE [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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with normalized versions q̃sep
X
(Γ) and q̃pool

X
(Γ).7 We then include these in our objective, with an addi-

tional hyper-parameter ξ: 

While we write this optimization problem with an intercept shift, we could also include auxiliary co-
variates but no intercept. The choice of ξ determines the relative importance of the outcomes and the 
auxiliary covariates. Setting ξ = 0 recovers the optimization problem (7) without auxiliary covariates, 
while in the extreme case setting ξ = ∞ will, if feasible, enforce exact balance on the auxiliary covari-
ates. We decide to give equal priority to both terms. Since the auxiliary covariates are standardized, 
we set ξ to be the sample variance of the pre-TJ outcomes for the never treated units. This equally 
weights both components in the objective functions, and reduces the number of hyper-parameters 
and specification choices. Finally, we can incorporate time-varying covariates by including the val-
ues at time periods before the first treatment time T1 into the vector Xi.

Figure 6 shows the level of covariate balance between each treated unit and its synthetic 
control, as well as for the average across treated units. Before weighting there are large differ-
ences between the treated units and their donor sets, and weighting on the outcomes alone 
does little to alleviate these differences. Including the auxiliary covariates into the optimi-
zation procedure finds weights that give nearly perfect covariate balance for the pooled syn-
thetic control (indicated as the black squares), while also significantly improving covariate 
balance for the individual treated units (indicated as boxplots). Figure 5b shows that this 

 7Specifically, let �̂sep and Γ̂
sep

 be the minimizers of (qsep(�,Γ))2 + �(qsep
X
(Γ))2, and (Csep)2 = (qsep(�̂sep, Γ̂

sep
))2 + �(qsep

X
(Γ̂

sep
))2 

and (Cpool)2 = (qpool(�̂sep, Γ̂
sep
))2 + �(qpool

X
(Γ̂

sep
))2 be the combined separate and pooled imbalances. We define the 

normalized objectives as q̃pool
X

(Γ) = q
pool
X

(Γ)∕Cpool, q̃sep
X
(Γ) = q

sep
X
(Γ)∕Csep, and slightly abuse notation by re-defining 

q̃pool(�,Γ) ≡ qpool(�,Γ)∕Cpool and q̃sep(�,Γ) ≡ qsep(�,Γ)∕Csep.

(11)min
�∈ℝJ ,Γ∈Δscm

�
�
(q̃pool(�,Γ))2 + �(q̃pool

X
(Γ))2

�
+ (1 − �)

�
(q̃sep(�,Γ))2 + �(q̃sep

X
(Γ))2

�
+ �‖Γ‖2F .

F I G U R E  6   Distribution of the absolute difference between each treated unit and its synthetic control 
for the (standardized) auxiliary covariates, before weighting and with/without including covariates in the 
optimization procedure. Black squares show the absolute average difference [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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improved covariate balance comes at a small cost to the fit on the pre-treatment outcomes: 
the distribution of unit-level pre-treatment root mean square error (RMSE) shifts slightly to 
the right.

5.3  |  Inference

There is a growing literature on inference for SCM-type estimators, although no proposed 
approach is fully satisfactory for all cases. In settings where multiple units adopt treatment 
simultaneously, Abadie and L’Hour (2021) propose an extension of the original permutation 
procedure of Abadie et al. (2010), and Arkhangelsky et al. (2019) propose resampling-based 
approaches. In a staggered adoption setting, Shaikh and Toulis (2021) propose a weighted 
permutation approach based on a Cox proportional hazards model. This is not appropri-
ate in our application, however, since multiple units have the same treatment time, which 
is incompatible with the Cox model. Finally, Cao and Lu (2019) propose an Andrews test 
for inference with intercept-shifted SCM under staggered adoption. Building on the existing 
literature, we consider constructing confidence intervals via the wild bootstrap. We briefly 
describe this method here; we address asymptotic Normality and inference via the jackknife 
in Appendix A.1.

The wild bootstrap approach we implement adapts the proposal from Otsu and Rai (2017) for 
bias-corrected matching estimators; see also Imai et al. (2019). First, we can re-write ÂTTk as the 
following average over units: 

This bootstrap procedure draws a sequence of random variables W (b)
1
, …, W (b)

N
 independently 

with P(Wi = − (
√
5 − 1)∕2) = (

√
5 + 1)∕2

√
5 and P(Wi = (

√
5 + 1)∕2) = (

√
5 − 1)∕2

√
5 for 

b = 1, …, B, and computes the boostrap statistic: 

for each draw. Letting q�∕2 and q1−�∕2 denote the α/2 and 1−α/2 quantiles of S(b), we construct con-
fidence intervals via [ÂTTk − q1−�∕2, ÂTTk + q�∕2]. Importantly, we keep the weights and outcomes 
fixed, and only re-sample the multiplier variables W (b)

i
.

In the next section, we evaluate the coverage of the wild bootstrap with a simulation study that 
mimics the structure of the collective bargaining application. In Appendix A.1, we take an alter-
native route and motivate the use of resampling methods via asymptotic Normality. In particular, 
we provide a set of sufficient conditions for ÂTTk −ATTk to be asymptotically Normal. We con-
sider an asymptotic regime in which J , N0 → ∞, with the number of lags L fixed and the number 
of control units growing faster than the number of treated units J

N0
→ ∞. We also adapt a gener-

alization of the conditional parallel trends assumption in Abadie (2005) to the staggered adoption 
setting. However, there are several ways such asymptotic results can be misleading. First, our re-
sult assumes that the synthetic control weights can achieve perfect fit within treatment time 
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cohorts, which ensures that the distribution of ÂTTk is centred around ATTk. Poor fit, either over-
all or across time cohorts, can lead to under-coverage. Second, the asymptotic approximation can 
be poor when there are relatively few total units, and the use of resampling methods can exacer-
bate this. Thus, while we show that these approaches yield reasonable results in simulations, we 
suggest interpreting any confidence intervals for typical applications with caution.

6  |   SIMULATION STUDY

We now consider the performance of different approaches in a simulation study calibrated to the 
collective bargaining data set; we turn to the impacts of mandatory teacher collective bargaining 
laws in the actual data in the next section. We evaluate performance with three different data 
generating processes. First, we generate never treated outcomes according to a two-way fixed 
effects model, 

with both unit and time effects are normalized to have mean zero. This model satisfies the parallel 
trends assumption needed for the DiD estimator we consider below. We estimate (14) using only the 
never-treated observations, and extract the estimated variance of the unit effects, Σ̂, and of the error 
term, �̂2�. We then generate uniti

iid
∼N(0, Σ̂) and �it

iid
∼N(0, �̂2�).

Second, we use a factor model with a two-dimensional latent time-varying factor �t ∈ ℝ
2 and 

unit-specific coefficients �i ∈ ℝ
2: 

We estimate (15) using the R package gsynth (Xu, 2017) for the untreated units and time periods, 
then estimate the variance–covariance matrix of the unit fixed effects and factor loadings, Σ̂, and the 
variance of the error term ̂�2�. Here we use the estimated {t̂imet , �̂t}, and draw {uniti,�i}

iid
∼MVN(0, Σ̂) 

and �it
iid
∼N(0, �̂2�).

Finally, we have a random effects autoregressive model: 

that we fit using lme4 (Bates et al., 2015) to obtain estimates �̂� and �̂�. In order to increase the 
level of heterogeneity across time, we simulate from this hierarchical model with eight times the 
standard deviation 8�̂�. For all three outcome processes we generate simulated data sets with the 
same dimensions as the data, N = 49 and T = 39, and impose a sharp null of no treatment effect, 
Yit(s) = Yit(∞) = Yit.

A key component of the simulation model is selection into treatment. We fix the treatment 
times to be the same as in the teacher unionization application. For each treatment time, we as-
sign treatment to those units not already treated with probability �i, sweeping through the fixed 
set of treatment times. For the two-way fixed effects model, we set the probability that unit i is 
treated at each treatment time to be �i = logit(�0 + �1 ⋅ uniti), with �0 = − 2.7 and �1 = − 1, 
yielding around 30 units that are eventually treated in each simulation draw. For the factor model 

(14)Yit(∞) = int + uniti + timet + �it,

(15)Yit(∞) = int + uniti + timet + ��
i�t + �it.

(16)Yit(∞) =

3∑
�=1

��Yit−�(∞) + �it, � ∼ N(��, �
2
�),
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we choose �i = logit(�0 + �1(uniti + �i1 + �i2)), and set �0 = − 2.7 and �1 = − 1 so that around 
32 units are eventually treated in each simulation draw, following the distribution of the data. For 
the autoregressive process we allow selection to depend on the three lagged outcomes 
�i = logit

�
�0 + �1

∑3
�=1 Yit−�

�
, where �0 = log 0.04 and �1 = − 2.

Estimation. We consider several estimators for the average post-treatment effect ATT. Figure 7 
shows four: (1) A difference-in-differences estimator following Equation (9) with uniform 
weights, (2) the partially pooled SCM estimator, as we vary ν between 0 and 1, (3) partially pooled 
SCM with an intercept, again varying ν and (4) directly estimating the factor model. Solid points 
indicate the heuristic choice of �̂  above. The vertical axis of each panel shows the mean absolute 
deviation (MAD) for the ATT, �

[|||ATT − ÂTT
|||
]
, while the horizontal axis shows the average of 

the individual post-treatment effect estimates, �
�
1

J

∑J
j=1 �� j − �̂ j�

�
. Appendix Figures B.1 and B.2 

show the analogous results for the bias and RMSE.
There are several key takeaways from Figure 7. First, under each data generating process there 

is a trade-off between estimating the ATT and the individual effects, with ν = 1 at the top left of 
the ‘MAD frontier’ and ν = 0 at the bottom right. Partially pooled SCM significantly reduces the 
bias for the overall ATT relative to separate SCM, and a small amount of pooling also leads to 
slightly better individual ATT estimates. The gains to pooling, however, diminish for ν close to 1, 
with the fully pooled SCM yielding poor individual ATT estimates under all three models. Under 
a two-way fixed effects model there is no penalty to pooling in terms of MAD for the overall ATT. 
This comports with Theorem 2, which shows that targeting the pooled pre-treatment fit is suffi-
cient under a two-way fixed effects model. However, under the factor model and AR process the 
fully pooled estimator leads to worse MAD for the overall ATT estimates than partially pooled 
SCM. Second, when mis-specified, the DiD estimator does not do particularly well at controlling 
the MAD for either overall ATT or the unit-level estimates. Third, the intercept-shifted estimator 
dominates either of the alternatives in terms of both overall and unit-level estimates. Here again 
there are gains to partially pooling SCM, albeit with the possibility for a large amount of error 
from over-pooling. Fourth, our heuristic choices of ν perform reasonably well at selecting a point 
close to the value that minimizes the MAD for the ATT, while also reducing the MAD for the 

F I G U R E  7   Monte Carlo estimates of the MAD for the overall ATT vs the MAD for the individual ATT 
estimates. The lines trace out values for ν ∈ [0, 1], the solid points are the average value using the heuristic �̂ . 	
In the two-way fixed effects and factor model simulations, the estimated factor model is the oracle estimator. 
Among the alternatives, the intercept-shifted partially pooled SCM has lowest MAD for both the overall ATT 
and the individual ATT estimates [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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individual estimates. Finally, the partially pooled SCM estimator with an intercept shift performs 
as well as or better than fitting the factor model directly.

Inference. We conclude by examining the finite-sample coverage of approximate 95% confi-
dence intervals from the wild bootstrap. Figure 8 shows the coverage of approximate confidence 
intervals for partially pooled SCM with an intercept shift, using the wild bootstrap to construct 
the intervals. Under the two-way fixed effects model, in which there is no bias from inexact fit, 
the wild bootstrap has close to 95% coverage. Under both the linear factor model and the autore-
gressive model, however, the wild bootstrap is somewhat conservative.8 Overall, the wild boot-
strap appears to be a reasonable, if conservative, choice.

7  |   IMPACTS OF MANDATORY TEACHER COLLECTIVE 
BARGAINING LAWS

We now return to measuring the impact of mandatory teacher collective bargaining. The left of 
Figure 9a shows the placebo estimates from Equation (9), where k < 0.9 We see that along with 
the good unit-specific fits shown in Figure 5b and the good covariate balance shown in Figure 6, 
the pooled synthetic control estimate is near zero for k < 0. The right side of the figure shows the 
estimated impact on per-pupil current expenditures, with approximate 95% confidence intervals 
computed via the wild bootstrap.

Consistent with Paglayan (2019), we find weakly negative effects of mandatory teacher col-
lective bargaining laws on student expenditures. Pooled across the 11 years after treatment adop-
tion, the overall estimate is ÂTT = − 0.03, or a 3% decrease in per-pupil expenditures, with an 
approximate 95% confidence interval of [−0.06, +0.005]. In Appendix Figure B.7 we show the 

 8Appendix Figure B.3 shows the analogous results for partially pooled SCM without including an intercept. In this case, 
the wild bootstrap is extremely conservative.

 9These placebo checks differ from those typically performed in traditional event studies, which test for the parallel 
trends assumption by comparing pre-treatment outcomes between treated and control units. These tests generally have 
low power, however; see, for example, Roth (2018); Bilinski and Hatfield (2018); Kahn-Lang and Lang (2019). In 
contrast, the intercept-shifted estimator uses pre-treatment outcomes to select donor units that best balance the treated 
units, in effect optimizing for the placebo test. It is still possible to inspect pre-treatment fit, as in standard SCM, but 
this is best seen as an assessment of the quality of the match rather than as a formal placebo test.

F I G U R E  8   Monte Carlo estimates of the coverage of approximate 95% confidence intervals k = 0, …, 9 
periods after treatment. The solid line indicates the coverage for the overall ATT estimate averaged across all 
post-treatment periods [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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average post-treatment effect for each state and the unit-level fits. For those states with good pre-
treatment fit, we find small positive and negative effects, while we estimate larger negative effects 
for those with worse fit. These estimates are in stark contrast to the results from Hoxby (1996), 
who argues for a 12% positive effect, although she gives a range of estimates. One possible expla-
nation for this is that school districts are able to divert funds from other purposes to fund higher 
teacher salaries with minimal net effect on total expenditures. In Appendix Figure B.7 we show 
estimates of the effect on teacher salaries, finding evidence against a positive effect.

F I G U R E  9   Estimates of the ATT on per-pupil current expenditures (log, 2010 $) and placebo estimates 
re-indexing treatment time to 2 and 4 years before the true treatment time. The placebo effects are very 
close to zero and are indistinguishable from zero at this level of precision [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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We can assess the strength of evidence by conducting robustness and placebo checks. First, 
following Abadie et al. (2015), we begin by assessing out-of-sample validity via in time placebo 
checks. These checks hold out some pre-treatment time periods by re-indexing treatment time to 
be earlier (i.e. setting T �

j
= Tj − x for some x), then estimate placebo effects for the held-out pre-

intervention time periods. Figure 9b shows the placebo estimates for the intercept-shifted par-
tially pooled SCM estimator with covariates using a placebo treatment time two and four periods 

F I G U R E  1 0   (a) ÂTT and approximate 95% confidence intervals as ν varies between 0 and 1, �̂  highlighted. 
(b) Estimates are not especially sensitivity to dropping an increasing number of units (ranked by pre-treatment 
imbalance), although the uncertainty intervals are wider with fewer units in the analysis [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a)

(b)

https://onlinelibrary.wiley.com/
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before the true treatment time. Both estimators achieve excellent pre-treatment fit and estimate 
placebo effects that are indistinguishable from zero.

Another important check that we recommend in practice is to gauge the sensitivity of the 
ATT estimates to the particular choice of pooling parameter ν. Figure 10a shows the overall ATT 
estimates varying ν from separate SCM ν = 0 to pooled SCM ν = 1. No choice of ν substantively 
changes the conclusions, and each rules out large positive effects. Finally, we consider the re-
sult of trimming states with poor pre-treatment fit, following common practice in the matching 
and SCM literatures. Figure 10b shows the overall ATT estimates when removing an increasing 
number of treated units with poor fits, in order of decreasing unit-level fit. Overall, omitting the 
worst-fit states decreases the magnitude of the estimated effect, and increases the variability of 
the estimate. However, all estimates still rule out large positive effects.

An important feature of SCM-based methods over model-based methods is that we can di-
rectly inspect the weights, and that these weights are non-negative and sum to one. Appendix 
Figures B.8 and B.9 show the state-specific weights over donor states for each treated unit for 
partially pooled SCM without an intercept and with both an intercept and auxiliary covariates 
respectively. Without the intercept, both Illinois and Wyoming are consistently important donor 
states. Both states had relatively high levels of per-pupil expenditures throughout the study pe-
riod and several synthetic controls place nearly all of the weight on these two states in order to 
match the level. However, after removing pre-treatment averages via an intercept, the weights 
are much more evenly distributed across the donor pool, suggesting that estimates are not overly 
reliant on a single control unit.

8  |   DISCUSSION

In this paper, we develop a new framework for estimating the impact of a treatment adopted 
gradually by units over time. In our motivating example, 33 states have enacted laws mandating 
school districts to bargain with teachers’ unions (Paglayan, 2019), and we seek to estimate the 
effects of these laws on educational expenditures. To do so, we adapt SCM to the staggered adop-
tion setting. We argue that current practice of estimating separate SCM weights for each treated 
unit is unlikely to yield good results, but also that fully pooled SCM may over-correct; our pre-
ferred approach, partially pooled SCM, finds weights that balance both state-specific and overall 
pre-treatment fit. We then extend this basic approach to incorporate an intercept shift as well as 
auxiliary covariates. We apply this approach to the teacher bargaining example and, consistent 
with recent analyses, find weakly negative estimates on student expenditures.

We briefly note some directions for future work. First, we could extend these ideas to other 
settings with multiple treated units, such as where treatment can ‘shut off’ for some units (Imai 
& Kim, 2021), or where all units are eventually treated (Athey & Imbens, 2021). This would likely 
require additional assumptions. We could similarly incorporate other structure from our appli-
cation. For example, in staggered adoption settings where multiple units adopt treatment at the 
same time, we could add a layer in the hierarchy and more closely pool units treated at the same 
time while still partially pooling different treatment cohorts. See Appendix A.2.

Second, many SCM analyses explore multiple outcomes. As in other SCM studies, we treat 
each outcome separately, choosing different synthetic control weights for each. In many settings, 
however, lagged values from one outcome may predict future values of another, suggesting that 
balancing multiple outcome variables would be useful. This seems especially important in set-
tings like ours with relatively few units.
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Finally, we could adapt recent proposals for bias correction and other ‘doubly robust’ estima-
tors to this setting, which will be important for both estimation and inference (Abadie & L’Hour, 
2021; Arkhangelsky et al., 2019; Ben-Michael et al., 2021). Existing approaches have largely been 
limited to the case with a single treated unit or, if multiple units are treated, to a single adop-
tion time. More complex models are possible and may be desirable in the staggered adoption 
setting. For example, Fesler and Pender (2019) apply the Ridge Augmented SCM proposal in 
Ben-Michael et al. (2021) to a staggered adoption setting, modelling each treated unit separately. 
Partial pooling may be helpful here. In another direction, we might consider an outcome model 
that incorporates the time weights used in Arkhangelsky et al. (2019). We anticipate that, unlike 
in the simple case with unit fixed effects, these augmented approaches likely require more elab-
orate shrinkage estimation, such as via matrix penalties.
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Supplementary Materials for:

“Synthetic Controls with Staggered Adoption”

A Additional theoretical results

A.1 Further discussion of inference

We now continue the discussion of inference from the main text in Section 5.3. Our goal here
is to discuss the conditions under which the proposed estimator is asymptotically Normal. Since
asymptotic theory is not the focus of our paper, we leave for future work a rigorous derivation of
the validity of the wild bootstrap procedure, in particular, adapting the proof of the main theorem
in Otsu and Rai (2017) and showing that the additional conditions in that proof are satisfied with
our proposed procedure.

In order to discuss inferential procedures for partially pooled SCM with an intercept shift, we
will consider a generalization of parallel trends. For each time period g, we assume that the expected
differences between post-g and pre-g outcomes do not depend on whether unit i is treated at time
g, conditional on auxiliary covariates Xi and the vector of pre-g residuals Ẏ g

i ≡ (Yig−L, . . . , Yig−1)−
1
L

∑L
`=1 Yig−`.

Assumption A.1 (Conditional parallel trends). With L < T1, for all k ≥ 0 and ` ≥ 1

E[Yig+k(∞)− Yig−`(∞) | Ti = g, Ẏ g
i , Xi] = E[Yig+k(∞)− Yig−`(∞) | Ẏ g

i , Xi] ≡ mgk`(Ẏ
g
i , Xi)

Assumption A.1 is a generalization of the conditional parallel trends assumption in Abadie
(2005) to the staggered adoption setting, including the pre-treatment residuals Ẏ g

i . It loosens the
usual parallel trends assumption by allowing trends to differ depending on the auxiliary covariates
and the deviation of lagged outcomes from their baseline value. Thus, we are essentially conditioning
on pre-treatment “dynamics,” rather than pre-treatment levels. For instance, even if two states
have very different levels of student expenditures, under conditional parallel trends we can compare
them so long as they have similar pre-treatment trends and shocks. See Hazlett and Xu (2018) and
Callaway and Sant’Anna (2020) for related conditional parallel trends assumptions. In addition,
we will assume that the conditional expectation of the post- and pre-g differences is linear.

Assumption A.2.
mgk`(Ẏ

g
i , Xi) = βYgk` · Ẏ

g
i + βXgk` ·Xi

We make two further assumptions that allow for asymptotic normality as the number of units
grows while the number of lags L stays fixed. First, we assume that the synthetic controls have
perfect fit when averaged within time-cohorts; second, we assume that the sum of the squared
weights is bounded.
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Assumption A.3 (Exact balance within treatment cohorts and bounded weights). Assume that

1

ng

∑
Ti=g

Ẏ g
i =

1

ng

N∑
i=1

∑
Tj=g

γ̂ij Ẏ
g
i and

1

ng

∑
Ti=g

Xi =
1

ng

N∑
i=1

∑
Tj=g

γ̂ijXi,

for all g = T1, . . . , TJ . Furthermore, ‖γ̂j‖2 ≤ C√
N0

for all j = 1, . . . , J and some constant C.

Note that by transforming from the penalized optimization problem (7) to the constrained form,
there is a choice of λ that guarantees that the constraint on the weights are satisfied, if there
exists a feasible solution. Finally, we make two assumptions on the noise terms εigk ≡ Yig+k(∞)−
1
L

∑L
`=1 Yig−`(∞)− 1

L

∑L
`=1mk`(g, Ẏ

g
i , Xi). First, we assume that they are independent across units;

second, we assume that they are sufficiently regular so that their average satisfies a central limit
theorem.

Assumption A.4. εigk are independent across units i = 1, . . . , N , and for some δ > 0, the 2 + δth

moment exists, E
[
|εigk|2+δ

]
<∞, and furthermore

lim
N→∞

∑
Ti 6=∞ E

[
|εiTik|

2+δ
]

(∑
Ti 6=∞ E

[
ε2
iTik

])1+ δ
2

= 0.

Under these assumptions, the estimate of the effect k periods after treatment, ÂTTk, will be
asymptotically normal as N grows with a fixed number of lags L, and where the number of control
units N0 grows more quickly than the number of treated units J .

Theorem A.1. Assume that J
N0
→ 0 as both J,N0 →∞, with L fixed. Under Assumptions A.1,

A.2, A.3, and A.4
√
J
(

ÂTTk −ATT
)

=
1√
J

∑
Ti 6=∞

εiTj+k + op(1).

Furthermore, ÂTTk−ATT
1
J

∑
Ti 6=∞

E
[
ε2iTik

] d→ N(0, 1).

Jackknife. Finally, we briefly discuss constructing confidence intervals via the leave-one-unit-out
jackknife approach, which proceeds as follows. Fix hyperparameter values ν, ξ, and λ; for each unit
i = 1, . . . , N : drop unit i and re-fit the intercepts and the weights via Equation (11) to obtain α̂(−i),

Γ̂(−i), and the synthetic control estimates Ŷ
(−i)
jTj+k

. Then compute the leave-one-unit-out estimate

ÂTT
(−i)
k = 1

J(−i)

∑J
j=1 1j 6=i

{
YjTj+k − Ŷ

(−i)
jTj+k

}
, where J (−i) ≡ J − 1Ti<∞. The jackknife estimate

of the standard error is then:

V̂k =
n− 1

n

n∑
i=1

ÂTT
(−i)
k − 1

n

n∑
j=1

ÂTT
(−j)
k

2

, (A.1)

with an approximate 95% confidence interval ÂTTk±1.96

√
V̂k. We include Monte Carlo estimates

of the coverage under our simulation setup in Figures B.3 and B.4.
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A.2 Fully pooling within time cohorts

As we discuss in Section 3, if all units are treated at the same time, T1 = · · · = TJ , our error
bounds depend only on the pooled imbalance and do not include the unit-level imbalance. Thus, if
units are treated in cohorts (i.e., several units treated at the same time), then the bounds suggest
modeling variation in pre-treatment outcomes between treatment cohorts separately from the pooled
average. This leads to a natural modification of our partially pooled estimator: We can fully pool
within cohorts by applying the estimator to treatment cohorts rather than individual treated units,
optimizing a weighted average of the overall imbalance and the average cohort-level imbalance.
Concretely, let G be the number of distinct treatment times, which we denote T (g), g = 1, . . . , G,
and let ng =

∑N
i=1 1{Ti = T (g)} be the number of units treated in time T (g). We can modify the

optimization problem to find G sets of weights, where the individual objective for treatment cohort
g is

qg(γg)
cohort =

√√√√ 1

Lg

Lg∑
`=1

(
N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

)2

.

As before, we will restrict the set of donor units for cohort g to those not yet treated K periods
after T (g), D(g) ≡ {i : Ti > T (g) + K}, and we will restrict the weights so that γg ∈ ∆scm(g)
satisfies γig ≥ 0 for all i,

∑
i γig = ng, and γig = 0 if i 6∈ D(g). We then define the relevant separate

and pooled balance measures:

qsep cohort(Γ) =

√√√√√ 1

G

G∑
g=1

1

Lg

Lg∑
`=1

(
N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

)2

,

and

qpool cohort(Γ) =

√√√√√ 1

maxg Lg

maxg Lg∑
`=1

 1

G

G∑
g=1

N∑
i=1

1{Tj = T (g)}YiT (g)−` −
N∑
i=1

γigYiT (g)−`

2

.

We can then use these cohort-level measures of imbalance in the partially pooled SCM optimization
problem (6), and similarly can include an intercept as in (7). More generally, if we do not want to
fully pool within clusters, we can include three (or more) imbalance terms in our objective function
to capture unit-level, pooled, and intermediate cluster-level imbalance.

A.3 Partially pooled SCM: Dual shrinkage

We now inspect the Lagrangian dual problem to the partially pooled SCM problem in Equation (6),
showing that the optimization problem partially pools a set of unit-specific dual variables toward
global dual variables. We focus on balancing the first Lj = L ≤ T1 − 1 lagged outcomes, which are
observed for each treated unit.

For each treated unit j, the sum-to-one constraint induces a Lagrange multiplier αj ∈ R, and the
state-level balance measure induces a set of Lagrange multipliers βj ∈ RL, with elements β`j . We
combine these dual parameters into a vector α = [α1, . . . , αJ ] ∈ RJ and a matrix β = [β1, . . . , βJ ] ∈
RL×J . In addition to the J sets of Lagrange multipliers — one for each treated unit — the pooled
balance measure in the partially pooled SCM problem Equation (6) induces a set of global Lagrange
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multipliers µβ ∈ RL. As we see in the following proposition, in the dual problem the parameters
β1, . . . , βJ are regularized toward this set of pooled Lagrange multipliers, µβ.

Proposition A.1. The Lagrangian dual to Equation (6) with un-normalized objevtices qsep and
qpool with Lj = L < T1 and λ > 0 is:

min
α,µβ ,β

L(α, β) +
λL

2

 1

(1− ν)

J∑
j=1

‖βj − µβ‖22 +
J

ν
‖µβ‖22

 , (A.2)

where the dual objective function is

L(α, β) ≡ 1

J

J∑
j=1

∑
i∈Dj

[
αj +

L∑
`=1

β`jYiTj−`

]2

+

−

(
αj +

L∑
`=1

β`jYjT1−`

) , (A.3)

where [x]+ = max{0, x}. For treated unit j, the synthetic control weight on unit i is γ̂ij =[
α̂j +

∑L
`=1 β̂`jYjTj−`

]
+

.

Proposition A.1 highlights that the estimator partially pools the individual synthetic controls to
the pooled synthetic control in the dual parameter space, with ν controlling the level of pooling.
When ν = 0 in the separate SCM problem, the parameters β1, . . . βJ are shrunk towards zero rather
than a set of global parameters. By contrast, when ν = 1, β1, . . . , βJ are constrained to be equal
to µβ, fitting a single pooled synthetic control in the dual parameter space. By choosing ν ∈ (0, 1),
we move continuously between the two extremes of J separate Lagrangian dual problems and a
single dual problem, regularizing the individual βjs toward the pooled µβ, allowing for some limited
differences between the J dual parameters.
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B Additional figures

B.1 Additional simulation results

5



Two-way Fixed Effects Factor Model Autoregressive Model
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Figure B.1: Monte Carlo estimates of the bias for the overall ATT vs the MAD for the individual
ATT estimates.
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Figure B.2: Monte Carlo estimates of the RMSE for the overall ATT vs the RMSE of the individual
ATT estimates.
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Two-way Fixed Effects Factor Model Autoregressive Model
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Figure B.3: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM with an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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Figure B.4: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM without an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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B.2 Additional results for the mandatory collective bargaining application
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Figure B.5: Per-pupil expenditures for US states over the study period.
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Figure B.6: Average post-treatment effect estimates 1
K+1

∑K
k=0 τ̂jk for the treated states, plotted

against the root-mean square pre-treatment fit qj(γ̂j).
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Figure B.7: Partially-pooled SCM with intercept shifts and covariates (ν̂ = 0.26), estimates of the
impact of mandatory collective bargaining laws on average teacher salary (log, 2010 $).
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Figure B.8: Partially pooled SCM weights. White cells indicate zero weight, black cells indicate a
weight of 1.
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Figure B.9: Partially pooled SCM weights when including an intercept. White cells indicate zero
weight, black cells indicate a weight of 1.
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C Proofs

C.1 Error bounds

Proof of Theorem 1. Defining ξt = ρt − ρ̄, the error is

τ̂j0 − τj0 =
L∑
`=1

(ρ̄+ ξTj )

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


So by the triangle and Cauchy-Schwarz inequalities,

|τ̂j0 − τj0| ≤ ‖ρ̄+ ξTj‖2

√√√√√ L∑
`=1

YjTj−` −∑
i∈Dj

γijYiTj−`

2

+

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γijεiTj

∣∣∣∣∣∣
Since γ̂j is fit on pre-Tj outcomes, the weights are independent of εTj , and so the second term

above is sub-Gaussian with scale parameter σ
√

1 + ‖γ̂j‖22 ≤ σ(1 + ‖γ̂j‖2). This implies that

P

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γ̂ijεiTj

∣∣∣∣∣∣ ≥ δσ (1 + ‖γ̂j‖2)

 ≤ 2 exp

(
−δ

2

2

)

For the bound on ÂTT0, notice that

ÂTT0 −ATT0 =
1

J

J∑
j=1

τ̂j0 − τj0 =
1

J

J∑
j=1

 L∑
`=1

(ρ̄` + ξTj`)

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


=

L∑
`=1

ρ̄`
1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


+

1

J

J∑
j=1

L∑
`=1

ξTj`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


+

1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj


(A.4)

By Cauchy-Schwarz the absolute value of the first term is∣∣∣∣∣∣
L∑
`=1

ρ̄`
1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

∣∣∣∣∣∣ ≤ ‖ρ̄‖2
√√√√√ L∑

`=1

 1

J

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

.
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Similarly, the absolute value of the second term is∣∣∣∣∣∣ 1J
J∑
j=1

L∑
`=1

ξTj`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

∣∣∣∣∣∣ ≤ 1

J

J∑
j=1

‖ξTj‖2

√√√√√ L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

≤ Sρ

√√√√√ 1

J

J∑
j=1

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

Finally, notice that 1
J

∑J
j=1 εjTj is the average of J independent sub-Gaussian random variables and

so is itself sub-Gaussian with scale parameter σ√
J

. However, 1
J

∑J
j=1

∑
i∈Dj γ̂ijεiTj is the weighted

average of sub-Gaussian variables that are independent over i but not necessarily independent over
j, and so the weighted average is sub-Gaussian with scale parameter σ√

J
‖Γ‖F . The two averages

are independent of each other, so

P

 1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj

 ≥ δσ√
J

(
1 + ‖Γ̂‖F

) ≤ 2 exp

(
−δ

2

2

)

Putting together the pieces completes the proof.

Proof of Theorem 2. Following Abadie et al. (2010), we can re-write φi in terms of the lagged
outcomes as

φi = (Ω′jΩj)
−1

L∑
`=1

µTj−`(YiTj−` − εiTj−`)

=
1√
L

L∑
`=1

P
(j)
` (YiTj−` − εiTj−`)

(A.5)

where Ωj ∈ RL×F is the matrix of factors from time t = Tj−L, . . . , Tj−1, 1√
L
P

(j)
` = (Ω′jΩj)

−1µTj−` ∈

RF , and 1√
L
P (j) = 1√

L
[P

(j)
1 , . . . , P

(j)
J ] ∈ RF×L. Using Equation (A.5), we can write the error for

the ATT as

ÂTTk −ATTk =
1

J

J∑
j=1

τ̂jk − τjk =
1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


− 1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

εjTj−` −∑
i∈Dj

γ̂ijεiTj−`


+

1

J

J∑
j=1

εjTj+k −∑
i∈Dj

γ̂ijεiTj+k

 .

(A.6)

From the proof of Theorem 1, we can bound the final term in Equation (A.6). We now bound
the first two terms. First, as in the proof of Theorem 1, we decompose the first term into a time
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constant, and a time varying component:

1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`


︸ ︷︷ ︸

(∗)

=
1

J
√
L

L∑
`=1

µ̄k`

J∑
j=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`



+
1

J
√
L

J∑
j=1

L∑
`=1

ξ(Tj+k)`

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

 ,

where µ̄k` ≡ 1
J

∑J
j=1 P

(j)′
` µTj+k, and ξ(Tj+k)` ≡ P

(j)′
` µTj+k − µ̄k`. Now by Cauchy-Schwarz, we get

that

|(∗)| ≤ ‖µ̄k‖2

√√√√√ 1

L

L∑
`=1

 1

J

J∑
j=1

YjTj−` −
∑
i∈Dj

γ̂ijYiTj−`

2

+
1

J

J∑
j=1

‖ξTj+k‖2

√√√√√ 1

L

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

≤ ‖µ̄k‖2

√√√√√ 1

L

L∑
`=1

 1

J

J∑
j=1

YjTj−` −
∑
i∈Dj

γ̂ijYiTj−`

2

+ Sk

√√√√√ 1

JL

J∑
j=1

L∑
`=1

YjTj−` −∑
i∈Dj

γ̂ijYiTj−`

2

We now turn to the second term in Equation (A.6). Since εit are independent sub-Gaussian

random variables and 1√
L
‖µ′Tj+kP

(j)‖2 ≤ M2F√
L

,

P

 1√
L

∣∣∣∣∣∣ 1J
J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
` εjTj−`

∣∣∣∣∣∣ ≥ δσM2F√
JL

 ≤ 2 exp

(
−δ

2

2

)
Next, since γ̂1, . . . , γ̂J ∈ ∆scm, 1

J

∑J
j=1 ‖γ̂j‖1 = 1, by Hölder’s inequality

∣∣∣∣∣∣ 1

J
√
L

J∑
j=1

L∑
`=1

µ′Tj+kP
(j)
`

∑
i∈Dj

γ̂ijεiTj−`

∣∣∣∣∣∣ ≤ max
j∈{1,...,J},i∈Dj

∣∣∣∣∣ 1√
L

L∑
`=1

µ′Tj+kP
(j)
` εiTj−`

∣∣∣∣∣ ≤ 2
σM2F√

L

(√
logNJ + δ

)

where the final inequality holds with probability at least 1 − 2 exp
(
− δ2

2

)
by the standard tail

bound on the maximum of sub-Gaussian random variables. Putting together the pieces with a
union bound completes the proof.

C.2 Asymptotic normality

Proof of Theorem A.1. Define β̄Ygk = 1
L

∑L
`=1 β

Y
gk` and β̄Xgk = 1

L

∑L
`=1 β

X
gk`. Note that under linearity

in Assumption A.2,

Yig+k(∞)− 1

L

L∑
`=1

Yig−`(∞) = β̄Ygk · Ẏ
g
i + β̄Xgk ·Xi + εigk.
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So the estimation error for the treatment effect for unit j at time k is

τ̂jk − τjk = YjTj+k(∞)− 1

L

L∑
`=1

YiTj−`(∞)−
∑
i

γ̂ij

(
YiTj+k −

1

L

L∑
`=1

YiTj−`

)

= β̄YTjk ·

(
Ẏ
Tj
j −

∑
i

γ̂ij Ẏ
Tj
i

)
+ β̄XTjk ·

(
Xj −

∑
i

γ̂ijXi

)
+ εjTjk −

∑
i

γ̂ijεiTjk

Aggregating across treated units we see that

ÂTTk −ATT =
1

J

J∑
j=1

τ̂jk − τjk

=
1

J

TJ∑
g=1

ngβ̄
Y
gk ·

 1

ng

∑
Ti=g

Ẏ g
i −

1

ng

N∑
i=1

∑
Tj=g

γ̂ij Ẏ
g
i

+ ngβ̄
X
gk ·

 1

ng

∑
Ti=g

Xi −
1

ng

N∑
i=1

∑
Tj=g

γ̂ijXi


+

1

J

J∑
j=1

εjTjk −
∑
i

γ̂ijεiTjk,

where ng is the number of units treated at time g. Now from Assumption A.3, we have exact

balance within each cohort, so this reduces to ÂTTk −ATT = 1
J

∑j
j=1 εjTjk −

∑
i γ̂ijεiTjk. We now

show that the second term is op(J
−1/2). Denote σ2

max = maxigk Var(εigk). Since the noise terms
εi`k are independent across units i,

Var

 1

J

J∑
j=1

∑
i

εiTjkγ̂ij

 = E

Var

 1

J

J∑
j=1

∑
i

εiTjkγ̂ij | Γ

+ Var

E

 1

J

J∑
j=1

∑
i

εigkγ̂ij | Γ


= E

 1

J2

∑
i

Var

 J∑
j=1

εiTjkγ̂ij | Γ


≤ E

 1

J2
σ2

max

∑
j,j′

∑
i

γ̂ij γ̂ij′


≤ E

 1

J2

∑
i

σ2
max

∑
j,j′

‖γ̂j‖2‖γ̂j′‖2


≤ C2σ2

max

N0

By Chebyshev’s inequality, P
(∣∣∣ 1√

J

∑J
j=1

∑
i εiTjkγ̂ij

∣∣∣ ≥ δ) ≤ σ2
maxC

2J
δ2N0

. Now since J
N0
→ 0, this

implies that
√
J
(

ÂTTk −ATTk

)
= 1√

J

∑
Ti 6=∞ εiTik + op(1). Applying the Lyapunov central limit

theorem to the first term and Slutsky’s theorem shows asymptotic normality.
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C.3 Partial pooling of dual parameters

Lemma A.1. The Lagrangian dual to Equation (6) with ν = 0, λ > 0, and Lj = L < T1 is

min
α,β

1

J

J∑
j=1

∑
i∈Dj

[
αj +

L∑
`=1

β`jYiTj−`

]2

+

−

(
αj +

L∑
`=1

β`jYjT1−`

)
︸ ︷︷ ︸

L(α,β)

+

J∑
j=1

λL

2
‖βj‖22, (A.7)

The resulting donor weights are γ̂ij =
[
α̂j −

∑L
`=1 β̂`jYiTj−`

]
+

.

Proof of Lemma A.1. Notice that the separate synth problem separates into J optimization prob-
lems:

min
γ1,...,γJ∈∆scm

j

1

2
qsep(Γ) +

λ

2

J∑
j=1

N∑
i=1

γ2
ij

=
J∑
j=1

min
γj∈∆scm

j


 1

2JL

L∑
`=1

(
YjTj−` −

N∑
i=1

γijYiTj−`

)2
 +

λ

2

N∑
i=1

γ2
ij


(A.8)

Thus the Lagrangian dual objective is the sum of the Langrangian dual objectives of the individual
objectives in Equation (A.8). Inserting the dual objectives derived by Ben-Michael et al. (2021)
and scaling by 1

J yields the result.

Proof of Proposition A.1. We start be defining auxiliary variables, E0, E1, . . . , EJ ∈ RL where Ej` =

YjTj−` −
∑N

i=1 γijYiTj−` for j ≥ 1 and E0` =
∑

Tj>`

(
YjTj−` −

∑N
i=1 γijYiTj−`

)
. Additionally we

rescale by 1
λ . Then we can write the partially pooled SCM problem (6) as

min
γ1,...,γJ ,E0,...,EJ

ν

2J2Lλ

L∑
`=1

E2
0` +

1− ν
2Jλ

J∑
j=1

1

L
E2
j` +

J∑
j=1

N∑
i=1

1

2
γ2
ij

subject to Ej` = YjTj−` −
N∑
i=1

γijYiTj−`

E0` =
∑
Tj>`

(
YjTj−` −

N∑
i=1

γijYiTj−`

)
γj ∈ ∆scm

j

(A.9)

With Lagrange multipliers µβ, ζ1, . . . , ζJ ∈ RL and α1, . . . , αJ ∈ R, the Lagrangian to Equation
(A.9) is
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L(Γ, E0, . . . , EJ , α1, . . . , αJ , µβ, ζ1, . . . , ζJ) =

L∑
`=1

 ν

2LJ2λ
E2

0` − µβ`

 J∑
j=1

YjTj−` −
∑
i∈Dj

γijYiTj−`

− E0`µβ`


+

J∑
j=1

L∑
`=1

 1− ν
2JLλ

E2
j` − ζ`j

YjTj−` −∑
i∈Dj

γijYiTj−`

− ζ`jEj`


+
J∑
j=1

∑
i∈Dj

1

2
γ2
ij − αjγij − αj

Defining βj = µβ + ζj , the dual problem is:

− min
Γ,E0,E1,...,EJ

L(·) = −
J∑
j=1

∑
i∈Dj

min
γij

{
1

2
γ2
ij −

(
αj −

L∑
`=1

β`jYiTj−`

)
γij

}
+

J∑
j=1

αj +

L∑
`=1

β`jYjTj−`

−
L∑
`=1

min
Ej`

{
1− ν
2JLλ

E2
j` − Ej`(β`j − µβ`)

}

−
L∑
`=1

min
E0`

{ ν

2J2Lλ
E2

0` − E0`µβ`

}
From Lemma A.1, we see that the first term is L(α, β) and we have the same form for the

implied weights. The next two terms are the convex conjugates of a scaled L2 norm. Using the
computation that the convex conjugate of a

2‖x‖
2
2 is 1

2a‖x‖
2
2. We then scale the whole dual problem

by 1
J . Finally, the primal problem (6) is still convex and a primal feasible point exists, so by Slater’s

condition strong duality holds.
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