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A B S T R A C T   

Rising global temperatures are a threat to the current state of the Arctic. In particular, permafrost degradation 
has been impacting the terrestrial cryosphere in many ways, including effects on carbon cycling and the global 
climate, regional hydrological connectivity and ecosystem dynamics, as well as human health and infrastructure. 
However, the ability to simulate permafrost dynamics under future climate projections is limited, and model 
outputs are often associated with large uncertainties. A model structured on a Bayesian Network is presented to 
address existing limitations in the representation of physically complex processes and the limited availability of 
observational data. A strength of Bayesian methods over more traditional modeling methods is the ability to 
integrate various types of evidence (i.e., observations, model outputs, expert assessments) into a single model by 
mapping the evidence into probability distributions. Here, we outline PermaBN, a new modeling framework, to 
simulate permafrost thaw in the continuous permafrost region of the Arctic. Pre-validation and expert assessment 
validation results show that the model produces estimations of permafrost thaw depth that are consistent with 
current research, i.e., thaw depth increases during the snow-free season under initial conditions favoring 
warming temperatures, lowered soil moisture conditions, and low active layer ice content. Using a case study 
from northwestern Canada to evaluate PermaBN, we show that model performance is enhanced when certainty 
about the system components increases for known scenarios described by observations directly integrated into 
the model; in this case, insulation properties from vegetation were integrated to the model. Overall, PermaBN 
could provide informative predictions about permafrost dynamics without high computational cost and with the 
ability to integrate multiple types of evidence that traditional physics-based models sometimes do not account 
for, allowing PermaBN to be applied to carbon modeling studies, infrastructure hazard assessments, and policy 
decisions aimed at mitigation of, and adaptation to, permafrost degradation.   

1. Introduction 

In the face of warming global temperatures, the Arctic is undergoing 
rapid change (IPCC, 2013; Schuur and Mack, 2018; Serreze and Barry, 
2014). The cryosphere, which encapsulates all portions of Earth's sur
face that are covered in frozen water, is particularly vulnerable to cur
rent and future warming. Decreasing trends and record lows in sea ice 
extents and thicknesses have been observed in recent decades, in addi
tion to prolonged summer melt seasons and ice sheet loss (Comiso et al., 
2008; Hanna et al., 2020; Kwok et al., 2009; Serreze et al., 2007; Serreze 
and Meier, 2019; Stroeve et al., 2014). In marine ecosystems, the con
sequences of sea ice loss include increased sea surface temperatures 
(Stroeve et al., 2014), habitat loss for marine mammals (Laidre et al., 

2008), and the amplification of Arctic temperatures (Pistone et al., 2014; 
Screen and Simmonds, 2010; Serreze et al., 2009). On land, permafrost 
is increasingly vulnerable to degradation (Biskaborn et al., 2019; Jor
genson et al., 2010; Koven et al., 2013; Turetsky et al., 2020). Permafrost 
thaw has direct consequences for both the natural environment and 
human communities (Schuur and Mack, 2018), including damage to 
built infrastructure (Hjort et al., 2018; Karjalainen et al., 2019), land
scape change through the creation of thermokarst terrain (Kokelj and 
Jorgenson, 2013; Olefeldt et al., 2016), and release of previously frozen 
soil carbon (Schuur et al., 2009; Schuur et al., 2015). 

In recent decades, the temperatures of circumpolar permafrost have 
increased by 2–4 ◦C (Kokelj and Jorgenson, 2013) as a result of Earth's 
northernmost latitudes warming at a rate twice as fast as the global 
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average (IPCC, 2013). Warming temperatures are often associated with 
permafrost thaw and degradation, but permafrost is not directly con
nected to the atmosphere. Instead, the ground thermal regime, along 
with soil properties, snow, surface and subsurface hydrology, vegeta
tion, and topography, mediate permafrost stability (Gockede et al., 
2019; Jorgenson et al., 2010; Stiegler et al., 2016; Zhang et al., 2018). 
Likewise, just as these factors control permafrost stability, permafrost 
also controls these properties and processes. For instance, permafrost 
acts as a structural component for regulating ecosystems through its 
impact on temperature, water, and nutrients. Active layer depth controls 
the temperature regime of soil layers, with soil near the bottom of the 
active layer remaining only a degree or two above freezing when 
thawed; temperature also affects SOM decomposition and plant and 
animal physiology (Schuur and Mack, 2018). The presence of perma
frost, especially ice-rich permafrost, affects water flow paths and water 
availability by decreasing infiltration and increasing evaporation and 
runoff when water sits on the surface of the upper thaw layer; this has 
implications for plant access to water and whether heterotrophic or
ganisms are exposed to aerobic or anaerobic conditions (Schuur and 
Mack, 2018). Permafrost also controls nutrient availability, primarily of 
nitrogen, through seasonal thaw depth and permafrost temperature; 
near-freezing temperatures inhibit nitrogen release by microorganisms 
(Schuur and Mack, 2018). 

The extent of permafrost also alters surface topography and the 
distribution of vegetation communities across landscapes. For example, 
in the tundra, water infiltration is limited due to the frozen ground; as 
such, vegetation is primarily limited to nonvascular mosses and lichens 
that lack root systems (Schuur and Mack, 2018). In the boreal region, 
conditions are more favorable for water infiltration, contributing to 
taller vegetation coverage (along with warmer growing seasons); ground 
subsidence due to thawing of ice-rich ground is also less common than in 
the tundra (Jorgenson and Osterkamp, 2005). Along those lines, factors 
that control permafrost thaw may differ between these two regions. For 
instance, taller vegetation can contribute to higher snow depths, thereby 
altering the ground thermal regime and accelerating permafrost degra
dation; increased surface water coverage can also accelerate permafrost 
degradation through surface energy fluxes (Burn and Kokelj, 2009). 

To gain a better understanding of how the Arctic will change in a 
warming world and assess the consequences of permafrost degradation, 
many researchers and stakeholders rely on models to inform their 
studies or decisions (Flynn et al., 2019; Koven et al., 2013). While there 
is a general understanding of how permafrost thaw is impacted by 
various feedbacks and surface properties (Gockede et al., 2019; Jor
genson et al., 2010; Schuur and Mack, 2018; Stiegler et al., 2016; Zhang 
et al., 2018), current research emphasizes the need to further improve 
permafrost modeling and address model shortcomings (Lawrence et al., 
2008; Riseborough, 2007; Tao et al., 2017). Often-cited deficiencies 
include difficulties with (or lack of) the representation of the ground 
thermal regime and vegetation dynamics, limitations inherent to the 
modeling approach adopted (e.g., fixed temporal domain in equilibrium 
models or requirement of spatial data for numerical models), and het
erogeneity in variable conditions (Lawrence et al., 2008; Riseborough, 
2007; Tao et al., 2017). Many studies aim at addressing these known 
issues and improving existing models or modeling approaches (e.g., 
Jafarov et al. (2012), Tao et al. (2017), Westermann et al. (2016)). While 
these advancements are essential, alternative modeling methods that 
allow for the integration of different data types should be further 
explored. 

To address the difficulty in simulating permafrost thaw under future 
projected climate conditions with current models, this paper presents a 
new modeling framework (PermaBN) in the form of a Bayesian Network 
(BN). This approach allows explicit representation of the variables 
related to permafrost thaw and simulation of changes in permafrost 
thaw depth by identifying critical variables and processes contributing 
to permafrost thaw, by defining their cause-effect relations, and by 
estimating the state of these variables and processes using probability 

density functions. The potential to integrate available observational 
data, model predictions, and expert assessments to represent the state of 
each participating variable and process in the PermaBN model using 
probability densities (Medina-Cetina and Nadim, 2008) allows us to link 
the main geological and atmospheric components of the Arctic system 
that influence permafrost thaw depth, along with surface insulation 
properties and key soil characteristics. The BN performance is then 
evaluated relative to an existing case study from northwestern Canada 
(Wilcox et al., 2019). 

2. Background 

2.1. Existing permafrost models 

There is a substantial research interest in gaining a greater under
standing of how the Arctic will change in a warming world. As perma
frost is a key component of the terrestrial Arctic system, there is a long 
history of observations, experiments, and models that have been made 
to better understand its spatial and temporal dynamics. While Arctic 
observational networks have improved over the years (e.g., Global 
Terrestrial Network for Permafrost), many regions remain under 
sampled and understudied (Biskaborn et al., 2015; Gruber, 2012; Ser
reze and Barry, 2014). Models are often relied on to fill these data and 
knowledge gaps by extrapolating known scenarios where system con
ditions are calibrated and tested, to other similar scenarios where data is 
not available. 

The breadth and complexity of existing permafrost models varies. 
Some of the first permafrost models used empirical, analytical, and/or 
physically-based/equilibrium modeling approaches. Empirical models 
are developed using observations and focused on describing data, such 
as relationships that can be used for forecasting; they can be either 
deterministic or probabilistic (e.g., Keller (1992), Lunardini (1978), and 
Nelson and Outcalt (1987)). In contrast, analytical models are based on 
formulations (analytic functions) that have a mathematic closed-form 
solution; these models describe changes in a system, such as the ther
mal behavior of the ground when freezing or thawing occurs. Analytic 
equations can be validated and calibrated with empirical observations, 
as seen in the Kudryavtsev model that serves as an alternative to the 
Stefan model (Kudryavtsev et al., 1974). Meanwhile, equilibrium 
models are process- and physics-based models that define equilibrium 
permafrost conditions for a given annual regime by assuming a sta
tionary temperature and snow cover climate; variations in either of 
these assumptions produce a range of mean annual ground temperatures 
(MAGTs) that cause permafrost conditions to deviate from equilibrium 
(Riseborough, 2007; Riseborough et al., 2008). Examples of equilibrium 
models include the Frost Number model (Nelson, 1986), TTOP model 
(Smith and Riseborough, 1996), and variations of the Kudryavtsev 
model (Anisimov et al., 1997). 

More recent modeling efforts have adopted numerical and evidence- 
based approaches. Similar to equilibrium models, numerical models are 
also physics-based and are a type of mathematical model that relies on 
computational techniques to represent the behavior of a process over 
time. For example, numerical models can simulate the evolution of 
permafrost and ground thermal regimes over continental and decadal 
scales (Riseborough et al., 2008). Lastly, evidence-based models are 
mathematical models based on a set of statistical and probabilistic as
sumptions that were made on a particular variable and process of in
terest. Examples of statistical models include an analysis of the 
relationship between MAGT and ALT developed by Aalto et al. (2018), a 
permafrost infrastructure hazard assessment developed by Hjort et al. 
(2018), and an evaluation of the spatial and temporal influence of shrub 
expansion on frost table depth developed by Wilcox et al. (2019). 
Table 1 compares the input and output parameters of select permafrost 
models. 

There are advantages and disadvantages to every model develop
ment approach. For instance, while analytical models can provide 
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closed-form solutions based on mathematical representations, they 
typically do not integrate site-specific, real-world conditions such as 
snow cover time series (Riseborough et al., 2008). Conversely, numer
ical models typically can address this limitation, but they require the 
input of spatial data to set up initial conditions and subsequent model 
spin up; this can be an issue, as data are not always readily available to 
initialize every model component (Biskaborn et al., 2015; Gruber, 2012; 
Serreze and Barry, 2014). In these cases, modelers revert to alternative 
mathematical representations or parameterizations and/or do not fully 
validate their models (Gruber, 2012; Riseborough et al., 2008). In the 
permafrost modeling realm, the representation of ground thermal 
regime and/or vegetation dynamics can be very limited. Other key 
limitations include those inherent to the chosen modeling approach 
adopted, and data variability (Lawrence et al., 2008; Riseborough et al., 
2008; Tao et al., 2017). Along those lines, the models can provide as 
confident predictions as good as the data available to calibrate them and 
test them; in the case of permafrost, there remains large uncertainties 
that pertain to permafrost distribution, thickness, and ice content, 
among many more (Gruber, 2012; Hugelius et al., 2020). 

Permafrost models commonly include the following input parame
ters (Table 1): air temperature, precipitation (particularly snow cover 
and/or depth), soil temperature, and soil moisture. Vegetation cover, 
topography, and soil texture are less common, albeit important addi
tions. A difficulty in assessing permafrost model performance and rep
resentation is that most model simulations are conducted in Alaska (e.g., 
Debolskiy et al. (2020), Jafarov et al. (2012), Nicolsky and Romanovsky 
(2018), Pastick et al. (2015), and Wang et al. (2020)), as that is where 
there are the most and highest quality observations that allow for model 
calibration (Biskaborn et al., 2015). By limiting the spatial domain for 
model development and/or testing, it is possible that models may not be 
applicable to other regions, such as Canada or Siberia. While improving 
existing models and modeling approaches is important work, it is 
possible that an alternative type of model – one that would allow for the 
integration of different data types and a novel representation of 
permafrost thaw dynamics – would provide the community with new 
benchmarks against which to compare and contrast model outputs. 

2.2. Bayesian methods 

A BN framework has the potential to combine physics- and 
empirically-based modeling approaches with statistics and probability 
in order to link various components of a system (e.g., the Arctic) 
together and make predictions (e.g., permafrost thaw depth). The 
framework allows for the integration of multiple types of evidence, such 
as observations, model outputs, and expert assessments. This integration 
of evidence may help address the limitations and gaps of current 
permafrost models. The model also quantifies uncertainties pertaining 
to each variable on the predictions of future permafrost thaw. Further, 
this modeling approach is transparent in that the interactions between 
variables in the BN are explicitly represented. Few studies have utilized 
Bayesian methods to assess environmental changes in the Arctic (e.g., 
Qin et al. (2018) and Wainwright et al. (2017)), and the most compre
hensive Arctic BN study only includes evidence in the form of expert 
assessment (Webster and McLaughlin, 2014). Our research expands 
upon these studies and includes a comparison of the PermaBN results to 
in situ observations. 

BNs are probabilistic and cause-effect networks; they are constructed 
to represent variables (“nodes”) and the relationships (“arcs”) between 
these variables. Variables may be classified as “parent” (cause) or 
“child” (effect) nodes. Variables can also be further classified by their 
“type,” such as “decision” or “chance” nodes. Decision nodes are those 
that are non-random or non-variable (e.g., topographic aspect), while 
chance nodes are those that have a random component to them (e.g., air 
temperature). A number of “states” can be attributed to each node; these 
states are typically represented as categories that capture the current 
state the variable is in and the states that the variable can shift to. For 

instance, a variable may exist in a low, medium, or high state. Decision 
nodes do not have probabilities associated with them, and the user sets 
the states (i.e., is given choices). The inclusion of decision nodes aids in 
the exploratory analysis of different scenarios. For chance nodes, on the 
other hand, a probability is assigned to each one of these states based on 
existing evidence, such as physical observations, model outputs, or 
expert assessment. The use of BN's become optimal when the complexity 
of the problem escapes either available physics or the association (not 
causation) of empirical formulation (e.g. regression). 

BNs are based on a specific case of Bayes' theorem that describes the 
probability of an event given prior conditions and how beliefs change to 
account for new evidence (Korb and Nicholson, 2004). The concept of 
Bayesian inference is formalized in the equation: 

P(H|E) =
P(E|H)P(H)

P(E)

where the probability of a hypothesis H given some evidence E is equal 
to its likelihood P(E|H) times its probability prior to any evidence P(H), 
normalized by the probability of the evidence P(E) being true (Korb and 
Nicholson, 2004). A graphical representation of the causal relationship 
between H and E is seen in Fig. 1. 

An ‘informed and simple synthetic’ case study containing three 
chance nodes (air temperature, soil temperature, and thaw depth) is 
used to illustrate the theoretical background of a BN (Fig. 2). In this 
model, air temperature (a parent node) influences soil temperature (a 
child node), with the latter then impacting thaw depth (also a child 
node). Parentless nodes (e.g., air temperature) are quantified by mar
ginal probabilities. Assume that it is known from either physical ob
servations, model outputs, or expert assessment that air temperature has 
a 75% marginal probability of being low, 15% probability of being 
medium, and 10% probability of being high. These probability values 
can be estimated (a) directly from historic datasets based on physical 
observations of the variable of interest when translated into relative 
frequency statistics via an empirical cumulative distribution function 
(when data are sufficient); (b) from model outputs that allow the esti
mation of first and second order statistics to define probability distri
bution models that allow for the estimation of probabilities (when 
limited data are available); and (c) from experts' assessments, when 
knowledge is translated into probability values (when no data at all are 
available). Arcs on the other hand represent the causal dependencies 
between nodes and help build the conditional probability tables (CPTs) 
that link a parent node to a child node; a node is considered ‘informed’ 
when its CPT is determined by evidence. In a BN with n nodes, X1…Xn, 
the joint distribution is represented by P(X1 = x1,X2 = x2,…,Xn = xn), 
or P(x1,x2,…,xn). Using the chain rule of probability theory, this fac
torizes to P(x1, x2, …, xn) = P(x1) × P(x2|x1)…, × P(xn|x1, …, xn−1) =
∏

i
P(xi|x1, …, xi−1); when the value of a particular node is conditional 

only on the values of the parent nodes, this reduces to P(x1, x2, …, xn) =

∏

i
P(xi|Parents(Xi) ) (Korb and Nicholson, 2004). 

In the Fig. 2 example, the arc between air temperature and soil 
temperature builds the soil temperature CPT, and the arc between soil 
temperature and thaw depth builds the thaw depth CPT. The method for 
determining the low, medium, or high state probabilities P(E) of a node 
depends on the particular type of evidence being used to inform the BN. 
In the case of evidence from physical observations (typically when data 
are sufficient), one could use historic data to build empirical cumulative 
distribution functions and use these to map the low, medium, and high 
range classifiers (e.g., by setting thresholds along the variable of inter
est, and then using the cumulative density function to define the prob
ability estimates falling between low, medium, and high). The same 
approach would be used to determine the conditional probabilities P 
(H1|E) and P(H2|H1); the CPTs would be determined by how many ob
servations fall into each set of states (e.g., the probability of there being 
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Table 1 
Table of select permafrost models detailing their model type classification, select input parameters, and outputs.  

Model Name and Reference Type Inputs Outputs 

Air 
Temperature 

Aspect Ground 
Temperature 

Precipitation Snow 
Depth 

Soil 
Density 

Soil Water 
Content 

Solar 
Radiation 

Thermal 
Conductivity 

Vegetation 
Height 

Frost Number (Nelson, 1986) EQ X   X X  X  X  Depth of frost; surface frost 
number 

TTOP (Smith and Riseborough, 
1996) 

EQ X  X      X  Mean annual temperature at 
base of active layer 

Kudryavtsev (Anisimov et al., 
1997, Kudryavtsev et al., 1974) 

EQ; A - 
EM 

X  X  X X X  X X Depth of seasonal freezing/ 
thawing 

One-dimensional finite-difference 
model (Goodrich, 1978,  
Goodrich, 1982) 

N     X X X  X  Position of freezing/thawing 
interface 

Northern Ecosystem Soil 
Temperature (NEST) (Zhang 
et al., 2006) 

N X   X  X  X X X ALT; depth to permafrost 
table 

GIPL2-MPI (Jafarov et al., 2012) N X  X X X  X  X  MAGT; ALT 
Catchment Land Surface Model 

(CLSM) (Tao et al., 2017) 
N X  X X    X X X ALT; soil temperature profile 

Numerical Experiments by  
Nicolsky and Romanovsky 
(2018) 

N   X   X X  X  Rate of permafrost thaw 

Stefan model (Lunardini, 1981) A X        X  Phase change boundary 
N Factors (Lunardini, 1978) EM X  X        n-factor 
Frost Index (Nelson and Outcalt, 

1987) 
EQ; 
EM 

X  X X X X X  X  Stefan frost number 

PERMAKART (Keller, 1992) S - EM X X X  X   X   Map of permafrost 
distribution 

Aalto et al. (2018) S X   X    X   MAGT; ALT 
Hjort et al. (2018) S   X   X     Geohazard indices 
Wilcox et al. (2019) S  X   X     X Quantification of micro-scale 

variables on frost table depth 

Ten of the most common input parameters were selected for comparison, with an “X” denoting if a model includes that input parameter. Type abbreviations: EQ (equilibrium), A (analytical), N (numerical), EM (empirical), 
S (statistical). 
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low soil temperature when there is low air temperature and low thaw 
depth when there is high soil temperature). In the case of using evidence 
from model outputs (typically when limited data are available), proba
bilities can be estimated by using models (e.g., physically-based like 
models based on the laws of thermodynamics, or empirically-based like 

regression or artificial intelligence) that simulate scenarios of the vari
able of interest, which simulations allow for the estimation of first and 
second order statistics to define a probability distribution model from 
which estimation of probabilities can be computed. In the case of using 
experts' assessments (typically when no data at all are available), 
knowledge is then translated into probability values, for instance, 
knowledge that air temperatures are very likely to be low while the 
likelihood of air temperature being medium is only slightly greater than 
the likelihood of air temperature being high. When using any of the 
evidence types to produce probability values to support the model's 
nodes, the effort is focused in ‘sampling’ reality to capture first the 
general trend (expectation), and then the associated uncertainty (vari
ance). Therefore, it is anticipated that the more sampling of available 

Fig. 2. A simple BN with three chance nodes: air temperature, soil temperature, and thaw depth. Probabilities represent synthetic, illustrative cases of the marginal 
(air temperature) and joint (soil temperature and thaw depth) probabilities. Tables show the marginal (or conditional) probabilities followed by the equations 
calculating the joint probabilities. 

Fig. 1. Graphical (BN) representation of the casual relationship between the 
hypothesis (H) and evidence (E) as probabilities (P). Note that there could be 
multiple parent nodes. Adapted from Varela Gonzalez (2017). 
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physical observations, of model outputs, and of experts' knowledge, the 
better definition of the variable's trend and reduction of its uncertainty, 
where both have a significant impact on the prediction of the BN. 

While the probabilities provide a quantification of the relationships 
between variables, the topology of the network captures qualitative 
relationships between the variables (Aguilera et al., 2011; Korb and 
Nicholson, 2004). It is important to note that BNs are directed acyclic 
graphs, meaning that nodes and arcs cannot be connected in a directly 
cyclic manner. As such, the relationships between nodes and arcs 
represent the causal evidence for a process that cascades through the 
model, from parent to children, in a cause-effect manner, within a given 
“step” in space and time. Similar problems have been addressed 
following this approach, from natural resource management, to the 
integration of remote sensing data with physically-based landslide 
models, to the design of environmental friendly drilling systems, and 
early warning systems (Al-Yami et al., 2010; Das et al., 2019; Fox et al., 
2017; Medina-Cetina and Nadim, 2008; Yu et al., 2012). Within each 
model step, feedbacks are not allowed between nodes. For instance, if 
high thaw depth is considered a proxy for carbon release, an arc from 
thaw depth to air temperature cannot be made to represent the effects of 
increased carbon release on air temperature. Instead, the BN model 
would have to be run again with updated marginal probabilities for air 
temperature to reflect the new increased carbon conditions. Alterna
tively, a “dynamic” BN could be used to represent feedbacks (Chen and 
Pollino, 2012; Kjaerulff, 1995). 

A primary advantage to using a BN approach is the ability to incor
porate three types of evidence (i.e., observations, model outputs, and 
expert assessments) into a single model. This is particularly helpful to 
represent the Arctic system, as available evidence may be regionally 
limited, incomplete, or inexistent. The BN approach is fully transparent, 
departing from modeling methods based on black-boxes. In addition, 
uncertainties in the model and the system are expressed through the 

distribution of probabilities assigned to each node state, and the node's 
information content is propagated through the network to the final 
model endpoint following the Markovian principle, which allows for the 
estimation of each node's probability density function (Korb and Nich
olson, 2004). Lastly, by employing the principle of Occam's Razor, BNs 
may be more suitable than other modeling approaches for scenarios 
where it is important to engage stakeholders in the modeling process of a 
system (Pearl, 2009). Keeping the BN as simple as possible is also 
necessary for maintaining sensitivity of outputs to inputs, and for 
avoiding additional uncertainty propagation in the model. Despite 
appearing simpler than other models, BNs are well suited for modeling 
complex systems with a large number of variables (Getoor et al., 2004) 
or being integrated into larger models (Chen and Pollino, 2012). 
Another unique advantage to BNs is their capability for both forward 
(prognosis/cause to effect) and inverse (diagnosis/effect to cause) 
modeling. Examples of Fig. 2 in prognosis and diagnosis mode can be 
seen in Beall (2021). 

As with all methodologies, there are known limitations to the BN 
approach. One such limitation is that development of BNs is hindered by 
the lack of a universally accepted methodology to develop them (Weber 
et al., 2012), and the validation of reliable expert elicitation is a known 
challenge (Kaikkonen et al., 2021; Uusitalo, 2007). Another limitation 
arises when experts must validate the model; the size of a node's CPT 

increases S
∏n

i=1
Pi where S=the number of states and Pi=the number of 

states in the ith parent node (Marcot et al., 2006), meaning that limiting 
the size of the node's CPT is especially important in BNs where CPTs are 
defined through expert assessment since the CPT can quickly become too 
large for the human brain to adequately comprehend. Despite these 
limitations, the unique advantages of this approach hold great potential 
for application to the environmental sciences (Kaikkonen et al., 2021; 
McLaughlin and Packalen, 2021; Qin et al., 2018; Wainwright et al., 

Fig. 3. Pre-validation (i.e., preliminary) conceptual model, which includes 14 nodes, 26 arcs, and 43 states. Geological variables are represented in light green, 
atmospheric variables in teal, surface insulation variables in dark green, soil variables in light orange, and ALT in dark orange. Decision nodes are represented as 
boxes; chance nodes are ovals. For a list of causal relationships and their corresponding references, refer to Beall (2021). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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2017). 
So far, the most comprehensive use of a BN in the context of the 

Arctic and permafrost is a study by Webster and McLaughlin (2014) that 
assesses the vulnerability of permafrost to thaw and estimates the im
pacts of permafrost thaw on greenhouse gas (GHG) emissions and 
climate feedbacks in the Canadian Arctic and Hudson Plain regions 
using a Bayesian Belief Network (BBN). The objective of the study was to 
create a tool that aids policymakers in understanding the vulnerability 
of permafrost to thaw and resulting carbon emissions (Webster and 
McLaughlin, 2014). The BBN is arranged in a hierarchical manner to 
reflect the vulnerability assessment components of sensitivity, exposure, 
and adaptive capacity; however, the adaptive capacity component is not 
explicitly represented in the version of the model presented in the study. 
Nodes in the BBN represent the themes of future and current mean 
annual air temperature and ground conditions, heat transfer, carbon 
susceptibility, permafrost thaw, GHGs, and feedback to climate change. 
Although BNs are capable of integrating various types of evidence, the 
study by Webster and McLaughlin (2014) only included evidence from 

expert assessment. It is arguable that their findings could have been 
augmented by the integration of observational data and/or model out
puts, as the authors recognize that the expert assessment approach can 
lead to accurate, but not necessarily precise, predictions. That said, their 
study is a convincing example of how observational data are not a 
limitation to generating useful predictions of permafrost thaw; it also 
demonstrated the usefulness of BBNs as potential policy tools, as the 
model allows for various future scenarios and consequences to be 
analyzed. The expectation is that as observations and model outputs 
become available, estimates of the model become more accurate and 
precise when added to the experts' assessments. 

3. PermaBN development and methods 

3.1. PermaBN components 

The following subsections define and review the key geomorphic and 
ecological processes that influence continuous permafrost thaw and that 
are represented in PermaBN; while it is acknowledged that hydrological 
processes such as river dynamics and the presence of surface water (e.g., 
lakes) also exert an important control on permafrost thaw (Burn and 
Kokelj, 2009; Kokelj and Jorgenson, 2013; Zheng et al., 2019), Per
maBN, along with the majority of existing permafrost models (e.g., 
Kudryavtsev model by Anisimov et al. (1997), GIPL2-MPI by Jafarov 
et al. (2012), and Catchment Land Surface Model (CLSM) by Tao et al. 
(2017)), implicitly include hydrological processes through the repre
sentation of ground heat fluxes and thermal conductivity: 

(1) Topography: landscape-scale geologic and topographic charac
teristics and processes typically remain consistent, at the human 
timescale, in their influence on other system components such as 
vegetation communities, snow depth, and soil moisture. As such, 
local topography can influence snow distribution, incident radi
ation, and wind exposure, which can impact soil moisture and 
soil temperature (Aalto et al., 2013; Serreze and Barry, 2014; 
Young et al., 1997). In the northern hemisphere, northerly as
pects tend to be snowier, cooler, and receive less intense 
incoming radiation than southerly aspects (Evans et al., 1989; 
Petzold and Mulhern, 1987; Wilcox et al., 2019). The effects of 
aspect on radiation are lessened at higher latitudes, particularly 
for east and west aspects (Holland and Steyn, 1975). Nonetheless, 
the differences between north and south slopes can still be sig
nificant (e.g., Evans et al. (1989) and Myers-Smith et al. (2020)). 

(2) Soil texture and density: the effects of soil particle size and den
sity on soil moisture and soil temperature are considered. Soil 
particle size (or texture), influences soil moisture by controlling 
the moisture retention rate and thermal conductivity of the soil 
(Arya and Paris, 1981; Young et al., 1997). For instance, finer 
particles such as clay can retain more moisture than coarser 
particles such as sand (Meentemeyer and Zippin, 1981). Soil 
texture can also be considered from the perspective of soil bulk 
(dry) density. In this case, a sandy soil has a higher dry density 
than a silty or clayey soil; organic soils generally have very low 
dry densities (Abu-Hamdeh and Reeder, 2000). Dry bulk density 
influences soil thermal conductivity, such that an increase in 
density at a given soil moisture content increases the thermal 
conductivity of that soil (Abu-Hamdeh and Reeder, 2000). 
Thermal conductivity therefore tends to be highest in sandy (i.e., 
high bulk density) soils and lowest in organic (i.e., low bulk 
density) soils. Lastly, sandy soils have a high infiltration rate, but 
low available water content, while clayey and organic soils have 
the highest volumetric water contents (Abu-Hamdeh and Reeder, 
2000). 

(3) Surface air temperature and precipitation regimes: these atmo
spheric variables exert direct and important influences on soil 
and vegetation properties. For instance, warmer surface air 

Table 2 
Definition of nodes and associated possible states included in the pre-validation 
(i.e., preliminary) version of PermaBN.  

Node Type Definition States 

Active Layer 
Thickness 

Chance The depth/thickness of the layer 
of ground subject to annual 
thawing and freezing in areas 
underlain by permafrost 

Low, 
Medium, 
High 

Air Temperature Chance Temperature of the air near the 
surface of the Earth based on 
2081–2100 RCP future warming 
projections 

RCP 2.6, RCP 
4.5, RCP 8.5 

Aspect Decision The arrangement of the natural 
and artificial physical features of 
an area, or more particularly, the 
aspect, or positioning of a feature 
in a specified direction 

North, East, 
South, West 

Ground Ice 
Volume 

Chance Volume of all types of ice 
contained in freezing and frozen 
ground, which includes bedrock, 
sediment, organic matter, and 
water 

Low, 
Medium, 
High 

Insulation Chance The state of something being 
insulated, or protection of 
something by interposing 
material that prevents the loss of 
heat 

Low, 
Medium, 
High 

Rain Chance Moisture condensed from the 
atmosphere that falls visibly in 
separate drops 

Low, 
Medium, 
High 

Season Decision Division of the year marked by the 
presence or absence of snow 

Snow Free, 
Snow 

Snow Chance Atmospheric water vapor frozen 
into ice crystals and falling in 
light white flakes or lying on the 
ground as a white layer 

Low, 
Medium, 
High 

Snow Depth Chance Measurement of snow that has 
fallen during previous weather 
events 

Low, 
Medium, 
High 

Soil Moisture Chance Water that is held in the pore 
spaces between soil particles 

Low, 
Medium, 
High 

Soil Particle Size Chance Composition of mineral soil by 
relative soil particle size 

Clay, Silt, 
Sand 

Soil 
Temperature 

Chance Measurement of the warmth of 
the soil 

Low, 
Medium, 
High 

Soil Water Input Chance The ratio of precipitation to 
evaporation 

Low, 
Medium, 
High 

Vegetation 
Density/ 
Height 

Chance Percentage of soil which is 
covered by green vegetation, or 
height of the dominant vegetation 
classes 

Low, 
Medium, 
High  
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temperatures increase the length of the growing season, which 
may contribute to shrub expansion and increased photosynthetic 
activity across the tundra (Myers-Smith et al., 2011; Myers-Smith 
et al., 2020). Likewise, the relationship between increased sur
face air temperatures and increased soil temperatures is well 
documented (Boike et al., 2003; Oelke and Zhang, 2004; Park 
et al., 2014; Zhang et al., 2018). Many studies have also identified 
surface characteristics that work to modulate the relationship 
between air and soil temperatures, such as the insulation prop
erties of snow and water cover (Kokelj and Jorgenson, 2013; 
Zhang et al., 2018). As for precipitation, atmospheric air tem
peratures affect the ratio of precipitation that falls as rain vs. 
snow, and as temperatures continue to warm, a higher ratio of 
precipitation falling as rain is expected across the Arctic (Bintanja 
and Andry, 2017). A higher ratio of rainfall would also impact 
snow depths by melting existing snow cover (Boike et al., 2003; 
Screen and Simmonds, 2012). As for precipitation regimes, the 
Arctic is expected to experience increased precipitation totals 
throughout the 21st century (Bintanja and Andry, 2017), with 
decreased amounts of snow. Lastly, air temperature and precip
itation modulate soil moisture, primarily through snowmelt and 
rainfall, as well as evaporative processes (Rouse et al., 1997; 
Young et al., 1997). 

(4) Biota: vegetation height has known influences on ground insu
lation via shading in the summer and increased snow depth in the 
winter (Grunberg et al., 2020; Myers-Smith et al., 2011; Wilcox 
et al., 2019), with implications for soil temperatures and 
permafrost thaw depths. In winter, increased vegetation density 
and height have been shown to locally increase snow depths by 

trapping snow in branches (Gockede et al., 2019; Grunberg et al., 
2020; Myers-Smith et al., 2011; Wilcox et al., 2019), and the 
insulation properties of snow contribute to warmer winter soil 
temperatures (Gockede et al., 2019; Myers-Smith et al., 2011; 
Park et al., 2014; Zhang et al., 2018). This slows down, or pre
vents, the active layer from refreezing during the cold season (Jan 
and Painter, 2020; Zhang et al., 1996). In the summer, vegetation 
cover shades the ground and reduces the thermal gradient into 
the ground, thereby leading to cooler summer soil temperatures 
and reduced active layer depths (Aalto et al., 2013; Blok et al., 
2010; Grunberg et al., 2020; Myers-Smith et al., 2011; Young 
et al., 1997). Some studies suggest that vegetation shading may 
help protect permafrost from thaw by offsetting some of the in
fluences of increased air temperatures (Blok et al., 2010), though 
others argue that the warming-induced increase in shrub cover 
will ultimately offset the local cooling influence due to surface 
albedo changes related to the protrusion of shrub stems above the 
spring snowpack that lead to warmer soil temperatures and 
deeper active layers (Lawrence and Swenson, 2011). In this latter 
case, the vulnerability of permafrost to thaw could be increased.  

(5) Soil temperature and moisture: soil thermal dynamics are 
affected by moisture (Oelke and Zhang, 2004; Zwieback et al., 
2019). Increased soil moisture, which would be more character
istic of lower bulk density (i.e., organic or clayey), typically leads 
to decreased soil temperatures since it increases heat capacity, 
and evaporation consumes a large amount of energy. However, 
soil moisture and high bulk density also increase the thermal 
conductivity of soil, allowing heat to penetrate the ground more 
effectively and increase active layer depths (Frauenfeld et al., 

Table 3 
Complete list of changes made to the pre-validation (i.e., preliminary) model during validation of PermaBN with explanations for why each change was made.  

Pre-validation model 
component 

Validation model refinement Explanation 

Node: Active Layer 
Thickness 

Node renamed to “Thaw Depth” “Thaw Depth” allows for a more accurate interpretation of the node in the context of the 
seasonal dynamics represented in the model. In other words, “Active Layer Thickness” 
only refers to a certain portion of the permafrost profile that thaws in the summer, and a 
more inclusive term was desired. 

Node: Ground Ice 
Volume 

Node renamed to “Active Layer Ice Content” “Active Layer Ice Content” better reflects an underlying assumption that ground ice is 
limited to the upper layer of the soil column. 

Node: Soil Particle Size Node renamed and redefined to “Soil Density” “Soil Particle Size” only accounted for the mineral soil states of sand, silt, or clay and their 
respective moisture retention properties. “Soil Density” accounts for both the effects of 
mineral soil particle size and soil organic content on moisture retention and thermal 
conductivity. With the renamed node, the states are also redefined from “Sand,” “Silt,” 
and “Clay” to “Low,” “Medium,” and “High” to account for both the consideration of soil 
organic content and consistency in model terminology. 

Node: Vegetation 
Density/Height 

Node renamed to “Vegetation Height” “Vegetation Height” is the variable that is more often reported in physical observation 
datasets or in the literature. 

Node States: Air 
Temperature 

Node states redefined from three RCP scenarios to “Low,” 
“Medium,” and “High” 

Defining the node states as simply “Low,” “Medium,” and “High” enhances the 
consistency of terminology used in the model as well as generalizes the node for use with 
physical observations or other model scenarios. 

Node arc: Insulation New arc added between “Soil Density” and “Insulation” This new arc allows for representation of the effects of soil organic content on moisture 
retention, thermal conductivity, and insulation to be accounted for. 

CPT: Insulation The CPT values of the Insulation node were adjusted Adjustements were necessary after redefining “Soil Particle Size” to “Soil Density.” 
CPT: Soil Moisture The CPT values of the Soil Moisture node were adjusted Adjustments were necessary after redefining “Soil Particle Size” to “Soil Density.” While 

modifying the CPT values, an error was also found where soil moisture conditions for 
certain aspects under low soil water input conditions were swapped. 

CPT: Soil Temperature The CPT values of the Soil Temperature node were adjusted Further investigation suggested that there is a positive relationship between soil moisture 
and soil temperature in the snow season (i.e., higher soil moisture leads to warmer 
temperatures) and a negative relationship in the snow free season (i.e., higher moisture 
leads to cooler temperatures); see Beall (2021) for details. 

Graphical Structure Reorganization of the BN into a tiered structure The model was graphically reorganized to emphasize the cause-effect nature of the model. 
For instance, it becomes easier to see the distinct tiers (parent nodes at the top, 
intermediate child nodes in the middle, and the response of the system at the bottom) in 
the model. 

Assessment of Nodes 
During Experiments 

At least 75% (i.e., 9 out of 12) chance nodes had to respond 
as expected to the prognosis and diagnosis experiments 

A qualitative assessment of node behavior was introduced to enhance robustness of the 
model and allow for further adjustment of the node CPTs prior to informing the model 
with physical observations from a case study. Whether or not a node responded as 
expected was dependent on (a) expected conditions gathered from the literature (e.g., 
higher chance of rain than snow under warmer conditions) and (b) trends in the node 
response as opposed to the magnitudes of the response.  
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2004). Many recent studies suggest that the influence of soil 
moisture is stronger on thermal conductivity than on conductive 
heat transfers, though this influence may not hold at deeper soil 
depths and in continuous permafrost areas that have a higher 
concentration of mineral soils (Douglas et al., 2020; Fisher et al., 
2016; Loranty et al., 2018). As for the relationship between soil 
temperature and permafrost thaw, it is well established. 
Increased soil temperatures lead to increased active layer thick
ness (ALT) through increases in the ground heat flux (Frauenfeld 
et al., 2004; Liljedahl et al., 2016; Loranty et al., 2018; Schuur 
and Mack, 2018).  

(6) Ground ice content within the active layer: similar to permafrost, 
ground ice is vulnerable to degradation as a result of increased 
soil temperatures (Jorgenson et al., 2015; Liljedahl et al., 2016). 
While soil moisture is a critical variable in ground ice growth, 
with wet sites more likely to have high ice concentrations than 
dry sites (Meentemeyer and Zippin, 1981; O'Neill and Burn, 
2012), the presence of ground ice can help delay active layer 
thickening due to the large amount of latent heat required to melt 
the ice (Jorgenson et al., 2015; Lee et al., 2014; Loranty et al., 
2018; Schuur and Mack, 2018). Conversely, high ground ice 
content can lead to pronounced ground subsidence when that ice 
melts, further promoting permafrost thaw (Jorgenson et al., 
2015; Kokelj and Jorgenson, 2013). 

3.2. PermaBN development 

The objectives of PermaBN are to: (1) provide an alternative 
permafrost modeling framework that improves understanding and pre
diction of permafrost dynamics under various climate or ecosystem 
conditions (i.e., provide a method that allows for exploratory and sce
nario analysis), (2) identify knowledge and data gaps that hinder our 
understanding (and modeling capabilities) of permafrost dynamics, and 
(3) facilitate participatory modeling among researchers and/or 
stakeholders. 

Following the best practices in BN modeling outlined by Medina- 
Cetina and Nadim (2008), Chen and Pollino (2012), and seen in works 
such as those by Fox et al. (2017), the model development process en
tails a series of critical steps: (1) defining model objectives and scope, (2) 
creating a conceptual model of the system to form the structure of the 
BN, (3) defining states and conditional probabilities of all variables, (4) 
evaluating the BN using a suite of both quantitative and qualitative 
model evaluation methods, and (5) documenting assumptions, un
certainties, descriptions and reasoning for each node and linkage, data 
and information sources, and evaluation of results. 

In this proof-of-concept stage, the scope of PermaBN is limited to the 
prediction of permafrost thaw depth in the continuous permafrost region 
as a result of a handful of key terrestrial factors (see PermaBN Compo
nents). While the emphasis is limited to the geomorphic and ecological 
processes that influence permafrost thaw, future development of Per
maBN could introduce hydrological factors (among others). Note that 
PermaBN was designed with a multiyear timescale in mind. In its current 
form, PermaBN is not meant to be viewed as a true environmental risk 
assessment model since it lacks the quantification of utility associated 
with the consequences of permafrost thaw. Instead, it should be viewed 
as a model aimed at predicting environmental impacts. Future devel
opment could use PermaBN as a sub-module that would be included into 
a comprehensive Arctic ecosystem risk framework. It should also be 
noted that, in its current form, PermaBN should not be applied to non- 
continuous or transitional permafrost regions due to differing drainage 
patterns, vegetation types, and ground temperature/permafrost re
lationships (Burn and Kokelj, 2009). 

3.3. Model pre-validation 

A preliminary conceptual model (Fig. 3) was created to form the 
structure of the BN. The “nodes” and “arcs” of PermaBN were repre
sented using the software program GeNIe (BayesFusion, 2019). In the 
case of PermaBN, this graphical network represents a hypothesis about 
the terrestrial variables that control permafrost thaw depth. Multiple 
BNs could be created to reflect different hypotheses or spatiotemporal 
domains, if desired. In other words, PermaBN is by no means a unique or 
“be-all and end-all” representation; rather, it is the best initial attempt at 
representing the key terrestrial processes at play in permafrost thaw. 
Ultimately, the goals of the conceptual model are to provide a structure 
for the BN and identify the causal relationships across the system. In 
environmental BNs, node and arc selection and definition are typically 
determined through literature review or expert judgment (Kaikkonen 
et al., 2021). For this reason, the variables included here were deter
mined primarily through extensive review of peer-reviewed scientific 
literature and collaboration with other researchers and scientists during 
two workshops that took place in 2019 at Texas A&M University. 

The following variables were selected for the PermaBN model 
because they are thought to be most impactful on permafrost thaw: (1) 
geological setting (aspect and soil particle size), (2) atmospheric con
ditions (air temperature, rain, snow, and season), (3) surface insulation 
(vegetation density/height, snow depth, and insulation), and (4) soil 
properties (soil moisture, soil water input, soil temperature, and ground 
ice volume). ALT is the final variable in the network and is the response, 
or endpoint, of the system. Other variables, such as soil thermal con
ductivity, are implicit to the model through the causal relationships 
between nodes. For instance, soil particle size influences soil moisture 
and insulation, which are known to influence thermal conductivity, and 
hence, soil temperature. Similarly, some hydrological processes could be 
considered implicit to the soil moisture node (Woodard et al., 2021). For 
example, snow melt contributes to soil water input, and soil particle size 
controls infiltration rates, and hence, soil moisture content. 

After characterizing each node and their associated states (Table 2), 
the CPTs for the nodes were determined; the maximum number of 
parent nodes for any node was limited to five to limit the size of the CPTs 
while still allowing for as many causal relationships to be explicitly 
represented as possible. It is ideal to include as much evidence as 
possible when creating the CPTs (Medina-Cetina and Nadim, 2008), but 
evidence can sometimes be sparse in environmental studies. In that case, 
the CPTs are derived through expert judgment. One method for initially 
determining the CPTs for any given node is to assign a uniform distri
bution; this is commonly the case if the variable conditions are un
known. CPT values can then be adjusted as necessary when evidence 
becomes available for the variable, whether it is from physical obser
vations, model outputs, or expert assessments (Marcot et al., 2006). It is 
also common to initially determine the CPTs in a symmetric manner 
when using expert assessments as the evidence source (McLaughlin and 
Packalen, 2021). In a symmetric CPT, the probability of the “lowest” 
scenario would be equal to the probability of the “highest” scenario. In 
the pre-validation version of the PermaBN model, probability values 
were selected to represent trends rather than true probabilities of what 
may occur in reality; those trends were established on the basis of 
existing literature. For example, a high probability (60%) was given to 
the medium air temperature scenario, indicating the state of knowledge 
that it is more likely that a moderate amount of warming will occur in 
the Arctic over the coming decades as opposed to no/little warming or 
extreme warming; similarly, extreme warming is more likely than no/ 
little warming (Meredith et al., 2019). 

To test the accuracy or representativeness of the CPTs (Appendix A), 
46 prognostic experiments (Appendix B) were designed to illustrate how 
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the incorporation of evidence affected children nodes in the model, 
particularly the model endpoint (prediction of ALT). The first set of 
experiments was conducted on a model where all the nodes were set to a 
uniform distribution (Appendix B). Then, informed nodes at varying 
levels of the model were introduced (Appendix B). The final set of ex
periments was conducted on a model where all the nodes were informed. 
In each of the experiment sets, a combination of the primary parent 
nodes (i.e., those nodes with no preceding nodes or incoming arcs) were 
set to the extreme scenarios that could be encountered in the system (e. 
g., low air temperatures, solar radiation, and soil particle size or high air 
temperatures, solar radiation, and soil particle size). A set of 13 diag
nostic experiments (Appendix B) was also designed to check for con
sistency in the model. In contrast to the prognosis experiments, these 
effect-to-cause experiments focused on setting the response variable 
(ALT) to each of its states in a fully informed model to see if the parent 
node distributions responded as expected. Some of the diagnostic ex
periments also set intermediate parent nodes to different states to assess 
whether a node seems to be a primary driver of change in the model. 

Collectively, these prognostic and diagnostic experiments represent 
the process of pre-validation (Medina-Cetina and Nadim, 2008). It al
lows for a check on the consistency of the model at the lower and upper 
bounds; for instance, if thaw depth does not respond as expected given 
the state of the parent nodes in the prognostic experiments, it is possible 
that: (1) the CPTs may not be well defined, and/or (2) the variables and 
connections between them may not sufficiently represent the process of 
permafrost thaw. In the event of the former, the CPTs simply need to be 
adjusted through further expert judgment, or ideally, through the 
incorporation of physical observations or model outputs. In the event of 
the latter, the model may need to be redesigned. When the system re
sponds as expected per the modeler's judgment, the model can be 
considered pre-validated, and the results can be used for further vali
dation of the model. All results of the pre-validation prognosis and 
diagnosis experiments can be found in Appendix B. 

3.4. Validation – expert assessment 

After pre-validation, the model moved into the validation stage. 
Here, validation first entailed meeting with a group of four experts at 
Texas A&M University to review the conceptual model and the results of 
the prognostic and diagnostic experiments. This validation stage is a 
fairly unique attribute of the PermaBN model development process, as 
most BN studies exclude validation from the development process 
(Aguilera et al., 2011; Kaikkonen et al., 2021). Of the studies that do 
conduct validation, the most common method for doing so is through 

expert assessment (Kaikkonen et al., 2021). Since the experts were 
familiar with both Arctic climates and introductory Bayesian modeling 
principles, only a brief overview of the current state of permafrost 
modeling research and of the statistical methods behind the two types of 
experiments was provided. The feedback and suggestions from the 
validation session were then used to refine the BN conceptual model. 
Refinements included: (1) renaming or redefining of nodes in the pre- 
validation conceptual model, (2) adjustment of soil moisture and soil 
temperature seasonal relationships, and (3) implementing a qualitative 
threshold for passing the CPTs defined in the pre-validation prognosis 
and diagnosis experiments see Table 3 for a complete list of changes and 
the corresponding explanations for each change. Table 4 provides an 
updated table of nodes, node definitions, and node states included in the 
validated PermaBN model, and Fig. 4 shows the updated conceptual 
model. 

Before testing PermaBN with physical observations, the prognostic 
and diagnostic synthetic informed case study experiments were repeated 
with the updated conceptual model. The number of prognostic experi
ments was increased to 50, and the number of diagnostic experiments 
was increased to 32 in order to capture additional test cases pertaining 
to the endpoint node being the only informed node (Appendix B). 
Similar to the pre-validation experiments, the trend in the node re
sponses was given higher priority than the magnitude of the response for 
determining whether the model responds as expected. If the extreme, 
fully informed prognosis and diagnosis experiments fail the qualitative 
validation method, then the nodes, their CPTs, and connections should 
be closely evaluated prior to informing the model with physical obser
vations. Here, PermaBN passed the qualitative validation, and the 
updated model was used to evaluate model performance. 

Key results of the validation prognosis experiments are as follows. In 
the completely non-informed, or uniform, model run, changing the 
states of any of the nodes did not result in a change in any of the other 
nodes (Appendix B). This is an illustration of the Bayesian principle of 
Markov conditions. The principle states that a node does not influence 
nodes that do not descend from it. Another way of stating this is that 
each node relies on what its prior nodes know. This principle is also 
illustrated in the experiments where only the four parent nodes are 
informed and, in many of the experiments, where only the uppermost 
children nodes are informed. For example, when only the air tempera
ture and rain nodes are informed, rain will respond to changes in air 
temperature, but any children of rain will not exhibit any responses. 

Similarly, if every node is informed except for thaw depth, the thaw 
depth node will not respond to changes in the parent nodes until it has 
been informed (Beall, 2021). That said, it is possible for children nodes 

Table 4 
Definition of nodes and associated possible states included in the expert assessment validation version of PermaBN. Changes from the pre-validation version are bolded.  

Node Type Definition States 

Thaw Depth Chance The depth/thickness of the layer of ground subject to annual thawing and freezing in areas underlain by 
permafrost 

Low, Medium, High 

Air Temperature Chance Temperature of the air near the surface of the Earth Low, Medium, 
High 

Aspect Decision The arrangement of the natural and artificial physical features of an area, or more particularly, the aspect, or 
positioning of a feature in a specified direction 

North, East, South, 
West 

Active Layer Ice 
Content 

Chance Volume of all types of ice contained in the upper portion of the soil column that is subject to annual thawing 
and freezing 

Low, Medium, High 

Insulation Chance The state of something being insulated, or protection of something by interposing material that prevents the loss of 
heat 

Low, Medium, High 

Rain Chance Moisture condensed from the atmosphere that falls visibly in separate drops Low, Medium, High 
Season Decision Division of the year marked by the presence or absence of snow Snow Free, Snow 
Snow Chance Atmospheric water vapor frozen into ice crystals and falling in light white flakes or lying on the ground as a white layer Low, Medium, High 
Snow Depth Chance Measurement of snow that has fallen during previous weather events Low, Medium, High 
Soil Moisture Chance Water that is held in the pore spaces between soil particles Low, Medium, High 
Soil Density Chance Organic and mineral composition of soil per the measure of the amount of dry solid particles per unit volume Low, Medium, 

High 
Soil Temperature Chance Measurement of the warmth of the soil Low, Medium, High 
Soil Water Input Chance The ratio of precipitation to evaporation Low, Medium, High 
Vegetation Height Chance Height of the dominant vegetation classes Low, Medium, High  
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to respond if the child node and one or more of its prior nodes are 
informed. For instance, if the air and soil temperature nodes are 
informed, soil temperature will respond to changes in air temperature. 
However, if the insulation node is informed, it will still show a uniform 
conditional distribution since its parent nodes of vegetation density/ 
height and snow depth are not informed. Thus, insulation will not affect 
soil temperature. 

Increasing the number of informed nodes decreases the uncertainty 
in thaw depth predictions. Uncertainties in the model and the system are 
expressed through the distribution of probabilities assigned to each node 
state, and the uncertainties are propagated through the network to the 
final model endpoint (Chen and Pollino, 2012). In the experiments 
where all nodes except for soil temperature and snow depth were 
informed, thaw depth responded very little to changes in the primary 
parent nodes (Beall, 2021). 

However, when soil temperature and snow depth were informed, 
thaw depth responded as expected to the low and high scenarios of the 
parent nodes. Fig. 5 shows the prognosis results for the low and high 
“extreme” scenarios of changes in thaw depth. In the case where aspect 
was set to north, soil density to low, air temperature to low, and season 
to snow, there was a high probability that thaw depth would be in a low 
state (Fig. 5A). This indicates a high probability that permafrost thaw 
would be low in scenarios promoting cooler temperatures and increased 
soil moisture. Similarly, in the case where aspect was set to south, soil 
density to high, air temperature to high, and the season to snow-free, 
there was a high probability that thaw depth would be in a high state 
(Fig. 5B). This indicated a high probability that permafrost thaw would 
be high in scenarios promoting warmer temperatures and decreased soil 
moisture. While the model responds as expected at this stage in the 

context of trends (e.g., cooler temperatures promote less thaw while 
warmer temperatures promote more thaw), further adjustments of the 
CPTs, especially for snow depth, vegetation height/density, insulation, 
and soil moisture, are needed for the magnitudes of the probabilities to 
reflect reality. 

For the diagnosis experiments, key results showed that, overall, the 
system responds as expected. When changes to thaw depth are low, 
active layer ice content is high while soil temperature is low (Fig. 6). 
Conversely, when changes to thaw depth are high, active layer ice 
content is low while soil temperature is high (Fig. 7). In both cases, the 
soil moisture node responds in an opposite manner in the diagnosis re
sults as compared to the prognosis results, where lower soil moisture 
contributes to lower thaw depths in the former and higher thaw depths 
in the latter under the extreme low scenario; higher soil moisture con
tributes to higher thaw depths in the former and lower thaw depths in 
the latter under the extreme high scenario. 

In both extreme scenarios, air temperature is predicted to be me
dium. Higher probabilities for the low and high air temperature sce
narios were expected for the low and high thaw depth scenarios, 
respectively. Given the air temperature CPT, however, the results are 
unsurprising. Further experimentation revealed that the air temperature 
node appears to respond better when it is set to a uniform distribution 
(Beall, 2021). This indicates that CPTs in the middle nodes of the model 
may need further refinement. Additional testing revealed that soil 
temperature and snow depth seem to be driving many of the responses in 
the model. Improving these distributions may improve the model 
response as a whole. 

Fig. 4. PermaBN conceptual model after validation via expert assessment. In comparison to the pre-validation conceptual model, several nodes have been renamed, 
and an additional causal relationship has been added. There are now 27 arcs connecting the 14 nodes. 
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Fig. 5. Prognosis experiments where all nodes are informed using the (A) extreme low (i.e., north aspect, low soil density, low air temperature, and snow season) and 
(B) extreme high (i.e., south aspect, high soil density, high air temperature, and snow free season) scenarios. 
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3.5. Evaluation – case study with physical observations methods 

Integrating observations from a local case study was the final step in 
the PermaBN development process. The criteria for determining which 
local case study to use were: (1) high spatiotemporal density of thaw 
depth observations, and (2) availability of additional variables at the 
same spatial and temporal scales. One site that meets these criteria is the 
Siksik Creek Basin in Trail Valley Creek, Northwest Territories, Canada 
where Wilcox et al. (2019) collected 1528 aspect, vegetation height, and 
frost table depth (i.e., thaw depth) measurements over the time period 
2015-06-11 to 2015-08-20 across 10 transects. 

The general Trail Valley Creek area is described in detail by Wilcox 
et al. (2019) and Grunberg et al. (2020). In summary, it is located 
approximately 45 km north of Inuvik and characterized by an 8-month- 
long snow cover period. The mean annual air temperature is about 
−7.9 ◦C to −10 ◦C, and mean annual precipitation is ~266 mm, of which 
~66% falls as snow. Vegetation ranges from 0.5 to 3m in height, with 
the primary vegetation classes being “tundra” (e.g., Sphagnum moss), 
“birch” (e.g., Betula glandulosa), “alder” (e.g., Alnus alnobetula), and 
“channel” (e.g., Salix L.), as determined by Wilcox et al. (2019). The 
total thickness of ice-rich permafrost in the region is between 350 and 
500 m, with the ALT varying between 0.5 and 0.8 m (Burn and Kokelj, 
2009). 

Wilcox et al. (2019) took environmental measurements along 10 
transects and grids. These transects are several hundred meters apart 
and observation dates for each sampling campaign range by 2–3 days. 
The probability distribution of thaw depth from each transect was 
compared to see which transects could be grouped together for use in 
PermaBN. Only two transects (ss1 and ss1lys) had similar frost table 
depth (i.e., thaw depth) probability distributions for the entire June – 
August 2015 time period; these two transects also had their thaw depth 

measurements collected on the same days (Julian days 168, 173, 190, 
194, 208, 222, and 232). A total of 146 observations were made along 
transect ss1, whereas 216 observations were made along transect ss1lys. 
It should be noted that aspect and vegetation height remained constant 
at this time scale; in other words, frost table depth is the only value to 
change throughout the study period. It should also be noted that the 
observations only represent the snow-free season in PermaBN, as ob
servations were all made during the summer season. Therefore, physical 
observations that would be used to refine the snow season probabilities 
are not available. 

The datasets for aspect and vegetation height were binned for direct 
use with the model as evidence for the vegetation height node. In the 
case of aspect, which is a decision node, observations were simply 
categorized as north, east, south, or west based on their degree value, 
where 0◦ – 45◦ and 315◦ – 360◦ is north, 45◦ – 135◦ is east, 135◦ – 225◦ is 
south, and 225◦ – 315◦ is west. As for vegetation height, since only three 
of the four vegetation classes were present in the ss1 and ss1lys tran
sects, “tundra” (5–25 cm in height) was considered low, “alder” 
(80–150 cm) was considered medium, and “channel” (150–200 cm) was 
considered high. Probabilities for the vegetation height node were 
determined by counting how many low, medium, and high vegetation 
height values coincided with north, east, south, or west aspects, and then 
dividing by the total number within each aspect state. For example, if 25 
of the 29 vegetation observations that were made on eastern aspects 
were classified as “tundra” (i.e., low vegetation height), then the prob
ability of there being low vegetation on an east aspect is 25/29, or 86%. 

Since physical observations are not available for the frost table depth 
variable's parent nodes of soil moisture, soil temperature, and active 
layer ice content, the frost table depth measurements could not be used 
to directly inform the model. Instead, the measurements for both the ss1 
and ss1lys transects were binned according to the average Trail Valley 

Fig. 6. Diagnosis experiment testing the extreme low scenario where the response of the system (i.e., thaw depth) is low, aspect is north, and season is snow.  
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Creek ALT range of 50–80 cm cited in Wilcox et al. (2019), where low 
thaw depth was less than 50 cm, medium thaw depth was between 50 
and 80 cm, and high thaw depth was greater than 80 cm; this yielded a 
distribution of 87% low, 13% medium, and 0% high thaw depths to be 
used as a benchmark for evaluating the performance of PermaBN. A set 
of 20 prognosis experiments (Appendix B) testing the effects of aspect/ 
vegetation height, the extreme low and high scenarios, and the most 
likely Siksik Creek Basin aspect, soil density, air temperature, and soil 
temperature conditions were conducted to evaluate the ability of Per
maBN to match the expected thaw depth distributions. A set of 15 
diagnosis experiments (Appendix B) were also defined simply for 
exploratory purposes, as there is no way to conclusively evaluate the 
diagnosis performance given the limited parent node evidence available. 

4. Results 

Evaluation was conducted using the validated conceptual model in 
Fig. 4 and corresponding CPTs. The vegetation height node was 
informed with the probabilities determined from the physical observa
tions. This resulted in a 100% probability of low vegetation on north and 
west aspects, 86%/10%/3% probability of low/medium/high vegeta
tion on east aspects, and 83%/17%/0% probability of low/medium/ 
high vegetation on south aspects, regardless of air temperature. Since 
observations are only available for the snow free season, the soil tem
perature CPT was modified to reflect that the snow and snow free sea
sons can have independent low, medium, and high probabilities, or in 
other words, that the boundaries for low, medium, and high soil tem
perature can differ depending on the season. The 20 prognosis experi
ments (Appendix B) were conducted to evaluate the ability of PermaBN 
to accurately predict the expected thaw depth distribution of 87% low 
thaw depth, 13% medium thaw depth, and 0% high thaw depth. The 

following paragraphs describe the key evaluation experiments. 
Fig. 8 shows the thaw depth predictions for the snow free season for 

all aspects. For this season, PermaBN predicts a 48% chance of low thaw 
depth, 22% of medium thaw depth, and 29% thaw depth, for a margin of 
error of 39%, 5%, and 29%, respectively. Setting the aspect state only 
causes a slight shift in the thaw depth probabilities, with only a 1% 
increase in high thaw depth for north aspects, and 1% increase in low 
thaw depth for east and south aspects; west aspects retain the same 
overall distribution. 

For the extreme low and high scenarios, a north aspect, low soil 
density, low air temperature, and snow free season results in a 60% 
chance of low thaw depth, 19% chance of medium thaw depth, and 21% 
chance of high thaw depth (Fig. 9A), for a margin of error of 27%, 2%, 
and 21%, respectively. A south aspect, high soil density, high air tem
perature, and snow free season results in a 54% chance of low thaw 
depth, 19% chance of medium thaw depth, and 27% high thaw depth 
(Fig. 9B), for a margin of error of 33%, 2%, and 27%, respectively. 

Experiments also tested the most likely June – August conditions for 
the Siksik Creek Basin. A south aspect was selected based on the mean 
aspect for the ss1 and ss1lys transects, a low soil density based on site 
characterization by Grunberg et al. (2020) stating a ~ 5 cm soil organic 
layer and approximately equal mineral soil composition of clay, silt, and 
sand, and medium air temperature based on Grunberg et al. (2020)’s 
definition of summer as the time period with an average air temperature 
greater than or equal to 8 ◦C, their 1999–2018 mean annual cycle plot 
for summer air temperatures, and 2015 air temperature data from Inuvik 
station (Environment and Climate Change Canada, 2015). As seen in 
Fig. 10, this results in a 44% chance of low thaw depth, 24% chance of 
medium thaw depth, and 32% chance of high thaw depth, which is a 
margin of error of 43%, 7%, and 32%, respectively. However, when soil 
temperature is set to low in addition to the south aspect, low soil density, 

Fig. 7. Diagnosis experiment testing the extreme high scenario where the response of the system (i.e., thaw depth) is high, aspect is south, and season is snow free.  
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and medium air temperature (Fig. 11), there is a 74% chance of low 
thaw depth, 16% chance of medium thaw depth, and 10% chance of 
high thaw depth, for a margin of error of 13%, 1%, and 10%, respec
tively. A final set of prognosis experiments testing the effects of a uni
form soil temperature distribution were also conducted, with all tested 
aspect, soil density, and air temperature combinations yielding an 
approximately 34% chance of low thaw depth, 22% chance of medium 
thaw depth, and 44% chance of high thaw depth, for a margin of error of 
53%, 5%, and 44%, respectively. 

The 15 diagnosis experiments are primarily for exploratory purposes, 
as there is insufficient evidence within the parent nodes to properly 
evaluate the response of model. For all thaw depths in the snow free 
season, (low and high thaw depth experiments shown in Fig. 12A and B, 
respectively), there is strong favoring of medium air temperature, low 
insulation, fairly uniform soil moisture, low or medium soil tempera
ture, and varying active layer ice content (high for low thaw depth, 
medium or high for medium thaw depth, and low or medium for high 
thaw depth). Similarly, experiments for low and high thaw depth for all 
aspects yielded medium air temperature, low insulation, uniform or high 
skewed soil moisture, low or high soil temperature (low or high thaw 
depth, respectively), and high or low active layer ice content (low or 
high thaw depth, respectively). 

Remaining experiments continued to favor medium air tempera
tures, low insulation, and low or high active layer ice content depending 
on thaw depth; depending on the soil temperature scenario, soil mois
ture was either slightly low skewed (high soil temperature) or high 
skewed (low soil temperature). Finally, experiments testing likely aspect 
(south) and thaw depth (low or medium) conditions (Fig. 13) showed 
favoring of medium air temperature, fairy uniform soil density and soil 
moisture, low insulation, low or medium soil temperature (low or me
dium thaw depth, respectively), and high or medium active layer ice 

content (low or medium thaw depth, respectively). It is interesting to 
note that the south aspect and low thaw depth scenario yields a 12% 
chance of low air temperature, 54% chance of medium air temperature, 
and 33% chance of high air temperature, which is very close to the ex
pected 17%, 53%, and 30% chance of low, medium, and high air tem
peratures for 2015-06-15 (Julian day 168) to 2015-08-20 (Julian day 
232) at Inuvik station. 

5. Discussion 

5.1. Case study 

The results of the Siksik Creek Basin case study demonstrate the 
ability of PermaBN to integrate multiple types of evidence into a single 
model. With that said, limited availability of physical observations 
proved to be a significant challenge, which limited our capacity to fully 
validate and evaluate the model. In particular, missing parent nodes 
make it difficult to quantitatively define the children CPTs in a robust 
manner. For example, the thaw depth node could not be determined 
through quantitative binning like the vegetation height node. It was also 
not possible to evaluate the snow season predictions since the data only 
spanned the June – August 2015 snow free period. More broadly, the 
manual adjustment of expertly assessed CPTs that were made on the 
basis of field observations from the Siksik Creek Basin mean that the 
solutions are not unique, providing further uncertainty in the node 
distributions as well as the specific cases within the CPT (e.g., the 
probability that thaw depth is low given low soil moisture, active layer 
ice content, and soil temperature). Another caveat to consider with this 
case study is that PermaBN was initially designed with the pan-Arctic 
and multiyear time scales in mind, such that the case study may not 
accurately reflect that initial design. For example, the air temperature 

Fig. 8. PermaBN with informed vegetation height node prognosis predictions for snow free season.  
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Fig. 9. PermaBN with informed vegetation height node prognosis predictions for (A) north aspect, low soil density, low air temperature, and snow free season and 
(B) south aspect, high soil density, high air temperature, and snow free season. 
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joint distribution was initially defined with the assumption of decadal- 
scale warming temperatures in the Arctic, hence the higher probabili
ties for medium and high air temperatures as compared to low air 
temperatures. Without physical observations to determine the proba
bility table, however, it is uncertain how accurate or inaccurate this 
assumption is for the Siksik Creek Basin for the June – August 2015 time 
period. 

Nonetheless, the results of the most likely conditions prognosis and 
diagnosis experiments (i.e., those setting aspect as south, soil density as 
low, air temperature as medium, and/or soil temperature as low) sug
gest that PermaBN could perform relatively well when system condi
tions are known and that, in the case of the Siksik Creek Basin, 
applicable regional datasets (e.g., air temperatures for Inuvik) can be 
used to provide more informed expert assessment in the model. For 
instance, combining estimated boundaries of less than 8 ◦C for low air 
temperature, 8–15 ◦C for medium air temperature, and greater than 
15 ◦C for high air temperature based on the work of Grunberg et al. 
(2020) with weather station data from Inuvik provided an estimated 
17% chance of low air temperature, 53% chance of medium air tem
perature, and 30% chance of high air temperature. These estimations are 
quite similar to the original expert assessment values of a 10% chance 
for low, 60% chance of medium, and 30% chance of high air tempera
tures, as well as the diagnosis experiment with a south aspect, snow free 
season, and low thaw depth that yielded a 12% chance of low, 54% 
chance of medium, and 33% chance of high air temperatures. Overall, 
with refinement of the thaw depth parent nodes, it is likely that Per
maBN could generate more accurate predictions. However, it was un
expected that the thaw depths strongly favored less thaw. Even when 
applying the thaw depth boundaries of less than 50 cm, 50–80 cm, and 
greater than 80 cm to all transects in the Siksik Creek Basin dataset, only 
3% of depth measurements were expected to be high (i.e., greater than 

80 cm), and 78% of measurements were expected to be low (i.e., less 
than 50 cm). This may indicate that permafrost in the Siksik Creek Basin 
has experienced less thaw than elsewhere in the broader Trail Valley 
Creek area or that the boundaries based on ALT for Trail Valley Creek 
are not as representative of the Siksik Creek Basin. 

A final observation about the model evaluation stage is that aspect 
was not found to impact thaw depth by more than 1–2% between the 
different states. This may be due to the fact that aspect's primary 
contribution was to the vegetation height node and subsequently 
vegetation height's contribution to insulation. Since vegetation height 
for all aspects had an 83–100% chance of being low, and soil density had 
a fairly uniform distribution, insulation was always predominately low. 
The limited variability in insulation contributed to less influence on the 
soil temperature node, which is a key driver of thaw depth in the model. 
Likewise, the limited variability in the fairly uniform soil moisture node 
resulted in less influence on the soil temperature and thaw depths. 

5.2. Insights from PermaBN 

PermaBN is a unique proof-of-concept of a modeling approach that 
combines topography, meteorological conditions, soil characteristics, 
and vegetation into a single model. As seen in Table 1, there is no one 
model that accounts for all of the variables present in PermaBN. While 
the statistical model by Wilcox et al. (2019) accounts for vegetation and 
aspect, it does not include air temperature, precipitation, and soil pa
rameters. Likewise, the statistical model by Hjort et al. (2018) accounts 
for certain soil parameters and slope, but excludes vegetation, air tem
perature, and precipitation, and the one by Aalto et al. (2018) accounts 
for air temperature, precipitation, soil organic carbon, and potential 
incoming solar radiation, but not vegetation or additional soil charac
teristics. Older, predominantly non-statistical models thoroughly 

Fig. 10. PermaBN with informed vegetation height node prognosis predictions for south aspect, low soil density, medium air temperature, and snow free season.  
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account for soil characteristics or thermal dynamics related to snow 
depth and moisture conditions but largely lack the inclusion of vegeta
tion or atmospheric components other than air temperature. The closest 
model match appears to be the NEST model (Zhang et al. (2006), which 
includes vegetation, air temperature, precipitation, solar radiation, 
ground ice content, mineral vs. organic soil, and other soil thermal 
properties (i.e., thermal conductivity and geothermal heat flux), though 
it omits the explicit representation of soil moisture and soil temperature. 
Future testing of PermaBN could be done by comparing the results of the 
two models. 

5.3. Limitations 

As outlined in Chen and Pollino (2012), uncertainties in BNs can 
originate from incomplete understanding of the process(es) being 
modeled, incomplete data, or subjective biases in the expert assess
ments. BNs allow for explicit representation of uncertainty, but they 
cannot differentiate between different types of uncertainty, such as 
uncertainties with input data and model structure (Korb and Nicholson, 
2004). While expert assessment datasets can help reduce uncertainties 
in model structure in particular, they are prone to introducing bias and 
epistemic uncertainty and may yield results that are accurate but not 
necessarily precise (Kuhnert et al., 2010; Webster and McLaughlin, 
2014). Following proper methods and procedures when eliciting expert 
assessment datasets may help significantly reduce these uncertainties. 
Further, if this process is thought of as a sampling process, there will be 
better convergence to the ‘truth’ as more opinions are collected from 
experts per the central limit theorem. Exploring alternative quantitative 
methods for determining the CPTs could also help reduce uncertainties 
in the model. For instance, sensitivity analysis can allow for 

identification of missing or unneeded linkages, and act as an alternative 
evaluation method for determining which variables in the model are 
most influential; conditional probabilities can also be learned from al
gorithms, such as the Lauritzen – Spiegelhalter algorithm or Gibbs 
sampling (Chen and Pollino, 2012). Finally, the inclusion of decision 
nodes can limit the tools and algorithms available for use in the GeNIe 
software program. The inclusion of decision nodes results in the BN 
being classified as an “influence diagram,” and some tools, such as the 
“sensitivity analysis” tool, are unavailable for use with influence dia
grams within the software. The decision nodes would either need to be 
removed or converted to chance nodes prior to running these tools in 
GeNIe. 

5.4. Future work 

As development of BNs is often seen as an on-going process (Fox 
et al., 2017; McLaughlin and Packalen, 2021; Webster and McLaughlin, 
2014), there are many avenues of future work that can be undertaken 
with PermaBN. Foremost could be addressing the limitations previously 
discussed by: (1) aiming to reduce uncertainty in the expertly assessed 
CPTs through more robust elicitation procedures, (2) conducting sensi
tivity analysis, (3) exploring algorithms for determining the CPTs, and 
(4) improving validation by finding or creating new datasets for evalu
ation. Related to the point on exploring algorithms for determining CPTs 
is calibration of the BN. Three types of calibration could be considered: 
(1) manual calibration, (2) optimization, and (3) probabilistic calibra
tion. Manual calibration would entail manually manipulating the CPTs 
until the parent node yields the expected thaw depth response. Opti
mization would entail having an algorithm solve for the most likely 
scenario among the parent nodes given a particular state of the thaw 

Fig. 11. PermaBN with informed vegetation height node prognosis predictions for south aspect, low soil density, medium air temperature, low soil temperature, and 
snow free season. 
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Fig. 12. PermaBN with informed vegetation height node diagnosis analysis for (A) low thaw depth and (B) high thaw depth for the snow free season.  
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Fig. 13. PermaBN with informed vegetation height node diagnosis analysis for (A) south aspect and low thaw depth and (B) south aspect and medium thaw depth for 
the snow free season. 
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depth node; optimization would yield a single, unique result. In contrast, 
probabilistic calibration would explore many different scenarios for the 
parent nodes and report which of the scenarios are most likely. These 
methods of calibration are unique to BNs and would allow for the BN to 
perform better the next time it is run. Since manual calibration is time 
consuming and does not yield unique results, the recommended next 
step would be conducting optimization. 

6. Conclusions 

PermaBN is a Bayesian Network designed to assess permafrost thaw 
in the continuous permafrost region of the Arctic. It provides an inno
vative method for assessing permafrost thaw that allows for the inte
gration of multiple types of evidence (e.g., physical observations, model 
outputs, and expert assessments) into a single model. This study outlined 
and discussed best BN model practices while providing a proof-of- 
concept of this unique modeling method. The framework presented of
fers a transparent modeling approach that is able to represent systems in 
data sparse regions such as the Arctic. Further, it facilitates the quanti
fication of uncertainty through the use of probabilities. 

The case study that was selected to further evaluate PermaBN also 
shed light on important aspects of both the model development and field 
data collection. For instance, physical observations allowed for reduc
tion in uncertainty for those nodes that have data available; here, aspect 
and vegetation height data allowed for uncertainty in vegetation height 
conditions to be reduced since it was known which aspects contributed 
to which vegetation classes. Conversely, the model highlighted data 
gaps, such as long-term thaw depth measurements with concurrent 
meteorological and soil measurements. Filling these data gaps would 
certainly help validating models and furthering their development. 

Aside from the benefits this modeling approach provides in data 
sparse regions, BNs also have the ability to engage a wider audience than 
traditional modeling approaches. Users without highly technical 
modeling skills can build BNs, and the graphical structure can easily be 
understood by and communicated to non-technical stakeholders. This is 
valuable in the context of interdisciplinary and participatory endeavors. 

With future development of PermaBN to include a more robust 
validation procedure, additional variables, and/or integration with a 
risk assessment framework, PermaBN could be applied to carbon 
modeling studies, infrastructure hazard assessments, and policy de
cisions aimed at mitigation of and adaptation to permafrost thaw. 
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