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Rising global temperatures are a threat to the current state of the Arctic. In particular, permafrost degradation
has been impacting the terrestrial cryosphere in many ways, including effects on carbon cycling and the global
climate, regional hydrological connectivity and ecosystem dynamics, as well as human health and infrastructure.
However, the ability to simulate permafrost dynamics under future climate projections is limited, and model
outputs are often associated with large uncertainties. A model structured on a Bayesian Network is presented to
address existing limitations in the representation of physically complex processes and the limited availability of
observational data. A strength of Bayesian methods over more traditional modeling methods is the ability to
integrate various types of evidence (i.e., observations, model outputs, expert assessments) into a single model by
mapping the evidence into probability distributions. Here, we outline PermaBN, a new modeling framework, to
simulate permafrost thaw in the continuous permafrost region of the Arctic. Pre-validation and expert assessment
validation results show that the model produces estimations of permafrost thaw depth that are consistent with
current research, i.e., thaw depth increases during the snow-free season under initial conditions favoring
warming temperatures, lowered soil moisture conditions, and low active layer ice content. Using a case study
from northwestern Canada to evaluate PermaBN, we show that model performance is enhanced when certainty
about the system components increases for known scenarios described by observations directly integrated into
the model; in this case, insulation properties from vegetation were integrated to the model. Overall, PermaBN
could provide informative predictions about permafrost dynamics without high computational cost and with the
ability to integrate multiple types of evidence that traditional physics-based models sometimes do not account
for, allowing PermaBN to be applied to carbon modeling studies, infrastructure hazard assessments, and policy
decisions aimed at mitigation of, and adaptation to, permafrost degradation.

1. Introduction 2008), and the amplification of Arctic temperatures (Pistone et al., 2014;

Screen and Simmonds, 2010; Serreze et al., 2009). On land, permafrost

In the face of warming global temperatures, the Arctic is undergoing
rapid change (IPCC, 2013; Schuur and Mack, 2018; Serreze and Barry,
2014). The cryosphere, which encapsulates all portions of Earth's sur-
face that are covered in frozen water, is particularly vulnerable to cur-
rent and future warming. Decreasing trends and record lows in sea ice
extents and thicknesses have been observed in recent decades, in addi-
tion to prolonged summer melt seasons and ice sheet loss (Comiso et al.,
2008; Hanna et al., 2020; Kwok et al., 2009; Serreze et al., 2007; Serreze
and Meier, 2019; Stroeve et al., 2014). In marine ecosystems, the con-
sequences of sea ice loss include increased sea surface temperatures
(Stroeve et al., 2014), habitat loss for marine mammals (Laidre et al.,
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is increasingly vulnerable to degradation (Biskaborn et al., 2019; Jor-
genson et al., 2010; Koven et al., 2013; Turetsky et al., 2020). Permafrost
thaw has direct consequences for both the natural environment and
human communities (Schuur and Mack, 2018), including damage to
built infrastructure (Hjort et al., 2018; Karjalainen et al., 2019), land-
scape change through the creation of thermokarst terrain (Kokelj and
Jorgenson, 2013; Olefeldt et al., 2016), and release of previously frozen
soil carbon (Schuur et al., 2009; Schuur et al., 2015).

In recent decades, the temperatures of circumpolar permafrost have
increased by 2-4 °C (Kokelj and Jorgenson, 2013) as a result of Earth's
northernmost latitudes warming at a rate twice as fast as the global
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average (IPCC, 2013). Warming temperatures are often associated with
permafrost thaw and degradation, but permafrost is not directly con-
nected to the atmosphere. Instead, the ground thermal regime, along
with soil properties, snow, surface and subsurface hydrology, vegeta-
tion, and topography, mediate permafrost stability (Gockede et al.,
2019; Jorgenson et al., 2010; Stiegler et al., 2016; Zhang et al., 2018).
Likewise, just as these factors control permafrost stability, permafrost
also controls these properties and processes. For instance, permafrost
acts as a structural component for regulating ecosystems through its
impact on temperature, water, and nutrients. Active layer depth controls
the temperature regime of soil layers, with soil near the bottom of the
active layer remaining only a degree or two above freezing when
thawed; temperature also affects SOM decomposition and plant and
animal physiology (Schuur and Mack, 2018). The presence of perma-
frost, especially ice-rich permafrost, affects water flow paths and water
availability by decreasing infiltration and increasing evaporation and
runoff when water sits on the surface of the upper thaw layer; this has
implications for plant access to water and whether heterotrophic or-
ganisms are exposed to aerobic or anaerobic conditions (Schuur and
Mack, 2018). Permafrost also controls nutrient availability, primarily of
nitrogen, through seasonal thaw depth and permafrost temperature;
near-freezing temperatures inhibit nitrogen release by microorganisms
(Schuur and Mack, 2018).

The extent of permafrost also alters surface topography and the
distribution of vegetation communities across landscapes. For example,
in the tundra, water infiltration is limited due to the frozen ground; as
such, vegetation is primarily limited to nonvascular mosses and lichens
that lack root systems (Schuur and Mack, 2018). In the boreal region,
conditions are more favorable for water infiltration, contributing to
taller vegetation coverage (along with warmer growing seasons); ground
subsidence due to thawing of ice-rich ground is also less common than in
the tundra (Jorgenson and Osterkamp, 2005). Along those lines, factors
that control permafrost thaw may differ between these two regions. For
instance, taller vegetation can contribute to higher snow depths, thereby
altering the ground thermal regime and accelerating permafrost degra-
dation; increased surface water coverage can also accelerate permafrost
degradation through surface energy fluxes (Burn and Kokelj, 2009).

To gain a better understanding of how the Arctic will change in a
warming world and assess the consequences of permafrost degradation,
many researchers and stakeholders rely on models to inform their
studies or decisions (Flynn et al., 2019; Koven et al., 2013). While there
is a general understanding of how permafrost thaw is impacted by
various feedbacks and surface properties (Gockede et al., 2019; Jor-
genson et al., 2010; Schuur and Mack, 2018; Stiegler et al., 2016; Zhang
et al., 2018), current research emphasizes the need to further improve
permafrost modeling and address model shortcomings (Lawrence et al.,
2008; Riseborough, 2007; Tao et al., 2017). Often-cited deficiencies
include difficulties with (or lack of) the representation of the ground
thermal regime and vegetation dynamics, limitations inherent to the
modeling approach adopted (e.g., fixed temporal domain in equilibrium
models or requirement of spatial data for numerical models), and het-
erogeneity in variable conditions (Lawrence et al., 2008; Riseborough,
2007; Tao et al., 2017). Many studies aim at addressing these known
issues and improving existing models or modeling approaches (e.g.,
Jafarov et al. (2012), Tao et al. (2017), Westermann et al. (2016)). While
these advancements are essential, alternative modeling methods that
allow for the integration of different data types should be further
explored.

To address the difficulty in simulating permafrost thaw under future
projected climate conditions with current models, this paper presents a
new modeling framework (PermaBN) in the form of a Bayesian Network
(BN). This approach allows explicit representation of the variables
related to permafrost thaw and simulation of changes in permafrost
thaw depth by identifying critical variables and processes contributing
to permafrost thaw, by defining their cause-effect relations, and by
estimating the state of these variables and processes using probability
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density functions. The potential to integrate available observational
data, model predictions, and expert assessments to represent the state of
each participating variable and process in the PermaBN model using
probability densities (Medina-Cetina and Nadim, 2008) allows us to link
the main geological and atmospheric components of the Arctic system
that influence permafrost thaw depth, along with surface insulation
properties and key soil characteristics. The BN performance is then
evaluated relative to an existing case study from northwestern Canada
(Wilcox et al., 2019).

2. Background
2.1. Existing permafrost models

There is a substantial research interest in gaining a greater under-
standing of how the Arctic will change in a warming world. As perma-
frost is a key component of the terrestrial Arctic system, there is a long
history of observations, experiments, and models that have been made
to better understand its spatial and temporal dynamics. While Arctic
observational networks have improved over the years (e.g., Global
Terrestrial Network for Permafrost), many regions remain under
sampled and understudied (Biskaborn et al., 2015; Gruber, 2012; Ser-
reze and Barry, 2014). Models are often relied on to fill these data and
knowledge gaps by extrapolating known scenarios where system con-
ditions are calibrated and tested, to other similar scenarios where data is
not available.

The breadth and complexity of existing permafrost models varies.
Some of the first permafrost models used empirical, analytical, and/or
physically-based/equilibrium modeling approaches. Empirical models
are developed using observations and focused on describing data, such
as relationships that can be used for forecasting; they can be either
deterministic or probabilistic (e.g., Keller (1992), Lunardini (1978), and
Nelson and Outcalt (1987)). In contrast, analytical models are based on
formulations (analytic functions) that have a mathematic closed-form
solution; these models describe changes in a system, such as the ther-
mal behavior of the ground when freezing or thawing occurs. Analytic
equations can be validated and calibrated with empirical observations,
as seen in the Kudryavtsev model that serves as an alternative to the
Stefan model (Kudryavtsev et al., 1974). Meanwhile, equilibrium
models are process- and physics-based models that define equilibrium
permafrost conditions for a given annual regime by assuming a sta-
tionary temperature and snow cover climate; variations in either of
these assumptions produce a range of mean annual ground temperatures
(MAGTs) that cause permafrost conditions to deviate from equilibrium
(Riseborough, 2007; Riseborough et al., 2008). Examples of equilibrium
models include the Frost Number model (Nelson, 1986), TTOP model
(Smith and Riseborough, 1996), and variations of the Kudryavtsev
model (Anisimov et al., 1997).

More recent modeling efforts have adopted numerical and evidence-
based approaches. Similar to equilibrium models, numerical models are
also physics-based and are a type of mathematical model that relies on
computational techniques to represent the behavior of a process over
time. For example, numerical models can simulate the evolution of
permafrost and ground thermal regimes over continental and decadal
scales (Riseborough et al., 2008). Lastly, evidence-based models are
mathematical models based on a set of statistical and probabilistic as-
sumptions that were made on a particular variable and process of in-
terest. Examples of statistical models include an analysis of the
relationship between MAGT and ALT developed by Aalto et al. (2018), a
permafrost infrastructure hazard assessment developed by Hjort et al.
(2018), and an evaluation of the spatial and temporal influence of shrub
expansion on frost table depth developed by Wilcox et al. (2019).
Table 1 compares the input and output parameters of select permafrost
models.

There are advantages and disadvantages to every model develop-
ment approach. For instance, while analytical models can provide
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closed-form solutions based on mathematical representations, they
typically do not integrate site-specific, real-world conditions such as
snow cover time series (Riseborough et al., 2008). Conversely, numer-
ical models typically can address this limitation, but they require the
input of spatial data to set up initial conditions and subsequent model
spin up; this can be an issue, as data are not always readily available to
initialize every model component (Biskaborn et al., 2015; Gruber, 2012;
Serreze and Barry, 2014). In these cases, modelers revert to alternative
mathematical representations or parameterizations and/or do not fully
validate their models (Gruber, 2012; Riseborough et al., 2008). In the
permafrost modeling realm, the representation of ground thermal
regime and/or vegetation dynamics can be very limited. Other key
limitations include those inherent to the chosen modeling approach
adopted, and data variability (Lawrence et al., 2008; Riseborough et al.,
2008; Tao et al., 2017). Along those lines, the models can provide as
confident predictions as good as the data available to calibrate them and
test them; in the case of permafrost, there remains large uncertainties
that pertain to permafrost distribution, thickness, and ice content,
among many more (Gruber, 2012; Hugelius et al., 2020).

Permafrost models commonly include the following input parame-
ters (Table 1): air temperature, precipitation (particularly snow cover
and/or depth), soil temperature, and soil moisture. Vegetation cover,
topography, and soil texture are less common, albeit important addi-
tions. A difficulty in assessing permafrost model performance and rep-
resentation is that most model simulations are conducted in Alaska (e.g.,
Debolskiy et al. (2020), Jafarov et al. (2012), Nicolsky and Romanovsky
(2018), Pastick et al. (2015), and Wang et al. (2020)), as that is where
there are the most and highest quality observations that allow for model
calibration (Biskaborn et al., 2015). By limiting the spatial domain for
model development and/or testing, it is possible that models may not be
applicable to other regions, such as Canada or Siberia. While improving
existing models and modeling approaches is important work, it is
possible that an alternative type of model - one that would allow for the
integration of different data types and a novel representation of
permafrost thaw dynamics — would provide the community with new
benchmarks against which to compare and contrast model outputs.

2.2. Bayesian methods

A BN framework has the potential to combine physics- and
empirically-based modeling approaches with statistics and probability
in order to link various components of a system (e.g., the Arctic)
together and make predictions (e.g., permafrost thaw depth). The
framework allows for the integration of multiple types of evidence, such
as observations, model outputs, and expert assessments. This integration
of evidence may help address the limitations and gaps of current
permafrost models. The model also quantifies uncertainties pertaining
to each variable on the predictions of future permafrost thaw. Further,
this modeling approach is transparent in that the interactions between
variables in the BN are explicitly represented. Few studies have utilized
Bayesian methods to assess environmental changes in the Arctic (e.g.,
Qin et al. (2018) and Wainwright et al. (2017)), and the most compre-
hensive Arctic BN study only includes evidence in the form of expert
assessment (Webster and McLaughlin, 2014). Our research expands
upon these studies and includes a comparison of the PermaBN results to
in situ observations.

BN are probabilistic and cause-effect networks; they are constructed
to represent variables (“nodes”) and the relationships (“arcs™) between
these variables. Variables may be classified as “parent” (cause) or
“child” (effect) nodes. Variables can also be further classified by their
“type,” such as “decision” or “chance” nodes. Decision nodes are those
that are non-random or non-variable (e.g., topographic aspect), while
chance nodes are those that have a random component to them (e.g., air
temperature). A number of “states” can be attributed to each node; these
states are typically represented as categories that capture the current
state the variable is in and the states that the variable can shift to. For
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instance, a variable may exist in a low, medium, or high state. Decision
nodes do not have probabilities associated with them, and the user sets
the states (i.e., is given choices). The inclusion of decision nodes aids in
the exploratory analysis of different scenarios. For chance nodes, on the
other hand, a probability is assigned to each one of these states based on
existing evidence, such as physical observations, model outputs, or
expert assessment. The use of BN's become optimal when the complexity
of the problem escapes either available physics or the association (not
causation) of empirical formulation (e.g. regression).

BNs are based on a specific case of Bayes' theorem that describes the
probability of an event given prior conditions and how beliefs change to
account for new evidence (Korb and Nicholson, 2004). The concept of
Bayesian inference is formalized in the equation:

ptlE) — PEIFPE)

P(E)
where the probability of a hypothesis H given some evidence E is equal
to its likelihood P(E|H) times its probability prior to any evidence P(H),
normalized by the probability of the evidence P(E) being true (Korb and
Nicholson, 2004). A graphical representation of the causal relationship
between H and E is seen in Fig. 1.

An ‘informed and simple synthetic’ case study containing three
chance nodes (air temperature, soil temperature, and thaw depth) is
used to illustrate the theoretical background of a BN (Fig. 2). In this
model, air temperature (a parent node) influences soil temperature (a
child node), with the latter then impacting thaw depth (also a child
node). Parentless nodes (e.g., air temperature) are quantified by mar-
ginal probabilities. Assume that it is known from either physical ob-
servations, model outputs, or expert assessment that air temperature has
a 75% marginal probability of being low, 15% probability of being
medium, and 10% probability of being high. These probability values
can be estimated (a) directly from historic datasets based on physical
observations of the variable of interest when translated into relative
frequency statistics via an empirical cumulative distribution function
(when data are sufficient); (b) from model outputs that allow the esti-
mation of first and second order statistics to define probability distri-
bution models that allow for the estimation of probabilities (when
limited data are available); and (c) from experts' assessments, when
knowledge is translated into probability values (when no data at all are
available). Arcs on the other hand represent the causal dependencies
between nodes and help build the conditional probability tables (CPTs)
that link a parent node to a child node; a node is considered ‘informed’
when its CPT is determined by evidence. In a BN with n nodes, X;...Xp,
the joint distribution is represented by P(X; = x1,Xs = X2, ...,Xn = Xp),
or P(x1,Xa,...,Xp). Using the chain rule of probability theory, this fac-
torizes to P(x1,X2,...,Xp) = P(x1) X P(x2]x1)..., X P(Xp|X1,....Xp—-1) =
[1P(xilx1, ...,xi—1); when the value of a particular node is conditional

1

only on the values of the parent nodes, this reduces to P(xy,xz, ...,Xx,) =
[1P(xi|Parents(X;) ) (Korb and Nicholson, 2004).
i

In the Fig. 2 example, the arc between air temperature and soil
temperature builds the soil temperature CPT, and the arc between soil
temperature and thaw depth builds the thaw depth CPT. The method for
determining the low, medium, or high state probabilities P(E) of a node
depends on the particular type of evidence being used to inform the BN.
In the case of evidence from physical observations (typically when data
are sufficient), one could use historic data to build empirical cumulative
distribution functions and use these to map the low, medium, and high
range classifiers (e.g., by setting thresholds along the variable of inter-
est, and then using the cumulative density function to define the prob-
ability estimates falling between low, medium, and high). The same
approach would be used to determine the conditional probabilities P
(H;|E) and P(H3|H;); the CPTs would be determined by how many ob-
servations fall into each set of states (e.g., the probability of there being



Table 1
Table of select permafrost models detailing their model type classification, select input parameters, and outputs.
Model Name and Reference Type Inputs Outputs
Air Aspect  Ground Precipitation ~ Snow Soil Soil Water Solar Thermal Vegetation
Temperature Temperature Depth Density Content Radiation Conductivity Height
Frost Number (Nelson, 1986) EQ X X X X X Depth of frost; surface frost
number

TTOP (Smith and Riseborough, EQ X X X Mean annual temperature at
1996) base of active layer

Kudryavtsev (Anisimov et al., EQ; A - X X X X X X Depth of seasonal freezing/
1997, Kudryavtsev et al., 1974) EM thawing

One-dimensional finite-difference N X X X Position of freezing/thawing
model (Goodrich, 1978, interface
Goodrich, 1982)

Northern Ecosystem Soil N X X X X ALT; depth to permafrost
Temperature (NEST) (Zhang table
et al., 2006)

GIPL2-MPI (Jafarov et al., 2012) N X X X X X X MAGT; ALT

Catchment Land Surface Model N X X X X X ALT; soil temperature profile
(CLSM) (Tao et al., 2017)

Numerical Experiments by N X X X Rate of permafrost thaw
Nicolsky and Romanovsky
(2018)

Stefan model (Lunardini, 1981) A X X Phase change boundary

N Factors (Lunardini, 1978) EM X X n-factor

Frost Index (Nelson and Outcalt, EQ; X X X X X X Stefan frost number
1987) EM

PERMAKART (Keller, 1992) S-EM X X X X Map of permafrost

distribution

Aalto et al. (2018) S X X MAGT; ALT

Hjort et al. (2018) S X Geohazard indices

Wilcox et al. (2019) S X X X Quantification of micro-scale

variables on frost table depth

Ten of the most common input parameters were selected for comparison, with an “X” denoting if a model includes that input parameter. Type abbreviations: EQ (equilibrium), A (analytical), N (numerical), EM (empirical),
S (statistical).

‘D 32 jpog Y
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Fig. 1. Graphical (BN) representation of the casual relationship between the
hypothesis (H) and evidence (E) as probabilities (P). Note that there could be
multiple parent nodes. Adapted from Varela Gonzalez (2017).

P(E|H)P(H)
P(E)

P(H|E) =

low soil temperature when there is low air temperature and low thaw
depth when there is high soil temperature). In the case of using evidence
from model outputs (typically when limited data are available), proba-
bilities can be estimated by using models (e.g., physically-based like
models based on the laws of thermodynamics, or empirically-based like
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regression or artificial intelligence) that simulate scenarios of the vari-
able of interest, which simulations allow for the estimation of first and
second order statistics to define a probability distribution model from
which estimation of probabilities can be computed. In the case of using
experts' assessments (typically when no data at all are available),
knowledge is then translated into probability values, for instance,
knowledge that air temperatures are very likely to be low while the
likelihood of air temperature being medium is only slightly greater than
the likelihood of air temperature being high. When using any of the
evidence types to produce probability values to support the model's
nodes, the effort is focused in ‘sampling’ reality to capture first the
general trend (expectation), and then the associated uncertainty (vari-
ance). Therefore, it is anticipated that the more sampling of available

= Soil Temperature

Air Temperature P(E) P(H:[E) Air Temperature P(E)
Low 075 | » Low Medium High
Medium 0.15 _ Low 0.80 0.25 0.10
. Soil Temperature )
High 0.10 P(H1) Medium 0.10 0.60 0.10
High 0.10 0.15 0.80

0.80 0.25 0.10

(0.75 * 0.80) + (0.15 *.25) + (0.10 * 0.10)

[0.75 0.15 0.10]7[0.10 0.60 0.10] = [(0.75 % 0.10) + (0.15 * 0.60) + (0.10 * 0.10)]

0.10 0.15 0.80

(0.75 % 0.10) + (0.15 x 0.15) + (0.10 = 0.80)

0.6475

=10.175]

0.1775
Soil Tepr?lfl)le)rature P(H|Hy) Soil Temperature P(H1)
Low 065 | Low Medium High
Medium 0.18 Low 0.85 0.25 0.10
High 0.18 Thaw Depth P(Hz) | Medium 0.10 0.50 0.10
High 0.05 0.25 0.80

0.85 0.25 0.10

(0.65 * 0.85) + (0.18 * 0.25) + (0.18 * 0.10)

[0.65 0.18 0.18]7[0.10 0.50 0.10] = [(0.65 * 0.10) + (0.18 * 0.50) + (0.18 * 0.10)]

0.05 0.25 0.80

0.6155
=[0.173]
0.2215

(0.65 * 0.05) + (0.18 = 0.25) + (0.18 * 0.80)

Fig. 2. A simple BN with three chance nodes: air temperature, soil temperature, and thaw depth. Probabilities represent synthetic, illustrative cases of the marginal
(air temperature) and joint (soil temperature and thaw depth) probabilities. Tables show the marginal (or conditional) probabilities followed by the equations

calculating the joint probabilities.
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Aspect

Soil Particle Size
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I Soil Water

Input

Soil Moisture
Suil Temperature

Ground Ice
Volume |

Fig. 3. Pre-validation (i.e., preliminary) conceptual model, which includes 14 nodes, 26 arcs, and 43 states. Geological variables are represented in light green,
atmospheric variables in teal, surface insulation variables in dark green, soil variables in light orange, and ALT in dark orange. Decision nodes are represented as
boxes; chance nodes are ovals. For a list of causal relationships and their corresponding references, refer to Beall (2021). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

physical observations, of model outputs, and of experts' knowledge, the
better definition of the variable's trend and reduction of its uncertainty,
where both have a significant impact on the prediction of the BN.

While the probabilities provide a quantification of the relationships
between variables, the topology of the network captures qualitative
relationships between the variables (Aguilera et al., 2011; Korb and
Nicholson, 2004). It is important to note that BNs are directed acyclic
graphs, meaning that nodes and arcs cannot be connected in a directly
cyclic manner. As such, the relationships between nodes and arcs
represent the causal evidence for a process that cascades through the
model, from parent to children, in a cause-effect manner, within a given
“step” in space and time. Similar problems have been addressed
following this approach, from natural resource management, to the
integration of remote sensing data with physically-based landslide
models, to the design of environmental friendly drilling systems, and
early warning systems (Al-Yami et al., 2010; Das et al., 2019; Fox et al.,
2017; Medina-Cetina and Nadim, 2008; Yu et al., 2012). Within each
model step, feedbacks are not allowed between nodes. For instance, if
high thaw depth is considered a proxy for carbon release, an arc from
thaw depth to air temperature cannot be made to represent the effects of
increased carbon release on air temperature. Instead, the BN model
would have to be run again with updated marginal probabilities for air
temperature to reflect the new increased carbon conditions. Alterna-
tively, a “dynamic” BN could be used to represent feedbacks (Chen and
Pollino, 2012; Kjaerulff, 1995).

A primary advantage to using a BN approach is the ability to incor-
porate three types of evidence (i.e., observations, model outputs, and
expert assessments) into a single model. This is particularly helpful to
represent the Arctic system, as available evidence may be regionally
limited, incomplete, or inexistent. The BN approach is fully transparent,
departing from modeling methods based on black-boxes. In addition,
uncertainties in the model and the system are expressed through the

distribution of probabilities assigned to each node state, and the node's
information content is propagated through the network to the final
model endpoint following the Markovian principle, which allows for the
estimation of each node's probability density function (Korb and Nich-
olson, 2004). Lastly, by employing the principle of Occam's Razor, BNs
may be more suitable than other modeling approaches for scenarios
where it is important to engage stakeholders in the modeling process of a
system (Pearl, 2009). Keeping the BN as simple as possible is also
necessary for maintaining sensitivity of outputs to inputs, and for
avoiding additional uncertainty propagation in the model. Despite
appearing simpler than other models, BNs are well suited for modeling
complex systems with a large number of variables (Getoor et al., 2004)
or being integrated into larger models (Chen and Pollino, 2012).
Another unique advantage to BNs is their capability for both forward
(prognosis/cause to effect) and inverse (diagnosis/effect to cause)
modeling. Examples of Fig. 2 in prognosis and diagnosis mode can be
seen in Beall (2021).

As with all methodologies, there are known limitations to the BN
approach. One such limitation is that development of BNs is hindered by
the lack of a universally accepted methodology to develop them (Weber
et al., 2012), and the validation of reliable expert elicitation is a known
challenge (Kaikkonen et al., 2021; Uusitalo, 2007). Another limitation
arises when experts must validate the model; the size of a node's CPT

n
increases S HPi where S=the number of states and P;=the number of
i=1
states in the ith parent node (Marcot et al., 2006), meaning that limiting
the size of the node's CPT is especially important in BNs where CPTs are
defined through expert assessment since the CPT can quickly become too
large for the human brain to adequately comprehend. Despite these
limitations, the unique advantages of this approach hold great potential
for application to the environmental sciences (Kaikkonen et al., 2021;
McLaughlin and Packalen, 2021; Qin et al., 2018; Wainwright et al.,
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Table 2
Definition of nodes and associated possible states included in the pre-validation
(i.e., preliminary) version of PermaBN.

Node Type Definition States
Active Layer Chance The depth/thickness of the layer Low,
Thickness of ground subject to annual Medium,
thawing and freezing in areas High
underlain by permafrost
Air Temperature ~ Chance Temperature of the air near the RCP 2.6, RCP
surface of the Earth based on 4.5, RCP 8.5
2081-2100 RCP future warming
projections
Aspect Decision  The arrangement of the natural North, East,
and artificial physical features of ~ South, West
an area, or more particularly, the
aspect, or positioning of a feature
in a specified direction
Ground Ice Chance Volume of all types of ice Low,
Volume contained in freezing and frozen Medium,
ground, which includes bedrock, High
sediment, organic matter, and
water
Insulation Chance The state of something being Low,
insulated, or protection of Medium,
something by interposing High
material that prevents the loss of
heat
Rain Chance Moisture condensed from the Low,
atmosphere that falls visibly in Medium,
separate drops High
Season Decision Division of the year marked by the Snow Free,
presence or absence of snow Snow
Snow Chance Atmospheric water vapor frozen Low,
into ice crystals and falling in Medium,
light white flakes or lying on the High
ground as a white layer
Snow Depth Chance Measurement of snow that has Low,
fallen during previous weather Medium,
events High
Soil Moisture Chance Water that is held in the pore Low,
spaces between soil particles Medium,
High
Soil Particle Size ~ Chance Composition of mineral soil by Clay, Silt,
relative soil particle size Sand
Soil Chance Measurement of the warmth of Low,
Temperature the soil Medium,
High
Soil Water Input ~ Chance The ratio of precipitation to Low,
evaporation Medium,
High
Vegetation Chance Percentage of soil which is Low,
Density/ covered by green vegetation, or Medium,
Height height of the dominant vegetation ~ High
classes
2017).

So far, the most comprehensive use of a BN in the context of the
Arctic and permafrost is a study by Webster and McLaughlin (2014) that
assesses the vulnerability of permafrost to thaw and estimates the im-
pacts of permafrost thaw on greenhouse gas (GHG) emissions and
climate feedbacks in the Canadian Arctic and Hudson Plain regions
using a Bayesian Belief Network (BBN). The objective of the study was to
create a tool that aids policymakers in understanding the vulnerability
of permafrost to thaw and resulting carbon emissions (Webster and
McLaughlin, 2014). The BBN is arranged in a hierarchical manner to
reflect the vulnerability assessment components of sensitivity, exposure,
and adaptive capacity; however, the adaptive capacity component is not
explicitly represented in the version of the model presented in the study.
Nodes in the BBN represent the themes of future and current mean
annual air temperature and ground conditions, heat transfer, carbon
susceptibility, permafrost thaw, GHGs, and feedback to climate change.
Although BNs are capable of integrating various types of evidence, the
study by Webster and McLaughlin (2014) only included evidence from
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expert assessment. It is arguable that their findings could have been
augmented by the integration of observational data and/or model out-
puts, as the authors recognize that the expert assessment approach can
lead to accurate, but not necessarily precise, predictions. That said, their
study is a convincing example of how observational data are not a
limitation to generating useful predictions of permafrost thaw; it also
demonstrated the usefulness of BBNs as potential policy tools, as the
model allows for various future scenarios and consequences to be
analyzed. The expectation is that as observations and model outputs
become available, estimates of the model become more accurate and
precise when added to the experts' assessments.

3. PermaBN development and methods
3.1. PermaBN components

The following subsections define and review the key geomorphic and
ecological processes that influence continuous permafrost thaw and that
are represented in PermaBN; while it is acknowledged that hydrological
processes such as river dynamics and the presence of surface water (e.g.,
lakes) also exert an important control on permafrost thaw (Burn and
Kokelj, 2009; Kokelj and Jorgenson, 2013; Zheng et al., 2019), Per-
maBN, along with the majority of existing permafrost models (e.g.,
Kudryavtsev model by Anisimov et al. (1997), GIPL2-MPI by Jafarov
et al. (2012), and Catchment Land Surface Model (CLSM) by Tao et al.
(2017)), implicitly include hydrological processes through the repre-
sentation of ground heat fluxes and thermal conductivity:

(1) Topography: landscape-scale geologic and topographic charac-
teristics and processes typically remain consistent, at the human
timescale, in their influence on other system components such as
vegetation communities, snow depth, and soil moisture. As such,
local topography can influence snow distribution, incident radi-
ation, and wind exposure, which can impact soil moisture and
soil temperature (Aalto et al., 2013; Serreze and Barry, 2014;
Young et al., 1997). In the northern hemisphere, northerly as-
pects tend to be snowier, cooler, and receive less intense
incoming radiation than southerly aspects (Evans et al., 1989;
Petzold and Mulhern, 1987; Wilcox et al., 2019). The effects of
aspect on radiation are lessened at higher latitudes, particularly
for east and west aspects (Holland and Steyn, 1975). Nonetheless,
the differences between north and south slopes can still be sig-
nificant (e.g., Evans et al. (1989) and Myers-Smith et al. (2020)).
Soil texture and density: the effects of soil particle size and den-
sity on soil moisture and soil temperature are considered. Soil
particle size (or texture), influences soil moisture by controlling
the moisture retention rate and thermal conductivity of the soil
(Arya and Paris, 1981; Young et al., 1997). For instance, finer
particles such as clay can retain more moisture than coarser
particles such as sand (Meentemeyer and Zippin, 1981). Soil
texture can also be considered from the perspective of soil bulk
(dry) density. In this case, a sandy soil has a higher dry density
than a silty or clayey soil; organic soils generally have very low
dry densities (Abu-Hamdeh and Reeder, 2000). Dry bulk density
influences soil thermal conductivity, such that an increase in
density at a given soil moisture content increases the thermal
conductivity of that soil (Abu-Hamdeh and Reeder, 2000).
Thermal conductivity therefore tends to be highest in sandy (i.e.,
high bulk density) soils and lowest in organic (i.e., low bulk
density) soils. Lastly, sandy soils have a high infiltration rate, but
low available water content, while clayey and organic soils have
the highest volumetric water contents (Abu-Hamdeh and Reeder,
2000).
(3) Surface air temperature and precipitation regimes: these atmo-
spheric variables exert direct and important influences on soil
and vegetation properties. For instance, warmer surface air

(2

—
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Table 3
Complete list of changes made to the pre-validation (i.e., preliminary) model during validation of PermaBN with explanations for why each change was made.

Pre-validation model Validation model refinement

component

Explanation

Node: Active Layer
Thickness

Node renamed to “Thaw Depth”

Node: Ground Ice
Volume
Node: Soil Particle Size

Node renamed to “Active Layer Ice Content”

Node renamed and redefined to “Soil Density”

Node: Vegetation Node renamed to “Vegetation Height”

Density/Height
Node States: Air Node states redefined from three RCP scenarios to “Low,”
Temperature “Medium,” and “High”

Node arc: Insulation New arc added between “Soil Density” and “Insulation”

CPT: Insulation
CPT: Soil Moisture

The CPT values of the Insulation node were adjusted
The CPT values of the Soil Moisture node were adjusted

CPT: Soil Temperature The CPT values of the Soil Temperature node were adjusted

Graphical Structure

Reorganization of the BN into a tiered structure

Assessment of Nodes
During Experiments

At least 75% (i.e., 9 out of 12) chance nodes had to respond
as expected to the prognosis and diagnosis experiments

“Thaw Depth” allows for a more accurate interpretation of the node in the context of the
seasonal dynamics represented in the model. In other words, “Active Layer Thickness”
only refers to a certain portion of the permafrost profile that thaws in the summer, and a
more inclusive term was desired.

“Active Layer Ice Content” better reflects an underlying assumption that ground ice is
limited to the upper layer of the soil column.

“Soil Particle Size” only accounted for the mineral soil states of sand, silt, or clay and their
respective moisture retention properties. “Soil Density” accounts for both the effects of
mineral soil particle size and soil organic content on moisture retention and thermal
conductivity. With the renamed node, the states are also redefined from “Sand,” “Silt,”
and “Clay” to “Low,” “Medium,” and “High” to account for both the consideration of soil
organic content and consistency in model terminology.

“Vegetation Height” is the variable that is more often reported in physical observation
datasets or in the literature.

Defining the node states as simply “Low,” “Medium,” and “High” enhances the
consistency of terminology used in the model as well as generalizes the node for use with
physical observations or other model scenarios.

This new arc allows for representation of the effects of soil organic content on moisture
retention, thermal conductivity, and insulation to be accounted for.

Adjustements were necessary after redefining “Soil Particle Size” to “Soil Density.”
Adjustments were necessary after redefining “Soil Particle Size” to “Soil Density.” While
modifying the CPT values, an error was also found where soil moisture conditions for
certain aspects under low soil water input conditions were swapped.

Further investigation suggested that there is a positive relationship between soil moisture
and soil temperature in the snow season (i.e., higher soil moisture leads to warmer
temperatures) and a negative relationship in the snow free season (i.e., higher moisture
leads to cooler temperatures); see Beall (2021) for details.

The model was graphically reorganized to emphasize the cause-effect nature of the model.
For instance, it becomes easier to see the distinct tiers (parent nodes at the top,
intermediate child nodes in the middle, and the response of the system at the bottom) in
the model.

A qualitative assessment of node behavior was introduced to enhance robustness of the
model and allow for further adjustment of the node CPTs prior to informing the model
with physical observations from a case study. Whether or not a node responded as
expected was dependent on (a) expected conditions gathered from the literature (e.g.,
higher chance of rain than snow under warmer conditions) and (b) trends in the node
response as opposed to the magnitudes of the response.

temperatures increase the length of the growing season, which
may contribute to shrub expansion and increased photosynthetic
activity across the tundra (Myers-Smith et al., 2011; Myers-Smith
et al., 2020). Likewise, the relationship between increased sur-
face air temperatures and increased soil temperatures is well
documented (Boike et al., 2003; Oelke and Zhang, 2004; Park
etal., 2014; Zhang et al., 2018). Many studies have also identified
surface characteristics that work to modulate the relationship
between air and soil temperatures, such as the insulation prop-
erties of snow and water cover (Kokelj and Jorgenson, 2013;
Zhang et al., 2018). As for precipitation, atmospheric air tem-
peratures affect the ratio of precipitation that falls as rain vs.
snow, and as temperatures continue to warm, a higher ratio of
precipitation falling as rain is expected across the Arctic (Bintanja
and Andry, 2017). A higher ratio of rainfall would also impact
snow depths by melting existing snow cover (Boike et al., 2003;
Screen and Simmonds, 2012). As for precipitation regimes, the
Arctic is expected to experience increased precipitation totals
throughout the 21st century (Bintanja and Andry, 2017), with
decreased amounts of snow. Lastly, air temperature and precip-
itation modulate soil moisture, primarily through snowmelt and
rainfall, as well as evaporative processes (Rouse et al., 1997;
Young et al., 1997).

(4) Biota: vegetation height has known influences on ground insu-
lation via shading in the summer and increased snow depth in the
winter (Grunberg et al., 2020; Myers-Smith et al., 2011; Wilcox
et al, 2019), with implications for soil temperatures and
permafrost thaw depths. In winter, increased vegetation density
and height have been shown to locally increase snow depths by

trapping snow in branches (Gockede et al., 2019; Grunberg et al.,
2020; Myers-Smith et al., 2011; Wilcox et al., 2019), and the
insulation properties of snow contribute to warmer winter soil
temperatures (Gockede et al., 2019; Myers-Smith et al., 2011;
Park et al., 2014; Zhang et al., 2018). This slows down, or pre-
vents, the active layer from refreezing during the cold season (Jan
and Painter, 2020; Zhang et al., 1996). In the summer, vegetation
cover shades the ground and reduces the thermal gradient into
the ground, thereby leading to cooler summer soil temperatures
and reduced active layer depths (Aalto et al., 2013; Blok et al.,
2010; Grunberg et al., 2020; Myers-Smith et al., 2011; Young
et al., 1997). Some studies suggest that vegetation shading may
help protect permafrost from thaw by offsetting some of the in-
fluences of increased air temperatures (Blok et al., 2010), though
others argue that the warming-induced increase in shrub cover
will ultimately offset the local cooling influence due to surface
albedo changes related to the protrusion of shrub stems above the
spring snowpack that lead to warmer soil temperatures and
deeper active layers (Lawrence and Swenson, 2011). In this latter
case, the vulnerability of permafrost to thaw could be increased.
(5) Soil temperature and moisture: soil thermal dynamics are
affected by moisture (Oelke and Zhang, 2004; Zwieback et al.,
2019). Increased soil moisture, which would be more character-
istic of lower bulk density (i.e., organic or clayey), typically leads
to decreased soil temperatures since it increases heat capacity,
and evaporation consumes a large amount of energy. However,
soil moisture and high bulk density also increase the thermal
conductivity of soil, allowing heat to penetrate the ground more
effectively and increase active layer depths (Frauenfeld et al.,
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2004). Many recent studies suggest that the influence of soil
moisture is stronger on thermal conductivity than on conductive
heat transfers, though this influence may not hold at deeper soil
depths and in continuous permafrost areas that have a higher
concentration of mineral soils (Douglas et al., 2020; Fisher et al.,
2016; Loranty et al., 2018). As for the relationship between soil
temperature and permafrost thaw, it is well established.
Increased soil temperatures lead to increased active layer thick-
ness (ALT) through increases in the ground heat flux (Frauenfeld
et al., 2004; Liljedahl et al., 2016; Loranty et al., 2018; Schuur
and Mack, 2018).

(6) Ground ice content within the active layer: similar to permafrost,
ground ice is vulnerable to degradation as a result of increased
soil temperatures (Jorgenson et al., 2015; Liljedahl et al., 2016).
While soil moisture is a critical variable in ground ice growth,
with wet sites more likely to have high ice concentrations than
dry sites (Meentemeyer and Zippin, 1981; O'Neill and Burn,
2012), the presence of ground ice can help delay active layer
thickening due to the large amount of latent heat required to melt
the ice (Jorgenson et al., 2015; Lee et al., 2014; Loranty et al.,
2018; Schuur and Mack, 2018). Conversely, high ground ice
content can lead to pronounced ground subsidence when that ice
melts, further promoting permafrost thaw (Jorgenson et al.,
2015; Kokelj and Jorgenson, 2013).

3.2. PermaBN development

The objectives of PermaBN are to: (1) provide an alternative
permafrost modeling framework that improves understanding and pre-
diction of permafrost dynamics under various climate or ecosystem
conditions (i.e., provide a method that allows for exploratory and sce-
nario analysis), (2) identify knowledge and data gaps that hinder our
understanding (and modeling capabilities) of permafrost dynamics, and
(3) facilitate participatory modeling among researchers and/or
stakeholders.

Following the best practices in BN modeling outlined by Medina-
Cetina and Nadim (2008), Chen and Pollino (2012), and seen in works
such as those by Fox et al. (2017), the model development process en-
tails a series of critical steps: (1) defining model objectives and scope, (2)
creating a conceptual model of the system to form the structure of the
BN, (3) defining states and conditional probabilities of all variables, (4)
evaluating the BN using a suite of both quantitative and qualitative
model evaluation methods, and (5) documenting assumptions, un-
certainties, descriptions and reasoning for each node and linkage, data
and information sources, and evaluation of results.

In this proof-of-concept stage, the scope of PermaBN is limited to the
prediction of permafrost thaw depth in the continuous permafrost region
as a result of a handful of key terrestrial factors (see PermaBN Compo-
nents). While the emphasis is limited to the geomorphic and ecological
processes that influence permafrost thaw, future development of Per-
maBN could introduce hydrological factors (among others). Note that
PermaBN was designed with a multiyear timescale in mind. In its current
form, PermaBN is not meant to be viewed as a true environmental risk
assessment model since it lacks the quantification of utility associated
with the consequences of permafrost thaw. Instead, it should be viewed
as a model aimed at predicting environmental impacts. Future devel-
opment could use PermaBN as a sub-module that would be included into
a comprehensive Arctic ecosystem risk framework. It should also be
noted that, in its current form, PermaBN should not be applied to non-
continuous or transitional permafrost regions due to differing drainage
patterns, vegetation types, and ground temperature/permafrost re-
lationships (Burn and Kokelj, 2009).
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A preliminary conceptual model (Fig. 3) was created to form the
structure of the BN. The “nodes” and “arcs” of PermaBN were repre-
sented using the software program GeNle (BayesFusion, 2019). In the
case of PermaBN, this graphical network represents a hypothesis about
the terrestrial variables that control permafrost thaw depth. Multiple
BNs could be created to reflect different hypotheses or spatiotemporal
domains, if desired. In other words, PermaBN is by no means a unique or
“be-all and end-all” representation; rather, it is the best initial attempt at
representing the key terrestrial processes at play in permafrost thaw.
Ultimately, the goals of the conceptual model are to provide a structure
for the BN and identify the causal relationships across the system. In
environmental BNs, node and arc selection and definition are typically
determined through literature review or expert judgment (Kaikkonen
et al., 2021). For this reason, the variables included here were deter-
mined primarily through extensive review of peer-reviewed scientific
literature and collaboration with other researchers and scientists during
two workshops that took place in 2019 at Texas A&M University.

The following variables were selected for the PermaBN model
because they are thought to be most impactful on permafrost thaw: (1)
geological setting (aspect and soil particle size), (2) atmospheric con-
ditions (air temperature, rain, snow, and season), (3) surface insulation
(vegetation density/height, snow depth, and insulation), and (4) soil
properties (soil moisture, soil water input, soil temperature, and ground
ice volume). ALT is the final variable in the network and is the response,
or endpoint, of the system. Other variables, such as soil thermal con-
ductivity, are implicit to the model through the causal relationships
between nodes. For instance, soil particle size influences soil moisture
and insulation, which are known to influence thermal conductivity, and
hence, soil temperature. Similarly, some hydrological processes could be
considered implicit to the soil moisture node (Woodard et al., 2021). For
example, snow melt contributes to soil water input, and soil particle size
controls infiltration rates, and hence, soil moisture content.

After characterizing each node and their associated states (Table 2),
the CPTs for the nodes were determined; the maximum number of
parent nodes for any node was limited to five to limit the size of the CPTs
while still allowing for as many causal relationships to be explicitly
represented as possible. It is ideal to include as much evidence as
possible when creating the CPTs (Medina-Cetina and Nadim, 2008), but
evidence can sometimes be sparse in environmental studies. In that case,
the CPTs are derived through expert judgment. One method for initially
determining the CPTs for any given node is to assign a uniform distri-
bution; this is commonly the case if the variable conditions are un-
known. CPT values can then be adjusted as necessary when evidence
becomes available for the variable, whether it is from physical obser-
vations, model outputs, or expert assessments (Marcot et al., 2006). It is
also common to initially determine the CPTs in a symmetric manner
when using expert assessments as the evidence source (McLaughlin and
Packalen, 2021). In a symmetric CPT, the probability of the “lowest”
scenario would be equal to the probability of the “highest” scenario. In
the pre-validation version of the PermaBN model, probability values
were selected to represent trends rather than true probabilities of what
may occur in reality; those trends were established on the basis of
existing literature. For example, a high probability (60%) was given to
the medium air temperature scenario, indicating the state of knowledge
that it is more likely that a moderate amount of warming will occur in
the Arctic over the coming decades as opposed to no/little warming or
extreme warming; similarly, extreme warming is more likely than no/
little warming (Meredith et al., 2019).

To test the accuracy or representativeness of the CPTs (Appendix A),
46 prognostic experiments (Appendix B) were designed to illustrate how
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Table 4
Definition of nodes and associated possible states included in the expert assessment validation version of PermaBN. Changes from the pre-validation version are bolded.

Node Type Definition States

Thaw Depth Chance The depth/thickness of the layer of ground subject to annual thawing and freezing in areas underlain by Low, Medium, High
permafrost

Air Temperature Chance Temperature of the air near the surface of the Earth Low, Medium,

High

Aspect Decision ~ The arrangement of the natural and artificial physical features of an area, or more particularly, the aspect, or North, East, South,
positioning of a feature in a specified direction West

Active Layer Ice Chance Volume of all types of ice contained in the upper portion of the soil column that is subject to annual thawing  Low, Medium, High

Content and freezing

Insulation Chance The state of something being insulated, or protection of something by interposing material that prevents the loss of Low, Medium, High
heat

Rain Chance Moisture condensed from the atmosphere that falls visibly in separate drops Low, Medium, High

Season Decision  Division of the year marked by the presence or absence of snow Snow Free, Snow

Snow Chance Atmospheric water vapor frozen into ice crystals and falling in light white flakes or lying on the ground as a white layer = Low, Medium, High

Snow Depth Chance Measurement of snow that has fallen during previous weather events Low, Medium, High

Soil Moisture Chance Water that is held in the pore spaces between soil particles Low, Medium, High

Soil Density Chance Organic and mineral composition of soil per the measure of the amount of dry solid particles per unit volume  Low, Medium,

High

Soil Temperature Chance Measurement of the warmth of the soil Low, Medium, High

Soil Water Input Chance The ratio of precipitation to evaporation Low, Medium, High

Vegetation Height Chance Height of the dominant vegetation classes Low, Medium, High

the incorporation of evidence affected children nodes in the model,
particularly the model endpoint (prediction of ALT). The first set of
experiments was conducted on a model where all the nodes were set to a
uniform distribution (Appendix B). Then, informed nodes at varying
levels of the model were introduced (Appendix B). The final set of ex-
periments was conducted on a model where all the nodes were informed.
In each of the experiment sets, a combination of the primary parent
nodes (i.e., those nodes with no preceding nodes or incoming arcs) were
set to the extreme scenarios that could be encountered in the system (e.
g., low air temperatures, solar radiation, and soil particle size or high air
temperatures, solar radiation, and soil particle size). A set of 13 diag-
nostic experiments (Appendix B) was also designed to check for con-
sistency in the model. In contrast to the prognosis experiments, these
effect-to-cause experiments focused on setting the response variable
(ALT) to each of its states in a fully informed model to see if the parent
node distributions responded as expected. Some of the diagnostic ex-
periments also set intermediate parent nodes to different states to assess
whether a node seems to be a primary driver of change in the model.

Collectively, these prognostic and diagnostic experiments represent
the process of pre-validation (Medina-Cetina and Nadim, 2008). It al-
lows for a check on the consistency of the model at the lower and upper
bounds; for instance, if thaw depth does not respond as expected given
the state of the parent nodes in the prognostic experiments, it is possible
that: (1) the CPTs may not be well defined, and/or (2) the variables and
connections between them may not sufficiently represent the process of
permafrost thaw. In the event of the former, the CPTs simply need to be
adjusted through further expert judgment, or ideally, through the
incorporation of physical observations or model outputs. In the event of
the latter, the model may need to be redesigned. When the system re-
sponds as expected per the modeler's judgment, the model can be
considered pre-validated, and the results can be used for further vali-
dation of the model. All results of the pre-validation prognosis and
diagnosis experiments can be found in Appendix B.

3.4. Validation — expert assessment

After pre-validation, the model moved into the validation stage.
Here, validation first entailed meeting with a group of four experts at
Texas A&M University to review the conceptual model and the results of
the prognostic and diagnostic experiments. This validation stage is a
fairly unique attribute of the PermaBN model development process, as
most BN studies exclude validation from the development process
(Aguilera et al., 2011; Kaikkonen et al., 2021). Of the studies that do
conduct validation, the most common method for doing so is through
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expert assessment (Kaikkonen et al., 2021). Since the experts were
familiar with both Arctic climates and introductory Bayesian modeling
principles, only a brief overview of the current state of permafrost
modeling research and of the statistical methods behind the two types of
experiments was provided. The feedback and suggestions from the
validation session were then used to refine the BN conceptual model.
Refinements included: (1) renaming or redefining of nodes in the pre-
validation conceptual model, (2) adjustment of soil moisture and soil
temperature seasonal relationships, and (3) implementing a qualitative
threshold for passing the CPTs defined in the pre-validation prognosis
and diagnosis experiments see Table 3 for a complete list of changes and
the corresponding explanations for each change. Table 4 provides an
updated table of nodes, node definitions, and node states included in the
validated PermaBN model, and Fig. 4 shows the updated conceptual
model.

Before testing PermaBN with physical observations, the prognostic
and diagnostic synthetic informed case study experiments were repeated
with the updated conceptual model. The number of prognostic experi-
ments was increased to 50, and the number of diagnostic experiments
was increased to 32 in order to capture additional test cases pertaining
to the endpoint node being the only informed node (Appendix B).
Similar to the pre-validation experiments, the trend in the node re-
sponses was given higher priority than the magnitude of the response for
determining whether the model responds as expected. If the extreme,
fully informed prognosis and diagnosis experiments fail the qualitative
validation method, then the nodes, their CPTs, and connections should
be closely evaluated prior to informing the model with physical obser-
vations. Here, PermaBN passed the qualitative validation, and the
updated model was used to evaluate model performance.

Key results of the validation prognosis experiments are as follows. In
the completely non-informed, or uniform, model run, changing the
states of any of the nodes did not result in a change in any of the other
nodes (Appendix B). This is an illustration of the Bayesian principle of
Markov conditions. The principle states that a node does not influence
nodes that do not descend from it. Another way of stating this is that
each node relies on what its prior nodes know. This principle is also
illustrated in the experiments where only the four parent nodes are
informed and, in many of the experiments, where only the uppermost
children nodes are informed. For example, when only the air tempera-
ture and rain nodes are informed, rain will respond to changes in air
temperature, but any children of rain will not exhibit any responses.

Similarly, if every node is informed except for thaw depth, the thaw
depth node will not respond to changes in the parent nodes until it has
been informed (Beall, 2021). That said, it is possible for children nodes
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Soil Temperature

Fig. 4. PermaBN conceptual model after validation via expert assessment. In comparison to the pre-validation conceptual model, several nodes have been renamed,
and an additional causal relationship has been added. There are now 27 arcs connecting the 14 nodes.

to respond if the child node and one or more of its prior nodes are
informed. For instance, if the air and soil temperature nodes are
informed, soil temperature will respond to changes in air temperature.
However, if the insulation node is informed, it will still show a uniform
conditional distribution since its parent nodes of vegetation density/
height and snow depth are not informed. Thus, insulation will not affect
soil temperature.

Increasing the number of informed nodes decreases the uncertainty
in thaw depth predictions. Uncertainties in the model and the system are
expressed through the distribution of probabilities assigned to each node
state, and the uncertainties are propagated through the network to the
final model endpoint (Chen and Pollino, 2012). In the experiments
where all nodes except for soil temperature and snow depth were
informed, thaw depth responded very little to changes in the primary
parent nodes (Beall, 2021).

However, when soil temperature and snow depth were informed,
thaw depth responded as expected to the low and high scenarios of the
parent nodes. Fig. 5 shows the prognosis results for the low and high
“extreme” scenarios of changes in thaw depth. In the case where aspect
was set to north, soil density to low, air temperature to low, and season
to snow, there was a high probability that thaw depth would be in a low
state (Fig. 5A). This indicates a high probability that permafrost thaw
would be low in scenarios promoting cooler temperatures and increased
soil moisture. Similarly, in the case where aspect was set to south, soil
density to high, air temperature to high, and the season to snow-free,
there was a high probability that thaw depth would be in a high state
(Fig. 5B). This indicated a high probability that permafrost thaw would
be high in scenarios promoting warmer temperatures and decreased soil
moisture. While the model responds as expected at this stage in the
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context of trends (e.g., cooler temperatures promote less thaw while
warmer temperatures promote more thaw), further adjustments of the
CPTs, especially for snow depth, vegetation height/density, insulation,
and soil moisture, are needed for the magnitudes of the probabilities to
reflect reality.

For the diagnosis experiments, key results showed that, overall, the
system responds as expected. When changes to thaw depth are low,
active layer ice content is high while soil temperature is low (Fig. 6).
Conversely, when changes to thaw depth are high, active layer ice
content is low while soil temperature is high (Fig. 7). In both cases, the
soil moisture node responds in an opposite manner in the diagnosis re-
sults as compared to the prognosis results, where lower soil moisture
contributes to lower thaw depths in the former and higher thaw depths
in the latter under the extreme low scenario; higher soil moisture con-
tributes to higher thaw depths in the former and lower thaw depths in
the latter under the extreme high scenario.

In both extreme scenarios, air temperature is predicted to be me-
dium. Higher probabilities for the low and high air temperature sce-
narios were expected for the low and high thaw depth scenarios,
respectively. Given the air temperature CPT, however, the results are
unsurprising. Further experimentation revealed that the air temperature
node appears to respond better when it is set to a uniform distribution
(Beall, 2021). This indicates that CPTs in the middle nodes of the model
may need further refinement. Additional testing revealed that soil
temperature and snow depth seem to be driving many of the responses in
the model. Improving these distributions may improve the model
response as a whole.
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3.5. Evaluation — case study with physical observations methods

Integrating observations from a local case study was the final step in
the PermaBN development process. The criteria for determining which
local case study to use were: (1) high spatiotemporal density of thaw
depth observations, and (2) availability of additional variables at the
same spatial and temporal scales. One site that meets these criteria is the
Siksik Creek Basin in Trail Valley Creek, Northwest Territories, Canada
where Wilcox et al. (2019) collected 1528 aspect, vegetation height, and
frost table depth (i.e., thaw depth) measurements over the time period
2015-06-11 to 2015-08-20 across 10 transects.

The general Trail Valley Creek area is described in detail by Wilcox
et al. (2019) and Grunberg et al. (2020). In summary, it is located
approximately 45 km north of Inuvik and characterized by an 8-month-
long snow cover period. The mean annual air temperature is about
—7.9°Cto —10 °C, and mean annual precipitation is ~266 mm, of which
~66% falls as snow. Vegetation ranges from 0.5 to 3m in height, with
the primary vegetation classes being “tundra” (e.g., Sphagnum moss),
“birch” (e.g., Betula glandulosa), “alder” (e.g., Alnus alnobetula), and
“channel” (e.g., Salix L.), as determined by Wilcox et al. (2019). The
total thickness of ice-rich permafrost in the region is between 350 and
500 m, with the ALT varying between 0.5 and 0.8 m (Burn and Kokelj,
2009).

Wilcox et al. (2019) took environmental measurements along 10
transects and grids. These transects are several hundred meters apart
and observation dates for each sampling campaign range by 2-3 days.
The probability distribution of thaw depth from each transect was
compared to see which transects could be grouped together for use in
PermaBN. Only two transects (ss1 and ssllys) had similar frost table
depth (i.e., thaw depth) probability distributions for the entire June —
August 2015 time period; these two transects also had their thaw depth
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measurements collected on the same days (Julian days 168, 173, 190,
194, 208, 222, and 232). A total of 146 observations were made along
transect ss1, whereas 216 observations were made along transect ss1lys.
It should be noted that aspect and vegetation height remained constant
at this time scale; in other words, frost table depth is the only value to
change throughout the study period. It should also be noted that the
observations only represent the snow-free season in PermaBN, as ob-
servations were all made during the summer season. Therefore, physical
observations that would be used to refine the snow season probabilities
are not available.

The datasets for aspect and vegetation height were binned for direct
use with the model as evidence for the vegetation height node. In the
case of aspect, which is a decision node, observations were simply
categorized as north, east, south, or west based on their degree value,
where 0° — 45° and 315° — 360° is north, 45° — 135° is east, 135° — 225° is
south, and 225° — 315° is west. As for vegetation height, since only three
of the four vegetation classes were present in the ss1 and ssllys tran-
sects, “tundra” (5-25 cm in height) was considered low, “alder”
(80-150 cm) was considered medium, and “channel” (150-200 cm) was
considered high. Probabilities for the vegetation height node were
determined by counting how many low, medium, and high vegetation
height values coincided with north, east, south, or west aspects, and then
dividing by the total number within each aspect state. For example, if 25
of the 29 vegetation observations that were made on eastern aspects
were classified as “tundra” (i.e., low vegetation height), then the prob-
ability of there being low vegetation on an east aspect is 25/29, or 86%.

Since physical observations are not available for the frost table depth
variable's parent nodes of soil moisture, soil temperature, and active
layer ice content, the frost table depth measurements could not be used
to directly inform the model. Instead, the measurements for both the ss1
and ssllys transects were binned according to the average Trail Valley
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Creek ALT range of 50-80 cm cited in Wilcox et al. (2019), where low
thaw depth was less than 50 cm, medium thaw depth was between 50
and 80 cm, and high thaw depth was greater than 80 cm; this yielded a
distribution of 87% low, 13% medium, and 0% high thaw depths to be
used as a benchmark for evaluating the performance of PermaBN. A set
of 20 prognosis experiments (Appendix B) testing the effects of aspect/
vegetation height, the extreme low and high scenarios, and the most
likely Siksik Creek Basin aspect, soil density, air temperature, and soil
temperature conditions were conducted to evaluate the ability of Per-
maBN to match the expected thaw depth distributions. A set of 15
diagnosis experiments (Appendix B) were also defined simply for
exploratory purposes, as there is no way to conclusively evaluate the
diagnosis performance given the limited parent node evidence available.

4. Results

Evaluation was conducted using the validated conceptual model in
Fig. 4 and corresponding CPTs. The vegetation height node was
informed with the probabilities determined from the physical observa-
tions. This resulted in a 100% probability of low vegetation on north and
west aspects, 86%/10%/3% probability of low/medium/high vegeta-
tion on east aspects, and 83%,/17%/0% probability of low/medium/
high vegetation on south aspects, regardless of air temperature. Since
observations are only available for the snow free season, the soil tem-
perature CPT was modified to reflect that the snow and snow free sea-
sons can have independent low, medium, and high probabilities, or in
other words, that the boundaries for low, medium, and high soil tem-
perature can differ depending on the season. The 20 prognosis experi-
ments (Appendix B) were conducted to evaluate the ability of PermaBN
to accurately predict the expected thaw depth distribution of 87% low
thaw depth, 13% medium thaw depth, and 0% high thaw depth. The
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following paragraphs describe the key evaluation experiments.

Fig. 8 shows the thaw depth predictions for the snow free season for
all aspects. For this season, PermaBN predicts a 48% chance of low thaw
depth, 22% of medium thaw depth, and 29% thaw depth, for a margin of
error of 39%, 5%, and 29%, respectively. Setting the aspect state only
causes a slight shift in the thaw depth probabilities, with only a 1%
increase in high thaw depth for north aspects, and 1% increase in low
thaw depth for east and south aspects; west aspects retain the same
overall distribution.

For the extreme low and high scenarios, a north aspect, low soil
density, low air temperature, and snow free season results in a 60%
chance of low thaw depth, 19% chance of medium thaw depth, and 21%
chance of high thaw depth (Fig. 9A), for a margin of error of 27%, 2%,
and 21%, respectively. A south aspect, high soil density, high air tem-
perature, and snow free season results in a 54% chance of low thaw
depth, 19% chance of medium thaw depth, and 27% high thaw depth
(Fig. 9B), for a margin of error of 33%, 2%, and 27%, respectively.

Experiments also tested the most likely June — August conditions for
the Siksik Creek Basin. A south aspect was selected based on the mean
aspect for the ss1 and ssllys transects, a low soil density based on site
characterization by Grunberg et al. (2020) stating a ~ 5 cm soil organic
layer and approximately equal mineral soil composition of clay, silt, and
sand, and medium air temperature based on Grunberg et al. (2020)’s
definition of summer as the time period with an average air temperature
greater than or equal to 8 °C, their 1999-2018 mean annual cycle plot
for summer air temperatures, and 2015 air temperature data from Inuvik
station (Environment and Climate Change Canada, 2015). As seen in
Fig. 10, this results in a 44% chance of low thaw depth, 24% chance of
medium thaw depth, and 32% chance of high thaw depth, which is a
margin of error of 43%, 7%, and 32%, respectively. However, when soil
temperature is set to low in addition to the south aspect, low soil density,
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Fig. 8. PermaBN with informed vegetation height node prognosis predictions for snow free season.

and medium air temperature (Fig. 11), there is a 74% chance of low
thaw depth, 16% chance of medium thaw depth, and 10% chance of
high thaw depth, for a margin of error of 13%, 1%, and 10%, respec-
tively. A final set of prognosis experiments testing the effects of a uni-
form soil temperature distribution were also conducted, with all tested
aspect, soil density, and air temperature combinations yielding an
approximately 34% chance of low thaw depth, 22% chance of medium
thaw depth, and 44% chance of high thaw depth, for a margin of error of
53%, 5%, and 44%, respectively.

The 15 diagnosis experiments are primarily for exploratory purposes,
as there is insufficient evidence within the parent nodes to properly
evaluate the response of model. For all thaw depths in the snow free
season, (low and high thaw depth experiments shown in Fig. 12A and B,
respectively), there is strong favoring of medium air temperature, low
insulation, fairly uniform soil moisture, low or medium soil tempera-
ture, and varying active layer ice content (high for low thaw depth,
medium or high for medium thaw depth, and low or medium for high
thaw depth). Similarly, experiments for low and high thaw depth for all
aspects yielded medium air temperature, low insulation, uniform or high
skewed soil moisture, low or high soil temperature (low or high thaw
depth, respectively), and high or low active layer ice content (low or
high thaw depth, respectively).

Remaining experiments continued to favor medium air tempera-
tures, low insulation, and low or high active layer ice content depending
on thaw depth; depending on the soil temperature scenario, soil mois-
ture was either slightly low skewed (high soil temperature) or high
skewed (low soil temperature). Finally, experiments testing likely aspect
(south) and thaw depth (low or medium) conditions (Fig. 13) showed
favoring of medium air temperature, fairy uniform soil density and soil
moisture, low insulation, low or medium soil temperature (low or me-
dium thaw depth, respectively), and high or medium active layer ice
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content (low or medium thaw depth, respectively). It is interesting to
note that the south aspect and low thaw depth scenario yields a 12%
chance of low air temperature, 54% chance of medium air temperature,
and 33% chance of high air temperature, which is very close to the ex-
pected 17%, 53%, and 30% chance of low, medium, and high air tem-
peratures for 2015-06-15 (Julian day 168) to 2015-08-20 (Julian day
232) at Inuvik station.

5. Discussion
5.1. Case study

The results of the Siksik Creek Basin case study demonstrate the
ability of PermaBN to integrate multiple types of evidence into a single
model. With that said, limited availability of physical observations
proved to be a significant challenge, which limited our capacity to fully
validate and evaluate the model. In particular, missing parent nodes
make it difficult to quantitatively define the children CPTs in a robust
manner. For example, the thaw depth node could not be determined
through quantitative binning like the vegetation height node. It was also
not possible to evaluate the snow season predictions since the data only
spanned the June — August 2015 snow free period. More broadly, the
manual adjustment of expertly assessed CPTs that were made on the
basis of field observations from the Siksik Creek Basin mean that the
solutions are not unique, providing further uncertainty in the node
distributions as well as the specific cases within the CPT (e.g., the
probability that thaw depth is low given low soil moisture, active layer
ice content, and soil temperature). Another caveat to consider with this
case study is that PermaBN was initially designed with the pan-Arctic
and multiyear time scales in mind, such that the case study may not
accurately reflect that initial design. For example, the air temperature
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Fig. 10. PermaBN with informed vegetation height node prognosis predictions for south aspect, low soil density, medium air temperature, and snow free season.

joint distribution was initially defined with the assumption of decadal-
scale warming temperatures in the Arctic, hence the higher probabili-
ties for medium and high air temperatures as compared to low air
temperatures. Without physical observations to determine the proba-
bility table, however, it is uncertain how accurate or inaccurate this
assumption is for the Siksik Creek Basin for the June — August 2015 time
period.

Nonetheless, the results of the most likely conditions prognosis and
diagnosis experiments (i.e., those setting aspect as south, soil density as
low, air temperature as medium, and/or soil temperature as low) sug-
gest that PermaBN could perform relatively well when system condi-
tions are known and that, in the case of the Siksik Creek Basin,
applicable regional datasets (e.g., air temperatures for Inuvik) can be
used to provide more informed expert assessment in the model. For
instance, combining estimated boundaries of less than 8 °C for low air
temperature, 8-15 °C for medium air temperature, and greater than
15 °C for high air temperature based on the work of Grunberg et al.
(2020) with weather station data from Inuvik provided an estimated
17% chance of low air temperature, 53% chance of medium air tem-
perature, and 30% chance of high air temperature. These estimations are
quite similar to the original expert assessment values of a 10% chance
for low, 60% chance of medium, and 30% chance of high air tempera-
tures, as well as the diagnosis experiment with a south aspect, snow free
season, and low thaw depth that yielded a 12% chance of low, 54%
chance of medium, and 33% chance of high air temperatures. Overall,
with refinement of the thaw depth parent nodes, it is likely that Per-
maBN could generate more accurate predictions. However, it was un-
expected that the thaw depths strongly favored less thaw. Even when
applying the thaw depth boundaries of less than 50 cm, 50-80 cm, and
greater than 80 cm to all transects in the Siksik Creek Basin dataset, only
3% of depth measurements were expected to be high (i.e., greater than
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80 cm), and 78% of measurements were expected to be low (i.e., less
than 50 cm). This may indicate that permafrost in the Siksik Creek Basin
has experienced less thaw than elsewhere in the broader Trail Valley
Creek area or that the boundaries based on ALT for Trail Valley Creek
are not as representative of the Siksik Creek Basin.

A final observation about the model evaluation stage is that aspect
was not found to impact thaw depth by more than 1-2% between the
different states. This may be due to the fact that aspect's primary
contribution was to the vegetation height node and subsequently
vegetation height's contribution to insulation. Since vegetation height
for all aspects had an 83-100% chance of being low, and soil density had
a fairly uniform distribution, insulation was always predominately low.
The limited variability in insulation contributed to less influence on the
soil temperature node, which is a key driver of thaw depth in the model.
Likewise, the limited variability in the fairly uniform soil moisture node
resulted in less influence on the soil temperature and thaw depths.

5.2. Insights from PermaBN

PermaBN is a unique proof-of-concept of a modeling approach that
combines topography, meteorological conditions, soil characteristics,
and vegetation into a single model. As seen in Table 1, there is no one
model that accounts for all of the variables present in PermaBN. While
the statistical model by Wilcox et al. (2019) accounts for vegetation and
aspect, it does not include air temperature, precipitation, and soil pa-
rameters. Likewise, the statistical model by Hjort et al. (2018) accounts
for certain soil parameters and slope, but excludes vegetation, air tem-
perature, and precipitation, and the one by Aalto et al. (2018) accounts
for air temperature, precipitation, soil organic carbon, and potential
incoming solar radiation, but not vegetation or additional soil charac-
teristics. Older, predominantly non-statistical models thoroughly
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Fig. 11. PermaBN with informed vegetation height node prognosis predictions for south aspect, low soil density, medium air temperature, low soil temperature, and

snow free season.

account for soil characteristics or thermal dynamics related to snow
depth and moisture conditions but largely lack the inclusion of vegeta-
tion or atmospheric components other than air temperature. The closest
model match appears to be the NEST model (Zhang et al. (2006), which
includes vegetation, air temperature, precipitation, solar radiation,
ground ice content, mineral vs. organic soil, and other soil thermal
properties (i.e., thermal conductivity and geothermal heat flux), though
it omits the explicit representation of soil moisture and soil temperature.
Future testing of PermaBN could be done by comparing the results of the
two models.

5.3. Limitations

As outlined in Chen and Pollino (2012), uncertainties in BNs can
originate from incomplete understanding of the process(es) being
modeled, incomplete data, or subjective biases in the expert assess-
ments. BNs allow for explicit representation of uncertainty, but they
cannot differentiate between different types of uncertainty, such as
uncertainties with input data and model structure (Korb and Nicholson,
2004). While expert assessment datasets can help reduce uncertainties
in model structure in particular, they are prone to introducing bias and
epistemic uncertainty and may yield results that are accurate but not
necessarily precise (Kuhnert et al., 2010; Webster and McLaughlin,
2014). Following proper methods and procedures when eliciting expert
assessment datasets may help significantly reduce these uncertainties.
Further, if this process is thought of as a sampling process, there will be
better convergence to the ‘truth’ as more opinions are collected from
experts per the central limit theorem. Exploring alternative quantitative
methods for determining the CPTs could also help reduce uncertainties
in the model. For instance, sensitivity analysis can allow for
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identification of missing or unneeded linkages, and act as an alternative
evaluation method for determining which variables in the model are
most influential; conditional probabilities can also be learned from al-
gorithms, such as the Lauritzen - Spiegelhalter algorithm or Gibbs
sampling (Chen and Pollino, 2012). Finally, the inclusion of decision
nodes can limit the tools and algorithms available for use in the GeNle
software program. The inclusion of decision nodes results in the BN
being classified as an “influence diagram,” and some tools, such as the
“sensitivity analysis” tool, are unavailable for use with influence dia-
grams within the software. The decision nodes would either need to be
removed or converted to chance nodes prior to running these tools in
GeNlIe.

5.4. Future work

As development of BNs is often seen as an on-going process (Fox
et al., 2017; McLaughlin and Packalen, 2021; Webster and McLaughlin,
2014), there are many avenues of future work that can be undertaken
with PermaBN. Foremost could be addressing the limitations previously
discussed by: (1) aiming to reduce uncertainty in the expertly assessed
CPTs through more robust elicitation procedures, (2) conducting sensi-
tivity analysis, (3) exploring algorithms for determining the CPTs, and
(4) improving validation by finding or creating new datasets for evalu-
ation. Related to the point on exploring algorithms for determining CPTs
is calibration of the BN. Three types of calibration could be considered:
(1) manual calibration, (2) optimization, and (3) probabilistic calibra-
tion. Manual calibration would entail manually manipulating the CPTs
until the parent node yields the expected thaw depth response. Opti-
mization would entail having an algorithm solve for the most likely
scenario among the parent nodes given a particular state of the thaw
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Fig. 12. PermaBN with informed vegetation height node diagnosis analysis for (A) low thaw depth and (B) high thaw depth for the snow free season.
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depth node; optimization would yield a single, unique result. In contrast,
probabilistic calibration would explore many different scenarios for the
parent nodes and report which of the scenarios are most likely. These
methods of calibration are unique to BNs and would allow for the BN to
perform better the next time it is run. Since manual calibration is time
consuming and does not yield unique results, the recommended next
step would be conducting optimization.

6. Conclusions

PermaBN is a Bayesian Network designed to assess permafrost thaw
in the continuous permafrost region of the Arctic. It provides an inno-
vative method for assessing permafrost thaw that allows for the inte-
gration of multiple types of evidence (e.g., physical observations, model
outputs, and expert assessments) into a single model. This study outlined
and discussed best BN model practices while providing a proof-of-
concept of this unique modeling method. The framework presented of-
fers a transparent modeling approach that is able to represent systems in
data sparse regions such as the Arctic. Further, it facilitates the quanti-
fication of uncertainty through the use of probabilities.

The case study that was selected to further evaluate PermaBN also
shed light on important aspects of both the model development and field
data collection. For instance, physical observations allowed for reduc-
tion in uncertainty for those nodes that have data available; here, aspect
and vegetation height data allowed for uncertainty in vegetation height
conditions to be reduced since it was known which aspects contributed
to which vegetation classes. Conversely, the model highlighted data
gaps, such as long-term thaw depth measurements with concurrent
meteorological and soil measurements. Filling these data gaps would
certainly help validating models and furthering their development.

Aside from the benefits this modeling approach provides in data
sparse regions, BNs also have the ability to engage a wider audience than
traditional modeling approaches. Users without highly technical
modeling skills can build BNs, and the graphical structure can easily be
understood by and communicated to non-technical stakeholders. This is
valuable in the context of interdisciplinary and participatory endeavors.

With future development of PermaBN to include a more robust
validation procedure, additional variables, and/or integration with a
risk assessment framework, PermaBN could be applied to carbon
modeling studies, infrastructure hazard assessments, and policy de-
cisions aimed at mitigation of and adaptation to permafrost thaw.
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