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Abstract

We study combinatorial auctions in online environments
with the goal of maximizing social welfare. In this
problem, new items become available on each day and
must be sold before their respective expiration dates.
We design online auctions for the widely studied classes
of submodular and XOS valuations, and show the
following results:

- For submodular valuations, we give an O(logm)-
competitive mechanism for adversarial valuations
and an O(1)-competitive mechanism for Bayesian
valuations, where m is the total number of items.
Both these mechanisms are computationally effi-
cient and universally truthful for myopic agents,
i.e., agents with no knowledge of the future.

- For XOS valuations, we show that there is no online
mechanism that can achieve a competitive ratio
of 0((m/logm)1/3) even in a Bayesian setting.
Our lower bound holds even if we do not require
truthfulness and/or computational efficiency of the
mechanism.

This establishes a sharp separation between XOS val-
uations and its subclass of submodular valuations for
online combinatorial auctions. In contrast, no such
separation exists for offline auctions, where the best
bounds for both submodular and XOS valuations are
O((loglogm)?3) for adversarial settings (Assadi and
Singla, FOCS 2019) and O(1) for Bayesian settings
(Diitting et al., FOCS 2017).

In contrast to the above, if items do not expire and
only need to be sold before the market closes, then we
give a reduction from offline to online mechanisms that
preserves the competitive ratio for all subadditive valu-
ations (that includes XOS and submodular valuations),
thereby achieving the same bounds as the respective
best offline mechanisms.

1 Introduction

Inspired by the popularity of selling online adver-
tising opportunities via repeated auctions, there has
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been a growing body of literature on dynamic mech-
anism design for additive valuations in the past decade
(e.g., [1, 25, 27]). Dynamic mechanisms create the pos-
sibility of boosting revenue and/or welfare by evolving
the auctions across time. In spite of the success of dy-
namic mechanisms for additive buyers, little is known
for dynamic mechanism design with buyers whose valu-
ations are combinatorial. This is frequently the case for
buyers participating in marketplaces such as Amazon
and eBay, where large volumes of heterogeneous items
are sold. In many cases, these items may be perishable,
or have to be sold within a stipulated time frame before
they lose value, and therefore, cannot be sold via offline
auctions. In light of these, we initiate the study of com-
binatorial auctions in online environments in this paper.
In this problem, items arrive every day and have expiry
dates before which they need to be sold. The goal is to
design an auction that maximizes social welfare, where
the auction dynamically evolves over time but does not
have knowledge of the future.

Combinatorial auctions (see, e.g., [6]) are a central
object of study in the field of algorithmic game theory.
In a combinatorial auction, we are given a set U of m
items and a set of n buyers with respective valuation
functions (vy,--- ,v,) defined on all subsets of items.
The goal is to design an auction that allocates the items
to the buyers S = (S1,...,5,) (i.e., buyer i receives
the subset of items S; where S; N S; = 0) such that
the social welfare, defined as ), v;(S;), is maximized.
In a seminal work, Dobzinski et al. [14] provided the
first truthful' and computationally efficient mechanism
that approximates the social welfare to a factor of
O(y/m) for general monotone combinatorial valuations
and O(log® m) when restricted to XOS valuations. Since
then, welfare-optimal combinatorial auctions have been
extensively studied and the current best approximations
are O(logmloglogm) for subadditive valuations [9]
and O ((loglogm)?®) [2] for XOS valuations. ~ This
line of work establishes a relatively clear picture of
combinatorial auctions in static settings.

In the online environment, we assume (wlog?) that

TWe use truthful and incentive compatible interchangeably to

mean that a buyer cannot profit by misreporting their valuation.
2This is without loss of generality: for a buyer who may join
and leave the market multiple times, her marginal valuation can

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



there is a fixed set of buyers throughout the entire time
horizon. The items arrive online in batches over time
(e.g., a new batch of items arrives every day). Neither
the platform (or sellers) nor the buyers have knowledge
of items that will appear in the future. Each item has
an expiration date before which the item must to sold.
Moreover, once an item is sold to a buyer, the seller
cannot retrieve the item and reallocate it later. The
central question that we address in this paper is: can
we design welfare-optimal combinatorial auctions that
are truthful and computationally efficient in an online
environment?

1.1 Our Results In this paper, we focus on
complement-free buyers, i.e., buyers with subadditive
valuations, its widely studied subclass of XOS valua-
tions, and a further well-studied subclass of submod-
ular valuations. We assume that in addition to wvalue
queries, where a buyer is asked to report her value for
a particular set of items, the seller is allowed to use de-
mand queries to ask for a buyer’s favorite bundle given
specific item prices. We consider both the prior-free and
Bayesian settings. In both settings, the buyers’ valua-
tions for future goods are chosen by an adversary in an
adaptive manner. In the Bayesian setting, the seller ad-
ditionally has access to the distributions of the buyers’
valuations over the existing goods.

Online Allocation for XOS Buyers. We begin
with online allocations for complement-free buyers even
without requiring truthfulness and/or efficiency. For
XOS buyers (and by generalization also for subadditive
buyers), we show a lower bound of Q ((m/logm)'/3) on
the competitive ratio® of randomized algorithms even in
the Bayesian setting (Section 3). (Recall that m denotes
the total number of items.) This polynomial lower
bound sharply contrasts with upper bounds of 2 [15]
and O((loglogm)?) [2] known for offfine combinatorial
auctions with XOS valuations in the Bayesian and prior-
free settings respectively.

Online Mechanism for Submodular Buyers.
Given the lower bound above, we restrict our atten-
tion to a widely studied subclass of XOS valuations,
namely submodular valuations. It is well-known that
an algorithm that allocates each item immediately when
it becomes available to the buyer with the highest
marginal valuation is 2-competitive for submodular val-
uations [21, 23]. Hence, the above lower bound does
not hold for submodular valuations. But, what can we
achieve in terms of welfare-optimal mechanisms for sub-
modular buyers, i.e., where we also desire the alloca-

be set to be 0 for stages when she is absent from the market.
3The competitive Tatio of an online allocation is the worst case
ratio of its (expected) welfare and that of the optimal allocation.

tion to be incentive compatible and computationally ef-
ficient? Since neither the seller nor the buyers have any
prior knowledge about the future, we model the buy-
ers’ strategic behavior by assuming that they maximize
their utility for the current stage because they do not
know about future opportunities. (We call this myopic
behavior.) Even assuming myopic behavior, the design
of a truthful, competitive mechanism for submodular
buyers turns out to be challenging. For instance, the
greedy algorithm has a competitive ratio of 2, but is
not incentive compatible. On the other hand, selling
each batch in separate second-price auctions is truthful,
but is not competitive in terms of social welfare.

Our main contributions are to design online mech-
anisms that achieve competitive ratios of O(logm) in
the prior-free setting and 8 in the Bayesian setting (Sec-
tion 4 and Section 5). Note that these are (at least) ex-
ponentially better than the lower bound for XOS buyers,
thereby establishing a clear separation between these
two classes. This is in sharp contrast to offline combi-
natorial auctions, where the best bounds for submodu-
lar valuations are identical to those for XOS valuations.
Interestingly, our mechanisms sell every item as soon
as they become available and do not depend on the ex-
piry dates. Moreover, they are universally truthful for
myopic buyers, and are computationally efficient.

No Expiration. We also consider a setting where
the items do not expire, but must be sold before
the market closes (the closing date being unknown in
advance to the platform and the sellers). Our negative
results for XOS valuations rely on the fact that all the
items must be sold immediately on becoming available,
and therefore, do not apply in this case. Indeed, we give
a reduction to convert offline mechanisms to this setting
while preserving the competitive ratio up to a constant
factor. As a result, the best bounds for subadditive
[9, 16] and XOS/submodular [2, 15] buyers for both the
prior-free and Bayesian offline settings generalize to the
online case when there are no expiry dates (Section 6).

Our results are summarized in Table 1. (We have
also provided existing offline results for comparison.)

1.2 Technical Overview We demonstrate a sharp
separation between XOS and submodular valuations in
terms of the approximation ratio. XOS and submodular
valuations are often considered to be at the same level
of complexity in truthful welfare-maximizing combina-
torial auction design, since most techniques developed
for submodular valuations can be directly generalized to
XOS valuations (e.g., [2, 11, 14]). This is mostly due to
the fact that prior work relies heavily on a (by now, stan-
dard) revenue-utility decomposition argument (see, e.g.,
[15, 17, 20]). However, in online environments, this ar-
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Online No Expiration Offline
Subadditive | Q ((m/logm)'/?) | O(logmloglogm) | O(log mloglogm) [9]
Prior-free XO0S Q ((m/logm)'73) | O ((loglog m)®) O ((loglogm)?) [2]
Submodular O(logm) O ((loglogm)®) O ((loglogm)®) [2]
Subadditive | Q ((m/logm)'/3) O(loglogm) O(loglogm) [16]
Bayesian X0S Q ((m/logm)'/3) <38 2 [15]
Submodular <8 <8 2 [15]

Table 1: Summary of our results. We include the results of offline versions for reference.

gument fails in a fundamental way that is demonstrated
and exploited by our lower bound for XOS valuations.
Instead, our online mechanisms for submodular
valuations rely on a carefully designed online pricing
scheme that is truthful for myopic buyers. Our analysis
relates the welfare accumulated online to the offline
optimum via a proxy benchmark that is a constant
approximation of the offline optimum. This proxy
benchmark is useful because we ensure that, unlike the
actual offline optimum, this benchmark evolves in a
relatively “stable” manner over time as new items are
added. Also key to our analysis is an associated novel
revenue-utility decomposition argument that is tailored
to submodular (as opposed to XOS) valuations (see
Lemma 4.6 for the prior-free setting and Lemma 5.3 for
the Bayesian setting), and might be useful in arguing
about submodular valuations in other problem settings.
The mechanisms above are truthful only for myopic
buyers, i.e., who cannot foresee the future. While this is
areasonable (and perhaps the most natural) assumption
in an online setting, let us briefly also consider the case
of omniscient buyers, i.e., who can plan with knowledge
of the future. Interestingly, designing an “interesting”
truthful mechanism (i.e., one that depends on the
valuations in a non-trivial way) in this case even without
welfare or efficiency guarantees seems non-trivial. In
fact, note that running separate second-price auctions
for each batch of items is not truthful for omniscient
submodular buyers. (This is in contrast to additive
buyers, for whom this auction is indeed truthful even
if they are omniscient.) We leave the case of omniscient
buyers as an interesting direction for future work.

2 Preliminaries

We consider a setting with n buyers and one seller. The
goods arrive in batches in T' stages where T' is unknown
to the seller. We let the set of newly arrived goods at
stage t be Bt. The entire set of goods is U = Uthl Bt.
For convenience, we will use the notation U®t) =
Ui’:t BT to represent the items arriving between stage
t and stage t'. Let m; = |[U1Y| be the total number
of items in the first ¢ stages. As usual, we use —i to

indicate the buyers other than buyer 7.

The buyers’ valuations are combinatorial and we
assume the valuations are normalized, i.e., v;(#}) = 0 for
all buyers 4, and monotone, i.e., v;(S) > v;(S’) for all
S D 8. For convenience, we give each item an index
j in a chronological order of its arrival. More precisely,
the items in B! are indexed between (m;_1 +1) and m;.
Moreover, for item j, we will write v;(j) = v;({j}) for
short. Each item j has an expiration date e(j) and for
an item j without expiration date, e(j) = co. We focus
on subadditive valuations in this paper.

DEFINITION 2.1. A waluation v is subadditive if for
every bundle S and S’ such that SN S = 0, we have
v(S)+v(9) >v(SUS).

DEFINITION 2.2. A waluation v is additive if for every
bundle S C U, we have v(S) = > ,csv({j}). 4
valuation v is XOS if there exist additive valuations
ay,- - ,aq such that for every bundle S C U, we have
v(S) = max,a.(S). A waluation v is submodular if
for every bundle S and S’, we have v(S) + v(S) >
v(SUS ) +u(SNS).

For an XOS valuation v with associated additive
valuations ai,--- ,aq, each a, is called a clause of v. If
a* € argmax, a,(S), then we say a* is a mazimizing
clause of S and a*({j}) is the supporting price of
good j in this maximizing clause. It is well-known
that submodularity implies XOS, and XOS implies
subadditivity. The marginal valuation of a buyer on
an additional bundle S’ given that she already has a
bundle S is represented by v(S’ | S) = v(S"US) —v(S).

Online Environments. We describe the online
environments for submodular valuations; the corre-
sponding environments for XOS and subadditive valua-
tions can be defined in a similar way. Given a submod-
ular valuation v over U%) and a submodular valuation
v over UMD we say o' is extendable from v if for all
S Cc UMD /(S) = wv(S). In a prior-free environment,
we consider a setting where the valuations are selected
by an (oblivious) adversary. In other words, the buyers’
valuations for future goods can be arbitrary but must be
extendable from the valuation over the existing goods.
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In the Bayesian setting, given a distribution F!
of submodular valuations over U with support V!
and a distribution Ff'H of submodular valuations over
UMD with support VIF!, we say F/ ! is extendable
from F} if there exists a partition of Vi1 as {Q, }yeyt,
such that for each v € V', we have: (1) Q, is non-
empty; (2) for all v/ € @Q,, v' is extendable from
v; and (3) X, c0, Pr[v/|F{t!] = Pr[v|F}]. For F/*!
that is extendable from F} and the buyer’s valuation
v over UMY | the buyer’s valuation v’ over U1+ g
randomly drawn from @, such that the probability of

%. We assume that F} is
publicly known and independent across buyers for all ¢
and the buyers’ distributions for the future goods can
be arbitrarily chosen but must be extendable from the
distributions over the existing goods.

Let V be some set of valuations. We use (f,p) to
denote a deterministic online mechanism. f}f : V" —
2U(1vt)

choosing v’ € Q, is

is the allocation function that maps the valuation
profile ¥ = (v, -+ ,v,) to a subset of goods, indicating
the set of goods allocated to buyer 7 in the first ¢ stages.
The payment function p! : V" — R maps the valuation
profile to buyer i’s cumulative payment for the first ¢
stages. An allocation rule is valid if for all ¢, and two
different buyers 4,4, f}(v) N fL(¥) = 0. Moreover, once
a good is sold, the seller cannot retrieve the good and
reallocate it in the future, ie., Vt, fi(¥) C fIH (%)
for each buyer i; and the item must be sold before its
expiration date, i.e., for any j, we have j € f!' (%) for
allt’ > e(j) if and only if j € fie(])(ff). Furthermore, for
a stage t and two different valuation profiles v and o’
satisfying v;(S) = v}(S) for all buyer i and S C UM,
we must have f/(0) = f}(¢") and pt(¥) = pk(¢') for all
buyer 1.

Universally Truthful Mechanisms. We con-
sider myopic buyers, and therefore, incentive compat-
ibility only concerns the current stage without taking
the future into account. In both the prior-free and
Bayesian settings, we are interested in designing uni-
versally truthful mechanisms.

DEFINITION 2.3. A deterministic mechanism (f,p) is
truthful if for every stage t, every buyer i, and any
valuations v;,v; € V with vj(S) = v;(S) for all S C
U1 " and any G_; € V"1, we have

i (f§ (vi, U-4)) =i (i, T-i) > v (ff (v, T-4)) =i (v], T—s).

A randomized mechanism (f,p) is universally truthful if
it is a probability distribution over truthful deterministic
mechanisms.

Competitive Ratio. Let S! be the set of items
allocated to buyer ¢ at the end of stage t. We will

use the vectorized symbol without subscript St =
(St,---,St) to represent the overall allocation at the
end of stage t. For convenience, we will use A! =
Ui, S! to represent the set of items sold in the first
t stages. The welfare with respect to an allocation S
is denoted by v(S5) = >, vi(Si). For a set of items
U’, the welfare-optimal allocation with respect to a
valuation profile ¢ is represented by OPT(U’,v) =
(OPT(U’,¥),---,0OPT,(U’,¥)). We will drop ¥ from
the notation when it is clear from the context. The
performance of our mechanism is measured by its com-
petitive ratio:

DEFINITION 2.4. (COMPETITIVE RATIO) For a set V
of valuations, in a prior-free setting, an online mecha-
nism (f, p) is k-competitive if for any (vy, -+ ,v,) € V™
and 1 <t<T:

k-E {v (fif(U(l,zt))7 ... ’f};(U(l,t)))} > (OPT(U(U)))

where the expectation is taken over the randomness of
the mechanism. In the Bayesian setting, an online
mechanism (f, p) is k-competitive if for any independent
distributions Fy,--+ F,, € A(V) and 1 <t <T:

R E |0 (O, 0] 2 E o (OPTU))]

where the expectation is additionally taken over U ran-
domly drawn from the prior [, F;.

3 Lower bound for XOS valuations

We show that for XOS valuations, no (randomized)
truthful mechanism is o ((mz/log my)Y/ %)-competitive
even in the Bayesian setting (the same lower bound
naturally holds in the prior free case as well). Our
lower bound is information-theoretic, which means that
it holds even if we do not require the mechanism to
be truthful or computationally efficient. Moreover, our
construction works even when the buyers are symmetric,
i.e., all the buyers have the same valuation distributions.

THEOREM 3.1. When the buyers’ valuations are XOS
and all items expire immediately, no randomized mech-
anism is o(n)-competitive for mp = Q(n3logn), even if
all buyers have i.i.d. valuations.

Before proving the theorem, we provide the high
level idea about our construction.We consider an online
environment with T stages with a single new item at
each stage, i.e., item j arrives at stage j. So the total
number of items is T'. For each buyer, we will construct
an XOS valuation with n (same as the number of buyers)
clauses. For ease of presentation, we represent buyer
k’s XOS valuation by a matrix Z; with n rows and
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(eventually) T' columns, such that row 4 corresponds
to the i-th clause and column j corresponds to the j-
th item, i.e., Zy(4,7) is the value of item j in the i-th
clause of buyer k. On the arrival of item j, for each
buyer k, we add a new column in Z; as follows: pick
a row ¢ uniformly at random (and independent of any
other choice) and assign Zy(i,7) = 1 and Zx(i',5) = 0
for all ¢ # 3.

We first argue the performance of the optimal offline
allocation on these valuations. Let c¢; be the k-th
clause of buyer k, i.e., the k-th row in Z;. We will
allocate item j to any buyer k with c¢x(j) = 1; and if
such a buyer does not exist, then we allocate item j
arbitrarily. Notice that for each pair (k,j) of buyer k
and item j, we have Pr[ck(j) = 1] = 1/n, and therefore,
Pr[3k, ci(j) =1] > 1—e~t = Q(1). By linearity of the
expectation, the expected welfare of the optimal offline
allocation is Q(T).

We are left to bound the welfare generated by an
online algorithm. In order to build intuition, let us
first make the simplifying, but false, assumption that
the online algorithm cannot observe the realization of
Zy (i, 7) for all buyers k and clauses 7 when a new item j
arrives. Now, suppose that the online algorithm assigns
sk items in total to buyer k. Note that for each of
these sj, items, exactly one clause chosen uniformly at
random has a valuation of 1, and all other clauses have
valuation of 0, for buyer k. If we think of the n clauses
as bins, and a valuation of 1 for each of the s items as
balls being thrown uniformly at random into the bins,
then the clause with the maximum valuation for these sy,
items corresponds to the bin with the most balls. Using
this correspondence, a simple calculation then shows
that the welfare of the online algorithm summed over
all the buyers concentrates around T'/n, thereby giving
us the lower bound we are after.

But, our simplifying assumption is false because the
adversary must reveal the realization of Z(i,j) for all
clauses ¢ and buyers k when item j arrives. Recall that
our goal, for any buyer k, is to extend one clause with
1 and the other n — 1 clauses with 0s without revealing
which clause got a 1. To this end, on the arrival of
item j, we create a temporary matrix Z; with 2n rows
such that both the (2¢ — 1)-th and (2¢)-th rows of Zj,
are copies of the i-th row of the current Zj. For each i,
we will assign Z;(2¢ — 1,7) = 1 and Z}(24,5) = 0, and
present Zj, to the online algorithm at stage j. After
the end of stage j, we pick an index i € {1,2,...,n}
uniformly at random, and reconstruct Zj as follows:
Zy(i,-) = Z;(2i — 1,-) while for all ¢ # 4, we have
Zy(i',) = Zj(2',-). Such a procedure successfully
hides the random choice of i at stage j since Z;, does
not contain any information about the random choice.

We “discard” the remaining n clauses in Zj, by giving
them valuations of 0 for all items henceforth.
Now we give the full proof of the Theorem 3.1.

Proof. Assume that there is one item arriving per stage.
We construct the prior distribution by designing a
scheme to generate the collection of additive valuations
randomly, proceeding from the first item to the last
item. At stage t, a clause is either outstanding or done.
If a clause c is done at stage t, then for all j > ¢, ¢(j) = 0.
Our scheme maintains a set of n outstanding clauses at
every stage.

Suppose at the end of stage t, the n outstanding
clauses are {c!,...,c!,}. Upon the arrival of the (¢ +1)-
th item at stage (¢t + 1), we create 2n new clauses
S and PP Clause it =
[c!,1] is obtained by simply appending 1 to the end
of ¢!, and ¢/**1 = [¢!, 0] is obtained by appending 0 to

ct. After the mechanism allocates the (¢ + 1)-th item,
the adversary flips a coin to choose uniformly at random

some i1 € {1,.-- 'n}. The new outstanding clauses
are then
/t+1 — st+1
1l At a =4t
a "+ otherwise

We now analyze this construction after T' stages.
Let Zi; be the i-th outstanding clause at time 7' in
buyer k’s valuation. First observe that the offline
optimal allocation can achieve welfare Q(T). This
is because for each item j and any buyer k, with
probability %, Zyk(7) = 1, and with probability

1\" 1
1(1) ~1- -,
n e

there is some buyer, denoted by kj,4 whose valuation
satisfies Zy, x,(j) = 1. If such a buyer does not exist,
let ]fj =0.

Knowing the future realization of all valuations,
the offline optimal allocation could assign item j to
buyer k;, and discard j (possibly by assigning j to an
arbitrary buyer) when k; = 0. Whenever k; # 0, item
j contributes 1 to the total welfare. By the definition of

I1f there are multiple such buyers, let k;j be the one with the

smallest index, or simply any of them.
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XOS valuations, the expected welfare would be

E| > o({jlk =k}

| k€[n]
>E| Y Zea{i Ik =D | =B Y. Y. Zkx(h)
ke[n]j:kj:k

| k€[n]

Z I[k; # 0]

£(- (1))

J

Now consider the welfare obtained by any online
mechanism. We upper bound the welfare by upper
bounding the value of each buyer separately.

Fix some buyer kg, random indices i* for all ¢,
and outstanding clauses {c!} drawn for ko for all ¢,
and a realized allocation S,icj generated by the online
mechanism. Let ¢, be the /-th item assigned to kg for
1<i< |S,%F0 |. When item ¢, is assigned to ko, the value
of clause cff(S,i‘f) ) increases by 1 if and only if i* = q,
which happens with probability exactly % Therefore,
|55, |

Sko

(3.1) Elca (Sk,)] =

Moreover, by the Chernoff bound,

ST
Pr cg(S,Z;)—| ol > |S;€T()|10gn] < exp(—2logn)
1
= ﬁ'

Taking union bound over the outstanding clauses after
stage T, we have

|5, |
n

(3.2) max C,[J;(SIZ;) <

+ \/\Sgoﬂogn

with probability at least 1 — %, and with probability at
most L, max, ¢Z (S, ) is at most |S¥. |. Moreover, notice
that we have

E vk, (Sk,)] < Emax cg (S5,) + 1.

The extra 1 in the inequality is due to the fact that
the maximizing clauses at stage 7' might be one of
the clauses created at stage T rather than one of the
outstanding clause after stage T. Nevertheless, note
that the difference between their valuations is at most

1. Using (3.1) and (3.2), we have

n—1 |57;\
Efv, (Sk,)] < —— (j; + /155, [logn

Logr
+E~|Sk0|+1
2|S¢,
< %+\/|S£}|logn+1.

Finally, we sum over ky:

Ep(ST)] <Y <2li’“T +4/ISE |logn + 1)

ko

2T
< — 4+ +/Tnlogn + n.
n

As long as mr = T = Q(n?logn), the above inequality
implies that E[v(S*)] = O (£). 0
for

4 Prior-free Online Mechanism

Submodular Valuations

In this section, we proceed to design our online mech-
anisms for submodular valuations. Our online mecha-
nism for the prior-free setting PRIORFREEONLINE con-
sists of a second price auction and a random fixed-price
auction. Before the first stage, the seller flips a fair coin
and runs the second price auction if it is heads, and the
random fixed-price auction otherwise.

Second Price Auction. At stage ¢, we will run
a second price auction without a reserve price for the
bundle B? that arrives at stage t. Notice that the second
price auction is deterministic and dominant-strategy
incentive-compatible, and thus, at stage t, each buyer
1 will truthfully report her marginal valuation over the
bundle: v;(B* | SI™1). (Recall that S!™! is the set of
items allocated to buyer 4 till stage ¢t — 1.)

Random Fixed-Price Auction. We first divide
the buyers into two groups: STAT and MECH where
the group for each buyer is chosen independently and
uniformly at random. Note that such a partitioning
is done only once before the arrival of the first item.
For convenience, let O(U’,C) be the set of all possible
allocations for items U’ and buyers C C [n] and
OPT(Ctth) = argmaxgeo((](tl,tz)’c) Zz Ul(S’L) represent
the welfare maximizing allocation of items between
stage t; and ty to buyers C. As a shorthand, let
OpT(*:t2) OPT%’Q) be the welfare maximizing

allocation to all buyers. In addition, let OPT(“’t“’)\c
be the optimal allocation for all buyers restricted to
buyers in C, such that OPTEtl’t2)|C = OPTI(-tl’tQ) if
i € C and otherwise, OPTEtl’t2)|C = (. Note that in
general, OPTétl’tQ) # OPT®":%)|,. For each stage t,
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we maintain an estimate est; of the optimal welfare of
allocating U(*) to buyers in STAT.

THEOREM 4.1. ([18, 21, 23]) For  complement-free
valuations, there exists a computationally efficient
2-approzimation estimation algorithm for the optimal
welfare using demand queries and value queries. The

estimate est; obtained from the algorithm satisfies
%U(OPT(l’t)|STAT) <est; < U(OPT(l’t)).

Given  the estimate  esty, let P, =
{(si::?)’ ( 587:;?)7 T (% : mt2 ' eStt)a (C ! mt2 : eStt)}

be a set of prices, where ¢ is a sufficiently large constant
and m; = |[UMY)|. Intuitively, the size of P; is O(logm)
and the price grows geometrically such that the j-th
price is % 2971 We are now ready to describe our
random fixed-price auction for the buyers in MECH
(see Algorithm 4.1). Notice that given a fixed price p?,
the fixed-price auction is truthful at stage ¢.

ALGORITHM 4.1. (RANDOM FIXED-PRICE AUCTIONS)
for each stage t do
Set pt to be a price drawn from P; uniformly at
random
Let M = Bt
for each buyer ¢ € MECH in some arbitrary order
do
Let D; = arg maxgey, vi(S | SE1) — p|S|
Allocate D; to buyer i, i.e., S = SI™' U D;,
and charge her p'|D;|
M =M\ D;
end for
end for

Compared to the mechanism used in [14, 22] for the
static setting, one main difference is that our mechanism
samples a new price per stage instead of using only
one price throughout all stages. Moreover, the set of
prices we sample from per stage is updated dynamically.
Sampling new prices per stage also introduces new
challenges into the analysis. Nonetheless, we manage
to show that:

THEOREM 4.2. PRIORFREEONLINE s
truthful and O(log mr)-competitive.

universally

Our analysis uses submodularity in both the second
price auction and the random fixed-price auction. We
consider two situations depending on whether a dom-
inant buyer exists. Buyer ¢ is a dominant buyer if

opT:T) . .
v; (U(LT)) > 1)50417). When there exists a domi-
ogmr

nant buyer, it is easy to show that the welfare of run-
ning the second price auction is at least the valuation
of the dominant buyer ¢* over the entire bundle, i.e.,
Vgx (U(l’T)), which immediately yields a O(log mr) ap-
proximation.

LEMMA 4.1. For a set V of submodular valuations,

when there exists a dominant buyer, the second price
v(OPTT))

auction yields welfare at least 0T og

Proof. Let buyer i* be one of the dominant buyers. For
convenience, let i; be the buyer winning the second price
auction at time ¢, and we have v(S7) = >, vi(SE) =
> i (Bt Sf:l) In second price auctions, the
marginal value of the winner is no less than that of any
other buyer, so we have

(43) o(FT) =Y v (B[ S5 = Y v (B S

> Y v (B U = v (UOD),
t

where the second inequality follows from submodularity
of v;« and the fact that Sf*_l cyutL O

From now on, we assume there is no dominant
buyer. To analyze the performance of our algorithm,

we will use v (OPT(t*’T)) as a benchmark where t*

is chosen from Lemma 4.2 such that v OPT(t*’T)) >

v (1,T) v 1)
O v (OPTH0) = 2O g gy ¢

t*. Such a choice is necessary, because intuitively, the
initial stages are too sensitive for our analysis to work
effectively.

LEMMA 4.2. 3t* s.t. v(OPT® 1)) > U(O#(LT)) and
U(OPT(l’t)) > U(O#(LT)) for all t > t*.

Proof. Let t* be the earliest stage such that
* 1,T)

v(OPTMH)) > 2OPTET) - Notice that +* < T. The

first property follows immediately from the definition of

t*. For the second property, because of the optimality
of OPT*"T) and subadditivity of v;,

v(OPTE 1)) >3 "0, (OPT; N U

> o(OPTHT)) =3 "0, (OPT; UM —Y),

Again, because of the optimality of OPT™* ~1),

o(OPT® D) > »(OPTHT)) — y(OPTHE D)

<

> —p(OPTHT)),

NN

|

We consider the set 7 = {(t1,t2) | t1 < to <

T, v(OPT®t2)) > (OPTH1))/256}.  Intuitively,
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(t1,t2) € T if the optimal welfare restricted to the
items appearing between stages t; and ts is a con-
stant fraction of the optimal welfare over all items.
The next lemma shows that for any (¢1,t2) € T, both
v(OPT®2) |gpar) and v(OPT® %) |ypey) are a con-
stant fraction of v(OPT(*1:2)),

LEMMA 4.3. For any (t1,t2) € T, with probability at
least 1 — %T’ we have

(4.4)  min{v(OPT® ) |grar), v(OPT®2) |y pey)}

> iv(OPT(tl’fQ)).

Proof. Fix t; < to < T where (t1,t2) € T. First note
that for any 1,

v(OPTWT))
104 logmr
v(OPT12))
24 log mp

v (UE)) < (UL

where the second inequality follows the fact that there is
no dominant buyer and the last inequality is due to the
definition of 7. Let X; = 1[i € STAT]. Observe that
{Xivi(OPTgtl’tg))}i are independent random variables,
where Xivi(OPTgtl’tz)) is in range [O,vi(OPTgtl"tz))] C

v(OPT(*1:%2))
[0’ 24 log mr ]’ nd

E

1
ZXiUi(OPTEt17t2))] = EIU(OPT(tl,tQ)).
Applying Hoeffding’s inequality, we have
o UU(OPT(tl’t2)MECH) - E[U(OPT(tl’t2)|MECH)]‘

1
> 4U(OPT(t1’t2))]

1
— PI‘ Xivi(OPT§17t2) _ §U(OPT(t1,t2))

T

> iv(OPT(“’tZ))]
2
2+ (4u(oPTr2)))

>, vi(OPT{12))2

IN

exp | —

IN

v(OPT!112))2
exp | —= - )
8 24log mp(v(OPT"1:42))2 /(24 10g my))?

1
= exp(—3logmr) = o
T

Exactly the same argument implies the same concentra-
tion for v(OPT®2)|gpap).

Observe that there are at most (:g) < (mQT) < %mQT
pairs of ¢; and to satisfying (4.4). Taking union bound
over all such pairs and STAT and MECH, we have that

(4.4) holds with probability at least 1 — %mQT -2 migT =
1--L 0

mT :

Note that Lemma 4.2 implies that (a) (¢*,7) € T,
and (b) for any ¢ > ¢*, (1,¢) € T. Therefore, Lemma 4.3
can be applied to all these intervals. The key lemma
we are going to establish next is that with Q(loglmT)
probability, the item goes to the market with a desirable
price constructed from additive valuation functions that
represent the submodular valuations.

DEFINITION 4.1. ([8]) A set V of valuations can be
point-wise B-approximated by additive valuations if for
any v € V and S C U, v can be point-wise (-
approrimated at S by an additive valuation v’ such that
B-v'(S) >v(S) and VS CU, v'(S") <wv(5).

It is well-known that submodular valuations are point-
wise l-approximated by additive valuations (see, e.g.,
[18]). However, an l-approximated additive valuation
v’ is not enough for our analysis since the smallest non-
zero entry vpmin, > 0 could be arbitrarily small such that
we can no longer guarantee the random price is within
[¢1Vmin, C2Umin| for some constants 0 < ¢; < ¢z < 1
with Q(miT) probability. To overcome this difficulty,
we trim the additive valuations in an online manner;
roughly speaking, our criteria for trimming each item
become looser and looser as more items arrive. This is
key for the trimming procedure to be compatible with
the online environment.

LEMMA 4.4. There
(v, ,vl) such that:

r n

exist additive valuations

e v/(S) < vi(S) for any buyer i and S C UMLT);

o v(OPT" D lypen) > o(OPTE " ygen)/10
v(OPT®T)) /40;

v

o ifj ¢ OPT" D |ypon, vi(j) = 0;

e forje OPTEt*7T)|MECH, if vi(§) > 0, then vi(j) >
o' (OPT{ " lysen) /(252).

Proof. Let v} be any additive valuation that point-wise
l-approximates v; at OPTEt ’T)|MECH. We construct
v} such that vi(j) = v (j) if j € OPTEt ’T)|MECH and

7" t*,T)
" v (OPT( |MECH)
U; (.7) 2 252

simply 0. Clearly v} satisfies the first, third and fourth

, while all other entries are
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properties in the lemma. For the second property, notice
that we have

o' (OPT® D) |ymon)

)OS

iEMECH jeopr(t*1)

" PT(t*,T)
> Z Z (vg’(j)—v (© 2 IMECH)

ieMECHjeOPTEt*,T)

vi(7)

v’ (OPT(t* ) |MECH)

> o"(OPTY |ypen) — Y 252

1<j<m

Recall that 3, ;< j% = %2, and therefore, we have

U/ (OPT(t* ) ‘MECH)

7'('2’()// (OPT(t* ) |MECH>
12

> " (OPT® D \pon) —

N ’U(OPT(t*’T) |MECH)
- 10
0

We construct (v}, -+ ,v},) satisfying the properties
defined in Lemma 4.4. Let the supporting price of item
j be p; = vi(j) for j € OPTEt T We say an item
j € B! is a hit-item if the random price p' satisfies
1P <" < gpj.

LEMMA 4.5. For j € B' with p; > 0 and t > t*, with
" 1 1 t <1
probability Q(m), 1p; <p' < 5pj.

Proof. Observe that |P'| = O(logm;), so each price is

1
log my

chosen with probability 2 ( ) It suffices to show
that there exists p € P’ satisfying +p; < p < $p;, which

is equivalent to showing that

o'(OPT® D | ypen)
4m%

< U/(OPT(t*’T”MECH)

< 152

tt
(4.5) =<

c-mg

1

where the second inequality follows the fact that j < m;
and

/ (t*,T)
v'(OPT IMECH) > lpj.
4 4
Let ¢ = 2048. For the first inequality in (4.5), since

est; < v(OPTHD)Y and v(OPTHD)) < 20(0PTH 1))
(Lemma 4.2),

(46)  c-m]-esty >

v(OPTWT))
2048m?

v(OPT®1))
1024m2

esty
2048m% -

Now by Lemma 4.3 and Lemma 4.4, we
have v(OPT D)) < 40(OPT® " D|ypen) and
U(OPT(t*’T)|MECH) < 10’[)’(OPT(KK’T)|MECH)7 SO

esty < U(OPT(t*’T)lMECH) < U'(OPT(t*’T)|MECH)
2048m? - 256m% - 25.6777/%

’UI(OPT(t*’T)|MECH)

- 4m? '

For the first inequality in (4.6), because est; >
v(OPTM[gpar) and v(OPT! |gpar) > Lo(OPT!)
(Lemma 4.3),
2048m? - est, > 1024m? - v(OPT® Y |gpar)
> 256m? - v(OPTHY),

Again by Lemma 4.4, v(OPT®) > %U(OPT(LT)), o

2048m? - est; > 128m? - U(OPT(I’T))

> 'UI(OPT(t*’T) |MECH)
- 4

d

Let G be the set of hit-items in U®"T) and SOLD
be the set of items that are sold. Notice that if j € GN
SOLD, it contributes revenue p; to the welfare. All that
remains to show is that the buyers’ utilities can capture
the welfare generated by the unsold items. While this
is quite well-understood in static environments, in the
online environment that we consider, one additional
difficulty is to summarize the contribution of unsold
items over stages. Moreover, in light of our impossibility
results, for any such summarization argument to be
useful, it must apply only to submodular valuations.
Below we present such an argument. Recall that SI is
a set of items allocated to buyer i at the end of stage T

LEMMA 4.6. Y, v;(SF) > %ZG\SOLDPJ-

Proof. LetI'; = (OPTY*’T) N G) \ SOLD. Consider the
telescoping sum of v;(T; | ST):

V; (Fl ‘ SZT) = Zvi (Fith ‘ FiﬂU(l’t_l) USzT) .
>t

Because of the submodularity of v; and the fact that
stcsTcrynutt-Huysr,

47 v (i 8]) <Y v (TinB'|S)).

t>t*

Now consider the behavior of buyer ¢ at time ¢. After
buying S! \ Sit*1 at stage t, buyer ¢ could still choose
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to buy I'; N B, which would give her v; (I'; N B* | SY)
value with payment » . - p. p‘. The only reason that
buyer 7 does not do so is that her marginal gain is at
most her payment, i.e., v; (T'; N B' [ Sf) < 3" p g p".
So given that p* < p;/2 for j € G, we have

>t

<) > o< % > pi= %Ui(ri)'
Jjer;

t>t* jeT;NBt

Therefore, buyer ’s value is v; (S7) = v; (S7 UT;) —
vi (i | ST) = wi(Ty) = 505(T4) > § 35, Py 0

We can now proceed to prove Theorem 4.2 by
combining the contributions from items that are sold
and items that are not sold. Note that our proof
breaks for XOS valuations since we use the property of
submodularity in (4.3) for the welfare guarantee of the
second price auction (Lemma 4.1), and in (4.7) for our
revenue-utility decomposition argument for submodular
valuations (Lemma 4.6).

5 Bayesian Online Mechanism for Submodular
Valuations

In this section, we extend our results to a Bayesian set-
ting, where the buyers’ valuations are drawn indepen-
dently from prior distributions that are common knowl-
edge.

We design a computationally efficient and univer-
sally truthful mechanism which guarantees é of the the
optimal welfare in expectation. Compared to the static
setting [20], the first challenge is to establish a bench-
mark and its corresponding supporting prices in an on-
line environment. Moreover, such a benchmark must be
stable, in the sense that, roughly speaking, as soon as
an item arrives, the benchmark restricted to this item
can be calculated immediately, and is no longer affected
by any future items. To tackle this difficulty, we first es-
tablish an offline benchmark that guarantees a constant
fraction of the welfare produced by the optimal offline
allocation algorithm. Our benchmark is inspired by the
greedy algorithm to online optimization for submodular
valuations [21, 23]. We then show that our online truth-
ful mechanism can approximate the offline benchmark
with a constant ratio.

Offline benchmark and supporting prices.
For an offline allocation algorithm A, let the allocation
that A generates with items U and valuations ¢ as input
be A(U,7) = (A1(U,7),...,A,(U,v)). Consider the

greedy allocation rule A defined inductively, as follows.

Ai(lj —1,9) U {4},
if § = argmax vy ({7} | Av ([~ 11,7))

otherwise
where [j] = {1,---,j} and ties are broken in any

consistent manner. In other words, A allocates items
in a greedy manner such that item j is allocated to the
buyer with the largest marginal value for item j. It is
known that A always produces a 2-approximation of the
optimal offline allocation.

LEMMA 5.1. ([21, 23]) For any U and submodular val-
uations v € V", v(A(U, 7)) > Lv(OPT(U, 0)).

We define the supporting prices with respect to ¢/
for item j from the greedy allocation .A:

SP, (A(U(l’t),ﬂ),ﬁ) -
S1fi e AU0,9)] (1} A -1.9)).

3

That is, SP; is the marginal value of j for the buyer
who receives j according to the greedy allocation A.
These prices support the welfare generated by A in the
following sense:

LEMMA 5.2. The supporting
SP; (A(U(l’T),z_)’),ff) satisfy for any buyer i,

2.

jeAi (U )

prices
SP; (AU, 5),5) = v (AU, 7).

Moreover, for any buyer i and S C Ai(U(l’T),U), we
have 3, g SP; (A(U(lfT),ﬁ),'&') < ;(9).

In the greedy allocation algorithm A, for j € B,
I[jeAUED 6] =1[je AU, )], which im-
plies that SP; (AU, 7),7) = 8P, (AUAD),7),7).
For each item j € B' we will set p; to be half
of the expectation of SP; (A(U(l’t),ﬁ),ﬁ), Le, pj =

L - By [SP;(A(UG,7),7)]
present our online mechanism BAYESIANONLINE for the
Bayesian environment (Algorithm 5.1). We emphasize
that it is crucial to approach the buyers in the same
ordering for all stages and we choose the natural order
{1,--- ,n} for ease of presentation.

We are now ready to

Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



ALGORITHM 5.1. (BAYESIANONLINE)

for each stage ¢t do
Let M = B!
for each buyer i in the ordering of {1, -+ ,n} do
Let D; = argmaxge,, vi(S | Sf_l) - Zjespj
Allocate D; to buyer i (Sf = S!™' U D;) and
charge her > .., p;
M = M\ D,
end for
end for

Our mechanism is truthful since for each stage,
the posted-price auction is truthful. To implement

the mechanism, notice that for j € BY, p; = 1.

2
Es [SPj (A(U(l’t), 17),17)} only depends on F}, .- FY
which are already known to the mechanism upon the
arrival of item j.

THEOREM 5.1. BAYESIANONLINE is universally truth-
ful and 8-competitive.

For convenience, let ST () represent the allocation
after stage T' by our online mechanism BAYESIANON-
LINE when the realized valuation profile is . To prove
Theorem 5.1, we first generalize our revenue-utility de-
composition argument (Lemma 4.6) to the Bayesian set-
ting, allowing for a summarization of the contributions
from items over stages. Fix a buyer i’s valuation v; and
consider two arbitrary valuation profiles ¥ = (v;, ¥_;)
and @ = (v, 7). Let Wi(,7") = A;(ULT) 5)NSF (%)

and Y;(7,7") = A,(UGT) )\ (Uygi Sy (v))~

LEMMA 5.3. For any buyer i and two valuation profiles
T = (v;,U_;) and ¥ = (v;,0",),

u (ST@) = 0 (Wi@. P U@ D) - 3wy
JEY;(U,0")

ST (w), W,; =
v"), and Y; = Y;(¥,¢"). Then, we have

Proof. For ease of presentation, let ST =
Wi(@,
V; (S,LT) = U; (SZTUK) -
=Y w(vin Bt STU(vinUtY))

t

vi (Y] 57)

where the last inequality is due to the telescoping sum
representation of v; (Y; | Sf'). Notice that S} C ST C
STy (Yi N U(l’t_l)) and we have

(5.8) vi (ST) > v (STUY:) =Y v (V;nB'|S)),
t

where the inequality follows submodularity. Since buyer
i did not purchase bundle Y; N B! when she has already
purchased S!, the price for acquiring ¥; N B' must be
larger than her marginal value. Therefore, we have
v; (S;T) > v (SIT UYZ») -> ZjeYiﬁB’f p;. We finish
the proof by noticing that 37, > .cy.pePj = X ey, Pj
and v; (SIT U YZ-) > v; (W; UY;) since W; C ST a

We are ready to prove Theorem 5.1 by
noticing that Lemma 5.3 implies v; (S7 (7))
can be lower bounded as wv; (SY(?)) >

Ev, [0i(Wil@ ) UYi(#,7)) = ey, 23], where

! T
v~ Hi,# F'.

Proof. [Proof of Theorem 5.1] Let SOLD(¥) be the set
of items that are sold in BAYESIANONLINE when the
realized valuation profile is 7. Moreover, let SOLD;(¢_;)
be the set of items that are sold to some buyer in [¢ —1]
when the realized valuation profile for other buyers is
vU_;. Notice that if item j is sold, then item j contributes
revenue p; to the welfare. Therefore, we have

> > " Pr[j € SOLD(%)] - p;
j v

£ | (570)]

Pr[j € SOLD(#)] - E [SPj (A(U“’T),E),Uﬂ .

)

<

J

We now proceed to show that,

From Lemma 5.3, we have that Eg [v; (S{(7))] is at
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least:

E vZ(W (%,7) UYZ-(E,E’))

S,
Vi, V—4,V_,

N 1 € Vi@, )] - p

J

> E_|>_SP (A(U(I’T)>”iﬂ/—i)’”i’ﬁl—i))
J

L,
Vi, V—4,V_ 5

1]j & SOLD(5-4)] - 1]j € Ai(UDT), 0,7 |

=15 e AU, v, 1) |

H{j ¢ SOLDi(ﬁ—i)] "Dy

Z{)P [j ¢ SOLDi(g—i)}

E H[j S .Ai<U(1’T),Ui,1_}'l_i):|

-
v, U

. (SPj (AUET) vy, 7 ), 05, 0,) — pa‘)

> 3 Pr[j ¢ SOLD®)] & |1[j € 4 (U7, )]

- (SP;(AUD,5),7) — p; )

where the first inequality follows that W;(v,0") U
Yi(0,7") = ALUED 7))\ (U<, Sv (7)), Lemma 5.2,
and W;(¥,7") U Y;(¢,7") D Y;(¢,7"), while the equal-
ity follows the independence between SOLD,(v_;) and
(v;,¥;).  Particularly, the independence between
SOLD;(¢_;) and (v;,0";) is established from the fact
that the mechanism approaches the buyers in the same
ordering for all stages. This is the reason why approach-
ing the buyers in the same ordering for all stages is cru-
cial.

Summing over i, we have Y, Eg [v; (ST (7))] is at

least

> br [j ¢ SOLD(U)} E

>o1fj e AU, 7)]

K2

( U(l,T)7,l—)’)’{)’) —m)]
-3 P E[8P; (AU, 5),5) - p;]

v

=52 Pr [j ¢ SOLD(ﬁ)} E [SPj (A(U“’T),E),ﬁ” .

[J # SOLD(7)| -

v

l\D\»—A

Putting the two parts for sold items and unsold
items together, we have

2o (79)) > 155 e (a0,

v

where the equality follows Lemma 5.2 and the last
inequality follows Lemma 5.1. |

Note that our proof breaks for XOS valuations
since our offline benchmark highly relies on submod-
ular valuations (Lemma 5.1 and Lemma 5.2) and we
use the property of submodularity in (5.8) for our
revenue-utility decomposition for submodular valua-
tions (Lemma 5.3).

6 Online Mechanisms with No Expiration Date

In this section, we describe our reduction from the set-
ting with no expiration date to the classical offline en-
vironment. The only condition required by the reduc-
tion is that the offline mechanism needs to be approz-
imately monotone, which roughly says that if we give
buyers some items before the mechanism starts, then the
(expected) welfare after running the mechanism is not
much smaller than the welfare from running the mech-
anism without the initial items. This condition holds
for most, if not all, existing mechanisms for subaddi-
tive (including XOS) buyers. As long as the condition
holds, our reduction preserves the approximation ratio
of the offline mechanism up to a constant factor in the
no expiration environment.

6.1 The Reduction We first state the requirement
of our reduction.

DEFINITION 6.1. (APPROXIMATE MONOTONICITY) A
truthful mechanism M, which maps a set of items U
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and valuations ¥ to a (randomized) allocation M(U,T)
s approximately monotone for a class V of valuations,
if there exists a constant C > 0, such that for any
U0 = (U9, ,U°} and U with UNU? = 0 for all i,
and ¥ € V™ where the domain of v; is over | J;_, UPUU,

E lz v (Mi(U, 17))
Z o5 (Uio UM, (U, viwio))] .

I

<C-E

where v;yo(S) = v (SUUP)—v;(U?) for alli and S C U.

As discussed above, the condition can be interpreted
as giving items U? to buyer i for free before running
M does not hurt the expected welfare more than a
multiplicative constant factor. While this interpretation
makes the condition appear trivially true, we emphasize
that it is technically non-trivial to prove an offline
mechanism is approximately monotone since Vi|uo is not
necessarily a member of the class V, e.g., when V is
the class of XOS valuations. We show that fortunately,
most existing mechanisms, including those inducing the
desired competitive ratios in the literature, are in fact
approximately monotone. The proofs are deferred to
Section 6.3.

6.1.1 Prior-free setting We are now ready to give
our reduction in the prior-free setting. Before the
first stage, the seller flips a fair coin. If the result is
heads, she implements the second price auction with
reserve; otherwise if the result is tails, she runs an
estimation scheme and makes repeated calls upon the
offline mechanism.

Second Price Auction with Reserve At staget,
we will run a second price auction for the entire bundle
of unsold items U™ \ A1 with a reserve price set
to the total welfare of the allocated items, i.c., v(S*~1).
Notice that the second price auction is deterministic and
dominant-strategy incentive-compatible, and thus, at
stage t, each buyer ¢ will truthfully report her marginal
valuation over the bundle: v;(UMH \ At=1 | §i=1y
Once the bundle is sold to buyer i at stage t, the seller
can update the total welfare of the allocated items to
0(St) = v(§1) 4 o (UGD \ A1 | S8,

The Estimation Scheme We first divide the
buyers into two groups, STAT and MECH, where
the group for each buyer is chosen independently and
uniformly at random. For each stage t, we maintain
an estimate est; of the optimal welfare of allocating
UMY to agents in STAT, using the 2-approximation
algorithm for subadditive valuations by Feige [18] (see
Theorem 4.1). The estimation scheme works in the

following way:
e Initialize k = 0, estg = 0, and tg = 0.

e At each time ¢, compute est;. If est; > 8esty, , set
k = k+ 1 and t;, = t; call the offline mechanism
with items U*=1+18) and buyers MECH.

In words, we implement the offline mechanism on a
new batch of items when the current estimate est; is at
least 8 times the estimate when the previous allocation
happened. Intuitively, this guarantees that there is high
enough welfare to be allocated in the current batch of
items and at the same time, the welfare loss is low, if
the market terminates with these items unallocated.

6.1.2 Bayesian setting For the Bayesian setting,
there is no need to flip a coin to implement two different
mechanisms. In fact, it suffices to implement the
estimation scheme only:

The Estimation Scheme For each stage t, we
compute an estimate est; of the expected optimal wel-
fare of allocating U("'Y) from the prior. The estimation
scheme works in the following way:

e Initialize k = 0, estg = 0, and to = 0.

e At each time ¢, compute est;. If est; > 2est;,, set
k = k+ 1 and t; = t; call the offline mechanism
with items U118 and all the buyers.

In words, we implement the offline mechanism on a
new batch of items when the current estimate est; is
at least twice the estimate when the previous allocation
happened.

6.2 Analysis In the prior-free setting, the sec-
ond price auction with reserve is clearly incentive-
compatible. As for the estimation scheme in the prior-
free setting, observe that the scheme queries only buy-
ers in STAT, who get no items whatsoever, and there-
fore will answer all queries truthfully. On the other
hand, the offline mechanism interacts only with buyers
in MECH, whom the estimation scheme does not query
at all. These buyers, being myopic, will act truthfully as
long as the offline mechanism itself is truthful. There-
fore, the estimation scheme is also incentive-compatible,
and thus, the combination of these two subroutines is
universally truthful. A similar argument can demon-
strate that the estimation scheme in the Bayesian set-
ting is also universally truthful.

The following theorem, which is the main result of
this section, translates approximation guarantees in the
classical offline setting to the no expiration environment.
The only requirement, as stated above, is that the offline
mechanism must be approximately monotone, which
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is indeed satisfied by almost all existing results, and
in particular, by the state-of-the-art mechanisms for
subadditive and XOS buyers, respectively,

THEOREM 6.1. For a set V of complement-free valu-
ations, suppose there exists a truthful offtine B(mr)-
approximate mechanism with mr items and the offline
mechanism is approrimately monotone. Then, there ex-
ists a truthful online O (B(mr))-competitive mechanism
for the no expiration environment.

The rest of this section is devoted to providing
high-level proof ideas for Theorem 6.1. The proof for
the Bayesian setting follows the fact that the state-of-
art mechanisms are approximately monotone and an
argument presented below for the estimation scheme
similar to the prior-free setting. We will focus on
the prior-free setting from now on. Note that it
suffices to show that for a fixed end of horizon T,
the expected welfare generated by our reduction is at

least €2 (m) fraction of the welfare of the optimal
allocation. Our analysis is divided into two parts
depending on whether a dominant buyer exists: buyer @

. . . v(OPT(UMT))
is dominant if v;(U (1)) > %

LEMMA 6.1. When there exists a dominant buyer, the
second price auction with reserve guarantees (1) frac-
tion of the optimal welfare.

Proof. Let i* be a dominant buyer. For convenience,
let t; be the k-th stage in which the bundle is sold
in the auction, i.e., there exists a buyer ¢ such that
v (UMD \ A1 S5Y) > (S8 for t = t;,. We show
inductively that for every ¢, the welfare v(S*) satisfies
U(gtk) > Vi* (U2(1>f«k7)).

By our definition of 5, we have A% = UML) and
Ate—t = UMte-1)  Agsume that at t, the bundle
Uts—1+1t) i allocated to agent ij. Since the bundle is
sold, we have
(6.9)

vy, (TR0 | ) > 0 (§M1) > 0 (5727,

i*

On the other hand, since buyer ¢;, wins the second price
auction, her bid must be at least the bid submitted by
buyer ¢*:
(6.10)

0y (U= HLI) [ ) > e (U0 | 5120,

Combining (6.9) and (6.10), we have

(6.11)
2u;, (U1 T hI) | Gl > gy (U (L))
> vy (U(tk—1+17tk) | U(Ltk—l)),

where the last inequality is by subadditivity. Therefore,
we have:

v(§) = 0(§M1) 4 vy, (U THI) | Gl

ik
(induction hypothesis and (6.11))

1 1
§vi*(U(1,tk71)) + §Ui*(U(tk71+1,tk) | U(l,tk—l))

1
= 51)7:* (U(17tk)).

v

We will finish our proof by showing that at stage T,

1 v (OPT(U™M))

— 1
T 1,T
v(ST) > 5vi*(U( ) > Tl

)
Let tx is the last stage in which the bundle is sold in

the auction. If tx = T, then the above inequality from
induction implies

J - 1 1
U(ST) = U(StK) Z avi* (U(LtK)) - §’Ui* (U(17T))
Otherwise, at time T no item is allocated. Using the

induction hypothesis and the property of a second-price
auction with reserve, we have that

(87 2 max { G (U009, 3o OO0 505 |

Therefore,
oT 4 1 (1,tk) 1 (tx+1,T) t
v(S )23'51)“([] vK)_|_5’Ui*(U KHLL) | Sl
1 1 1
= 5 (U 4 20 (Sj2) + Zoie (U | S3)

4 11}‘* (U(tK+17T) ‘ StK)
5" e
Using monotonicity of the valuation functions, we get
ary < L (Ltx)y 4 L tx
’U(S ) > gvi*(U K ) + g'l}i* (Sz* )

1
+ gvi*(U(tK+l’T) | Sff()

1
= g’[}i*

= %%*W“’T))

1
(Ute)) 4 gvi*(U(tK"rl,T))

where the last inequality follows the subadditivity of the
valuation functions. d

From now on, we will focus on the case in which
there is no dominant buyer. Moreover, let K be the final
value of k at the end of the estimation scheme, which
is the number of calls made to the offline mechanism.
The estimation scheme divides items into batches, and
runs one auction for each batch. The approximation
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guarantee of the offline mechanism then applies with
respect to the welfare supported by these individual
batches. We first need one of these batches to be
large enough to support a constant fraction of the
welfare given by the offline optimal allocation. To
this end, we consider batches which overlap the time
interval [T1,T3], on which the optimal welfare from
the prefix of items UMY for t € [T}, Ty grows from

(.,1) .7
U(OI:S‘E)O ) v(oplgo ). Suba(deitiVity guarantees

that the optimal welfare from U(T:72) is a constant
fraction of v(OPT®T)). By standard concentration
bounds, this welfare is distributed almost equally into
STAT and MECH. As a result, esty;, and esty, are
within a constant factor of each other, and there are only
a constant number of batches overlapping [T, T3], since
est can only increase so much. Thus, the largest batch
among these provides a constant fraction of v(OPT®1))
to buyers in MECH:

LEMMA 6.2. Suppose there is no dominant agent, i.e.,

a.7)
for any agent i, v;(UGT)) < U(O#:), and then

with constant probability, there is some k such that
v(OPTI(\fffE’Clgl’tk)) = O(v(OPTYDY), so that the batch
supports enough welfare.

Proof. Let

Ty = min{t | v(OPT®Y) > o(OPTM D) /10001,
and

Ty = min{t | v(OPT®Y) > 4»(OPT®T))/100}.

Observe that T < T, < T, and it is possible that T7 =
To or To =T or Ty = T5, = T. Also, by the Hoeffding
bound, with constant probability, simultaneously for all
t e {Tl, Tg, T},

0.20(OPT()
min(v(OPT|grar), v(OPT ) | ypen))
< max(v(OPT®)|gpar), v(OPTH | \pen))
< 0.80(OPTWY),

VAN VAN

We condition on this from now on.

Note that there are only a constant number of
batches ending between 77 and T, inclusively. This is
simply because est”™ = Q(v(OPT!T))), and est!x <
v(OPTHD)). We argue that one of these batches
satisfies the conditions of the proposition.

We first show there is enough welfare between T}

and T (inclusively) for agents in MECH.
(subadditivity of OPT)
v(OPTYiCH) > v(OPTyiisc) — v(OP Ty )
(optimality and monotonicity w.r.t. agents of OPT)

> o(OPTET2) |y pey) — o(OPTW 1)
(concentration at Ts)

> 0.20(OPTHT2)) —
(choice of T} and T3)

> %U(OPTU’T)) - Wloov(OPT(l’T))

v(OPT®HT1 =)

= Q(v(OPTEDY),

Now intuitively, the remaining issue is that maybe
the final unclosed batch starts before Ty (inclusively),
and contains most of the above welfare. We show that
this is impossible. In particular, there must be a batch
ending after Ty (inclusively). Suppose otherwise, i.e.,
tg < Tp. We show that est?” > Sest'%, leading to a
contradiction. In fact,

1
(2-approximation) est? > iv(OPT(l’T) |sTaT)

> 0.10(0OPTHD))
y v(OPTWT))
= 100
> 8 x v(OPTHT2—Y)
> 8 x est’21

(tx < T» and monotonicity of est’)
> 8 x est?x .

(concentration at T)

(choice of T5)
(definition of est?)

Now we know:
o v(OPT{I1LT2)y — ©(v(OPT™ ™)), and

e there are only O(1) batches overlapping [17, 1],
whose indices are ki,...,ka where 5,1 < 11 <
thys thy > 1o, and ko — k1 = O(l)
We only need to show that for some k € {k1,...,ko},
v(OPT{d ™) = ©(w(OPTH 1)),
By subadditivity and monotonicity w.r.t. items of OPT,

v(OPTEAE ) = w(OP TR )

> o(OPTyricy))-
Since there are only O(1) summands, for some £k,
v(OPTfds ™) = O@(OPT{cR)
= O(v(oPT®1))),
This is our desired batch. O
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We then focus on this constant-approximate batch
guaranteed by Lemma 6.2. We argue that the approx-
imation guarantee of the offline mechanism still holds
for this batch, so the welfare from this batch alone is
a good approximation of the offline optimal welfare.
While this may appear trivially true, we note that by
the time the offline mechanism is called, the buyers may
already possess some items, which may lower their in-
terest in purchasing new items. Such a change of their
behavior has a potential to ruin the welfare guarantee.
This, however, will not happen if the offline mechanism
is approximately monotone, which concludes the proof
of Theorem 6.1.

6.3 Approximate Monotonicity of Mechanisms
Based on Posted-Price Auctions In this section,
we argue that if the offline mechanism is “essen-
tially based on posted-price auctions and standard
revenue-surplus arguments,” then the mechanism is
approximately monotone. The argument presented
here applies in particular for the O(logm loglogm)-
approximate mechanism for subadditive buyers [9] and
the O((loglogm)?3)-approximate mechanism for XOS
buyers [2] in the prior-free environment, and the
O(loglog m)-approximate mechanism for subadditive
buyers [16] and 2-approximate mechanism for XOS buy-
ers [15] in the Bayesian environment.

For brevity we refrain from unnecessarily repeating
the entire arguments of the offline mechanisms. The
key property we need to prove is that in a posted-price
auction, if enough “under-priced” items remain unsold,
then the allocation supports reasonably large welfare,
no matter what items buyers already possess before the
auction. This can be formalized as the following lemma.

LEMMA 6.3. Given a set of buyers C with valuations v,
suppose buyer i € C already has items SY. Consider a
posted-price auction that is run with items U and prices
p; for j € U as input and after the auction, buyer i has
items SY U S}

Let OPT be an allocation maximizing the welfare
> icc vi(OPT; U S9). Suppose {q;}jcu satisfy: for any
i and T" C OPTy, 32 cq qj < vi(T").

Let T C U be a set of items satisfying: T is not sold
in the auction, and for any j € T, p; < %qj, then

Su(stush =1 a

ieC JET

Before proving the lemma, we briefly discuss the
offline counterpart of Lemma 6.3 and the connection
between them. {g;} in the lemma can be viewed as
supporting prices for OPT, and T is the unsold set
of items whose prices are sufficiently smaller compared

to the supporting prices. In the offline environment,
when the posted-price auction happens, no buyer has
any item, i.e., SY = ). In such cases, it is easy to show
that the outcome of the auction satisfies

Su(s?tush =g

ieC JET

The intuition is that the unsold items provided an
option for all buyers, which would guarantee each buyer
some surplus (i.e., value minus payment). The buyers,
however, did not choose this option, so it must be the
case that the buyers chose something more desirable,
which gave them only larger surplus. The above lemma
essentially says, even if the buyers already have some
items before the auction, this bound can only be worse
by a factor of 2.

Proof. [Proof of Lemma 6.3] For each i € C, we show

2.

FJETNOPT;

=

The lemma then follows by summing over i. By
purchasing TNOPT; instead of S}, the marginal utility
of i is at least

>

F€TNOPT;

(¢; — pj) — vi(S7) >

>

F€TNOPT;

1
iq]' - Ui(szo)’

which lower bounds i’s value v;(SY U S}). On the
other hand, by monotonicity, i’s value is at least v;(S?).
Putting the two bounds together,

>

F€TNOPT;

1 1
Z 59~ vi(S7) + 5%—(5?)
JETNOPT;

v;(SY U S}) > max %qj —0i(57), vi(S})

Y

=~ = DN =

aj-
FJETNOPT;

|

On may check that given the above lemma, the
entire arguments in [9] and [2] remain valid even with
free items dispensed beforehand.

7 Other Related Work

Initiated by the seminal work of Dobzinski et al. [14],
offline truthful combinatorial auctions have been exten-
sively studied in the last decade. For general mono-
tone valuations with demand queries, Dobzinski et al.
[14] gave an O(y/m)-approximation, which matches the
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communication complexity lower bound by Nisan [26].
Restricted to complement-free buyers, the first nontriv-
ial O(log? m) upper bound for XOS valuations was also
given by Dobzinski et al. [14]. Dobzinski [9] later im-
proved the upper bound to O(logmloglogm) for sub-
additive buyers. For XOS buyers, Krysta and Vocking
[22] obtained an upper bound of O(logm) that bet-
ters the more general bound for subadditive buyers.
Later, Dobzinski [11] further improved this bound to
O(y/log m) for XOS buyers. In a very recent paper, As-
sadi and Singla [2] gave an O((loglog m)?)-approximate
mechanism by combining existing techniques with a
novel learning procedure, which iteratively estimates
the supporting prices of individual items. No super-
constant lower bound is known in this setting. Instead
of both demand and value queries, if one were restricted
only to value queries, Dobzinski et al. [13] gave an
O(y/m) upper bound for submodular buyers, which is
matched by information-theoretic [10] and complexity-
theoretic [12] lower bounds.

From a pure algorithmic point of view, the prob-
lem of computing a welfare maximizing combinatorial
allocation has also been extensively studied. For sub-
modular valuations, Vondrak [28] gave an (e/(e — 1))-
approximation using value queries only, with a match-
ing lower bound by Mirrokni et al. [24]. For the more
general classes of XOS and subadditive valuations, it
is impossible to achieve O(y/m)-approximation using
polynomially many value queries [24], which matches
an upper bound by Dobzinski et al. [13]. With de-
mand queries, for submodular buyers, a slightly bet-
ter upper bound was given by Feige and Vondrak [19],
while the best known lower bound is ((2e)/(2e — 1))
[12]. For XOS and subadditive buyers, Feige [18] gave
an (e/(e—1))-approximation and a 2-approximation re-
spectively, using both value and demand queries. An-
other line of related research considers an online set-
ting with sequentially arriving buyers and b identical
copies of each item, which was initiated by Bartal et al.
[4] and Awerbuch et al. [3]. In particular, Krysta
and Vocking [22] gave truthful mechanisms that are
O(m!/ 1 log(bm))-competitive for general buyers for
any b > 1, and O(logm)-competitive for XOS buyers
when b = 1. Cole et al. [5] consider a related setting,
where each buyer is present during some time inter-
val, and design prompt mechanisms in this setting. In
Bayesian settings where the distributions of buyers’ val-
uations is known, the model with buyers arriving online
can be viewed as a combinatorial variant of prophet in-
equalities. In this setting, Feldman et al. [20] gave a
truthful ((2e)/(e — 1))-competitive mechanism for XOS
buyers, which was later improved to 2-competitive by
Diitting et al. [15]. Ehsani et al. [17] further showed

that the ratio improves to e/(e — 1) when buyers arrive
in a uniformly random order. For subadditive valua-
tions, the O(logm) competitive ratio by Feldman et al.
[20] has been improved to O(log m/loglogm) by Zhang
[29], and to O(loglogm) by Diitting et al. [16].

There has been a large body of research on dynamic
mechanism design concerning forward-looking additive
buyers in the past decade [1, 7, 25]. For a Bayesian en-
vironment, Mirrokni et al. [25] propose non-clairvoyant
mechanisms in which it is always an optimal strategy
for the buyers to report truthfully no matter what the
future would be, when the valuations are additive and
distributions are independent across the stages. It is
later generalized to a setting with public valuation cor-
relations in which the distributions can vary with any
publicly observable information from the past of the
mechanism [7]. Nonetheless, their model cannot cap-
ture submodular valuations.

8 Future Directions

Our works open up several interesting future research
directions. We have already remarked on the open prob-
lem of designing a truthful online mechanism for omni-
scient buyers, i.e., who can plan with future knowledge,
with submodular valuations. Future research can also
consider to improve the upper bound on the welfare ap-
proximation in the prior-free online environment with
submodular valuations, given the recent breakthrough
in the offline setting by Assadi and Singla [2]. On the
other hand, it would also be interesting if one could es-
tablish a super-constant lower bound for the prior-free
online environment with submodular valuations, partic-
ularly since no such lower bound is known offline. One
can also consider the middle ground between immediate
expiration and no expiration to investigate the effect of
expiration dates. Note that our negative result contin-
ues to hold when the shelf life of each item is a constant
in relation to the entire time horizon T'. But, it would
be interesting to investigate the case when the shelf life
is longer, say a polynomial function such as v/7T.
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