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This paper reviews several leading approaches for
asymptotic modeling of thin layers in elastostatics and
wave propagation phenomena. The issues related to
applications of the so-called "equivalent" or "effective"
boundary conditions and their interpretations are
highlighted. Comparative analysis of asymptotic
models is performed for two-dimensional elastostatic
case using a novel complex variables-based modeling
tool. Its implementation allows for straightforward
derivations of higher order boundary conditions for
problems with layers of arbitrary sufficiently smooth
curvatures. Explicit expressions for the conditions up
to the third order are provided. All models are tested
using available benchmark solutions and the solutions
for the limiting cases of the layer parameters.

1. Introduction

Asymptotic-based approaches have long been used for
modeling elastostatics and wave propagation problems
with thin layers. They eliminate the need for direct
simulations of the layers, which could be a challenging
task due to significant variations in characteristic scales
of the problems. They also represent attractive alternative
to the approach in which the layers are modeled by
means of various structural elements, e.g. beams, shells,
or plates (see, e.g., [1-4] ), as the latter require decisions
on which type of elements to use, e.g., [5]).

Unlike, phenomenological models (see reviews ine.g.,
[6-9]) that represent a layer by a surface endowed with its
own energetic structure and require supplementary data
(e.g., interface constitutive laws, material parameters,
etc.), the asymptotic models are derived analytically from
the fully resolved problems that includes thin layers.
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Asymptotic procedures for elastic and wave propagation problems were developed
independently but more or less simultaneously. However, this happened sometimes without
awareness of the developments in respective areas. Thus, one goal of present paper is to highlight
the connections between the leading modeling techniques used in both areas. Additionally, there
are still a few issues with the interpretation and/or results obtained with some of the procedures.
So, the other goal of the paper is to highlight and address those issues.

The analysis of the relevant literature identified the following two groups of modeling
techniques used in both areas.

The approaches of the first group use standard asymptotic expansion method in which the
dimensionless layer thickness ¢ is chosen as a small parameter. The reviews of early literature can
be found in [10-12]; more recent developments are reported in, e.g., [13-21]. Such an approach
produces a set of boundary conditions across a single surface "interface" that eliminates the layer.
The resulting boundary conditions are referred to as "equivalent” or "effective" in the literature on
wave phenomena and as "jump conditions" in the literature on elastostatic problems, in which
the asymptotic models are referred to as "imperfect interface models." An order of boundary
conditions or an interface model is defined by the highest power of ¢ involved in the asymptotic
series. The obtained models are for the layers characterized by the parameters that are of order
eM. Another approach of that group is based on the energy minimization method, see e.g.,
[17]; there it was demonstrated that the asymptotic expansion- and energy minimization-based
methods are consistent and produce the same types of asymptotic models.

Most of the reported boundary/jump conditions obtained with the approaches of the first
group are of low orders and only allow to capture the layer behavior up to the so-called membrane
type (M =—1,0,1), or their derivations require separate asymptotic analysis (and result in
separate type of boundary conditions) for each value of M, see e.g. [5, 22]. In addition, some
procedures involve recursive relations to obtain higher order terms of asymptotic series and,
in general, result in implicit forms of jump conditions. More importantly, most of the available
models are for problems with planar and very thin layers. We are only aware of a few papers that
deal with curved layers, see e.g., [16, 23], where the first order models were obtained. However,
it is clear from the plots presented on Figs.2,3 of [16] that the results are only satisfactory for very
thin layers and limited cases of material parameters.

The approaches of the second group use the Taylor expansions (in terms of the layer thickness
h) for the fields involved; an order of asymptotic model is defined by the truncation order
of the expansions. Several types of such approaches could be distinguished depending on the
interpretation of the resulting boundary/jump conditions.

One approach was suggested by Hashin in [24, 25] for elastostatic problems. There, the fields
inside the layer were expanded in the normal direction about the points located at its inner
boundary and the expansions were used to evaluate the fields at the outer boundary. The use
of perfect bond conditions at the boundaries allowed to exclude the fields inside the layer. The
obtained jumps in fields across the layer were treated as those across the interface (coincided with
the inner boundary). It is clear that this approach can only be used for cases of very thin layers.

Different approach was proposed in a series of papers by Rokhlin and his collaborators in the
context of wave phenomena, see, [8, 26, 27]. In their papers, the primary and secondary fields on
both sides of a layer are arranged in vector forms and connected by the so-called transfer matrix
that contains information on the layer properties. This matrix is asymptotically expanded in terms
of thickness of the layer and an order of the model is defined by the truncation order of the series.
The model resulting from that approach is referred to as the Rokhlin-Wang model. The papers
relevant to this approach reported the models of the first and second orders. However, the second
order models were obtained not from rigorous asymptotic considerations but approximately.

In the Rokhlin-Wang model, the boundary conditions are formulated as jumps across a
layer without any consideration of an interface. Somewhat different approach that results in
the same type of boundary conditions was used in [28, 29] for problems of ultrasonic guided
wave propagation in thin anisotropic layers. In context of elastostatics, similar type of boundary
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Figure 1: (a) Three-phase configuration problem, (b) two-phase configuration problem

conditions of the first and second orders were introduced in e.g., [30-32], where they were labeled
as the jump conditions for "Model I." Rokhlin-Wang’s model and Model I allow for simulations of
curved layers and for a relatively wide range of the problem parameters. However, despite some
attempts to study the boundary value problems associated with those models, see e.g., [7, 31],
their application may potentially be hampered by the lack of rigorous studies.

Yet another approach of that group was proposed by Bovik in [33, 34] for wave scattering
and further developed and generalized in the context of elastostatics and conduction phenomena
by Benveniste in e.g., [30, 31, 35, 36]. This approach is now referred to as the Bovik-Benveniste
methodology. The methodology, that can be used for curved layers, involves a two-step procedure
in which the first step coincides with the procedure used for derivations of jump conditions across
a layer in Model I. At the second step, additional Taylor expansions are used for the jumps of the
first steps to obtain explicit expressions for the jumps across an interface (typically a mid-surface
of the layer). The resulting model is labeled "Model II" in [30-32]. The studies of boundary value
problems with the boundary conditions similar to those for Model II are reported in e.g., [37-40].

While the Bovik-Benveniste methodology was successfully used in various applications (see,
e.g., [41-46]) and incorporated in a few numerical procedures, e.g., [47-51], some controversy
and issues related to its implementation remain. For example, in [15] it was suggested that the
methodology does not work for the case when all phases in the original problem have the same
properties. There, the jumps across an interface (obtained at the second step of the methodology)
were confused with the jumps across a layer. The former, as expected vanish, while non-zero
jumps across the layer are recovered at the post-processing step of the methodology, in which
the problem, of a domain subjected to some load and prescribed vanishing jumps across the
interface, is solved analytically and the fields at the traces of the layer boundaries are exactly
evaluated. More serious issue was reported in [30], where it was stated that : "the numerical results
for the O(h*) version ... revealed a serious deficiency consisting in the fact that for very stiff interphases its
predictions do not improve over the corresponding results of its O(h) version ... and even fall more distant
from the exact solution”, and concluded that "the construction of an O(h?) version ... in elasticity which
behaves satisfactorily at all ranges of interphase stiffness remains an open issue.”

Even though the models of the second group are somewhat more versatile, in a sense that they
can be used for curved and relatively thick layers, they are still of low (up to the second) order.
Until recently, higher-order interface models were proposed for conductivity problems only, e.g.,
[9, 36]. In this paper, we derive the boundary conditions associated with Model I and Model II up
to the third order for two-dimensional elastostatics problems with layers of arbitrary sufficiently
smooth curvatures. To do that we develop a novel complex variables-based approach that results
in explicit expressions for the boundary conditions for the two models. We demonstrate that the
use of the third order Model II takes care of the issue identified in [30]. Using obtained boundary
conditions, we perform comparative analysis of Model I and Model II and demonstrate that they
can be used for simulating layers with all ranges of interphase stiffnesses.
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2. Problem formulation

Consider two-dimensional, linearly elastic, problem shown in Fig. 1a in which two media "1” and
’2" are separated by a thin layer (that constitutes medium ’0") with the boundaries S1, S2 and
constant thickness h. Assume that all media are homogeneous and isotropic and characterized by
the shear module u(p ) and Poisson’s ratios v(P), where p = {0, 1, 2}. The following perfect bond
boundary conditions are imposed:

u(o)/sq — “(q)/sq’ T(O)/sq — T(Q)/sq’ q=1{1,2}, 2.1)

where u?) and T®) =) . ng are respectively the displacement and traction vectors in the
corresponding medium 'p’, () is the stress tensor in the medium ‘p’, and ny is a unit vector
normal to the corresponding boundary of the layer S;.

The idea is behind asymptotic modeling of thin layer consists in simulating the presence of the
layer by a set of jump conditions in the displacements and tractions across either the layer (Fig 1a)
or the interface Sy (Fig 1b) (typically a mid-line of the layer).

Below, we will use the following notations for the jumps:

[()]=()® / CE / L Ol =0 / ECE / . 22)

where [(-)] and [(-)] s, identify the jump across the layer and interface, respectively.

3. Modeling tools

Our approach is based on the use of two implementation tools: i) geometrical description in terms
of complex variables, ii) fields representations in terms of holomorphic functions.

(a) Geometrical description in terms of complex variables

Assume that Sp, S1, and Sy are sufficiently smooth parallel and equidistant curves of arbitrary
geometry and identify points t, € Sp (p =0, 1,2) by complex numbers ¢, = xp + iyp, where

and y, are Cartesian coordinates of the point ¢, and 7> = —1. We choose the points ¢; € S; and
to € Sy as
h
tq=to + (—1)‘1§e’a7 for g=1,2 (3.1)

that is equivalent to the following expression for the points xp = {zp,yp} (p=0,1,2):

xg=x0+ (~1)75m, (32)

where n is the unit vector normal to Sp at point xg and « is the angle between the z-axis and n
(see Fig. 1).

Parametrizing Sp by its arc-length sg, we express the local curvature at s, as [52]
48 _do 1
T dsg  dsp  Ro(so)’

»0(s0) (3.3)

where =« + 7/2 is the angle between the z-axis and the tangent vector sg to the curve, and
Ro(sp) is the radius of curvature. It can be shown that (see [52])

Is0 cos(f) +isin(B) = e =i’ or j—;g = —ie ", (3.4)
Since t1 and ¢ are connected to ¢ via Eq. (3.1), the following expression can be obtained:
dty

=ie'® Fy(s0), for q={1,2}, (3.5)
dsg
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where
Fylso) =1+ (~1)7 2 sp(s0),  for g={1,2). (6

Note, that Fy(sg) is the real function that represents the metric coefficient of the curvilinear
coordinate system (see, Section 3.1 in [22]). Below, for the sake of brevity, the arguments, such
as s, used to identify geometrical parameters and functions, e.g., F;(so) and s (so), are omitted.
Assuming that Fy, are nonvanishing functions for any so (in other words, hsz # 2 for any sg),

we obtain from Eq. (3.5) that
dsg

a, = —ie " F, 1t for g=1,2, 3.7)

where F; = 1/F,.

(b) Fields representations in terms of holomorphic functions
Introduce the complex displacement and complex traction at the point z =z + iy as
u(z) =uz +iuy, o(z)=on+ios, (3.8)

where u; and uy are the displacement components in the global Cartesian coordinates (x,y) and
on and os are the normal and shear traction components in the local coordinates.
Complex displacement u also can also be formulated in terms of tangential and normal
components (us and ur) as
u=e"" (un + ius) . (3.9)

Additionally, introduce the resultant force f(z) as
f(z)=0(2), (3.10)

where the symbol (-)’ identifies the complex derivative d(-)/dz.
The perfect bond boundary conditions can be reformulated as

(0) () (0) — 5@ —
U /Sq—u /Sq7 o /Sq—a /Sq’ q=1{1,2}. (3.11)
Sometimes, it might be convenient to reformulate the second condition of Egs. (3.11) as
(0) i) 3.12
! / Sq f / Sq (3.12)

The complex displacements and tractions of two-dimensional elasticity can be represented via
holomorphic functions ¢(z) and ¢ (z) (Kolosov-Muskhelishvili potentials), as [53]:

2uu(z) = rp(2) — 29/ (2) — ¥(2),
dz

o(2)=¢'(2) + P + T (40" (D) + ¥ ().

where k=3 — 4v in plane strain and = (3 —v)/(1 + v) in plain stress, a bar over a symbol
denotes complex conjugation, and dz/dz = —e ™ 2%,
The resultant force f(z) can also be represented via the holomorphic functions as

(3.13)

f(2) =(2) + 2¢'(2) + ¢ (2). (3.14)
With the use of Egs. (3.13) and (3.14), the potentials ¢(z) and ¢(z) can be expressed as
_ _ 1 F —__ = I !/
@—H+1(2Mu+f)7 w—ﬁJrl[fff 2pm —Z (2pu’ + f7)] . (3.15)

The use of holomorphic functions is advantageous for the following reasons. First, those
functions are infinitely differentiable and equal locally to their Taylor series expansions that are
essential for proposed asymptotic procedure. Second, the complex derivatives involved in Taylor
expansions can be expressed using surface derivatives (discussed below) via Egs. (3.4), (3.7).
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In addition to the notion of holomorphic function, we use that of the derivative of an arbitrary
complex-valued function go(tg) defined on curve Sy, as [52]:

dgo(to) — i 90(a0) = go(to)

A1
dtg to—>ao ag — to ’ (3.16)

to=ao
where tg, ag € Sp. Below, for the sake of brevity, the arguments of functions are omitted.

By the use of Eq. (3.4), it can be shown that all derivatives of go with respect to tg can be
expressed via the derivatives with respect to sg. For instance, the corresponding expressions for
the first two derivatives are

dgo _dgodso _ _; —ia,
dtg dsg dtg 0,807

3.17
d%go _dso [ . —ia . (317)
Tt% = thO —te 90,50 o =e (“4090,50 - go,soso) )

where (-),s, and (-),sos, refer to the derivatives of corresponding function with respect to sg.
Using Eq. (3.7), the derivative of complex function gq defined on Sy, ¢ = 1, 2, can be expressed
via the derivative with respect sg as

d9g _ d9gdso _ _; —iap-

1
= = 3.18
dtq dso dgq q 9g¢,50> ( )
which leads to the following interrelations between the derivatives:

9,50 = Fq ' ga.s0s (3.19)

where s, is the arc-length of S; and (), s, identifies the derivative of corresponding function with
respect to sq. The relations obtained here are similar to those presented in Section 3.1 of [22], using
the concept of "parallel curvilinear coordinate systems."

4. Modeling approach

In this section, we outline the main steps of the proposed asymptotic procedures for the models
of the first order. The detailed derivations are presented in Supplementary material S1.

(a) Jump conditions across the layer (Model I)

First, the complex potentials of Eq. (3.15) are expanded in terms of Taylor expansions about the
two points t4 € Sq (¢ = 1, 2). For example, the expansion for potential ¢(*)(z) at z = to € Sy is

2\ (to —tg)™ [ A"
so<°><to>=sa<0’/z_tq+21(° o= ( 3o ) / - @D
n= z=t

=lq

In the following, it is assumed that potential gp(”) (w(p)) for p={0,1,2} has a limit value
at Sy, indicated as cpl(lp ) (w((lp )), such that each complex derivative of that potential is equal to
the derivative of the corresponding order of gogp ) (@Z){(Jp )) with respect to tq. The subscript ¢ that
identifies limit value will be used for all fields considered thereafter.

Then, using Egs. (3.18) and (3.1), expansions (4.1) are truncated up to the first order as
ih
¢ (to) =0 + (1) T F oy + O(h). (42)

Subtraction of the value of (%) (to) given by Eq. (4.2) for ¢ =2 from that given by the same
equation for ¢ = 1 leads to

2
ih -
o) = == S F ek, + O (43)
q=1
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Assuming that hsq/2 < 1, Fy ! could be expanded as

—1 oo k
= (14 0 ) =14 S0 (B) @4)

Using expansions (4.4) and boundary condition expressed in terms of potentials as well as
Eq. (3.1), the first jump condition across the layer can be obtained from (4.3) as

2
(1% h
Sy {am)g,g[q) b(@) (Ztoe RON +w@)}— n {()wgqgo
=1 a=1 (4.5)

ala {em (em B 2t0%0> 9051(120 + itoem‘péqgo sot wlmo] } * O(h2)7

where ¢ = {1, 2} and

O BT SR OO BT Y
M(Q) u(q)
(0) Q) (4.6)
(D O @B ga) g (0)
M(Q) M(q)

Following similar procedure for potential (), the second jump condition across the layer can
be obtained:

2 PR

S Dl 605 i (100 -+ ) o8 + t0pihe |
q=1

+d D@ 4 iTgemie {(am) a®) ), b(q)w@”

ih 2 —fiQ —i T
= _% Z { (a(Q) — d(Q)) e (26 gaf(l?go + ztoga((]?goso) 47)

q=1
[ 1289 (14 50 (10 — T3 — taf (] — i70.) ) 50
+ib(@ [%em +to (3%%0 - 2e‘”)] 280 + D t0To0{ 050
i d(Q)llh(;?s)o _ pl@—ia [2 ,(J?S)O + ’Ltowq,soso:| } +0(h?).
Egs. (4.5) and (4.7) for the jumps across the layer represent the boundary conditions (in terms

of potentials) for first order Model I. They can be reformulated in terms of jumps in displacement
and traction components, see Supplementary material S1 for more detail.

(b) Jump conditions across the interface (Model Il)

To formulate jumps across the interface, it is assumed that conditions (4.5) and (4.7) obtained for
the problem of Fig. 1a are valid for the corresponding fields in the problem of Fig. 1b.
Expanding the fields involved in (4.5) and (4.7) about z = tg as

— k(@)
(O (tg) = 6 /- t0+2 o) (%ﬁjj)/ :
Z=t0

(@) —to) k@
@/) () wq/Zt+kzl (dzk 2:t7

4.8)
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and truncating those expansions up to the first order with use of Eq. (3.18), we get

ih
o D(ta) =0 — (~1)" 5060, +O(h?),

Jin 4.9)

6D (tg) =0V /5, — (~1)T T, + O°).

Applying expansions (4.9) to jump conditions (4.5) and (4.7), neglecting all terms that
include A" with n > 1 (the condition is defined by the order of the interface model), and using
straightforward algebra, the following jump conditions across the interface are obtained:

2
Sy {a@)s@gq)_b@ (itoe RO )}

q=1

, (4.10)
=it 30 {10 (gl — oD, — 047, } + 00,

2 -
Z(—l)q{c(q%oé"’ NG~ {Z (¢ + too) O @5"3050] + @@
4 e {(a@—d(@) o - w(()qzo]}
2
:—ihZ{ [ 489 (1~ tof (o — i1, ) + 0 (t06 ™" — T’ ))]w(qio (4.11)

+ (@ {z (%em +to (2%%0 — e_m)) wngoso + toﬁwgﬁososo}

| —ia {(a(q) _ d(q)) 90(()20 _p@ (WJF i€’ w(()qs)oso)] } + O(n?).

Egs. (4.10), (4.11) represent the first order imperfect interface boundary conditions (Model II)
in terms of potentials. They can be reformulated in terms of jumps in complex displacement and
traction across the interface, see Supplementary material S1 for more detail.

5. List of the boundary conditions for the higher order models

In this section, the list of the third order boundary conditions for Model I and Model II is presented.
They are obtained using procedures similar to those of Section 4, but truncating the expansions
up to corresponding orders. The conditions for the first (second) order models can be obtained
from the listed expressions by omitting all terms that are multiplied by h? and h? (only h3).

In the expressions below, the notation {...}/g, (p=0,1,2) is used to identify limit values of

elastic fields involved in {...}. The subscript p used for elastic fields (e.g., U(()l)) that served similar
purpose is omitted.

(a) Boundary conditions for Model |

The boundary conditions, provided in this subsection in terms of jumps in local components,
involve derivatives with respect to the arc-length sg of layer’s mid-line Sy. They can be
reformulated in terms of derivatives with respect to the arc-lengths s, of layer’s boundaries Sy, if

0000000008 “Y "SUelL ‘g Bi0-BuiysigndAisioosieAoseis)



desired.

2 (o =
[un] = 2 Z{ 5o PG ( 4a§0)) (%Ou(Q) +ug?go) }/s + 5 Z(_l)qx
0=1

q qg=1
1 0 0 0 0
{ o ( ( )% 01(111) +2a( )qus)()) ( )% u;‘l) +( 4a§ )) (uS{JLOSO — 5 60qu))
— (3 — 8a(0)) %ou(Q) + hj 3 L [ — (1 — 4a(0)) O'(q) + 0 a(q)
1 %0 S, 48 po M(O) 1 800 s0s (5.1)

+2 (O)%oagqs)o] [ (0) (1 — Sa(o)) %0)5030] ${1) (5 — 28a§q)) 0 Sou%qlo

-6 (1 - 4050)) ;{Ouglq)S()Sg +4 (2 - 7a§0)) %oxo,sougq) + (11 — 28a§0)) %gug?go

— (1-8a®)ult 309090}/5 ’

q

hem | 1 (g @ _ (2 h? & 1 0 (a)
[[USH—QZ{MO) d —l—%uq Unqgo}/ +§Z(_1)q{m(2a1 Unq,so

Sq qg=1

+ %00§Q)) + (1 + 4a§0)) (%078011%'1) + ug?s)oso) + (3 + 4a§0)) %ouslq)s — 2%8ugq)}/
Sq

T8 Z {u(o [0 50,5004 + 2057 5200 88), + (14 208 ) o8y, (5.2)

48 (14 20) s+ (14 807) ullly = (14 40”) lfdynny — 058

— (1 + 4a§0)) %O)Soso]ugq) + (5 + 16a§0)) >0 Sougqgo +6 (1 + Qago)) %ougqgoso }/s s

2
[[Jn]] = 72 Z {2@1(30)%00,(;1) + ag?s)o — 8p(0)ago)% (%Ou(q) + ungo) }/
Sq

2
— h— (—1)q{2a§)‘”%§a§l‘” — (1 — 4a§0)> a,(lqloso + 2500, 5,0 (Q) (3 + 4a§0)) %Oagqs)o

q=1
0
0] (48 4 ) 0+ 2508, + 050,07 5 2800,

2
h3
+ Ug?ggsgso] }/ + E {QCqu) (%O S(]S(]O-’El ) + 2%0 SOU’ELQ?G[)) - 2%0%0,80 qu)
Sq q=1

+3 (1 — 4a§0)) %00'7(«%050 (q) P aﬁ‘{io (1 + 4a§0)) aﬁ?ﬁososo + SM(O)ago) X
2
[ (3%3 + 4 (%0730) + 2%0%0,3030) u’glq) + %O%O,Sou’glqlo - 4%§u£l(1,?8030 - u’glq,lUSoS()S[)

+ (7%(2)%0,50 + %(),sososo) qu) + (7%8 + 5%0,5050) “g?go + 7%0’50'”2?2050 + J’fOUg?goSoSo:| }/ s
S

0000000008 “Y "SUelL ‘g Bi0-BuiysigndAisioosieAoseis)



2
- g Z { ( B 4a§0)) 05320 N Q%Oqu) - 8N(0)a50) ["o sou%) + Jfouglq);m
q:

2
h
+ ugq2060:| § Z {Qa(q)%o 3007(;1) ( 8a§0)) %oa,(lqlo — 2%§a§q)
+ (1 + 4a§0)) nggoso + 8/‘(0)0‘50) |:%0740 sou%q) - u7(1q,)sososo + %O,SOSOqu) + 3”0,8@“59?20
h & 0 0
+ %oug?3050:| }/ + E {2@& )%0 (%Oasoo'r(zq) + ;400’1(3)50) - (1 — 8a§ )) aﬁfgos(,s(}
Sy q=1
+ 2%075050 (q) + 4a(O)%O soo'gqe)o + 3%00':(3?3)080 - SM(O)agO) |: (5%(2)%0750 - 2%07505050) Uglq)

3 2
+ (%0 - 9%075080) u’qu,?So - 13%0,80“”&:{?9080 - 5%0u’$bq,)808050 + (7 (%O,So) + 6%0%0,8080) Ug )

Jr 17%0%0,5[)“‘(3?,20 + 4%3111(9?5)050 - 2”&20808050] }/ k)
S

q

(5.4)
where the following coefficients are used
RO for p=1{0,1,2}
li(p) + 17 ) )
0) =) aéo) — K(O)a50)7 ago) — ag)) _ a§0)7 (5.5)
afl ) — ago) + 3a(0) ago) = 2a§0) — ago),

and the superscript ”0” is used to identify the parameters related to the medium of the layer only.

The boundary conditions of first order, that can be extracted from Egs. (5.1)-(5.4), are identical
to those given for Model I in [31] (Egs. (26)-(29), for the case of constant modulii) and to those in
[30] (Egs. (3.5)-(3.6)), if our conditions are reformulated in terms of the derivatives along Sy.

(b) Boundary conditions for Model I/

We introduce the following coefficients that are related to the terms multiplied by h:

qu) —¢0) _¢la) A;Q) _ u(o)ﬁ(o) _ u(q)f(q)7
@ €0 ¢l @ k(g0 (@) ela) . (5.6)

3 _M(O) ’u,(Q)’ 4 = ’u,(o) B M(Q)
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Similarly, the coefficients related to the terms multiplied by h? are

©)
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b=t < @ 1) !
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and those related to the terms multiplied by h* are
1
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2787

3
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DW= @ _

With those notations, the boundary condition in terms of local components of displacement

and traction vectors are
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matrix 2’ _z < matrix 2’

coated layer 0’

Figure 2: Example problem (a) with perfectly bonded layer, (b) with imperfect interface

The boundary conditions of the first order, that can be extracted from Egs. (5.10)-(5.13), are
identical to those given in [31] for Model II (Eqgs. (39)-(42), for the case of constant elastic moduli),
and to those in [54] (Egs. (94)-(95) and the plane strain assumption).

6. Example

In this section, Model I and Model II are tested on the problem of an infinite coated fiber
with circular cross-section (Fig. 2a). Simple shear far-field loading (035 = —opy = 03", o5y =0)
and plane strain settings are imposed and the normal and tangential components of elastic
fields are identified by subscripts 'r’ and ‘¢’, respectively. We adopt the following values of
governing parameters: oso/u@) =1, ,u(l)/,u@) =5, 1) =0.35 (p=A0,1,2}). Additionally, the
layer is assumed to be very thin with e = 0.001 and very stiff with

E__—13.101%~0(@?). (6.1)

Condition (6.1) is chosen in order to resolve the issue with stiff layer modeling raised in [30].
We add that this condition identifies the so-called inextensible shell type regime (see, [22]). Its
connection to the shell theory was demonstrated in [22]. In [55, 56], it was shown that this regime
can simulate the Steigmann-Ogden model of material surface (see [57, 58]), if the residual surface
tension involved in the latter model vanishes and the elastic properties and the thickness of the
layer are appropriately chosen.

Using appropriately modified (to reflect the problem geometry) boundary conditions of the
first, N =1, second, N =2, and third, N = 3, orders obtained from (5.1)-(5.4) for Model I and
from (5.10)-(5.13) for Model II, all elastic fields inside the fiber and the matrix are computed.
The solutions employed the field representations of [59] that are also used in [30, 60, 61].
Those representations involve unknown coefficients that are found from the linear systems of
algebraic equations resulted from the substitution of the representations into prescribed boundary
conditions. Similar procedures were implemented in, e.g., [9, 36, 62]. The explicit expressions for
the field representations are provided in [62] for two-phase configuration problem (associated
with Model II). In the current work, we also used those representations to solve the problem
associated with Model I.

The solutions for the two models are compared with the exact solution of the original problem
of Fig. 2a that is available in, e.g., [63, 64]. The normalized jumps in radial and tangential traction
components are plotted in Fig. 3 as functions of polar angle 6 = [0, 7/2].

Both Model I and Model II of first orders fail to provide accurate approximation for the exact
solution. This observation confirms the necessity for using higher order models for accurate
simulation of very stiff layers.
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Figure 3: Normalized jumps in traction components computed with Model I (left) and Model II

(right) plotted with respect to ¢

Model I of the second order provided visually better results than that of the first order.
However, the results obtained by the second order model are still clearly deviate from the exact
solutions. The results obtained with Model II of the second order are unexpected; they deviate
from the exact solution even more than the corresponding results for the first order model. Similar
observations were also made by Benveniste in [30].

Model I and Model II of third orders provide sufficiently accurate results, thus, demonstrating
that such models can accurately simulate the presence of very stiff layers.

Model I and Model II were extensively tested, using the same problem of Fig. 2a, for a wide
range of governing parameters and results are presented in Supplementary material S2, including
parameters that identify the so-called membrane-type interface that is related to the Gurtin-
Murdoch model [65, 66], see also [56, 67, 68] and the references therein. Their analysis revealed
that Model I and Model II of all three orders provided accurate results for layers characterized
by the parameters associated with the perfect, spring-type, and membrane-type regimes of [22]
(M =—1,0,1). Additionally, for all considered examples, Model I led to more accurate results than
Model II. This could be expected since Model II is derived from Model I using additional series
expansions of the fields involved. However, both third order models provided accurate results
for a range of problem parameters that covers all interface regimes of [22]. As also demonstrated
in Supplementary material S2, these results can be used to accurately evaluate all elastic fields
within the layer.

7. Conclusion

In this paper, we established connections between leading approaches for asymptotic modeling
of thin layers in wave phenomena and elastostatics, which should be useful for the researchers
working in respective areas. We clarified the misinterpretation of the results obtained with Bévik-
Benveniste methodology for the case when all phases of the problem have the same properties
and resolved the issue with its implementation for the case of stiff elastic layers. The later became
possible by devising a novel modeling approach and deriving the elastostatics models of the third
order, which was done here (for the layers of arbitrary sufficiently smooth curvatures) for the first
time. Comparative analysis of the results obtained with two models reveals that Model I is always
more accurate than Model II. However, more rigorous studies of the boundary value problems
associated with Model I are needed to assure its successful application. From the obtained results
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(including those presented in Supplementary material S2), it is clear that the use of both third
order models allows for accurate evaluation of all governing fields inside the layer. Such data can
be used for the numerical evaluation of applicability of various reduced theories for modeling thin
layers. The obtained explicit expressions for the boundary conditions contain rich information
that can be used for studying the influence of layers curvatures, various asymptotic regimes, etc.
Finally we add that it is possible to extend the proposed approach to three-dimensional problems
with spherical boundaries by using of either scalar or vectorial spherical harmonics. Such an
extension is reported in [69] for conductivity problems. The extension to elasticity problems is
work in progress.
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