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Abstract

A novel analytical solution for two-dimensional harmonic problems involv-
ing doubly-periodic arrays of circular inhomogeneities with superconducting or
membrane type interfaces is derived. The complex potential inside each inho-
mogeneity is sought in the form of power series, while its counterpart inside
the matrix is represented by the series in terms of Weierstrass (-function and
its derivatives. Compliance with the interface conditions results in an infinite
system of linear algebraic equations for unknown series coefficients. A rigorous
theoretical study of the system properties is performed. The solution is used
for evaluating the local fields and overall properties of composites. For the case
of square and hexagonal unit cells, accurate formulas for the effective properties
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are provided. Numerical examples are presented and comparison with the results
reported in the literature is performed.

Keywords: Composite materials; Doubly-periodic harmonic problems; An-
alytical solution; Local fields; Overall properties.

1 Introduction

In this paper, we derive a novel analytical solution for two-dimensional harmonic
problems involving doubly-periodic arrays of circular inhomogeneities with imperfect
interfaces of a specific type. Depending on the area of application, this type is
referred to as superconducting/ highly conducting interface (e.g. in heat or electrical
conduction, dielectrics, etc.) or membrane/Gurtin-Murdoch interface (in antiplane
elasticity).

In the context of thermal conduction, the conditions across the superconducting
interface are those of continuity of the temperature and jump in the normal com-
ponent of the heat flux; the latter is proportional to the surface Laplacian of the
temperature at the interface. Such conditions could be used for modeling problems
involving coated fibers with thin and highly conducting interphases, see [1]. The
studies of superconducting interfaces started in the late 1990s and the review of
the early literature on the topic can be found in [2]. Those early studies produced
various estimates of overall properties of isotropic composites with superconducting
interfaces, rigorous variational bounds, and a few analytical approaches for solving
periodic problems, mostly using Rayleigh’s approach modified to account for the
effects of spherical interfaces, see [3].

Since then, significant progress has been made both in theoretical and numerical
modeling of isotropic and anisotropic composites with superconducting interfaces.
The relevant developments included various modifications of classical homogeniza-
tion schemes (dilute, Mori-Tanaka, self-consistent, and generalized self-consistent) to
incorporate the effects due to superconducting interfaces (e.g., [4, 5, 6, 7, 8], and the
references therein), derivations of more accurate bounds [9], semi-analytical ([5, 10]),
and numerical solutions (e.g., [11, 12, 13], and the references therein).

In the context of elasticity, the corresponding conditions across the interface are
those of continuity of the displacements and jump in the normal component of trac-
tions; the latter is proportional to the surface Laplacian of the displacements at the
interface. Such conditions could be used to model problems involving coated fibers
with thin and stiff interphases of the so-called membrane-type, see [14], and that is
the reason for the use of the notion of “membrane-type” interface. In recent two
decades, interest in materials with membrane-type interfaces increased significantly
due to the need to model nanomaterials that possess improved mechanical, thermal,
electrical, and other properties. One of the most popular tools for modeling nanoma-
terials is the Gurtin-Murdoch theory ([15, 16]), which endows an interface (referred
in the theory as a material surface) with its own energetic structure characterized by



surface elasticity parameters and surface tension. It was later demonstrated in e.g.,
[17, 18, 19] that the Gurtin-Murdoch conditions across the material surface are iden-
tical to those for the membrane-type interface when the surface tension is neglected.
Moreover, even more recently, it was clarified (see [20, 21]) that, in an antiplane elas-
ticity setting, surface tension must be excluded from the model for consistency of the
latter. With that clarification, the interface conditions of the Gurtin-Murdoch model
are, indeed, identical to those for the membrane-type interface. Antiplane problems
with the clarified Gurtin-Murdoch interface conditions were solved numerically in
[22].

Doubly-periodic problems play an important role in homogenization procedures
and during the last decade several methods were proposed to model such problems for
composites with superconducting or membrane-type interfaces. As the present paper
deals with two-dimensional problems, here we only perform review of relevant lit-
erature. The thermal conduction problems involving doubly-periodic materials with
square or rectangular unit cells that contain square, hexagonal, and random arrays of
inhomogeneities were considered in [10] both in two- and three dimensions. The latter
paper mostly focused on the determination of the effective properties of composites
with overall isotropy. The authors split the fields into the uniform and periodic per-
turbation parts and used discrete Fourier transform to solve the balance equation
for the perturbation parts. As the iterative numerical procedure in the transform
space was employed, the solution cannot be regarded as fully analytical. Castro et
al [23] considered the problem that involves square unit cell and reformulated the
problem in terms of a complex potential with the doubly-periodic real part. They
used Taylor series expansions inside the inhomogeneities to solve for the unknown po-
tentials using the method of functional equation, see [24] and the references therein.
The same technique was used in [25], where the thermal conductivities of the phases
were assumed to be temperature-dependent. In [23, 25|, the results for the local
fields and overall anisotropic properties were presented for the example involving a
square unit cell with four inhomogeneities. The approach of those papers is analyt-
ical but it is not clear if it could be extended to the cases of unit cells of different
shapes. Kuo [26] studied more general doubly-periodic problems of piezoelectric and
piezomagnetic composites with membrane-type interfaces under longitudinal shear.
The potentials for the inhomogeneities and the matrix were sought in the forms of
a series of trigonometric functions. Modified Rayleigh method was used to find the
unknown coefficients and the results for the hexagonal arrays of inhomogeneities were
presented. Gao et al. [5] studied the doubly-periodic thermal conduction problem
with square and hexagonal unit cells and various interface conditions, including those
of highly conducting interface. These authors used the locally-exact homogenization
theory in which the fields are split into the average and local (fluctuating) parts and
the governing differential equations are reformulated in terms of those fields. The
equations are solved using the series expansions in terms of trigonometric functions,
enforcing the interface conditions in the weak form, and using the Trefftz method.

It can be concluded from the above analysis that, despite significant progress in
modeling doubly-periodic problems with superconducting or membrane-type inter-



faces, there still exists room for new analytical tools to tackle those problems. One
such tool was devised in [27] for problems with perfectly bonded inhomogeneities.
It is based on the use of quasi-periodic potential constructed using the Weierstrass
(-function and its derivatives. The attractive feature of this approach is the possibil-
ity to obtain highly accurate estimates of the overall properties of composites with
unit cells of some regular shapes. Another conclusion from the analysis of relevant
literature is that there still exists a lack of reliable benchmark solutions as, for the
most part, each of the papers presented its own set of numerical examples.

Thus, the present work has three principal goals. The first goal is to derive exact
series solutions for the doubly-periodic problems with the parallelogram unit cells
and perform a rigorous theoretical analysis of the solutions’ properties, including
uniqueness, existence, and convergence. The second goal is to obtain accurate es-
timates of the overall properties of composites with the square and hexagonal unit
cells. The third goal is to systematically analyze existing numerical results for the
local fields and effective properties of doubly-periodic composites with the unit cells
of various shapes, compare those results with the derived analytical solutions in order
to establish rigorous benchmark examples that could be used by future investigators.

The paper is structured as follows. In Section 2 we formulate the problem under
study, present the governing equations and interface conditions, and reformulate them
in terms of complex potentials. In Section 3, we provide analytical series expansions
for the potentials and reduce the problem to an infinite system of linear algebraic
equations for the unknown coefficients involved in the series; a rigorous theoretical
study of the properties of the obtained system is described in Appendix. In Section
4, we discuss the procedures for evaluating the local fields and the overall elastic
properties of composites under study. In Section 5, we present formulas for the
overall properties of composites with the square and hexagonal unit cells. Section
6 contains several numerical examples and comparisons with the results of previous
studies. Finally, concluding remarks are presented in Section 7.

2 Problem formulation

Consider a two-dimensional harmonic problem (e.g. steady-state thermal or electrical
conduction, antiplane elasticity, etc.) involving a composite system consisting of
matrix and identical circular inhomogeneities of radii a that form a doubly-periodic
lattice (Fig. 1) generated by the periods 2w; and 2ws. Assume that each phase of
that system is homogeneous and isotropic, so its property is characterized by one
parameter whose meaning depends on the phenomena under study. For illustration
purposes, here we describe the problem in the context of antiplane elasticity where the
parameters are the longitudinal shear moduli of the matrix and the inhomogeneities
denoted as p and p; correspondingly. Assume that the system is subjected to the
shear stress at infinity with the components 075 and 055.

The displacement vector and the stress tensor for each phase of the system can
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Figure 1: Composite system with doubly-periodic array of inhomogeneities.

be represented in the following forms:

0 0 0 o113
u = 0 , O = 0 0 023 5 (21)
u3 o13 o023 0

where all non-zero components are independent of x3 and given by the following
functions of x1, xo:

uz = uz(x1,72), 013 = 013(71,22), 023 = 023(w1,72). (2.2)
As the displacement ug(z1, z2) satisfies the Laplace equation

82U3 62’&3
Viuz = — + =0, 2.3
s ox?  Ox3 (2:3)
it is possible, e.g., [28], to express the non-zero components of the stress tensor and the
displacements vector in each phase via the corresponding analytic function (complex

potential) as

ug =1Im f(2), o3 +io13 = puf'(2), (2.4)
uz =Im fi(2), oy +ioly = p1fi(2), (2.5)
where z = x1 + ixo, and the expressions with the index “1” are related to the

inhomogeneity, while the expressions without that index are related to the matrix.
The complex potential for the matrix at infinity has the form:

{oe) g o]
093 + 1073

f(z) = p

z+ 0(1). (2.6)

The conditions across each matrix/inhomogeneity boundary (interface) are as-
sumed to be of membrane-type and, in context of antiplane elasticity, they coin-
cide with the conditions for the Gurtin-Murdoch model that endows the interface
with its own surface stress o and shear modulus py. Those conditions include the



requirements of continuity of displacements and the following jump in the normal
components of tractions (see [20]):

n-[o] = d0°/0s = pd*us/ds, (2.7)
where [o] = o' — o denotes the jump of tractions across the boundary of some
inhomogeneity, n is the outward unit normal to that boundary, and s is its arc length
parameter.

Introducing the polar coordinates system centered at the origin and taking into
account Eqs. (2.7) and (2.1), one can rewrite the interface conditions as

uz(t) = us(?), (2.8)

os(t) = ora(t) = S (1), (2.9)

where f g9 = 0?f/06? and t is the complex variable that indicates the points located
at the boundary |t| = a of the selected inhomogeneity.

Conditions (2.8), (2.9) can be used to accurately approximate a thin and stiff
coating layer of the so-called membrane-type, if p1 and p are roughly of the same
order of magnitude, but the thickness h; of the layer and its shear modulus u. behave
as

2pc My

e~ oW, (2.10)

when p./p — oo and hy/H — 0, in which H is some characteristic length-scale of
the problem. The big-© symbol means an asymptotically tight bound.
In such case, the parameter pg must be related to that for the layer as

o = piehy. (2.11)
Using Egs. (2.4), (2.6), one can rescale conditions (2.8), (2.9) as

Im fi(at) = Im f(at), |t| =1, (2.12)

2

w1 Im <f17t(at)ei0> — pIm (f7t(at)€i0> = %% (Im fi(at)), |t| = 1. (2.13)

We emphasize again that the equations and interface conditions described in this

section remain valid for other phenomena governed by the Laplace equation if the

meanings of the fields involved are properly adjusted. For example, in the context of

steady-state thermal conductivity, the temperature and its gradient should be used
instead of the displacement and stresses involved in the antiplane problem.



3 Series representations of complex potentials
Due to the symmetry of the problem, we will look for the solutions that are odd with
respect to the chosen polar coordinate system, i.e.

ug(2) = —us(~z), uz(z) = —uz(—2).

Correspondingly, the complex potentials in the matrix and inside the inhomo-
geneity can be represented by the series:

fi(az) =a (An +iBn)2"", |2 < 1, (3.1)
n=0
flaz) =Taz + a;::o %C@ )(2), z €D, (3.2)

where D is the domain representing the exterior of the doubly-periodic lattice of
identical circles of unit radii with periods 2w; /a and 2wy /a and ¢(*™)(z) denotes the
derivative of the order 2n of the Weierstrass (-function:

1 / 1 1 z
Z)=—+ + + , 3.3
) z ; [z —Pun  Pmn  Pi, (33)

in which the sum is extended over all integer pairs of m, n, except for m = n = 0,
and Py, , = 2mwi/a + 2nwy/a. The properties of the function ((z) are described in
the detail in [29]. In particular, the function ((z) has the quasiperiodicity property:

((z 4 2wi/a) = ¢(2) + 2m, m = ((wi/a), (3-4)

C(z+2w/a) = ((2) + 22, 12 = ((w2/a).
The derivatives ¢(®®)(z) can be expanded into the following Laurent series around

z=0:

(2n) o 2k+1 _
< ( 22n+1 Z Sn+k+l 21{3 T 1) Z y Sk = Z P2k - (35)

nym T LN

Substituting representations (3.1), (3.2) into boundary conditions (2.10), (2.11),
we obtain the following equations in the polar system of the coordinates (r,6) on the
unit circle r = 1:

Z (Apsin(2n +1)0 + By, cos(2n + 1)0) =
k=0

Rel'siné +ImT cosf + Z (—=Cpsin(2n + 1)8 + D), cos(2n + 1)6) —
n=0



Zzlm[ nk(Ci +iDg)e z(2n+1>e] 7

n=0 k=0

> (2n+1) (Aysin(2n + 1)0 + By, cos(2n + 1)) —
k=0

K {Rerin@ +ImTI cosf — 2(271 + 1) (—=Cysin(2n + 1)0 + D,, cos(2n + 1)6) —
n=0

i i Im [(271 + 1) A o(C + z‘Dk)ei@“H)"] } -

n=0 k=0
—7 ) _(2n+1)% (A sin(2n + 1)0 + By cos(2n + 1)6) ,

where x = p/p1, v = po/(p1a) and
) (2n + 2k + 1)!
R n T 1)I(2k)

Collecting the terms associated with the functions sin(2n + 1)8 and cos(2n + 1)6,
we obtain the following infinite system of linear algebraic equations:

Aﬂﬁ::

Ap =ReT6n0—Cp— > (CkReAni — DpImAyy), n=0,1,2,...,  (3.6)
k=0

Bp=ImT0n0+Dp— Y (CilmA, i+ DpReAyy), n=0,12,..., (3.7
k=0

Ap = KReT6,0 — kCn+ £ > (CkReApy — DpIm Ay y) = —y(2n +1)A4,, (3.8)
k=0
n=0,1,2,...,

B, — kImT6,0+ kDp + £ (CelmAyy + DpReAyy) = —v(2n+1)B,, (3.9)
k=0
n=012...,
where 0, ;, is the Kronecker delta function.
Solution of (3.6)-(3.9) for the coefficients A,, and B,, has the form

2kCY, 2kD,,

A, = = — :
" l—k+y@n+1) " 1—k+v(2n+1)

(3.10)

Then we obtain the following infinite system of linear equations for the coefficients
Ch, Dp:

1+k+7v2n+1)
1—rk+~v2n+1)

C’n +3 (CkReA, i — DpIm A, 1) = ReT'dy, (3.11)
k=0



1+ k4720 +1)
1—k+~(2n+1)

D, — Z (Ck Im An,k + D Re An,k) = —Im Pfsn,o, (3.12)
k=0
n=01,2,....

4 Effective properties of the doubly-periodic lattices

Effective elastic moduli of a composite containing some arbitrary doubly-periodic
array of inhomogeneities can be represented by the following tensor:

Cr Cp }

cr=| ™ 4.1
{012 cs, (4.1)

The relationship between the average stresses ([0,,0,.]7) and the average strains
([Ez,€y2)T) are expressed via C* as

([os1,032]") = C*([ea1, e50]"). (4.2)

Following [2], we express the average values of these components as follows:

031 H1 us,1 1% us,1
= £ 1las 4+ & 1lds— 43
<[ 032 D S /st [ u3,2 ] S JSeut [ u3,2 } (43)
1 1 T
- — 0, ds,
S oS (773 = r3) [ ( } °
€31 1 U3 1 1 U3 1
= 1 dS + — * 1 dS, 4.4
<|: 632 :|> 25 /Sint |: ’LL372 :| 25 Sext |: ’LL372 :| ( )

where S = 4w; Imws is the area of the parallelogram A; Ay Az Ay, Sine = ma? is the
area of the inhomogeneity, and Sc,y = S\ Sie is the area of the period parallelo-
gram located outside of the inhomogeneity, and dS and ds denote correspondingly
integration by area and by arc length.

Using representations (3.1), (3.2), and Green’s theorem, we evaluate the integrals

/ U371d5 = 7'd'CL2B()7 / U372d5 = 7TCL2A0, (45)
Sint Sint
/ U371d5 =4Im (Pwl + CL(C() + iDQ)T]l) Imwy — 7ra2B0, (46)
Semt
/ ug2dS = —4Im (T'wy + a(Coy + iDg)n1) Re wa+ (4.7)
Semt

4Im (FCUQ + a(Co + iDQ)?]g) Rew; — 7Ta2A0.
For the last term in the formula (4.3), using boundary condition (2.11), we write:
2m 62

oty o) [ 7] as =20 [ 2 m an |

1
5 0Sint

cos 6
sin

} o= (4.8)
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_¢Ho | Bo
a |: A() :| ’
where f = ma?/S is the volume fraction of the inhomogeneity.
To obtain the effective properties, assume first that the only nonzero loading at
infinity is 035 /p = 1. In this case, I' = 1. Denote by the index [1, 0] all the parameters
corresponding to this case. In particular, Agl’o], B([)l’o], C’([)l’o], and D([]I’O} correspond

to the solutions of system (3.10), (3.11), (3.12) obtained with I = 1. Then

Ez[’,lfO} _ ﬁ (C([)l’o] Imny + D([)l’o] Remn ) Imws/a
™ _(CO[LO} Imn; + Dél’o} Reni) Rews/a+

4.9

(Imws/a + C’([]l’o} Imny + D([]I’O} Reng)wi/a (4.9)
Ry

o | ) = (4.10)
T32

auf [ 7r5/4B([)1’0] + (C’([]l’o} Imn; + D([]I’O} Reni) Imws/a

kS 775/4/1[01’0] — (C([)l’o] Immn; + D([)l’o] Ren ) Rews/a+

(Imwsy/a + Co[l’o} Imne + Dél’o} Remn)wi/a ] ’

where § = (1 — kK + ) /k.

Similarly, assuming o?5/p = 1 and 075/ = 0, we obtain I' = 4. Denote the
corresponding values with the index [0,1]. Then the corresponding values of the
average stresses and strains become:

< [ 5?1’1] ] > _2f [ (wi/a + C([]O’H Imny + D([)O’l] Rem)Imws/a

Egoz’l] 7T (wi/a+ Co[o’l} Immn + Déo’l} Reni) Rews/a+

, 411
(Rews/a + C'([)O’l] Imny + D([)O’l] Reng)wi/a ] (4.11)

(2]

duf [ 7r5/4B([)0’1] + (w1/a + C’([)O’l] Imn; + D([]O’H Reni) Imws/a

K3 775/414%0’1] — (w1 /a+ C'([)O’l] Immn; + D([)O’l] Reni) Rewy/a+

0,1]
031

0,1]
032

(Rewy/a + C([)O’l] Imns + D([)O’l] Rena)wi/a ] '
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Using the average values given by (4.9)-(4.12) as columns, we can create the

matrices:

> =

[1,0]
T3

(1,0]
039

E=

)AL

[0,1]
[0 1] ’

(4.13)

5?10} _ 5?1”
€32 | | €32
The matrices E and ¥ are related by the formula (4.2) as:

3 = C*E. (4.15)

Correspondingly, we can obtain the following formula for the matrix of the effec-
tive properties C*:
C*=XE L (4.16)

5 Effective shear moduli of regular lattices

In the case of regular lattices (square and hexagonal), the displacements can be
represented by series with real coefficients

FCLZB ( )2"“, (5.1)

us(z) = Fz+FaZ a D, ¢ (2). (5.2)

n=0 W

For such lattices all lattice sums are real. We introduce the dimensionless param-
eter

h= (5.3)

a
e?

where ¢ = 2|w; |, and the dimensionless lattice sums

Sk:Z<P ) . k=23,.... (5.4)

n,m

Then compliance with the boundary conditions leads to the system of linear equations

Bn = 571,0 + Dn - Z An,m h2n+2m+2 Dm7 (55)

n,m=0

o
1By = (800~ Dp— > A 242D, | % @2n+1)B,,  (5.6)

n,m=0



12

where

(2n+2m +1)!

@m)2n + 1) (5.7)

An,m = Sn+m+1

Then for the determination of the unknown coefficients we obtain the following system

2
=t = (204 1)

—— Z A B2VF2742 D — 0 6,0, (5.9)

n,m=0

where

=+ 22 2n 4 1)
Q= ﬁo : (5.10)
,u1+,u+z(2n+1)

To calculate the average strain, we evaluate the integrals

/ ude:F/%/ Z2n+1 () e¥™i pdrdg = Dra?Bo. (5.11)
0

Sint

x©  _2n+41
/ Uy dS = udyZ?{ udy—j{ udy =T j{ Zdy—l—aza—'an
Seat OSeat o8 r=a 05 = (2n)!

C(2n dy—aZB 7{ cos 2n+1)¢dy}
oS

=T {S +4a*BymImw, — ma’By} , (5.12)

where the quasiperiodicity of {(z) and Green’s theorem have been used in the calcu-
lation of contour integrals. Then the average strain is

(ug) = 1 (/ ugy dS +/ Uy dS) (5.13)
S Sint Sext

where f is the volume fraction of the inhomogeneities and n;Imw, = Z for both the

square and the hexagonal lattices.
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The average shear stress has the form

1 o [P Ou
(022) = 5 ,u1/ umdS—l—,u/ Uy dS + a / w—|| cospde
S Sint Seact 0 8T

<,u1 / Uy ds + ,U/ Uy ds + F,UQTI'CLB()>
Sint Seat

4
=T [/H‘ <M1 —AH‘%) fBo-i-g,uf?hImmDo}

0|+~

ZF[MJF(M—MJF%)JCBOJFMCDO}Zfﬂ[l—fDo]a (5.14)
since for both the square and the hexagonal lattices n1Imws = %

The effective shear modulus pg relates the average shear stress (o,.) and the
average strain (u,) as

<Jw2> = ,ueff<ux>a (515)
and therefore equals
1— fDyg
i = 220 5.16
Hell = 111Dy (5.16)

If the volume fraction of the inhomogeneities is small, f < 1, then Dy =~ —ag. In
this case, (5.16) gives the following approximation

. 14 fag
MCH_Ml—fao’

(5.17)

where

-t 2
_ a

R
m-l—,u—l-'u—
a

ag = (5.18)

Below we analyze effective shear moduli of specific lattices.

5.1 Square lattice

Solution of (5.9) can also be obtained as a convergent power series in terms of the

1
parameter h = %< 3 where ¢ = |2w;| = |2w2|. The only nonzero sums Sy, in (5.4),

(5.7), and (5.9) are those with k = 2n,n = 1,2,.... Then the series expansion of Dj
for the square lattice has the form

Dy = —ag — 3aga1S5h® — (9agaiS; + TagasSi) h'® + O (h*Y) (5.19)
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where Sy, S4 are normalized lattice sum

/ 1
Sy = — ~ 3.15121 5.20
2 mzn (n+im)4 ’ ( )

/ 1
Sy = ——— =~ 4.25577. 5.21
4 ; (n +im)8 ( )

The series expansion of Dy (5.19) provides a good approximation of the effective
shear modulus even for the high volume fraction of the inhomogeneities as shown in
Figure 2.

16
14

12

Left | b

| | | | | | |
0 01 02 03 04 05 06 0.7 0.8
f

Figure 2: Dependence of the normalized shear modulus for a square lattice of cylindri-
cal inhomogeneities with pq/p = 100 and v = 9905 on the inhomogeneities’ volume
fraction f. The red circles correspond to exact numerical calculations by (5.16), the
blue solid line depicts approximation (5.19) in (5.16), while the black dotted line
refers to the dilute approximation (5.17).

5.2 Hexagonal lattice

The only nonzero sums for the hexagonal lattice are Ss,,n = 1,2,.... The series
expansion of Dy in (5.9) has the form

Do = —ap — 5adasS3h'? — o (25@004%55‘,‘ + 110455%) 4+ 0 (h32) , (5.22)
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where the values of normalized lattice sums S3, Sg are

1
Sy=Y -~ 5.86303, (5.23)

/ 1
S5 =) ————— ~ 6.00964. (5.24)

The series expansion of Dy (5.22) provides an excellent approximation of the effective
shear modulus even for the high volume fraction of the inhomogeneities as shown in
Figure 3.

20
18
16
14
12
10

Left | b

g
| | | | | | | |

0 01 02 03 04 05 06 0.7 0.8 0.9

f

S N = O

Figure 3: Dependence of the normalized shear modulus for a hexagonal lattice of
cylindrical inhomogeneities with pq/p = 100 and v = 9905 on the inhomogeneities’
volume fraction f. The red circles correspond to exact numerical calculations by
(5.16), the blue solid line depicts approximation (5.22) in (5.16), while the black
dotted line refers to the dilute approximation (5.17).

6 Numerical results

6.1 Evaluation of the local fields and the effective properties: Ex-
ample 1

In this example, we demonstrate that the proposed approach allows for the accurate
evaluation of the local fields as well as for the overall properties of the composite. We
choose the following material parameters: x = 100, v = 9905 and take the unit cell
to be of a general parallelogram shape with Imwy/wy = 1 and with the smaller angle
of the parallelogram 5 = 57/12. The volume fraction of the inhomogeneity in the cell
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Figure 4: Distributions of the dimensionless displacements and stresses inside the
general parallelogram unit cell with Imws/wy =1, and 8 = 57/12.
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Rectangular General
Hexagonal Square arra?r doubly-periodic
array, array, ’ array,
. . |LU2|/LU1 = 0.5, o
Ch _ 0% | Ch _Cxn | Ch C3 Ch C5 Cha
24 24 2u 2u 24 2u 2u 24 24
Our results 8.2603 6.3359 1.8840 | 4.1978 | 2.9692 | 4.4972 | 1.3256
Yan et al. [30] | 8.2600 6.3359 1.6899 | 4.1978 | 2.9600 | 4.4977 | 1.3248

Table 1: Comparison of our results with the estimates by Yan et al. [30] for compos-
ites with perfectly bonded inhomogeneities.

is taken to be f = 0.5 and the loading I" at infinity is given by I' = 1+ 14. Using Eqgs.
(2.4)-(2.5), the displacement uz(x,y) and the stress components o13(z,y), o23(x,y)
have been computed; the contours of their normalized values are presented in Figs.
4. Tt is seen from Fig. 4a that the displacement us(x,y)/a is indeed continuous
everywhere in the cell. Also, the displacement is skew-symmetric with respect to
the origin, as expected for the loading conditions enforced at infinity. Figs. 4b,c
illustrate the distributions of the dimensionless stress components o13(z,y)/p and
oo3(x,y) /1. As expected, o13(z,y)/p and oo3(z,y)/p are discontinuous across the
interface and that the distributions of oi3(x,y)/pu and o93(x,y)/pu are symmetric
with respect to the origin. From the analysis of these figures, one can conclude
that the developed solution works well even for the composites with relatively high
volume fractions of the inhomogeneities. The effective properties for the composite
considered in this example have been evaluated using equations of Section 4. They
are C7,/(2un) = 3.0750, C1,/(21) = 0.0863, C5,/(2n) = 2.8697.

6.2 Comparison with the existing results for the effective properties

In this section, we compare the effective properties estimates obtained with the
present approach with those reported in the literature.

We start with the case of perfectly bonded inhomogeneities, which is characterized
by the parameter g = 0. This case has been previously investigated by many authors
and several numerical results are available. Such solutions are presented in [30] where
they are compared with two previous estimates. We choose the shear moduli of the
inhomogeneity and the matrix such that the parameter « is equal to x = 0.02 and
evaluate the effective properties of the composites characterized by various shapes of
unit cells and various volume fractions of inhomogeneities. The angle 8 corresponds
to the smallest angle of the parallelogram period cell. In table 1, we compare our
estimates with those reported in [30].

The table shows that our results have excellent agreement with the estimates in
[30] in most of the cases considered. The only estimate that does not perfectly agree
with ours is that for C};/2p and the rectangular array. This result was compared in



18

Rhombic General
Hexagonal Square array, doubly-periodic
array, array, array,
f=08 | f=07 fw_ 276 ;"1;121 Tm ws /w7 = 0.5,
2= B=5m/12, f = 0.7
Ch _C% | Ch _ G | Ch C5 Ch C3 Cha
2u 2u 24 24 24 24 24 2u 2u
Our results 9.0532 6.8758 7.3080 | 4.7771 | 7.1407 | 5.5385 | 0.4449
Yan et al [30] | 8.9926 6.8380 7.2652 | 4.7618 | 7.0997 | 5.5160 | 0.4401

Table 2: Comparison of our results with the estimates by Yan et al., [30] for coated
inhomogeneities.

[30] with only one estimate that was obtained previously by some authors of the latter
paper, so the reason for the disagreement with our result is not clear. To perform
another check of our results, we recomputed them using the expressions in [27] for
unit cells of the same shapes. Here agreement was perfect for all cases considered
and, for this reason, the results are not presented here.

The paper [30] also contains estimates for the composites with highly conducting
coating layers. The authors adopted the following parameters (in our notations):
k =100, pe/p = 990.5, hy/H = 0.1. Those parameters satisfy condition (2.10), which
allows for the comparison of estimates [30] for composites with coated inhomogeneities
with those obtained by the proposed approach for composites with superconducting
interfaces. To do that we use Eq. (2.11) to evaluate the value of the parameter
v = pchy/Hpq to be v = 9905. The comparison of our results with those reported in
[30] is presented in table 2. As expected, the results do not match exactly, especially
for anisotropic configurations. However, the agreement is quite good, provided that
the two different interface models are used. Note, that the example presented in
[30] for a rhombic array with the volume fraction f = 0.7 is not realistic, as the
inhomogeneity in such a case cannot be fitted inside the unit cell.

Finally, to illustrate the importance of accurate accounting for geometrical ar-
rangement of the inhomogeneities in the unit cell, in Fig. 5 we compare our results
with the dilute estimates of [2] and the Mori-Tanaka estimates of [7]. The square
lattice is chosen for the arrangement of the inhomogeneities and the parameters for
the matrix, inhomogeneity, and interface are taken to be the same as in the sample
used in table 2. As expected, dilute estimates work well only for the composites with
low volume fractions of inhomogeneities. The Mori-Tanaka-based estimates perform
better but still under-predict the effective properties in case of high volume fractions.

To study the influence of the unit cell shape, on Fig. 6 we plotted the effective
properties of composites with unit cells of various shapes as functions of the volume
fraction f. The values k = 100 and v = 9905 were selected for the material parame-
ters. For the square and hexagonal lattices, the graphs of C7,/(2u) = C3,/(2u) are
plotted. For the rhombic and general doubly-periodic arrays, two graphs of C7;/(2u)
and C3,/(2p) are plotted. The values of C,/(2u) in all cases are either equal to zero
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Figure 5: Comparison with the estimates of Quang et al [7] and Miloh & Benveniste

[2] for kK = 100 and v = 9905.
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Figure 6: Effective properties vs. volume fraction f for composites
cells for k = 100 and v = 9905.
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Figure 7. Effective properties vs. parameter v for composites with various unit cells
and k = 0.5.

or relatively small compared to those for Cf,/(2u) and C3,/(2u); they are not shown
in Fig. 6. It can be concluded that the influence of the unit cell shape increases with
the increase in the volume fraction of inhomogeneities.

To illustrate the influence of the interface parameter v, in Fig. 7 we plotted the
effective properties of composites with various lattices of inhomogeneities as functions
of parameter . The value of the parameter x is chosen to be kK = 0.5. For the square
and hexagonal lattices the graphs of Cf;/(2u) = C55/(2u) are plotted. For the
rhombic and general doubly-periodic arrays, two graphs of C{,/(2u) and C3,/(21)
are plotted. As before, the values of C},/(21) in all cases are either equal to zero or
relatively small compared to C;/(2u) and C3,/(2u) and are not shown in Fig. 7.
It can be concluded that initial increase in ~ triggers rapid increase in the values of
CYy/(2u), which are different for different unit cells. However, after reaching some
plato (also different for each case of a unit cell), those values vary just slightly.

7 Conclusion

In this paper, we developed an analytical solution for modeling harmonics prob-
lems involving two-dimensional composites with a homogeneous matrix and arbitrary
doubly periodic arrays of identical circular inhomogeneities with superconducting or
membrane-type interfaces. The solution allows for the accurate evaluation of the
local fields everywhere in the composite system and for its overall properties. For
the composites with square and hexagonal arrangements of inhomogeneities, explicit
formulas are provided to most effectively determine their overall properties. Com-
parisons with the existing numerical solutions are performed and a set of reliable
benchmark results is established. The developed analytical solution can be used in
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wide areas of applications particularly those related to modeling modern materials
with improved thermal, electrical, and mechanical properties.
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Appendix A Properties of the system of Egs. (3.11),

(3.12)
The system of Eqs. (3.11), (3.12) can be written as
o0
Xn — Z Gnkxk = Y05n,07 n = 07 17 27 R (Al)
k=0

| Cy G, — —ReA,r ImA, B Rel
= p, |0 TRT O AL, ReA, |0 YOT Y T |

Goo =0,
_1—k+7@2n+1)
S 1l+k+9@2n+1)

n

Introduce an operator on the vector space [*°(R?) of bounded sequences whose
elements are two-dimensional vectors:

X = {150 = [X0, X1, -, Xp, -] T,
where x,, = [wg),wg)]. Take the norm on this space as:
x| = sup  max {|af], 2]}

n=0,1,2,...

Introduce a linear operator £ : [*°(R?) — [°°(R?) by the formula:

o
(Lx), =D Gupxp, n=0,1,2,... (A.2)
k=0
Then Eq. A.1 can be written in the operator form

x—Lx=Yy, (A.3)

where y, = yon,0-
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Theorem 1. The operator L : 1°°(R?) — [*°(R?), given by the formula (A.2), is a
bounded linear operator for all a < min{|w|, |wa|}

Proof. Compute the norm of the operator L.

> Gy

k=0

I£]l = sup [|[Lx]| = sup sup

|l|=1 |lz||=1 7™

o
<sup Y (|Gl <
" k=0

o
supz lan| (| Re Apg| + [ Im Ayp]) -
" k=0
Observe first, that {a, } is a convergent sequence, and hence, bounded, |a,| < a.

It is known [31] that
C

lsk| < ==
)\%k22k’

where A\; = min (Jwi|/a, |wz|/a) > 1 and C is a constant. Also, from the properties
of the binomial coefficients,

(2n + 2k +1)! < 92n+2k+1
(2n + 1)!1(2k)! '
From here we obtain:
Cuo

1£]] < JVIRE]

—r (A.4)

and hence the operator £ is bounded.

Additionally, observe that if the sequence {z,} is bounded, ||z,| < B, then the
sequence {E;‘;O G Xk} is a sequence convergent to 0. Using the same estimates as

before,
o
> Gk
k=0

(o]
<BY |Gl <
k=0

= BC|a|
B n| (|Re A, ImAl) € 55—
= el (Re ot + 1804 <

O

From the estimate (A.4) follows that for Ay large enough, the norm of the operator
Lisless than 1, ||£|| < 1. Consequently, in this case, the solution to the infinite system
of linear equations (3.11), (3.12) exists and is unique by the fixed point theorem.

Moreover, it can be shown that for any A; > 1 the operator £ is compact [27].
Then the existence of the solution to this system is reducible to the existence of the
solution of a certain finite system of linear algebraic equations.
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