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Abstract

Online algorithms with predictions is a popular and elegant framework for bypassing pessimistic
lower bounds in competitive analysis. In this model, online algorithms are supplied with future
predictions and the goal is for the competitive ratio to smoothly interpolate between the best offline
and online bounds as a function of the prediction error.

In this paper, we study online graph problems with predictions. Our contributions are the
following:

• The first question is defining prediction error. For graph/metric problems, there can be two
types of error, locations that are not predicted, and locations that are predicted but the
predicted and actual locations do not coincide exactly. We design a novel definition of prediction
error called metric error with outliers to simultaneously capture both types of errors, which
thereby generalizes previous definitions of error that only capture one of the two error types.

• We give a general framework for obtaining online algorithms with predictions that combines, in
a “black box” fashion, existing online and offline algorithms, under certain technical conditions.
To the best of our knowledge, this is the first general-purpose tool for obtaining online algorithms
with predictions.

• Using our framework, we obtain tight bounds on the competitive ratio of several classical graph
problems as a function of metric error with outliers: Steiner tree, Steiner forest, priority Steiner
tree/forest, and uncapacitated/capacitated facility location.

Both the definition of metric error with outliers and the general framework for combining offline and
online algorithms are not specific to the problems that we consider in this paper. We hope that these
will be useful for future work on other problems in this domain.

1 Introduction

Online algorithms has been the paradigm of choice in algorithms research for handling future uncertainty
in input data. But, they have often been criticized for being overly pessimistic, and their failure to
distinguish between algorithms with widely different empirical performance in many contexts is well
documented. To overcome this deficiency, recent research has proposed augmenting online algorithms
with future predictions (e.g., from machine learning models), the goal being to design algorithms that
gracefully degrade from the best offline bounds for accurate predictions to the best online bounds for
arbitrary predictions. Indeed, a robust literature is beginning to emerge in this area with applications
to caching [40, 51, 35, 56], rent or buy [49, 23, 2], scheduling [49, 38, 47, 29], online learning [17, 9],
covering problems [7], frequency estimation [28], low rank approximation [31], metrical task systems [3],
auction pricing [43], budgeted allocation [45], Bloom filters [46], etc. In this paper, we ask: how do we
design online graph algorithms with predictions?
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For example, consider a cable company that needs to set up a network that can serve clients in a certain
area. They can obtain a rough prediction of their future client locations via, e.g., market surveys. This
prediction is available upfront, but the actual clients join the service over time, and the network has to
be built up as the clients join. A natural goal for the cable company is to use the predictions to mitigate
uncertainty, and design an algorithm that degrades gracefully with prediction error.

Another example is a video conferencing platform that has to allocate bandwidth for client meetings.
The platform can make predictions on client locations for meetings based on past data (e.g., just their
last known location, or by using a more sophisticated machine learning model), but the actual set of
users connect to the meeting online. Of course, the prediction could be wrong in terms of the users who
actually join the meeting, or even for a correctly predicted user, might get her precise location wrong.
Again, the goal would be to smoothly degrade in performance with these types of prediction error.

1.1 Our Contributions Metric Error with Outliers. The first question is how to model
prediction error. For concreteness, think of the example above, i.e., making predictions on a geographical
map; on such a metric space/graph, there are, conceptually, two types of errors.

• Some predictions might be entirely wrong; for such cases, the appropriate notion of error is the
number of false predictions, or the number of unpredicted requests. This is the error typically
implied when solving problems with outliers. However, this error notion is unrealistic for metric
spaces: even when the prediction for a location is “correct”, one cannot hope that it would precisely
match the actual location on the underlying graph/metric space.

• Another notion of error, which is able to handle such slightly-perturbed predictions, is the
minimum transportation cost of moving from the predicted input to the actual input. (This
is the error previously used for metric problems in the prediction model.) The shortcoming of
this error notion is that even a single acute misprediction could lead to unbounded transportation
cost.

It is clear from this discussion that both these types of error are required to faithfully capture prediction
(in)accuracy. We introduce a new robust notion of prediction error called metric error with outliers that
subsumes both these types of errors. This notion of error applies to any problem involving predictions
on a metric space; with the prediction model becoming very popular in online algorithms, we hope that
this definition of error will be useful for other problems in the future.

For convenience, we define this error on a metric space; this is easily extended to a graph using the
shortest path metric. Let M = (V, d) be a metric space. Let R ⊆ V be a subset of vertices and R̂ ⊆ V
be a prediction for R. (In general, R̂ and R may have different sizes.) The metric error with outliers for

R̂ is given by λ = (∆, D) w.r.t. R if there exist sets T ⊆ R and T̂ ⊆ R̂ satisfying |T | =
∣∣∣T̂ ∣∣∣ such that

(a) the minimum cost matching between T and T̂ on M has cost D, and (b) |R \ T | +
∣∣∣R̂ \ T̂ ∣∣∣ = ∆.

Intuitively, the idea is to define the error as the minimum cost matching D between the predicted and
actual locations, but allow outliers in both the predicted and actual sets that count toward a numerical
error ∆. (See Figure 1 for a visualization.)

We remark that for a given prediction, there are multiple different values of ∆ and D that fit this
(∆, D)-error definition. In particular, for a given D, to find the best ∆, simply find the maximum
number of pairs of predicted and actual locations whose transportation cost is at most D; the total
number of remaining predicted and actual locations is ∆. This produces a Pareto frontier of (∆, D)
pairs (see Fig. 1). Our theorems hold for all possible values of ∆ and D. In particular, if we set D = 0
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Figure 1: An illustration of metric error with outliers. The figure on the left shows a request set R (red circles) and a prediction

R̂ (blue squares). The figure in the middle shows a valid definition of metric error with outliers for R̂ w.r.t. R. Here, T ⊂ R are
matched to T̂ ⊂ R̂ using the green lines; D is the total length of the green lines. The outliers are shown in the orange shaded region;

∆ is the number of points in this region.

The figure on the right shows the tradeoff between ∆ and D in the error. The red points are the Pareto frontier formed by various
choices of ∆ and D.

and define error using only the numerical count of mispredicted locations, or set ∆ = 0 and define error
using only metric distance between predicted and actual points, our theorems continue to hold for both
cases. (These are the two ends of the Pareto frontier.)

A Framework for Combining Offline and Online Algorithms. The gold standard in online
algorithms with predictions is to interpolate between online and offline bounds for a problem as a
function of the prediction error. But, perhaps surprisingly, in spite of the recent surge of interest in this
domain, there is still no general framework/methodology that can combine online and offline results in
a black box fashion to achieve such interpolation. I.e., the existing results are individually tailored to
meet the needs of the problem being considered, and therefore, do not use offline/online results in a
black box manner. We make progress toward this goal of designing a general methodology in this paper
by presenting a framework that requires the following ingredients:

• An online algorithm that satisfies a technical condition called subset competitiveness. We will
describe this more precisely later, but intuitively, this means that the cost incurred by the
algorithm on any subset of the input can be bounded against the optimal solution on that subset.

• An offline algorithm for the prize-collecting version of the problem, i.e., if one is allowed to not
satisfy a constraint in lieu of paying a penalty for it.

We show that this framework achieves tight bounds for several classical problems in graph algorithms
that we describe below. But, before describing these results, we note that the framework itself is quite
general (i.e., does not use any specific property of problems defined on graphs), and uses the online and
offline algorithms as black box results. Therefore, we hope that this framework will be useful for online
problems with predictions in other domains as well.

Our Problems. We present online algorithms with predictions for some classic problems in graph
algorithms using the above framework:

• Steiner Tree (e.g., [36, 58, 48, 50, 12]): In this problem, the goal is to obtain the minimum cost
subgraph that connects a given set of vertices called terminals. In the online version, the terminals
are revealed one at a time in each online step. The offline prediction provides the algorithm with
a predicted set of terminals.
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• Steiner Forest (e.g., [1, 22]): This is a generalization of the Steiner tree problem where the input
comprises a set of vertex pairs called terminal pairs that have to be connected to each other (but
not necessarily with other pairs). In the online version, the terminal pairs are revealed one at a
time in each online step. Again, the offline prediction gives a predicted set of terminal pairs.

• Facility Location (e.g., [27, 53, 44, 24, 15, 37, 34, 13, 33, 32, 54, 42, 11, 39]): In this problem, a
subset of vertices are designated as facilities and each of them is given an opening cost. Now, a
subset of vertices are identified as clients, and each client must connect to an open facility and
pay the shortest path distance to that vertex as connection cost. The open facilities also pay their
corresponding opening costs. The goal is to minimize the total cost. In the online version, the
clients are revealed one at a time in each online step. The offline prediction comprises a set of
predicted clients.

• Capacitated Facility Location (e.g., [34, 41]): This is the same as facility location, except that each
facility also has a maximum capacity for the number of clients that can connect to it. We consider
the soft capacitated version of the problem, i.e., where multiple copies of a facility can be opened
but each opened copy incurs the opening cost of the facility.

Our Results. Our main result is the following:

Theorem 1.1. Consider the Steiner tree, Steiner forest, and (capacitated) facility location problems.
Suppose R and R̂ are respectively the actual and the predicted inputs, and let opt be the optimal solution
for R. Then, for any metric error with outliers (∆, D), we present (for each problem) an algorithm
alg with the following guarantee:

alg ≤ O(log ∆) · opt +O(D). (1.1)

Universality: As shown in Figure 1, the multiple choices for the error (∆, D) create a Pareto frontier
of choices which are non-dominated. The algorithms presented in this paper achieve the bounds in
Theorem 1.1 for every error (∆, D) simultaneously, and thus remain oblivious to the chosen error
parameters.

Scale-freeness: The key property of these theorems is that the competitive ratio does not scale with
the size of the input as long as the input is predicted correctly (or with small D). Conceptually, this is
exactly what predictions should achieve in an online algorithm, that the competitive ratio should only
be a function of the part of the input that was not predicted correctly.

Tightness of Bounds: The competitive ratios in Theorem 1.1 match the tight competitive ratios for
the corresponding online problems, i.e., for R̂ = ∅. Hence, these bounds are also tight. Indeed, we
show in the appendix that the online lower bound constructions can be implemented even if there is a
prediction of any size by creating a copy of the lower bound instance inside the erroneous predictions.

Impossibility of Black Box Theorem: Given our theorems, one might wonder if it is always possible
to replace the number of requests in an online graph algorithm with the number of prediction errors
in the competitive ratio, i.e., if there is a universal theorem to this effect. Unfortunately, this is not
true. For instance, in the bipartite matching problem even on a uniform metric space on n points, it is
easy to see that even a single prediction error can lead to a competitive ratio of Ω(log n). We give this
example in the appendix.

Extension to Priority Steiner tree/forest: In Appendix B, we extend our results to priority Steiner
tree/forest (e.g. [14, 16]). This is a generalization of Steiner tree/forest where every edge and every
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terminal/terminal pair has a priority, a terminal/terminal pair can only use edges of its priority or
higher to connect. In the online version, the terminals/terminal pairs and their priorities are revealed
online. The offline prediction comprises a set of predicted terminals/terminal pairs with their respective
priorities. In the video conferencing and network design applications, this reflects multiple service level
agreements (SLAs) with different users.

We give an algorithm alg with the following guarantee:

alg ≤ O(b · log(∆/b)) · opt +O(D), (1.2)

where b is the number of priority classes in the input.

2 A General Framework for Online Algorithms with Predictions

In this section, we give our general framework for online algorithms with prediction. Abstractly, we are
given a universe S offline, where each element has an associated cost c : S → R+. A set of requests
R arrives online, one request per step, and the online algorithm must augment its solution S ⊆ S by
adding new elements from S such that the new request is satisfied. We assume that for each request
r ∈ R, the collection of sets satisfying r is upward-closed, i.e., if S satisfies r, so too does any S′ ⊇ S.
The algorithm is also given an offline prediction R̂ for the set of requests.

For every set S ⊆ S of elements, we define c(S) :=
∑

e∈S c(e). Our framework requires the following
ingredients:

Property 2.1. An online algorithm ON whose competitive ratio is f(|R|). This algorithm must be
subset-competitive; that is, for every request subset R′ ⊆ R we have

ON(R′) ≤ O(f(|R′|)) ·OPT

where ON(R′) denotes the total cost incurred by the algorithm in serving the requests of R′.

Property 2.2. A (constant) γ-approximation algorithm PC for the prize-collecting offline problem. In
this problem, each request in R has a penalty given by π : R → R+. A solution is a subset of elements
S ⊆ S that minimizes c(S) +

∑
r∈R′ π(r), where R′ ⊆ R is the set of requests not satisfied by S.

Given these two ingredients, we define our framework in Algorithm 2.1. Before describing the framework
formally, let us give some intuition for it. There are two extreme cases. If the prediction is entirely
accurate, we should simply run an offline approximation for the predicted requests. On the other hand, if
the prediction is entirely erroneous, we should run a standard online algorithm and ignore the prediction
completely. Between these extremes, where the prediction is only partially accurate, some hybrid of
those algorithms seems a natural choice. Thus, our framework runs a standard online algorithm on the
actual requests, while also satisfying increasingly larger parts of the prediction by periodically running
an offline algorithm to satisfy predicted requests. Ideally, the offline solutions should satisfy the correctly
predicted requests, while the online solution should satisfy the requests that were not predicted. But,
in general, this is impossible to achieve: the offline algorithm does not know in advance which of the
predicted requests will arrive in the future. Our main technical work is to show the surprising property
that it suffices for the offline algorithm to choose the most “cost-effective” part of the prediction to
satisfy even if those requests eventually do not realize in the actual input.

Algorithm 2.1. General Framework for Online Algorithms with Predictions.
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Input:
ON – An online algorithm for the problem
PC – a γ-approximation for the prize-collecting problem. Denote by PC(Q, π) the application of PC
to the set of requests Q and the penalty function π.
R̂ – a prediction of requests

1: procedure Initialization
2: Initialize B ← 0, B̂ ← 0 and S ← ∅.
3: Initialize ON to be a new instance of the online algorithm.
4: end procedure

5: procedure UponRequest(r) . Upon the next request r
6: Send r to the online algorithm ON, and augment S accordingly. Increase B by the resulting

cost incurred by ON.

. Whenever the cost of the online algorithm doubles, buy another offline solution
7: if B ≥ 2B̂ then
8: Set B̂ ← B
9: Calculate 0 ≤ u ≤ |R̂|, the minimum number such that c(Partial(R̂, u)) ≤ 3γB̂.

10: Augment S with the elements of Partial(R̂, u).
11: Start a new instance of the online algorithm ON where c(e) = 0 for all e ∈ S.
12: end if
13: end procedure

14: procedure Partial(R̂,u)
15: if γu ≥ |R̂| then return ∅
16: For every x, define πx to be the prize-collecting penalty function such that ∀r : πx(r) = x.
17: Let i be the minimum integer such that PC(R̂, π2i) does not satisfy ≤ γu requests. 1

18: Let S1 = PC(R̂, π2i−1) and S2 = PC(R̂, π2i).
19: Let u1, u2 be the number of requests from R̂ which are not satisfied by S1, S2, respectively.
20: if γu ≥ u1+u2

2 then return S1 else return S2

21: end procedure

Framework and Partial Procedure. A high-level, informal description of the framework is to
perform the following whenever a request r is released:

1. Send r to be served by the online algorithm ON.

2. If the total cost B incurred in Step 1 (over all requests) has doubled, buy an offline solution which
satisfies as many requests from the prediction R̂ as possible, while not exceeding a budget of O(B).

The framework thus runs the online algorithm ON on each incoming request, but periodically adds an
(offline) solution for the prediction R̂. This offline solution is computed by a subroutine that we call
Partial. The input to Partial is the prediction R̂ and an integer u such that 0 ≤ u ≤ |R̂|, and it
attempts to output a minimum-cost solution that satisfies all requests from R̂ except for at most u
requests. If Partial were able to solve this minimization problem exactly, or even up to a constant
approximation, then the algorithm would add the solution returned by Partial(R̂, u) for the minimum

1This can be done by enumerating all values of i.
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Figure 2: Visualization of Framework: As the request sequence advances, the requests are forwarded to an online algorithm. Each
time the cost of this online algorithm doubles, the current solution is augmented with an offline solution to the prediction, which

serves an increasingly-larger number of predicted requests.

value of u within the given budget. An example for a problem in which Partial can output such a
solution is Steiner tree, in which Partial simply needs to solve the well-known k-mst problem, for
which there are several constant approximation algorithms (e.g., [6, 10, 20, 5, 4, 21]).

However, for other problems, this may be infeasible – for Steiner forest, the approximability of the
corresponding “k-minimum spanning forest” problem is known to be related to that of the k-densest
subgraph problem, and hence a sub-polynomial approximation is unlikely [26, 52, 25].

Our key observation is that we can relax the guarantee that we seek from this minimization problem.
Namely, we show that it suffices to obtain a residual bi-criteria constant approximation, which means
that the algorithm satisfies the following two properties: (a) the cost of the solution is at most a
constant times that of the optimal solution, and (b) the number of requests in R̂ that are not satisfied
by the algorithm is also at most a constant times that in the optimal solution. Surprisingly, this
weaker guarantee allows us to entirely conceal the differences in approximability of the minimization
problem being solved by Partial. Indeed, we show that using a series of invocations of an offline
prize-collecting algorithm PC in a completely black box manner, we can obtain an implementation of
Partial that provides the bicriteria guarantee that we need.

The formal algorithm for the framework is presented in Algorithm 2.1.

2.1 Framework Properties

The Partial Subroutine Guarantee. Recall the desired property from the subroutine Partial:
given a prediction R̂ and a number u (such that 0 ≤ u ≤ |R̂|) as input, compare the output S of
Partial(R̂, u) against the minimum-cost solution S∗ which satisfies all requests from R̂ except for u
requests. This output S cannot fail to satisfy more than a constant factor more requests R̂ than S∗;
that is, it fails to satisfy only O(u) requests (here, recall that γ is a constant). In addition, the cost
of S can be at most a constant times the cost of S∗. This residual bi-criteria guarantee crucially uses
Property 2.2, where the γ approximation ratio of the prize-collecting algorithm goes into both the cost
of S and the amount of requests satisfied by S. This guarantee is formally stated in the following lemma
(proof in Appendix A).

Lemma 2.1. The solution S returned by a call to Partial(R̂, u) has the following properties:

1. S satisfies all requests from R̂ except for at most 2γu requests.
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Figure 3: Phase Structure: This figure illustrates the iterations of the algorithm, where the major iterations are shown in red.

Fixing any specific major iteration i induces a sequence of online phases ON0, · · · ,ONm.

2. c(S) ≤ 3γ · c(S∗), where S∗ is the minimum cost solution satisfying all requests from R̂ except for
at most u requests.

Bounding Cost of Framework. Next, we provide some bounds for various costs incurred by the
framework. The following sections make use of these general bounds to prove competitiveness.

The requests of R are handled in |R| iterations of the algorithm (calls to UponRequest). For the
variable B in the algorithm, and any iteration j, we write Bj to refer to the value of the variable
immediately after the j’th iteration of the algorithm (where B0 is the initial value of B, namely 0).
Similarly, we define B̂j to be the value of the variable B̂ after the j iteration, where B̂0 = 0.

If the if condition of Line 7 holds during iteration i, then i is called a major iteration. That is, major
iterations are those iterations in which our solution is augmented by a solution for some predicted
requests.

Fix a major iteration i, and observe the subsequent major iterations, denoted i = i?0, i
?
1, ..., i

?
m (where

m is the number of such major iterations). For convenience, we define i?m+1 = |R|. For each index

j ∈ {0, · · · ,m}, we define phase j to consist of iterations
{
i?j + 1, · · · , i?j+1

}
. Observe that each phase

uses a different instance of ON; we denote by ONj the total cost of the ON instance of phase j.

The following lemma provides a bound on the cost of the algorithm (formal proof in Appendix A). It
does so by dividing the costs of the algorithm into two parts, subject to the choice of any major iteration
i: the first is the prefix cost, up to (and including) iteration i; the second is the suffix cost, from iteration
i + 1 onwards. Intuitively, a “correct” choice of i would be such that B̂i ≈ OPT; subject to such a
choice of i, the first i iterations perform an exploratory doubling procedure, and thus the prefix cost
would be O(OPT). As for the suffix cost, we claim that once an offline solution of cost ≈ OPT is
added, the suffix cost cannot be large unless the prediction is rather inaccurate. These claims are made
formal in the following sections; for now, we simply state and prove this prefix-suffix division of costs.
Note that this lemma makes use of Property 2.1, which implies that serving no single request in the
online algorithm is prohibitively expensive.

Lemma 2.2. Fix any major iteration i. Denote the subsequent major iterations by i = i?0, i
?
1, ..., i

?
m, and

define phases and ONj for any j as above (with respect to iteration i). The following holds:

1. The total cost of the first i iterations is at most O(1) ·OPT + (12γ + 2) · B̂i−1.

2. The total cost of the iterations i+ 1, · · · , |R| is at most O(1) ·max {ONm−1,ONm}.

The lemmas of this section reduce the cost analysis of the framework to bounding the terms
ONm−1,ONm and B̂i−1 for some major iteration i. This is done in the following sections, for each
problem separately.
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3 Online Steiner Tree with Predictions

In the Steiner tree problem, we are given an undirected graph G = (V,E) with edge costs c : E → R+.
The set of requests R = {r1, r2, . . . , r|R|} is a subset of vertices called terminals. The goal is to obtain
a connected subset of edges S that spans all the terminals at minimum cost

∑
e∈S c(e). In the online

version, the terminals arrive online, one per step, and must be connected to a root vertex ρ given offline.
(The rooted and unrooted versions are equivalent.) The offline prediction comprises a predicted set of
terminals R̂.

In this section, we apply the framework of Algorithm 2.1 using the two required components – an offline
algorithm for prize-collecting Steiner tree and a subset-competitive online algorithm for Steiner tree.

Prize-collecting offline algorithm. Goemans and Williamson [22] gave a 2-approximation algorithm
for the prize-collecting (unrooted) Steiner tree problem. Their algorithm can be trivially adapted for
the rooted version of the problem by adding the root ρ to the terminals, and assigning it a penalty of
∞.

Lemma 3.1. (Goemans and Williamson [22]) There exists a 2-approximation offline algorithm
PCst for the rooted prize-collecting Steiner tree problem.

Subset-competitive online algorithm. The greedy algorithm ONst for online Steiner tree [30]
performs the following:

1. Upon the release of a new terminal ri, let v ∈ {ρ, r1, · · · ri−1} be the closest terminal to ri.

2. Buy the path Pri,v, the shortest path from ri to v.

As shown in [30], this algorithm is O(log |R|+ 2)-competitive. The following lemma shows that it also
upholds Property 2.1, i.e. it is subset competitive.

Lemma 3.2. The greedy algorithm ONst is subset-competitive, as in Property 2.1. That is, for an input
R and every R′ ⊆ R, it holds that

ONst(R′) ≤ O
(
log
∣∣R′∣∣+ 2

)
·OPT

Proof. Denote by OPT′ the optimal solution for the subset R′. We show that ONst(R′) ≤
O (log |R′|+ 2) ·OPT′, which implies the lemma since OPT′ ≤ OPT.

Note that for each terminal r ∈ R′, the cheapest path to a previous terminal in an instance with
terminals R is at most as expensive as the cheapest path to a previous terminal in an instance with
terminals R′ ⊆ R. The lemma now follows from the competitive ratio of the instance with terminals
R′.

Steiner tree with predictions. The algorithm for Steiner tree with predictions is now constructed
by simply plugging in ONst and PCst into the framework. Note that the solution S remains connected
throughout the algorithm (specifically in Line 10 of Algorithm 2.1, both subgraphs whose union is taken
contain the root vertex ρ).

We would now like to show that applying the framework to ONst and PCst yields a guarantee for metric
errors with outliers. However, we must first define the matching cost of two requests, to complete the
definition of errors in the Steiner tree problem. For Steiner tree, we use the natural choice that the
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matching cost of two requests r1, r2 is simply the distance between them in the graph, henceforth
denoted by d(r1, r2).

Fix any prediction R̂ and any input request sequence R = (r1, . . . , r|R|). Let λ = (∆, D) be some error

for the input R and the prediction R̂. We denote by T λ ⊆ R and T̂ λ ⊆ R̂ the subsets of matched input
requests and matched predicted requests, respectively, in the definition of λ. Slightly abusing notation,
we use λ as the matching between T λ and T̂ λ such that for every r ∈ T λ, we use λ(r) to denote its
matched predicted request in T̂ λ. Similarly, for a subset of requests R′ ⊆ T λ, we define λ(R′) ⊆ T̂ λ to
be the set of predicted requests matched to requests in R′. In the other direction, we use λ(r̂) to denote
the request in T λ matched to the predicted request r̂ ∈ T̂ λ (operating similarly for sets of predicted

requests). Note that by the definition of (∆, D)-error, it holds that ∆ =
∣∣R\T λ∣∣ +

∣∣∣R̂\T̂ λ∣∣∣, and that

D =
∑

r∈Tλ d(r, λ(r)).

The error guarantee for Steiner tree is formally stated in Theorem 3.1.

Theorem 3.1. For every error λ = (∆, D), Algorithm 2.1 for Steiner tree with predictions upholds

ALG ≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D.

Henceforth, we fix the error λ, and drop λ from T λ and T̂ λ. We define k =
∣∣T λ∣∣ the number of matched

requests in λ, and fix i to be the major iteration in which u is first assigned a value which is at most∣∣∣R̂∣∣∣− k in Line 9 of Algorithm 2.1.

Proof. [Proof of Theorem 3.1] Having used the framework of Section 2, and observing that i is a major
iteration, we can apply Lemma 2.2:

1. The cost of the first i iterations is at most O(1) ·OPT + (12γ + 2)B̂i−1. Using Proposition 3.1,
this expression is at most O(1) ·OPT +O(1) ·D.

2. The cost of the last iterations, from i+ 1 onwards, is at most O(1) ·max
{
ONst

m−1,ONst
m

}
. Using

Lemma 3.3, this is at most O (log (min {|R|,∆})) ·OPT +O(1) ·D.

Overall, we have that
ALG ≤ O (log (min {|R|,∆})) ·OPT +O(1) ·D.

To complete the proof of Theorem 3.1, it remains to prove Proposition 3.1 and Lemma 3.3.

Proposition 3.1. B̂i−1 ≤ OPT +D.

Proof. Consider the iteration i′ < i in which B̂i−1 was set, i.e. the first iteration such that B̂i′ = B̂i−1.
If i′ = 0, then B̂i−1 is the initial value of B̂, which is 0, and the proposition trivially holds. Henceforth
assume that i′ > 0.

From the definition of i, we have that ui′ > |R̂|−k, where ui′ is the value of the variable u after iteration i′.
Thus, c(Partial(R̂, |R̂|−k)) > 3γB̂i′ = 3γB̂i−1. From Lemma 2.1, this implies that the least expensive
solution which satisfies at least k requests from R̂ costs at least B̂i−1. Since k = |T | = |T̂ |, we have that
OPTT̂ is such a solution, where OPTT̂ is the optimal solution for T̂ . Therefore, c(OPTT̂ ) ≥ B̂i−1.

Now, observe that OPT can be augmented to a solution for T̂ through connecting r to λ(r) for every
r ∈ T , at a cost of at most D. Thus, c(OPT) + D ≥ c(OPTT̂ ) ≥ B̂i−1, which completes the proof.
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Define the phases of the algorithm with respect to the major iteration i as in Section 2, where the cost
of the online instance ONst in the j’th phase is denoted by ONst

j . We again number the phases from
0 to m.

Lemma 3.3. It holds that

max
{
ONst

m−1,ONst
m

}
≤ O (log (min {|R|,∆}+ 2)) ·OPT +O(1) ·D.

Proof. Let j ∈ {m− 1,m}, and let Q ⊆ R be the subsequence of requests considered in ONst
j . Denote

by R̂′ ⊆ R̂ the subset of predicted requests that are satisfied by the Partial solution bought in iteration
i.

The online algorithm ONst
j operates in a modified metric space, in which the cost of a set of edges S0

is set to 0; denote by d′ the metric subject to these modified costs.

We partition Q into the following subsequences:

1. Q1 = Q ∩ T . We further partition Q1 into the following sets:

(a) Q1,1 =
{
r ∈ Q1|λ(r) ∈ R̂′

}
(b) Q1,2 =

{
r ∈ Q1|λ(r) /∈ R̂\R̂′

}
2. Q2 = Q\T .

Observe that ONst
j (Q) = ONst

j (Q1,1) + ONst
j (Q1,2 ∪Q2). We now bound each component separately.

Bounding ONst
j (Q1,1). Since λ(Q1,1) ⊆ R̂′, and R̂′ is already served by the Partial solution bought

in iteration i, it holds for each request r ∈ Q1,1 that d′(λ(r), ρ) = 0. Through triangle inequality, it
thus holds that d′(r, ρ) ≤ d′(r, λ(r)), and thus the cost of connecting r incurred by ONst

j is at most
d′(r, λ(r)). Therefore:

ONst
j (Q1,1) ≤

∑
r∈Q1,1

d′(r, λ(r)) ≤
∑
r∈Q1,1

d(r, λ(r)) ≤ D

Bounding ONst
j (Q1,2 ∪Q2). Using Property 2.1 (subset competitiveness), we have that

ONst
j (Q1,2 ∪Q2) ≤ O (log (|Q1,2 ∪Q2|+ 2)) ·OPT′

where OPT′ is the optimal solution to Q with the cost of S0 set to 0. Clearly, OPT′ ≤ OPT.

Now, observe that |Q1,2| ≤
∣∣∣R̂\R̂′∣∣∣. From the definition of the major iteration i, and from Lemma 2.1,

it holds that
∣∣∣R̂\R̂′∣∣∣ ≤ 2γst · (|R̂| − k) = 2γst

∣∣∣R̂\T̂ ∣∣∣. As for Q2, it holds that Q2 ≤ |R\T |. These facts

imply that
|Q1,2 ∪Q2| ≤ 2γst∆

In addition, it clearly holds that |Q1,2 ∪Q2| ≤ |R|. Therefore, it holds that

ONst
j (Q1,2 ∪Q2) ≤ O (log (min {|R| ,∆}+ 2)) ·OPT

Combining this with the previous bound for ONst
j (Q1,1), we obtain

ONst
j (Q) ≤ O (log (min {|R| ,∆}+ 2)) ·OPT +D

completing the proof.
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4 Online Steiner Forest with Predictions

In the online Steiner forest problem, we are given an undirected graph G = (V,E) with non-negative
edge costs c : E → R+. The requests are pairs of vertices from V called terminal pairs. The algorithm
maintains a subgraph S of G in which each terminal pair is connected. Upon the arrival of a new terminal
pair, the algorithm must connect the two vertices by adding edges to S. The goal is to minimize the
cost of the solution c(S). We are also given a set of vertex pairs offline as the prediction R̂ for the
terminal pairs.

In this section, we apply the framework in Algorithm 2.1 to Steiner forest, using the two components:
an offline approximation for prize-collecting Steiner forest, and an online algorithm for Steiner forest.

Prize-collecting offline algorithm. The following algorithm is due to Hajiaghayi and Jain [26].

Lemma 4.1. (Hajiaghayi and Jain [26]) There exists a γsf-approximation algorithm PCsf for prize-
collecting Steiner forest, where γsf = 2.54.

Subset-competitive online algorithm. We now describe a version of the algorithm of Berman and
Coulston [8] for online Steiner forest, denoted ONsf. The precise statement of the Berman-Coulston
algorithm is important, as we want a variant which is subset-competitive, which does not hold for
all variants; for example, the variant of Umboh [55] is not subset-competitive. The crucial difference
between the version we describe below and that of [55] is that when we connect a pair and observe that
the balls around the two terminals intersect with existing balls, we connect each terminal to an arbitrary
intersecting ball, while the algorithm in [55] connects to all intersecting balls. This may lead to a high
cost at a single step, which invalidates subset competitiveness.

The ONsf algorithm maintains a collection of duals2 {Dj}∞j=−∞, where each Dj is a set of disjoint balls

of radius exactly 2j−2 in the metric space induced by the graph. For each ball B ∈ Dj , there exists a
terminal pair (s, t) such that either B is centered at s and t is outside B, or vice-versa. For the sake of
analysis, we also define, for each Dj , a meta-graph Mj whose vertices correspond to the balls in Dj .

The ONsf algorithm is given in Algorithm 4.1. Here, PFs,t denotes the shortest path connecting vertices
s and t in G, where edges in F have cost 0. Also, B(v, r) denotes the (open) ball of radius r centered
at vertex v.

Algorithm 4.1. Berman and Coulston’s Algorithm for Online Steiner Forest (ONsf)

Input: G = (V,E) – the input graph

1: procedure Initialization
2: Initialize Dj ← ∅ for every j ∈ Z.
3: Initialize F to be the empty graph.
4: end procedure

5: procedure UponRequest((s, t)) . Upon the next terminal pair (s, t) in the input
6: Set F ← F ∪ PFs,t and `← blog c(PFs,t)c.
7: if B(v, 2`−2) does not intersect3 any ball in D` for some v ∈ {s, t} then
8: Add B(v, 2`−2) to D` . This adds a vertex to Mj

9: else . both B(s, 2`−2) and B(t, 2`−2) intersected balls in D`

10: Denote by B1 = B(a1, 2
`−2) some ball that intersected B(s, 2`−2), and by B2 = B(a2, 2

`−2)
some ball that intersected B(t, 2`−2).

2Although these collections of disjoint balls actually correspond to feasible LP dual solutions for Steiner forest, and hence we are
calling them duals, we will give a self-contained proof of our theorem that does not need the LP formulation or LP duality.
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. Add an edge between B1 and B2 in Mj

11: Set F ← F ∪ PFa1,s ∪ P
F
a2,t.

12: end if
13: end procedure

The O(log |R|)-competitiveness of Algorithm 4.1 is due to Berman and Coulston [8]. We now show that
it also upholds Property 2.1, i.e. it is subset competitive. This fact is stated in the following lemma,
the proof of which is presented in Subsection 4.1.

Lemma 4.2. Algorithm 4.1 is subset-competitive as described in Property 2.1. That is, for input R and
every subset R′ ⊆ R, it holds that

ONsf(R′) ≤ O
(
log
(∣∣R′∣∣+ 2

))
·OPT.

The algorithm for the online Steiner forest with predictions is now constructed by simply plugging in
ONsf and PCsf into the framework.

Steiner forest with predictions. Using ONsf and PCsf as the online and prize-collecting components
of the framework in Section 2, we obtain the desired algorithm for Steiner forest with predictions. It
remains to analyze its guarantees given any error λ = (∆, D).

First, we must define the matching cost of requests and predictions for the error to be fully defined. We
naturally define the matching cost of two terminal pairs to be the minimum distance one must move the
two terminals of the first pair in the metric space in order for each terminal in the first pair to coincide
with a distinct terminal in the second pair. Formally, the matching cost of request (s1, t1) and request
(s2, t2) is

min {d (s1, s2) + d (t1, t2) , d (s1, t2) + d (s2, t1)} .

Fix any prediction R̂ and any input request sequence R = (r1, . . . , r|R|). As in the Steiner tree case,

let λ = (∆, D) be some error for the input R and the prediction R̂. We again denote by T λ ⊆ R and
T̂ λ ⊆ R̂ the subsets of matched input requests and matched predicted requests, respectively, in the
definition of λ. As before, we use λ to map from a request in T to its match in T̂ and vice-versa.

The main result of this section is the following theorem for Steiner forest with predictions.

Theorem 4.1. For every error λ = (∆, D), Algorithm 2.1 for Steiner forest with predictions has the
guarantee

ALG ≤ O (log (min {R,∆}+ 2)) ·OPT +O(1) ·D.

As in the Steiner tree case, we henceforth fix a (∆, D)-error λ, and drop λ from T λ and T̂ λ. We define
k = |T |. Now, fix i to be the major iteration in which u is first assigned a value which is at most |R̂|−k
in Line 9 of Algorithm 2.1.

Proof. [Proof of Theorem 4.1] The proof of Theorem 4.1 follows the same lines as Theorem 3.1 for
Steiner tree.

Having used the framework of Section 2, and observing that i is a major iteration, we can apply Lemma
2.2:

3Two (open) balls B(v1, r1) and B(v2, r2) are said to intersect if the shortest path from v1 to v2 costs less than r1 + r2.
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1. The cost of the first i iterations is at most O(1) ·OPT + (12γ + 2)B̂i−1. Using Proposition 4.1,
this expression is at most O(1) ·OPT +O(1) ·D.

2. The cost of the last iterations, from i+ 1 onwards, is at most O(1) ·max
{
ONst

m−1,ONst
m

}
. Using

Lemma 4.3, this is at most O (log (min {|R|,∆})) ·OPT +O(1) ·D.

Overall, we have that
ALG ≤ O (log (min {|R|,∆})) ·OPT +O(1) ·D.

It remains to prove Proposition 4.1 and Lemma 4.3.

Proposition 4.1. (Analog of Proposition 3.1) B̂i−1 ≤ OPT +D.

Proof. Identical to the proof of Proposition 3.1 for Steiner tree with predictions.

Lemma 4.3. (Analog of Lemma 3.3) It holds that

max
{
ONsf

m−1,ONsf
m

}
≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D.

Proof. The proof is nearly identical to that of Lemma 3.3 for Steiner tree. The only thing to note
explicitly is that for Steiner tree, the cost of serving a request is at most its distance to any previous
request, while ONsf can pay at most twice that distance.

4.1 Subset Competitiveness of ONsf. This subsection is devoted to proving that the online
algorithm ONsf is subset competitive, as stated in the following lemma.

Lemma 4.4. At any point during the algorithm, Mj is acyclic.

Proof. Suppose for contradiction that at some iteration in the algorithm, an edge is created between
two balls B1, B2 ∈ Dj that were already connected in Mj at the beginning of that iteration, thus closing
a cycle in Mj . Denote by a1, a2 the centers of B1, B2 respectively. Due to Line 11, we have that at the
beginning of the iteration, a1 and a2 were connected in F .

Let (s, t) be the terminal pair considered in that iteration, and without loss of generality assume that
B(s, 2j−2) intersected B1 and B(t, 2j−2) intersected B2. Then d(s, a1) < 2j−1 and d(t, a2) < 2j−1. But
then since a1 and a2 are connected in F , we have that c

(
PFs,t
)
< 2j at the beginning of the iteration, in

contradiction to the algorithm creating an edge in Mj in that iteration.

Denote by nj the number of iterations in which the variable ` was set to j. We also denote by n′j the
number of such iterations on the requests of R′.

Corollary 4.1. At the end of the algorithm, for every j, we have that nj ≤ 2 · |Dj |.

Proof. In each iteration counted in nj , either a node or an edge is added to Mj . Since Mj is acyclic,
the number of its edges is at most the number of its nodes.

Define m+ := blog (ONsf(R′))c and m− := m+ − dlog |R′|e − 2.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Lemma 4.5. ONsf(R′) ≤ 24 ·
∑m+

j=m− n
′
j · 2j−2.

Proof. First, observe that ONsf(R′) ≤ 3 ·
∑∞

j=−∞ n
′
j · 2j . This is since an iteration counted in n′j costs

at most 2j+1 in adding a path in Line 6, and at most 2j in connecting conflicting nodes in Line 11.

Now, observe that n′j = 0 for every j > m+. This is since an iteration counted in n′j for such a j would
cost strictly more than ONsf(R′), in contradiction. Additionally, it holds that

m−−1∑
j=−∞

n′j · 2j ≤ |R| · 2m
−−1 ≤

∣∣R′∣∣ · ONsf(R′)

8 · |R′|
=

ONsf(R′)

8
.

Combining those observations, we get that

ONsf(R′) ≤ 3 ·
m−−1∑
j=−∞

n′j · 2j + 3 ·
m+∑
j=m−

n′j · 2j ≤
ONsf(R′)

2
+ 3 ·

m+∑
j=m−

n′j · 2j ,

and thus ONsf(R′) ≤ 6 ·
∑m+

j=m− n
′
j · 2j = 24 ·

∑m+

j=m− n
′
j · 2j−2.

Proposition 4.2. For every j ∈ Z, we have OPT ≥ |Dj | · 2j−2.

Proof. Each Dj is a set of disjoint balls of radius 2j−2. Each such ball B is centered at some terminal a
that must be connected outside the ball. Therefore, any feasible solution must contain edges (or parts
of edges) in B in order to connect a outwards, at a total cost that is at least the radius of the ball.
Since the balls are disjoint, these costs sum up in any feasible solution.

Proof. [Proof of Lemma 4.2] Using Proposition 4.2 for each j ∈ [m−,m+] and averaging, we get that

OPT ≥
∑m+

j=m− |Dj | · 2j−2

m+ −m− + 1
=

∑m+

j=m− |Dj | · 2j−2

log |R′|+ 3
.

Using Lemma 4.5 and Corollary 4.1, we have

ONsf(R′) ≤ 24 ·
m+∑
j=m−

n′j · 2j−2 ≤ 48
m+∑
j=m−

|Dj | · 2j−2 ≤ O
(
log
(∣∣R′∣∣+ 2

))
·OPT.

5 Online Facility Location with Predictions

In the online facility location problem, we are given an undirected graph G = (V,E) offline with cost ce
for edge e and facility opening cost fv for vertex v. Requests (called clients) arrive at the vertices of the
graph, one per online step. The algorithm maintains a set of open facilities at a subset of the vertices
of the graph. Upon the arrival of a client r, the algorithm must connect the client to its closest open
facility, at a connection cost equal to the shortest path in the graph between r and that facility. The
algorithm is also allowed to open new facilities before making this connection; opening a new facility at
a vertex v adds a cost of fv to the solution. The goal is to minimize overall cost defined as the sum of
opening costs of facilities and connection costs of clients.

We would like to use the framework of Section 2. Thus, we must describe the relevant components, i.e.
a prize-collecting algorithm and a subset-competitive online algorithm.

Prize-collecting offline algorithm. The following lemma is due to Xu and Xu [57].
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Lemma 5.1. There exists a γfl-approximation for prize-collecting facility location, where γfl = 1.8526.

Subset-competitive online algorithm. Algorithm 5.1 (we call it ONfl) is an O(log (|R|+ 2))-
competitive deterministic algorithm for online facility location due to Fotakis [18]. Here, d(u, v)
denotes the shortest path distance between vertices u and v, and for a subset of vertices F , we denote
d(F, v) := minu∈F d(u, v). For any value d, we use d+ := max(d, 0).

F ← ∅

Algorithm 5.1. Fotakis’ Algorithm for Online Facility Location (ONfl)

Input: G = (V,E) – the input graph

procedure Initialization
F ← ∅, L← ∅
for all v ∈ V do

set p(v)← 0
end for

end procedure

procedure UponRequest(r) . Upon the next request r in the sequence
Set L← L ∪ r
UpdatePotentialsF ,r
w ← arg maxv∈V (p(v)− fv)
if p(w) > fw then

set F ← F ∪ w
ComputeNewPotentialsF ,L

end if
end procedure

procedure UpdatePotentials(F ,r)
for all v ∈ V do

set p(v)← p(v) + (d(F, r)− d(v, r))+

end for
end procedure

procedure ComputeNewPotentials(F ,L)
for all v ∈ V do

set p(v)←
∑

r∈L (d(F, r)− d(v, r))+

end for
end procedure

This algorithm is not subset-competitive with respect to its actual cost; however, it is subset-competitive
with respect to an amortized cost, which is sufficient to achieve the desired results.

We use subscript i to denote the value of a variable in Algorithm 5.1 immediately after handling the
i’th request (for i = 0 this refers to the initial value of the variable). This is used in this section for the
variables F,L and the potential function p.

Definition 5.1. (Amortized cost) For each request ri ∈ R, define the amortized cost of ri as

α(ri) = 2 ·min

{
d(Fi−1, ri),min

v∈V
(fv − pi−1(v) + d(v, ri))

}
.
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In words, the amortized cost of a request r is twice the minimum between its distance to a facility which
is already open upon r’s arrival, and its distance to a facility v which is not open plus the “remaining”
cost to opening that facility (fv minus the potential p(v)).

The following two lemmas, the proof of which appears in Subsection 5.1, state that α is indeed an
amortization of the algorithm’s cost, and that α is subset competitive.

Lemma 5.2. ONfl ≤
∑

r∈R α(r).

Lemma 5.3. Algorithm 5.1 is subset-competitive, as required in Property 2.1, with respect to its
amortized cost. That is, for input R and for every subset of requests R′ of R, it holds that∑

r∈R
α(r) ≤ O(log

(
|R′|+ 2

)
) ·OPT.

Facility Location with Predictions. We use the components ONfl and PCfl to construct the
algorithm for facility location with predictions. The algorithm uses ONfl as a black box, as in the
framework described in Algorithm 2.1. For the sake of describing the algorithm, and its analysis, we
assume that the cost incurred by ONfl upon receiving a request r is not the actual cost of opening
facilities and connecting the request, but rather the amortized cost α(r), as defined in Definition 5.1.
In particular, this altered cost affects the counting of the online algorithm’s cost, which affects whether
a Partial solution is bought. As guaranteed in Lemmas 5.2 and 5.3, α is indeed an amortized cost
function, which is subset-competitive. Also observe that α(r) can be calculated by ONfl upon the
release of r (which is required for counting the online cost towards buying Partial solutions).

In this algorithm, the addition of the offline solution returned by Partial is done by adding the facilities
of that solution immediately, and connecting the requests of that solution upon their future arrival. This
postponing of costs does not affect the analysis.

We would now like to analyze this algorithm for (∆, D)-errors. First, we must first define a (∆, D)-
error completely by defining the matching cost of two requests. This matching cost, rather naturally, is
defined to be the distance between the requests’ nodes in the graph.

The main result of this section is the following theorem for facility location with predictions.

Theorem 5.1. For every error λ = (∆, D), Algorithm 2.1 for facility location with predictions has the
guarantee

ALG ≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D.

When analyzing this algorithm, we regard the costs incurred by the online component ONfl as the
amortized costs, i.e. on request r the cost of ONfl would be α(r). Since the sum of those costs upper-
bounds the actual cost of the algorithm (Lemma 5.2), such an analysis is legal. Lemma 5.3 now implies
that this amortized cost is subset-competitive, and thus the properties and lemmas of Section 2 hold.

As for Steiner tree and Steiner forest, we denote by T λ and T̂ λ the matched requests and the matched
predictions of the error λ.

The proof follows the same lines as the guarantee for robust Steiner tree (Theorem 3.1). As in the
robust Steiner tree case, define k = |T |. Now, fix i to be the iteration in which the variable u is first

assigned a value which is at least
∣∣∣R̂∣∣∣− k in Line 9 of Algorithm 2.1.

Proposition 5.1. (Analog of Proposition 3.1) B̂i−1 ≤ OPT +D.
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Proof. Let i′ < i be the iteration in which B̂i−1 was set, i.e. the first iteration such that B̂i′ = B̂i−1.
If i′ = 0, then B̂i−1 is the initial value of B̂, which is 0, and the proposition holds. Henceforth assume
that i′ > 0.

From the definition of i, we have that ui′ >
∣∣∣R̂∣∣∣ − k, where ui′ is the value of the variable u after

iteration i′. Thus, c(Partial(R̂,
∣∣∣R̂∣∣∣ − k)) > 3γB̂i′ = 3γB̂i−1. From Lemma 2.1, this implies that

the least expensive solution which satisfies at least k requests from R̂ costs at least B̂i−1. Since

k =
∣∣∣T̂ ∣∣∣ = |T |, we have that OPTT̂ is such a solution, where OPTT̂ is the optimal solution for

T̂ . Therefore, c(OPTT̂ ) ≥ B̂i−1.

Now, observe that OPT can be augmented to a solution for T̂ through disconnecting each request r ∈ T
from the facility vr to which it is connected, and instead connecting the request λ(r) ∈ T̂ to vr. This
connects all requests in T̂ , and increases the cost of OPT by exactly∑

r∈T
d(λ(r), vr)− d(r, vr) ≤︸︷︷︸

triangle inequality

∑
r∈T

d(r, λ(r)) = D

We therefore have a solution for T̂ which costs at most OPT +D, completing the proof.

Lemma 5.4. (Analog of Lemma 3.3) It holds that

max
{
ONfl

m−1,ONfl
m

}
≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D.

Proof. Let j ∈ {m− 1,m}, and let Q ⊆ R be the subsequence of requests considered in ONst
j . Denote

by R̂′ ⊆ R̂ the subset of predicted requests that are satisfied by the Partial solution considered in
iteration i (the solution whose facilities were opened at the end of iteration i).

The online algorithm ONfl
j operates on a modified input, in which the cost of a set of facilities F0 is

set to 0.

We partition Q into the following subsequences:

1. Q1 = Q ∩ T . We further partition Q1 into the following sets:

(a) Q1,1 =
{
r ∈ Q1|λ(r) ∈ R̂′

}
(b) Q1,2 =

{
r ∈ Q1|λ(r) /∈ R̂\R̂′

}
2. Q2 = Q\T .

Observe that ONfl
j (Q) = ONfl

j (Q1,1) + ONfl
j (Q1,2 ∪Q2). We now bound each component separately.

Bounding ONfl
j (Q1,1). Consider a request r ∈ Q1,1, and note from the definition of amortized cost that

ONfl
j (r) ≤ 2d(r, F ′), where F ′ is the set of facilities which are either open or have cost 0 immediately

before considering r. Thus, we have that

ONfl
j (Q1,1) ≤

∑
r∈Q1,1

2d(r, F0) ≤
∑
r∈Q1,1

2d(r, λ(r)) + 2d(λ(r), F0) ≤ 2D +
∑
r∈R̂′

d(r, F0)

Now, observe that F0 contains all facilities bought by the Partial solution at iteration i, and
thus

∑
r∈T̂ d(r, F0) is at most the connection cost of that solution, which is at most the solution’s

cost. From the proof of Item 1 of Lemma 2.2, We know that the cost of that solution is at
most 3γfl(2B̂i−1 + O(1) · OPT) = O(1) · OPT + O(1) · D. Overall, we have that ONfl

j (Q1,1) ≤
O(1) ·OPT +O(1) ·D.
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Bounding ONfl
j (Q1,2 ∪Q2). Using Property 2.1 (subset competitiveness), we have that

ONfl
j (Q1,2 ∪Q2) ≤ O (log (|Q1,2 ∪Q2|+ 2)) ·OPT′

where OPT′ is the optimal solution to Q with the cost of F0 set to 0. Clearly, OPT′ ≤ OPT.

Now, observe that |Q1,2| ≤
∣∣∣R̂\R̂′∣∣∣. From the definition of the major iteration i, and from Lemma 2.1,

it holds that
∣∣∣R̂\R̂′∣∣∣ ≤ 2γfl · (|R̂| − k) = 2γfl

∣∣∣R̂\T̂ ∣∣∣. As for Q2, it holds that Q2 ≤ |R\T |. These facts

imply that
|Q1,2 ∪Q2| ≤ 2γfl∆

In addition, it clearly holds that |Q1,2 ∪Q2| ≤ |R|. Therefore, it holds that

ONfl
j (Q1,2 ∪Q2) ≤ O (log (min {|R| ,∆}+ 2)) ·OPT

Combining this with the previous bound for ONfl
j (Q1,1), we obtain

ONfl
j (Q) ≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D

completing the proof.

Theorem 5.1 now follows from Lemma 2.2, Proposition 3.1 and Lemma 5.4, using an identical argument
as for Theorem 3.1.

5.1 Subset Competitiveness of Algorithm 5.1. The goal of this subsection is to prove Lemmas
5.2 and 5.3. Henceforth, fix the input sequence R = (r1, . . . , r|R|), and recall that for every variable x
(e.g., F , L, p) in the algorithm, we denote by xi the value of x immediately after iteration i (if i = 0
this denotes the initial value of the variable).

Lemma 5.5. For every i ∈ {1, 2, . . . , |R|}, and for every v ∈ V , it holds that pi(v) ≤ fv.

Proof. Identical to the proof of [18, Lemma 1].

Denote by F ∗ the set of facilities bought by the optimal solution. For each facility v∗ ∈ F ∗, let Cv∗ be
the set of requests connected to v∗ by the optimal solution.

We denote the cost incurred by the algorithm in opening facilities by ONfl
F , and the cost of connecting

requests by ONfl
C . We define OPTF and OPTC similarly. For every subsequence of requests R′, we

define ONfl
F (R′) and ONfl

C (R′) as the total opening cost and the total connection cost incurred for the
requests of R′, respectively. We also use the same terminology for OPT.

Corollary 5.1. |Li ∩ Cv∗ | · d(Fi, v
∗) ≤ fv∗ + 2 ·OPTC(Cv∗) for every v∗ ∈ F ∗.

Proof. Identical to the proof of [18, Corollary 1].

Proposition 5.2. For each request ri ∈ R, if ONfl opens a facility at any w ∈ V in iteration i, then
α(ri) = 2 (fw − pi−1(w) + d(w, ri)). Otherwise, α(ri) = 2d(Fi−1, ri).
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Proof. Identical to the proof of [18, Lemma 3].

Proof. [Proof of Lemma 5.2] Define the potential function φ(i) =
∑

r∈Li d(Fi, r) for every iteration i.
We show by induction on i that

ONfl((r1, . . . , ri)) + φ(i) ≤
∑
r∈Li

α(r), (5.3)

thereby proving the lemma. Suppose Equation 5.3 holds for iteration i − 1. Iteration i would increase
the RHS by α(ri), and increase the LHS by ONfl(ri) + ∆φ, where we define ∆φ = φ(i)−φ(i− 1) to be
the change in the potential function φ.

If the algorithm did not open a new facility in iteration i, then we have ONfl(ri) = d(ri, Fi−1).
In addition, we have that ∆φ = d(ri, Fi−1). In the RHS, using Proposition 5.2, we have that
α(ri) = 2d(ri, Fi−1), completing the proof for this case.

For the other case, in which the algorithm opens a new facility at w ∈ V during iteration i, we have
that the algorithm’s cost for that iteration is fw for opening the facility, plus the cost of connecting ri.

Observe that if we open a facility for the current client, it becomes the closest open facility to the client.
This is since at the beginning of the iteration, we had that p(w) ≤ fw, using Lemma 5.5. Thus, if w
was opened in iteration i, its potential has increased upon the arrival of ri. But this only happens if w
is closer to ri than any open facility in Fi−1. Therefore, the connection cost of ri in iteration i is exactly
d(ri, w).

As for the change in the potential function φ, we consider first the addition of w to F and then the
addition of ri to the request set. The addition of w to F has reduced φ by exactly pi−1(w). Then, the
addition of ri increased φ by exactly d(ri, w). Thus, The LHS of Equation 5.3 increased by a total of
fw−pi−1(w)+d(ri, w). But according to Proposition 5.2, the RHS has increased by twice that amount,
and thus the equation holds.

Since the potential function φ is initially 0, and is always non-negative, the proof is complete.

Proof. [Proof of Lemma 5.3] Fix a facility f∗ ∈ F ∗. Denote the requests of Cf∗ by q1, . . . , q|Cf∗ | ordered
by their arrival. With k′ = |R′ ∩ C∗f |, denote by i1, . . . , ik′ the indices in the requests of R′ ∩ C∗f .

For qi1 , we have that α(qi1) ≤ 2fv∗ + 2d(v∗, qi1). Now, consider any j > 1, and let i be the iteration in
which qij is considered. For j > 1, using Corollary 5.1, we have that

α(qij ) ≤ 2 · d(qij , Fi−1)

≤ 2 · d(v∗, Fi−1) + 2 · d(v∗, qij ) (by triangle inequality)

= 2 · d(v∗, Fi−1) + 2 · d(v∗, qij )

≤ 2

|Li−1 ∩ Cv∗ |
· (fv∗ + 2 ·OPTC(Cv∗)) + 2 · d(v∗, qij ) (by Corollary 5.1)

≤ 2

|Li−1 ∩ Cv∗ ∩R′|
· (fv∗ + 2 ·OPTC(Cv∗)) + 2 · d(v∗, qij )

=
2

j − 1
· (fv∗ + 2 ·OPTC(Cv∗)) + 2 · d(v∗, qij ) (by the definition of j).
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Summing over j, we get

k′∑
j=1

α(qij ) ≤ 2 · fv∗ +

k′∑
j=2

2

j − 1
· (fv∗ + 2 ·OPTC(Cv∗)) + 2 ·OPTC(Cv∗ ∩R′)

≤ 2(log k′ + 1) · fv∗ + 4(log k′ + 1) ·OPTC(Cv∗ ∩R′)
≤ 2(log k + 1) · fv∗ + 4(log k + 1) ·OPTC(Cv∗ ∩R′).

Summing over all v∗ ∈ F ∗, we get that∑
r∈R′

α(r) ≤ O(log (k + 2)) ·OPT.

6 Online Capacitated Facility Location with Predictions

The results of Section 5 also extend to the soft-capacitated facility location problem. In this problem,
each node v ∈ V has, in addition to the facility opening cost fv, a capacity βv which is a natural number.
After opening a facility at v, a solution can connect at most βv clients to that facility. We consider the
soft-capacitated case, in which a solution may open multiple facilities at a single node v, each at a cost
of fv, such that each facility can connect βv requests.

The matching cost between two requests in this case is identical to the uncapacitated case – specifically,
it is the distance between the two requests in the graph.

This problem can be related to the uncapacitated facility location problem using the following folklore
reduction, which we nevertheless describe for completeness: given an instance for soft-capacitated
facility location, which contains a graph G = (V,E), facility costs {fv} and capacities {βv}, construct
a uncapacitated facility location instance over the graph G′ = (V ∪ V ′, E ∪ E′), where:

• V ′ contains a copy v′ for every v ∈ V . The opening cost in v′ would be fv, and the opening cost
in v would be ∞.

• E′ contains an edge e = (v, v′) for every v ∈ V (and its copy v′ ∈ V ′), such that the cost of the
edge is fv

βv
.

• The cost of the edges of E remains as in the original instance.

Whenever a request is released in the original capacitated instance on a node v, release a request on v
in the uncapacitated instance.

In essence, this reduction restricts opening facilities to copies of the original nodes, such that these
copies are somewhat distant from the rest of the graph, as to discourage connecting requests frivolously
(wasting the capacity).

The algorithm for an instance I of capacitated facility location would therefore be:

1. Reduce I to an uncapacitated instance I ′, on which the algorithm of Section 5 is run.

2. Whenever a request r is released on a node v in I, release a request on v in I ′.

3. Whenever the algorithm opens a facility at v′ in I ′, open a facility at v in I.
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4. Whenever the algorithm connects a request at r to a facility at v′ in I ′, connect r to a facility at
v in I (opening an additional facility at v if required).

Denote by ALG the cost of the algorithm on I, ALG′ the cost of the algorithm of Section 5 on I ′,
OPT′ the optimal solution for I ′, and OPT the optimal solution for I. Observe that:

1. ALG ≤ ALG′. This is since for each connection to facility v, ALG′ pays exactly xv = fv
βv

more
than ALG. As for the opening costs, the opening of a first facility at v in ALG is charged the
opening of the facility at v′ in ALG′, and the opening of any subsequent facility at v in ALG is
charged to βv connections which cost xv more, for a total of βv · xv = fv.

2. OPT′ ≤ 2OPT. We show that a OPT induces a solution for I ′ of at most double cost. The
solution OPT′′ for I ′ consists of opening a facility at v′ for every v in which OPT opened a
nonzero number of facilities, and connecting to v′ all requests which OPT connected to facilities
at v. Let yv be the number of requests connected to node v in OPT. Then the connection cost of
OPT′′ is exactly Cv + yv · fvβv , where Cv is the cost of connecting requests to v incurred by OPT.

Now, observe that yv · fvβv is a lower bound on the buying cost of OPT on facilities in v; thus, the

connection cost of OPT′′ is at most OPT. Since the buying cost of OPT′′ is also clearly at most
OPT, we arrive at the desired conclusion.

Importantly, observe that the distance between requests in the metric spaces of G and G′ is identical -
thus, the matching cost D is the same in both I and I ′. We can thus apply Theorem 5.1 to I ′, which
combined with the above conclusions, yields the following theorem.

Theorem 6.1. For error λ = (∆, D) in soft-capacitated facility location, Algorithm 2.1 (combined with
the above reduction) has the guarantee

ALG ≤ O (log (min {|R| ,∆}+ 2)) ·OPT +O(1) ·D.

7 Conclusions

In this paper, we presented algorithms for classical graph problems in the online problems with
predictions framework. Our main contributions were: (a) a novel definition of prediction error for
graph and metric problems that incorporates both the numerical value of errors and their magnitude
in the metric space, (b) a new “black box” framework for converting online algorithms that satisfy a
subset competitiveness condition and offline prize-collecting algorithms to new online algorithms with
prediction, and (c) an application of this framework to a range of graph problems to obtain tight
interpolations between offline and online approximations. In particular, this improves the dependence
of the competitive ratio from being on the size of the instance to the number of prediction errors. We
hope that the concepts introduced in this paper–the notion of metric error and the general framework
for online algorithms with prediction–will be useful for other problems in the future.
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A Additional Proofs from Section 2

Proof. [Proof of Lemma 2.1] If γu ≥ |R̂|, then Partial returns ∅, which satisfies both claims of the
lemma. Assume henceforth that γu < |R̂|.
To prove the first claim, consider the two cases in the subroutine. If the returned solution is S2, then
the number of unsatisfied requests is u2, which is at most γu ≤ 2γu, as required. Otherwise, S1 is
returned, and thus γu ≥ u1+u2

2 . This implies that 2γu ≥ u1 + u2 ≥ u1, which completes the proof of
the first claim.

We now prove the second claim. Fix i to be the index chosen in partial, such that S2 = PC(R̂, π2i)
does not satisfy at most γu requests from R̂. Fix u∗ to be the number of requests in R̂ which are
not satisfied by S∗ (such that u∗ ≤ u). Observe that S1 defines a solution of cost c(S1) + 2i−1 · u1 to
the prize-collecting problem with penalty function π2i−1 . Since S1 was chosen by PC for that penalty,
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Property 2.2 yields

c(S1) + 2i−1 · u1 ≤ γ · (c(S∗) + 2i−1u∗), (A.1)

where the inequality used the fact that S∗ also defines a solution for the prize-collecting problem.

If S = S1, then since u1 ≥ γu, we have

c(S1) + γ · 2i−1u∗ ≤ c(S1) + γ · 2i−1u ≤ c(S1) + 2i−1u1.

Combining the previous equation with Eq. (A.1) yields c(S1) ≤ γ · c(S∗), as required.

The second case is that S = S2. In this case, we repeat the argument of Eq. A.1 for S2 with penalty 2i:

γ ·
(
c(S∗) + 2i · u∗

)
≥ c(S2) + 2i · u2 = c(S2) + 2iγu+ 2i · (u2 − γu)

≥ c(S2) + 2iγu+ 2i · u2 − u1

2

(
since γu <

u1 + u2

2

)
.

This yields c(S2) ≤ γ · c(S∗) + γ2i(u∗ − u) + 2i · u1−u22 ≤ γ · c(S∗) + 2i · u1−u22 . Now, due to Eq. A.1, we
have

γ · c(S∗) ≥ c(S1)︸ ︷︷ ︸
≥0

+2i−1(u1 − γu∗) ≥ 2i−1(u1 − γu) ≥ 2i−1 · u1 − u2

2
.

We thus get that c(S2) ≤ 3γ · c(S∗), completing the proof of the second claim.

Proof. [Proof of Lemma 2.2] Proof of Item 1. First, we claim that the total cost of the first i − 1
iterations is at most (6γ + 2) · B̂i−1.

To prove this claim, consider that at any point during the algorithm, the value of B is exactly the total
cost incurred by all instances of ON in Line 6 until that point. Thus, Bi−1 is the cost incurred in the
first i − 1 iterations due to Line 6. Since at the beginning (and end) of each iteration it holds that
B < 2B̂, we have Bi−1 ≤ 2B̂i−1.

As for the cost of adding items from calls to Partial in Line 10, let S1, ..., S` be the solutions added
in Line 10 in the first i− 1 iterations, in order of their addition. Observe that c(Sj) ≤ 3γB̂i−1 · 2−(`−j).
Thus, the sum of costs of those solutions is at most 6γB̂i−1.

Now, we claim that the cost of iteration i is at most O(1) ·OPT+ 6γ · B̂i−1. To prove this, consider the
cost of Line 6 in iteration i, in which the online algorithm ON serves some request ri. The request ri is
a part of a phase of requests which are served by this specific instance of ON (between two subsequent
resets of ON in Line 11); call the requests of this phase R′. The requests of R′ are all served by ON
in the modified input, in which the cost of some set of elements S0 is set to 0 (specifically, S0 is the
value of the variable S immediately after its augmentation with S`). Using Property 2.1, we have that
ON(ri) ≤ O(1) · OPT′, where ON(ri) is the cost incurred by ON when serving ri, and OPT′ is the
optimal solution for R′ (with the cost of elements in S0 set to 0). Clearly, OPT′ ≤ OPT, which yields
that ON(ri) ≤ O(1) ·OPT.

As for the solution added in Line 10, its cost is at most 3γB̂i = 3γBi. Consider that Bi =
Bi−1 + ON(ri) ≤ 2B̂i−1 +O(1) ·OPT. This completes the proof of the first item.

Proof of Item 2. First, we claim that the total cost of Partial solutions from iteration i+ 1 onward
is at most 6γ ·

∑m
j=0 ONj .
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Observe that for every j such that 1 ≤ j ≤ m, we have that B̂i?j ≥ 2B̂i?j−1
. Thus,

B̂i?j − B̂i?j−1
≥ B̂i?j−1

= B̂i?j −
(
B̂i?j − B̂i?j−1

)
,

and therefore B̂i?j ≤ 2
(
B̂i?j − B̂i?j−1

)
= 2

(
Bi?j −Bi?j−1

)
= 2 ·ONj−1.

Consider that for every j such that 0 ≤ j ≤ m, the cost of the Partial solution bought in iteration i?j
is at most 3γ · B̂i?j . Thus, the total cost of Partial solutions bought from iteration i+ 1 onward is at
most

6γ ·
m−1∑
j=0

ONj ≤ 6γ ·
m∑
j=0

ONj .

Which completes the proof of the claim.

Combining this claim with the definition of ONj for every j, we have that the total cost of the algorithm
from iteration i+ 1 onwards is at most (6γ+ 1)

∑m
j=0 ONj . Now, we claim that

∑m−2
j=0 ONj ≤ ONm−1;

this would imply that
∑m

j=0 ONj ≤ 3 max{ONm−1,ONm}, which completes the proof.

To show that
∑m−2

j=0 ONj ≤ ONm−1, observe that for every j ∈ [m−1], it holds that ONj = B̂i?j+1
−B̂i?j .

Summing over j from 0 to m− 2 yields a telescopic sum:

m−2∑
j=0

ONj = B̂i?m−1
− B̂i?0 ≤ B̂i?m−1

.

Now, using the same property for j = m−1, we get ONm−1 = B̂i?m− B̂i?m−1
≥ 2B̂i?m−1

− B̂i?m−1
= B̂i?m−1

.
Thus, we get

ONm−1 ≥
m−2∑
j=0

ONj .

B Online Priority Steiner Forest with Predictions

A generalization of the Steiner forest problem is priority Steiner forest. In this problem, each edge e ∈ E
has an associated integer priority αe ∈ [b]. In addition, every request r ∈ R contains, in addition to the
pair of terminals to connect, a priority demand which we also denote by αr ∈ [b]. A feasible solution
for this problem is such that for every request r of terminals s, t there exists a path connecting s, t
comprising only edges of priority at least αr. Throughout the discussion of the priority Steiner forest
problem, we partition the input R =

(
r1, · · · , r|R|

)
into {Rj}bj=1, where Rj is the subset of requests of

priority j.

To define errors in priority Steiner forest, we must define the matching cost between two requests r1 and
r2. If αr1 6= αr2 , we say that the matching cost is infinite. In other words, we do not allow matching
requests of different priorities. If both r1 and r2 have the same priority j, then we define the matching
cost between r1 and r2 to be the distance between the two pairs, as previously defined for Steiner forest.
However, this distance is not computed over the original graph G, but rather its subgraph Gj , which
only contains the edges in G which have priority at least j. Note the intuition for this definition – there
could be some very low priority class in which all points are very close, but this does not ameliorate the
error for higher-priority requests.

Divide R into R1, · · · , Rb according to priority class, and divide R̂ into R̂1, · · · , R̂b in a similar way.
Consider the following algorithm for priority Steiner forest with predictions:

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



1. Run b parallel instances of the algorithm for Steiner forest with predictions, such that the j’th
instance runs on the graph Gj (here again Gj is the subgraph of edges of priority at least j), and
is given the prediction R̂j .

2. Upon the release of a request of priority j, send it to the j’th instance.

3. At any point during the sequence, maintain the union of the solutions held by all b instances.

Theorem B.1. For every error λ = (∆, D), the algorithm above for priority Steiner forest with
predictions yields the following:

ALG ≤ O
(
b log

(
min {|R| ,∆}

b
+ 2

))
·OPT +O(1) ·D

Proof. Observe that for every priority class j, restricting the error λ to Rj and R̂j induces a Steiner forest

error λj for the j’th instance, such that λj = (∆j , Dj) where
∑b

j=1 ∆j = ∆ and
∑b

j=1Dj = D. Now, one
can apply Theorem 4.1 for every j, and obtain ALGj ≤ O (log (min {|Rj | ,∆j}+ 2)) ·OPTj +O(1) ·Dj ,
where ALGj is the cost of the Steiner forest with predictions algorithm on the requests of Rj (given
prediction R̂j), and OPTj is the cost of the optimal solution for that same Steiner forest instance.

Summing over j, we obtain

ALG ≤
b∑

j=1

ALGj

≤
b∑

j=1

O (log (min {|Rj | ,∆j}+ 2)) ·OPTj +
b∑

j=1

O(1) ·Dj

≤
b∑

j=1

O (log (min {|Rj | ,∆j}+ 2)) ·OPT +O(1) ·D

≤ O

(
b log

(∑b
j=1 (min {|Rj | ,∆j}+ 2)

b

))
·OPT +O(1) ·D

≤ O

b log

min
{∑b

j=1 |Rj | ,
∑b

j=1 ∆j

}
b

+ 2

 ·OPT +O(1) ·D

= O

(
b log

(
min {|R| ,∆}

b
+ 2

))
·OPT +O(1) ·D

where the third inequality is due to the fact that OPTj ≤ OPT for every j and that
∑b

j=1Dj = D,
and the fourth inequality is due to Jensen’s inequality and the concavity of log. This completes the
proof of the theorem.
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C Online Facility Location Algorithm [18] is not Subset Competitive

In this section, we show that the algorithm of Fotakis for online facility location [18] is not subset-
competitive. This algorithm is denoted by ONfl, and described in Section 5. This deterministic
algorithm is O(log |R|)-competitive. To show that it is not subset competitive, we show that for every
constant c there exists an input R and a subsequence R′ ⊆ R such that ON(R′) > c · log |R′|.
We consider the lower bound of Ω( log |R|

log log |R|) of [19]. The lower bound consists of an input on which

every algorithm is Ω( log k
log log k )-competitive, where k is such that |R| ≤ k.

The input is composed of a full binary tree of height m = log k
log log k , where the cost to open a facility at

each node is f . The weights on the edges of the tree are equal for each level, and decrease exponentially
by a factor of m in each level, where the edges going out of the root have a weight of f

m . The request
sequence is composed of m+1 phases, where the i’th phase releases mi−1 requests on a node vi at depth
i − 1. The first phase releases a single request on the root v0; For each subsequent phase i, the node
vi is the child node of vi−1 such that the algorithm did not open a facility in the subtree of that child
node (if the algorithm opened a facility in the subtrees of both child nodes, vi is an arbitrary child node
of vi−1).

Now, consider the operation of the online algorithm of [18] on this input. Upon the single request of
the first phase, the algorithm opens a facility at the root v1, and connects that request. The potential
of all points at the end of this phase is zero.

At each subsequent phase i, the algorithm connects all requests except for the last request to the facility
at vi−1. At the last request of the phase, the potential of vi at this point is mi−1 · f

mi−1 = f , and thus

a facility is opened at vi. Note that the total connection cost of this phase is (mi−1 − 1) · f
mi−1 , so at

most f .

Overall, the algorithm opened facilities at v1, · · · , vm+1, at an opening cost which is more than its
connection cost, and is thus at least half its total cost. From the guarantee of the lower bound, the
opening cost of the algorithm is thus Ω( log k

log log k ) ·OPT, where k is at least the number of requests, and
thus k ≥ mm.

Now, consider the subsequence R′ which consists of the last request in each phase. There are m + 1
such requests, but the entire facility opening cost of the algorithm is incurred on those requests. Thus,
ONfl(R′) = Ω(m logm

logm ) = Ω(m) = Ω(|R′|). In particular, ONfl(R′) = ω(log |R′|), proving that the
algorithm is not subset-competitive.

D Lower Bounds for Online Algorithms with Predictions

In this section, we show additional lower bounds for the Steiner tree, Steiner forest and facility location
in the online algorithms with predictions setting.

D.1 Steiner Tree We start with a lower bound for Steiner tree, which also applies to Steiner forest.

Suppose we are given the parameters n, k,∆1,∆2. We define a (n, k,∆1,∆2)-adversary to be an
adversary for Steiner tree with predictions that gives a prediction R̂ and a request sequence R such
that |R̂| = n, |R| = k, |R̂\R| = ∆1, |R\R̂| = ∆2. The following theorem yields the desired lower bound.

Theorem D.1. For every n, k,∆1,∆2, there exists a (n, k,∆1,∆2)-adversary for Steiner tree with
predictions such that every randomized algorithm on this instance is Ω(min(k,∆))-competitive, where
∆ = ∆1 + ∆2.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited



For this theorem, we use the lower bound for the online Steiner tree problem, due to Imase and Waxman
[30], which we restate for the rooted version of Steiner tree.

Theorem D.2. For every m, there exists a graph Gm = (V,E) of m2 + m nodes, a root ρ ∈ V and
an oblivious adversary ADV that releases a sequence of requests R such that |R| = m on which every
algorithm is Ω(logm) competitive.

Proof. The construction of [30] consists of an adversary Ii for every i such that every algorithm is Ω(i)
competitive for Ii. The instances are built recursively – I0 consists of a single edge between the root
and another node. Each Ii is constructed from Ii−1 by breaking each edge into a diamond – that is,
adding two nodes and replacing the edge with 4 edges.

Therefore, the number of edges in Ii is 4i. The number of nodes in Ii is the number of nodes in Ii−1 plus
twice the number of edges in Ii−1 – thus, at most 4i for every i ≥ 1. The number of requests released
in Ii is exactly 2i. Thus, the number of nodes is at most the square of the number of requests.

Now, to obtain the desired instance, set i = blogmc. The number of nodes will be 4i ≤ m2. Pad the
number of nodes to exactly m2 + m by adding copies of the root ρ. Pad the number of requests to
exactly m by requesting some of those copies of ρ.

Fix any values of n, k,∆1,∆2. Define ` = n+k−∆1−∆2
2 , the size of the intersection of R and R̂ in the

adversary. Lemmas D.1 and D.2 imply Theorem D.1.

Lemma D.1. There exists an oblivious (n, k,∆1,∆2)-adversary on which every algorithm is Ω(log ∆2)-
competitive.

Lemma D.2. There exists an oblivious (n, k,∆1,∆2)-adversary on which every algorithm is
Ω(log(min(`,∆1)))-competitive.

Proof. [Proof of Theorem D.1] If ∆2 ≥ min(`,∆1), then 2∆2 ≥ min(` + ∆2,∆1 + ∆2) = min(k,∆).
Thus, the adversary of Lemma D.1 yields the desired result.

Otherwise, ∆2 ≤ min(`,∆1). Using ∆2 ≤ `, we have that ` ≥ `+∆2
2 = k

2 . Using ∆2 ≤ ∆1, we have that

∆1 ≥ ∆1+∆2
2 = ∆

2 . Thus, min(`,∆1) ≥ min(k,∆)
2 , which completes the proof of the theorem.

It remains to prove Lemmas D.1 and D.2.

Proof. [Proof of Lemma D.1] We construct the adversary in the following way. The graph on which
the requests are released is the graph Gm of Theorem D.2 for m = ∆2, with multiple copies of the
root ρ. The n predictions of R̂ all arrive on copies of ρ. The input sequence R starts with ` requests
on predicted copies of ρ (which have a connection cost of 0 for the optimal solution). We now use the
Imase-Waxman adversary on Gm to release the remaining k− ` = ∆2 requests, on which any algorithm
is Ω(log ∆2) competitive.

Proof. [Proof of Lemma D.2] We construct the adversary in the following way. The graph on which the
requests are released is the graph Gm for m = min(`,

√
n− `), with multiple copies of the root node ρ.

The prediction R̂ consists of all m2 +m nodes of Gm (note that m2 +m ≤ n), as well as n− (m2 +m)
copies of ρ.
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The adversary starts the request sequence by requesting ∆1 unpredicted copies of ρ. Serving these
requests costs 0 to the optimal solution. It then requests ` −m predicted copies of ρ (note that there
exist `−m predicted copies of ρ, since n− (m2 +m) ≤ `−m.

It remains to release m predicted requests. The adversary now calls the Imase-Waxman adversary of
Theorem D.1 to release these m requests on Gm.

Every algorithm is Ω(log(m)) competitive on this adversary. But m = min(`,
√
n− `) ≥√

min(`, n− `) =
√

min(`,∆1), and thus logm ≥ log(min(`,∆1))
2 . This completes the proof.

D.2 Facility Location We now give a similar result to the previous lower bound for facility location.

Theorem D.3. For every n, k,∆1,∆2, there exists a (n, k,∆1,∆2)-adversary for facility location with

predictions such that every randomized algorithm on this instance is Ω
(

log min(k,∆)
log log min(k,∆)

)
-competitive,

where ∆ = ∆1 + ∆2.

The following lower bound for online facility location is due to Fotakis [19].

Theorem D.4. For every m, there exists a graph Gm = (V,E) of m2 + m nodes and an oblivious
adversary ADV that releases a sequence of requests R such that |R| = m on which every algorithm is

Ω
(

logm
log logm

)
competitive.

Proof. The adversary given in [19] gives a graph which is a complete binary tree of some depth h. For
a = logm

log logm , each node of depth b in the tree has ab copies. The adversary first requests the root, then

requests the a copies of a node of depth 1, then the a2 copies of a node of depth 2, and so on. The
total number of requests released is at most m. The number of nodes at each depth b is 2b · ab ≤ (ab)2,
and thus the number of nodes in the graph is at most m2. The analysis of [19] guarantees that every

algorithm is Ω
(

logm
log logm

)
competitive on this instance.

To reach the exact desired number of nodes and requests, we pad the number of nodes to exactly m2 +m
by adding nodes of facility opening cost 0 at infinite distance from the rest of the construction. We pad
the number of requests to m by requesting these nodes added in the padding.

Fix any values of n, k,∆1,∆2. Define ` = n+k−∆1−∆2
2 , the size of the intersection of R and R̂ in the

adversary. The following two lemmas are analogous to the lemmas from the Steiner tree lower bound,
and imply Theorem D.3 in the same way that their analogues implied Theorem D.1.

Lemma D.3. (Analogue of Lemma D.1) There exists an oblivious (n, k,∆1,∆2)-adversary on

which every algorithm is Ω
(

log ∆2

log log ∆2

)
-competitive.

Proof. The proof is similar to the proof of Lemma D.1. The instance comprises the graph Gm as defined
in Theorem D.4, for m = ∆2, and from multiple nodes of facility cost 0 and distance∞ from every other
node. The n predictions are all of nodes at distance ∞, and so are the first ` requests. The following
∆2 requests are given to the adversary of Gm.

Lemma D.4. (Analogue of Lemma D.2) There exists an oblivious (n, k,∆1,∆2)-adversary on

which every algorithm is Ω
(

log min(`,∆1)
log log min(`,∆1)

)
-competitive.

Proof. [Proof of Lemma D.4] The proof is similar to the proof of Lemma D.2, with the only difference
being as in the proof of Lemma D.1 – we use nodes at distance infinity with facility cost 0 to pad
predictions and requests, in lieu of the copies of the root used for the Steiner tree problem.
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Figure 4: This figure visualizes the lower bound for online metric matching, which applies also for metric matching with predictions.

The figure shows an unweighted star graph, where all but one of its spokes have blue points. The green arrows are the predicted red
points, while the red arrows are the actual red points in the input.

E Lower Bound for Online Metric Matching with Predictions

In this section, we consider the online metric matching problem, and show that in contrast to the
network design problems in this paper, it has no tolerance for errors. Specifically, we show that while
the offline problem can be solved optimally, the online problem with predictions performs as badly as
the online problem without predictions, even in the presence of only 2 prediction errors.

In the online metric matching problem, one is given a metric space M = (X, d), as well as a set of k
“blue” points in M . One after the other, “red” points are released, and the algorithm must match each
arriving red point to an unmatched blue point, at a cost which is the distance in M between the two
points. In this online version, after the algorithm matches two points, that matching cannot be undone.

The best known lower bounds for this problem, both in the randomized and deterministic settings, are
both on a metric induced by an unweighted star graph with k + 1 spokes (each edge has a cost of 1),
where the blue points are on k spokes of the graph. The first red point is released on the remaining
spoke, which is matched to a blue point by the algorithm.

For a deterministic algorithm, the lower bound proceeds as follows: the adversary releases a red point
on the blue point to which the algorithm has matched the previous red point, and repeats this for k− 1
iterations. In the end of the instance, there remains only a single blue point v on which no red point
has been released. The cost of the algorithm for this sequence is 2k, as the cost of each matching is
2. The optimal solution, on the other hand, has a cost of 2 - it matches the first red request to v at a
cost of 2, and matches each remaining red point to its colocated blue point. This example thus shows
a lower bound of Ω(k) on the competitive ratio of a deterministic algorithm in this setting.

Now, consider the online algorithm augmented with a prediction for the red points, where the prediction
predicts a single red point on every blue point. Clearly, this prediction does not provide any information
to the algorithm, and does not improve its performance on the input. However, it has (2, 0) error - one
unpredicted red point arrives, and one predicted red point does not arrive (as the remaining points
arrive exactly, the matching cost is 0). This example is shown in Figure 4.

In the randomized setting, the outcome is similar. In the randomized setting, the adversary is oblivious,
releasing a red point on a random blue point, chosen uniformly from the blue points on which no red
point has been released. A standard survivor-game analysis yields Ω(log k) competitiveness on this
instance; as before, predicting all the blue points as input does not help competitiveness, but has an
error of (2, 0).
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