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Abstract

The model of an anisotropic interface in an elastic particulate composite with initial stress is developed as the first-order

approximation of a transversely isotropic interphase between an isotropic matrix and spherical particles. The model

involves eight independent parameters with a clear physical meaning and conventional dimensionality. This ensures its

applicability at various length scales and flexibility in modeling the interfaces, characterized by the initial stress and

discontinuity of the displacement and stress fields. The relevance of this model to the theory of material interfaces

and its applicability in nanomechanics is discussed. The proposed imperfect interface model is incorporated in the unit

cell model of a spherical particle composite with thermal stress owing to uniform temperature change. The rigorous

solution to the model boundary value problem is obtained using the multipole expansion method. The reported accurate

numerical data confirm the correctness of the developed theory, provide an estimate of its accuracy and applicability

limits in the multiparticle environment, and reveal significant effects of the interphase or interface anisotropy and initial

stress on the local fields and overall thermoelastic properties of the composite.
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1. Introduction

Interphases and interfaces are essential microstructural components of heterogeneous solids that play impor-
tant, sometimes dominant, roles in transport processes in composite media. Even though the concept of an
interphase (a perfectly bonded finite-thickness layer) is somewhat more physical than that of an interface (a
zero-thickness surface, across which the fields are discontinuous), both concepts represent idealized mechan-
ical models introduced to describe complex mechanical processes at adjacent boundaries of dissimilar solids.
Thus, formulations of the models that accurately and efficiently describe the effects of interphases and interfaces
on thermomechanical behavior of micro- and nanostructured solids are of utmost importance in the mechanics
of materials. In view of this, there exists a large body of literature in which the interphase and interface models
have been proposed and extensively studied in the context of heat conduction, elasticity, and thermoelasticity;
see comprehensive reviews in [1–4].
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Interphase models are primarily used to model composites with coated reinforcements. The coatings are
typically designed to mitigate the effects of stress concentrations and enhance the toughness of the composites.
In such cases, the layer properties are known. Another application of interphase models is in the modeling
of transition regions that appear as the result of damage, diffusion, or chemical reactions (such regions are
characterized by reduced rather than increased stiffness). In the latter case, the properties of the layers are
average values obtained by, for example, some homogenization procedure. For a recent comprehensive review
and comparison of analytical and numerical models for the thermoelastic behavior of composites reinforced
by coated spheres, see [5] and the references therein. In the framework of computational micromechanics, a
periodic homogenization approach using the finite-element method has been applied ([5–7], among others). The
available analytical models [8–11] are limited to a single coated inhomogeneity and uniform far-field loading.
It is noteworthy that most publications on the problem deal with an isotropic elastic interphase. We are aware of
only a few papers in which the thermoelastic behavior of a particulate composite with an anisotropic interphase
has been addressed; see [12–14] and the references therein.

It is also possible to model a thin interphase as a zero-thickness (also called imperfect) interface. For coated
reinforcements with thin and ultra-thin coating layers, this model is mostly used to reduce computational cost
and bypass associated problems (e.g. ill-conditioning). In the case of a transition zone, this model is used
because of the transition zone’s typically unknown material properties and small thickness, which are difficult
to estimate. The available interface models can be divided into two groups—phenomenological and asymptotic-
based.

Phenomenological models, used mostly for the description of transition zones, endow an interface with
its own energetic structure and require additional data (interface constitutive laws, material parameters, jump
conditions across the interface). For example, cohesive models imply continuity of the traction at the interface,
but allow for a jump in the displacements, while so-called coherent elastic interfaces imply continuity of the
displacements, but allow for a jump in the traction. More elaborately, the so-called general interface models
allow for jumps in both displacement and traction fields. Development of phenomenological models started as
early as in 1940s, see, for example, [15]; the history of development and a long list of references on the topic
can be found in [3, 4, 16–19].

Asymptotic-based interface models are derived analytically from the fully resolved interphase problem using
various types of asymptotic analysis, for example, a Taylor series expansion [20] or a perturbation method [21].
As such, they do not require any additional assumptions or data. Typically, the asymptotic-based imperfect
interface models are general, in the sense that both the displacement and normal traction vectors undergo jumps
across the interface. However, it has been shown that, for limiting behavior, the asymptotic analysis-based and
some phenomenological models concur. Important contributions to development of asymptotic-based models
were made by Bövik [20], Hashin [22], and Benveniste [23], among others. The analysis of the literature relevant
to particulate composites with imperfect interfaces leads to conclusions similar to those already listed for the
interphase models, namely, (i) most analytical solutions deal with the case of a single particle and uniform
far-field loading, while (ii) most interface models involve isotropic interfaces. Only a few papers (e.g. [23, 24])
deal with curved anisotropic interfaces between two anisotropic media. In [25], the self-consistent and Mori–
Tanaka homogenization schemes are extended to the case of an elastic particulate composite with a general
imperfect interface by taking three (two in-plane and one orthogonal) elastic moduli of interfaces into account.
Also, asymptotic interface models have been applied to continua with microstructure and multiphysics problems
[26–28].

In the last 20 years, attention to the topic of interfaces and interphases has increased significantly in con-
nection with developments in modern nanotechnologies and nanomaterials. For nanostructured materials, the
interphase or interface effects on the local thermomechanical fields and macroscopic properties are even more
substantial, owing to higher interface area-to-volume ratios than in traditional materials. In search of tools that
can adequately model nanoscale phenomena, researchers turned their attention to the theory of material surfaces
developed in the 1970s by Gurtin and Murdoch [29] and generalized in the 1990s by Steigmann and Ogden [30].
Both Gurtin–Murdoch (G–M) and Steigmann–Ogden (S–O) theories became very popular and were extensively
used to study composite materials with nanosized reinforcements, see the reviews in [3, 31, 32]. In the con-
text of particulate composites with spherical reinforcements, analytical solutions for a single spherical particle
with the G–M interface were obtained and used to model the elastic fields [33–37] and effective properties
[10, 38, 39] of particulate nanocomposites. Similar solutions for the S–O interfaces are reported in [40–44].
More advanced, finite-cluster [45] and representative unit cell [46] models of spherical particle composite with
the G–M interface have been developed.
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While theoretical interest in the G–M and S–O models remains high, enthusiasm about their applicabil-
ity to nanostructured solids has recently subsided. There are several reasons for this. First, both theories are
phenomenological, and, as such, require additional data, for example, on surface elastic properties, which are
currently lacking or can even be inconsistent. For example, the results of molecular dynamics calculations
revealed that the two models predicted dramatically different elastic moduli of nanostructures under bend-
ing and under tension [47]. For some combinations of material parameters and loading, the G–M model is
inconsistent [48]. Second, these theories were proposed for free-surface problems and model the surface as a
two-dimensional prestressed membrane or a shell of vanishing thickness that adheres to a three-dimensional
bulk solid without slipping. In application to the interface problems, this means that the interface is treated as a
coherent (elastic) interface, that is, the displacement vector is continuous across it while the traction undergoes
a jump. However, the validity of such an assumption for nanomaterials has never been established. Third, these
theories predict the elastic contact to be perfect in micro- and macro-heterogeneous materials, which is far from
being always true.

The interfaces in real heterogeneous solids are, as a rule, incoherent, owing to inconsistency of the atomic
lattices of contacting solids, dislocations, vacancies, and so on [49]; this gives a sound reason to consider the
interface as a zone of reduced (rather than increased) stiffness. The material interface model allowing for the
displacement discontinuity is considered in a few papers. Gurtin et al. [50] proposed a general theory of curved
deformable solid interfaces in a polycrystalline solid. Another generalized continuum framework for modeling
the elastic coherent and incoherent interfaces under general loading conditions was proposed in [51]. A common
feature of these theories is an enlarged number (five and four, respectively) of interface elastic constants. This
means that they cannot, after all, be derived in the isotropic elasticity framework.

The pertinent question is: What could be regarded as a “proper” model of an interface? In our opinion, the
requirements for such a model must include its applicability at various structural levels or length scales (from
the nano- to the macroscale) and an ability to catch essential features of a real interface (incoherency, size
effect, surface stress, etc.). An important point is also the physical significance of the model parameters and
the possibility of their theoretical or laboratory assessment. Among those known in the literature, the theory
proposed in [50] seems to meet these requirements to the largest (although not full) extent. However, this
advanced and promising model has not yet found application in the mechanics of materials.

The aim of this work is twofold and consists of (i) developing a model of an anisotropic imperfect inter-
face in an elastic particulate composite with initial stress and (ii) applying the model to thermoelastic matrix
type composites with incoherent interfaces. The paper is structured as follows. In Section 2, the thermoelastic
problem for a particulate composite with a spherically anisotropic interphase and initial stress is formulated.
In Section 3, the formal solution to this problem is derived for the case of a hydrostatic far-field load and the
first-order accurate asymptotic procedure is applied to reduce the problem to that of an anisotropic imperfect
interface. These solutions are used in the Maxwell-type estimates for the effective bulk modulus and the thermal
expansion coefficient of the composite under study. In Section 4, the imperfect interface model [23] is general-
ized to account for the uniform eigenstress. The relevance of this model to the theory of material interfaces and
its applicability in the nanomechanics context are discussed. In Section 5, a rigorous analytical solution for the
unit cell model of a thermoelastic spherical particle composite with a transversely isotropic interphase and an
anisotropic imperfect interface is obtained using the multipole expansion method. The accurate numerical data
given in Section 6 reveal a profound effect of the interphase or interface anisotropy and eigenstress on the stress
concentrations and effective thermoelastic properties of a spherical particle composite. In Section 7, we present
a discussion of our results and conclusions. The background theory is provided in Appendices A to C.

2. Model of composite with spherically anisotropic interphase and initial stress

Consider an elastic particulate composite comprising a homogeneous isotropic matrix solid and spherical inho-
mogeneities of equal radii R1. Each inhomogeneity consists of an isotropic core of radius Rh = R1 − h and an
anisotropic interphase layer of thickness h. The composite medium is subjected to the uniform far-field stress
σ far and the initial stress σ 0. To be specific, we assume that the latter is the thermal stress owing to the uniform
temperature change 1T and the difference in the coefficient of thermal expansion (CTE) of constituents.

In the linearly elastic solid, the small strain tensor ε = εijii ⊗ ij relates the displacement vector u = uiii (u =
u

(0) in the matrix, u = u
(1) in the core inhomogeneity and u = u

(c) in the interphase) as ε = (∇⊗u+∇⊗u
T)/2.

The stress tensor σ = σijii ⊗ ij relates ε as σ = C : ε + σ 0, where C is the fourth-rank elastic stiffness tensor.
The matrix (i = 0) and core (i = 1) materials are isotropic, with the Poisson ratio ν = νi and shear modulus
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µ = µi. For them, the Duhamel–Neumann law is σ
(i) = 2µiε

(i) +
(
λitrε

(i) − βi1T
)

I, where I is the second-rank
unit tensor and λi = 2µiνi/ (1 − 2νi) is the Lamé constant. Also, βi = 3kiαi, where ki = (2µi + 3λi)/3 is the

bulk modulus and αi is the CTE of the ith material. The thermal stress tensor is σ
(i)
0 = −βi1TI. The elastic

equilibrium requires that div σ = div
(
C : ∇u

(i)
)

= 0 (i = 0, 1).
The elastic moduli of the interphase layer possess spherical transverse isotropy. Introduced by Saint-Venant

[52], spherical anisotropy implies spatial variation of the components of the tensor Cij = Cij (x) in a way that
∂Cij/∂α ≡ 0 (α = r, θ , ϕ). Hereinafter, two-index notation is adopted for the components of the elastic stiffness
tensor C. In the spherical coordinate system Orθϕ, with the Or axis aligned with the anisotropy axis of the
transversely isotropic material, Hooke’s law reads

σθθ = C11εθθ + C12εϕϕ + C13εrr − β111T , σθr = 2C44εθr,

σϕϕ = C12εθθ + C11εϕϕ + C13εrr − β111T , σϕr = 2C44εϕr,

σrr = C13εθθ + C13εϕϕ + C33εrr − β331T , σθϕ = (C11 − C12) εθϕ , (1)

where
β11 = (C11 + C12) α11 + C13α33, β33 = 2C13α11 + C33α33,

and α11 and α33 are the transversely isotropic CTEs of the interphase solid.
Both the core-to-interphase and interphase-to-matrix interfaces are assumed to be perfect, which means that

the displacement u and normal traction t = σ · n vectors are continuous across these interfaces:

[[u]] = 0, [[t]] = 0, r = Rh;

[[u]] = 0, [[t]] = 0, r = R1. (2)

Here, n = er is the outward unit vector normal to the spherical surface, [[w]] = w+ − w− denotes the jump
of the w field across the interface, and the superscript “+" (“−") indicates the fields in the domains with the
outward (inward) normal.

3. Spherically symmetrical problem

3.1. Formal solution

To make our presentation more clear, we start with the simple one-dimensional problem. Specifically, we con-
sider an infinite solid with a single inhomogeneity loaded by the external hydrostatic pressure p and temperature
step 1T . Spherical symmetry of the geometry and loading determines the spherical symmetry of the elastic
fields. This implies that only the radial component of the displacement vector is nonzero and that all the fields
are functions of the radial coordinate r.

Analytical expressions for the displacement, strain, and stress fields in the matrix and core inhomogeneity
for the spherically symmetrical problem are well-known (see e.g. [53]). The matrix fields are

u(0)
r =

1

r2
A + Cr, ε(0)

rr =
∂u(0)

r

∂r
= −

2

r3
A + C, ε

(0)
θθ = ε(0)

ϕϕ =
u(0)

r

r
=

1

r3
A + C,

σ (0)
rr = −

4µ0

r3
A + 3k0C − β01T , σ

(0)
θθ = σ (0)

ϕϕ = 2µ0

1

r3
A + 3k0C − β01T , (3)

where C is the equiaxial far-field strain and p = 3k0C is the corresponding far-field hydrostatic pressure. In
equation (3.1), A is the unknown constant, whereas C is regarded as the known loading parameter. In the case
of unconstrained thermal expansion C = α1T , the total (elastic plus thermal) stress σ (0)

rr = p − β01T vanishes
at infinity. The elastic fields in the core inhomogeneity are

u(1)
r = Du, ε(1)

rr = ε
(1)
θθ = ε(1)

ϕϕ = D, σ (1)
rr = σ

(1)
θθ = σ (1)

ϕϕ = 3k1D − β11T , (4)

where D is the unknown constant.
The solution for the interphase layer is somewhat more involved. We take the radial displacement in the form

u(c)
r = rmsE + rmr F + Gr, (5)



Kushch and Mogilevskaya 5

where E, F, and G are the constants to be found. It is noteworthy that the term Gr in equation (5) represents
the particular solution to the non-homogeneous equilibrium equation aiming to counterbalance the body forces
caused by the initial (thermal, in our case) stress in an anisotropic solid. This displacement generates the strains

ε(c)
rr =

∂u(c)
r

∂r
= msr

ms−1E + mrr
mr−1F + G,

ε
(c)
θθ = ε(c)

ϕϕ = rms−1E + rmr−1F + G, (6)

and stresses

σ (c)
rr = rms−1 (2C13 + msC33) E + rmr−1 (2C13 + mrC33) F + G (2C13 + C33) − β331T ,

σ
(c)
θθ = σ (c)

ϕϕ = (C11 + C12 + msC13) rms−1E + (C11 + C12 + mrC13) rmr−1F + (C11 + C12 + C13) G − β111T .

(7)

This stress field must obey the equilibrium equation div σ = 0, written in spherical basis as

r
∂σrr

∂r
+ 2σrr − σθθ − σϕϕ = 0. (8)

Substitution of equation (7) into equation (8) yields

[ms (ms + 1) C33 − 2 (C11 + C12 − C13)] rms−1E + [mr (mr + 1) C33 − 2 (C11 + C12 − C13)] rmr−1F

+2G (2C13 + C33) − 2 (C11 + C12 + C13) G

= 2 (β33 − β11) 1T ,

from which we find that

G =
(β33 − β11) 1T

(C13 + C33 − C11 − C12)

and

ms =
(
−1 −

√
1 + 4υ

)
/2, mr =

(
−1 +

√
1 + 4υ

)
/2,

where υ = 2 (C11 + C12 − C13) /C33. These results are consistent with the general theory provided in
Appendix B.

3.2. Resolving equations: I

The interface conditions of equation (2) are fulfilled by taking the appropriate constants A, D, E, and F. The
first two of these (interphase-to-core continuity) are written, in our case, as

u(c)
r (Rh) − u(1)

r (Rh) = 0, σ (c)
rr (Rh) − σ (1)

rr (Rh) = 0. (9)

Substitution of the explicit expressions for ur and σrr of equations (4) and (7) into equation (9) gives the
following two linear equations:

R
ms−1
h E + R

mr−1
h F − D = −G,

R
ms−1
h (2C13 + msC33) E + R

mr−1
h (2C13 + mrC33) F − 3k1D = (β33 − β1) 1T − G (2C13 + C33) . (10)

Another two equations are obtained from the matrix-to-interphase continuity conditions of equation (2), written
explicitly as

u(0)
r (R) − u(c)

r (R) = 0, σ (0)
rr (R) − σ (c)

rr (R) = 0. (11)

They are

1

R3
A − Rms−1E − Rmr−1F = G − C,

−2µ0

2

R3
A − Rms−1 (2C13 + msC33) E − Rmr−1 (2C13 + mrC33) F = (β0 − β33) 1T + G (2C13 + C33) − 3k0C.

(12)

From equations (10) and (12), the constants A, D, E, and F are uniquely determined.
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Figure 1. (a) Three-phase configuration of matrix interphase inhomogeneity; (b) two-phase configuration of matrix interface

inhomogeneity.

3.3. Approximation of anisotropic interphase as imperfect interface

Now, we approximate the anisotropic interphase layer as the imperfect interface located in the midpoint Rc =
R − h/2 of the interphase layer (Figure 1). Specifically, our task is to find the appropriate functions F1 and F2

for the interface conditions

[[ur]]Rc
= F1

(
u(0)

r , u(1)
r , σ (0)

rr , σ (1)
rr

)
, [[σrr]]Rc

= F2

(
u(0)

r , u(1)
r , σ (0)

rr , σ (1)
rr

)
. (13)

To this end, we apply the procedure developed by Benveniste [23], which provides the first-order approximation
of the elastic fields owing to the interphase layer. Next, we outline this procedure in a slightly modified form.

As the first step, we expand u(c)
r (Rc) − u(1)

r (Rc) into the Taylor series in the vicinity of the point r = Rh:

u(c)
r (Rc) − u(1)

r (Rc) = u(c)
r (Rh) − u(1)

r (Rh) +
h

2

[
∂

∂r
u(c)

r (Rh) −
∂

∂r
u(1)

r (Rh)

]
+ O(h2). (14)

We are looking for the O(h) approximation, so all the O(hm) (m ≥ 2) terms are neglected. By taking equations
(4), (6), and (9) into account, we find that

u(c)
r (Rc) − u(1)

r (Rc) =
h

2

[
ε(c)

rr (Rh) − ε(1)
rr (Rh)

]
+ O(h2). (15)

It is instructive to compare equation (15) with expansion of the equation u(c)
r (Rh) − u(1)

r (Rh) = 0 in the
vicinity of r = Rc, resulting in

u(c)
r (Rc) − u(1)

r (Rc) =
h

2

[
ε(c)

rr (Rc) − ε(1)
rr (Rc)

]
+ O(h2).

This comparison says that the difference between hεrr (Rc) and hεrr (Rh) is of the order of O(h2) and can be
neglected in the first-order approximation. The same applies equally to all first-order terms of the Taylor series
expansion that we consider next.

It also follows from equations (4) and (7) that

ε(1)
rr =

1

λ1 + 2µ1

(
σ (1)

rr + β11T − 2λ1

u(1)
r

r

)
,

ε(c)
rr =

1

C33

(
σ (c)

rr + β331T
)
− 2

C13

C33

u(c)
r

r
. (16)

By combining equations (15) and (16) with equation (9) and taking this remark into account, we find that

u(c)
r (Rc) − u(1)

r (Rc) =
h

2

[
c21σ

(1)
rr (Rc) + c611T + c112

u(1)
r (Rc)

Rc

]
+ O(h2), (17)
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where

c1i =
λi

λi + 2µi

−
C13

C33

, c2i =
1

C33

−
1

λi + 2µi

, c6i =
β33

C33

−
βi

λi + 2µi

. (18)

Analogous operations with equation (11) lead to

u(0)
r (Rc) − u(c)

r (Rc) =
h

2

[
c20σ

(0)
rr (Rc) + c601T + 2c10

u(0)
r (Rc)

Rc

]
+ O(h2). (19)

Now, summation of equations (17) and (19) yields the interface displacement jump condition in the form

[[ur]] = h 〈〈c2σrr + 2c1ur/Rc + c61T〉〉 , (20)

where the interface average operator 〈〈·〉〉 is defined as 〈〈w〉〉 = (w(0) + w(1))/2. Here, the constants c1, c2, and
c6 are the short notation for the c1i, c2i, and c6i, respectively (i = 0, 1), defined by equation (18).

Derivation of the second, normal traction jump condition follows a similar way. We expand σ (c)
rr (Rc) −

σ (1)
rr (Rc) into the Taylor series in a vicinity of the point r = Rh and employ the continuity conditions of equation

(9) to get

σ (c)
rr (Rc) − σ (1)

rr (Rc) =
h

2

(
∂σ (c)

rr (Rh)

∂r
−

∂σ (1)
rr (Rh)

∂r

)
+ O(h2). (21)

Next, we express ∂σrr/∂r in terms of σrr and ur using equation (8). We have

r
∂σ (i)

rr

∂r
= −

4µi

(λi + 2µi)
σ (i)

rr +
[

2µi +
4λiµi

(λi + 2µi)

]
2

u(i)
r

r
−

4µiβi1T

(λi + 2µi)
. (22)

Similarly,

r
∂σ (c)

rr

∂r
= 2

(
C13

C33

− 1

)
σ (c)

rr +
[

(C11 − C12) + 2

(
C12 −

C2
13

C33

)]
2

u(c)
r

r
− 2

C33β11 − C13β33

C33

1T . (23)

Now, we combine equations (22) and (23) with equations (21) and (9) to obtain

σ (c)
rr (Rc) − σ (1)

rr (Rc) = −
h

Rc

[
c11σ

(1)
rr (Rc) − c711T + (2c51 + c41)

u(1)
r (Rc)

Rc

]
+ O(h2), (24)

where

c4i = 2µi − (C11 − C12) , c5i =
2µiλi

λi + 2µi

−
(

C12 −
C2

13

C33

)
,

c7i =
2µiβi

λi + 2µi

−
C33β11 − C13β33

C33

. (25)

Together with the expression

σ (0)
rr (Rc) − σ (c)

rr (Rc) = −
h

Rc

[
c10σ

(0)
rr (Rc) − c701T + (2c50 + c40)

u(0)
r (Rc)

Rc

]
+ O(h2), (26)

equation (24) results in

[[σrr]] = −
2h

Rc

〈〈c1σrr − c71T + (2c5 + c4) ur/Rc〉〉 (27)

Equations (20) and (27) provide the explicit expression of Fi in equation (13).
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3.4. Resolving equations: II

Solution to the single spherical inhomogeneity problem with the interface defined by equations (20) and (27) is
straightforward. It follows from equations (3.1) and (4) that

u(1)
r (Rc) = DRc, u(0)

r (Rc) =
1

R2
c

A + CRc,

σ (1)
rr (Rc) = 3k1D − β11T , σ (0)

rr (Rc) = −
4µ0

R3
c

A + 3k0C − β01T .

Substitution of these expressions into equations (3.1) and (4) yields, after simple algebra, the following algebraic
equations:

[
1 +

h

Rc

(2µ0c20 − c10)

]
A

R3
c

−
[

1 +
h

2Rc

(3k1c21 + 2c11)

]
D

=
[

h

2Rc

(3k0c20 + 2c10) − 1

]
C +

h1T

2Rc

2β33 − β0 − β1

C33

,

−
1

R3
c

[
4µ0

(
1 +

h

Rc

c10

)
−

h

Rc

(2c50 + c40)

]
A +

[(
h

Rc

c11 − 1

)
3k1 +

h

Rc

(2c51 + c41)

]
D

= −
[(

h

Rc

c10 + 1

)
3k0 +

h

Rc

(2c50 + c40)

]
C +

[
β0 − β1 +

h

Rc

(c70 + c71)

]
1T , (28)

from which A and D are determined.

3.5. Effective bulk modulus and CTE

The obtained solutions enable an estimate of the effective bulk modulus k∗ and CTE α∗ of a spherical parti-
cle composite with transversely isotropic interphase and imperfect interface in the framework of the Maxwell
homogenization scheme [54]. To be specific, we consider a composite with the volume fraction c of inhomo-
geneities imperfectly bonded to the matrix. In this case, the equivalent inhomogeneity is a sphere of radius R∗

(Rc/R∗)3 = c with the unknown effective properties k∗ and α∗, perfectly bonded to the matrix. Continuity of
the radial displacement and stress fields

u∗
r (r) = D∗r, u(0)

r (r) =
1

r2
A∗ + C∗r,

σ ∗
rr (r) = 3k∗D∗ − β∗1T , σ (0)

rr (r) = −
4µ0

r3
A∗ + 3k0C∗ − β01T

yields

− (3k∗ + 4µ0)
A∗

R∗3
= (3k∗ − 3k0) C∗ + (β0 − β∗) 1T . (29)

The Maxwell scheme reads A∗/C∗ = A/C, where A is found from equation (28). To find the effective bulk
modulus k∗of the composite with imperfect interface defined by equations (20) and (27), one has to find A from
equation (28) for C = 1 and 1T = 0 and substitute the obtained value in place of A∗ in equation (29). The
resulting formula is

3k∗ =
3k0 − 4µ0cA

1 + cA
. (30)

Then, by solving equation (28) for C = 0 and 1T = 1, we get

β∗ = β0 + c (3k∗ + 4µ0) A. (31)

The effective bulk modulus and CTE of the composite with interphase are also given by equations (30) and
(31), provided that A is found from equations (10) and (12).



Kushch and Mogilevskaya 9

To complete this section, we note the following. Levin [55] has derived the formula relating the effective
CTE to the effective bulk modulus of a two-phase heterogeneous solid with a perfect interface. In [10], the
analogous formula is derived for the two-phase spherical particle composite with semi-imperfect (either with
displacement or stress discontinuity) interface. Equations (28) and (29) can be regarded as an extension of
Levin’s formula to a composite with an anisotropic interphase or interface. To get it in explicit form, one has to
derive the analytical expression of A from equations (10) and (12) or equation (28), respectively, and substitute
it into equation (29). The resulting formula is cumbersome and we do not report it here.

4. Anisotropic imperfect interface

4.1. Benveniste model with initial stress

In [23], the imperfect interface model is derived as the first-order approximation of a thin anisotropic interphase
layer. Adding the initial stress to this model is straightforward and analogous to that done in the previous section
for the particular problem. By analogy with [56], we rewrite the Benveniste model of a transversely isotropic
layer with the thermal stress in compact form. Specifically, the displacement jump condition is

[[u]] = h 〈〈F1〉〉 , (32)

where
F

(i)
1 (u, t) = c1in divS u + (c2iN + c3iP) · t + c6i1Tn, (33)

c1i and a2i are defined by equation (18), and

c3i =
1

C44

−
1

µi

. (34)

Also, N = nn and P = I − N, where I is the second-rank unit tensor. The normal traction jump condition reads

[[t]] = h 〈〈F2〉〉 , (35)

where
F

(i)
2 (u, t) = divS [c1i (n · t) P + c4iεS + c5i divS (u) P − c7i1TP] , (36)

and c4i, c5i, and c7i are defined by equation (25). In equation (36), εS =
(
gradS u+ gradS u

T
)
/2 is the surface

strain tensor, gradS is the surface gradient, and divS is the surface divergence, see [23] for their definition and
properties. Equations (32) and (35) are reduced to equations (20) and (27) in the particular case of spherical
symmetry.

The model of an incoherent interface of equations (32) and (35) involves eight independent parameters, all
with clear physical meaning and conventional dimensionality. They are five elastic constants (C11, C12, C13, C33,
and C44), two CTEs (α11 and α33) and the length parameter h. We mention a few degenerate cases of this model
for a very thin (h → 0) anisotropic interphase. Assuming that C13/C33 = O (1), we have c1 → 0 and hence

[[u]] = (γnN + γtP) · 〈〈t〉〉 + dn1Tn,

[[t]] = −〈〈divS [2µsεS + λs divS (u) P − dt1TP]〉〉 , (37)

with the normal γn = h/C33 and tangential γt = h/C44 spring stiffness and two surface elastic constants,
µs = h (C11 − C12) /2 and λs = h

(
C12 − C2

13/C33

)
. Also, dn = β33γn and dt = h (C33β11 − C13β33) /C33.

Then, in the limit µs, λs → 0 (soft interface) we come to the thermoelastic spring layer model consistent with
[10]:

[[u]] = (γnN + γtP) · t + dn1Tn, [[t]] = 0.

The opposite limit γn, γt → 0 (hard interface) yields the G–M model of coherent interface with zero bulk stress
and interface stress σ0 = −dt1T :

[[u]] = 0, [[t]] = − divS (λs divS uP + 2µsεS − σ0P) .

In the case of an isotropic interface, these results are consistent with those reported in [10, 57, 58]. In the trivial
case γn = γt = µs = λs = 0, we arrive at the conventional perfect interface conditions

[[u]] = 0, [[t]] = 0.
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4.2. Nano level incoherent material interface

Gurtin et al. [50] developed the deformation theory of a solid microstructure with curved incoherent interfaces.
To this end, the interface between amorphous phases with equal elastic constants was considered and the refer-
ence state (u = 0) was chosen such that the bulk stress at the interface is hydrostatic pressure p. If the interfacial
free energy is independent of the relative displacement gradient, the force balance across the interface and the
internal stress relation can be rewritten in our notation as

[[u]] =
(

1

a4

N +
1

a5

P

)
· 〈〈t〉〉 −

1

a4

〈〈p〉〉 n −
a3

a4

〈〈divS (u)〉〉 n,

[[t]] = − divS

[
a1 〈〈εS〉〉 +

a3

a4

(〈〈t〉〉 · n) P +
(

a2 −
a2

3

a4

)
〈〈divS (u)〉〉 P +

(
f −

a3

a4

〈〈p〉〉
)

P

]
, (38)

where f is the interface stress in the reference state and ak (k = 1, 2, . . . , 5) are the elastic moduli of the
interface. The units of f , a1, and a2 are [N/m], the units of p and a3 are

[
N/m2

]
, and the units of a4 and a5 are[

N/m3
]
. It is argued in [50] that the proposed theory applies to solids with a nanometer-scale microstructure.

Importantly, equations (32) and (35) extend this theory to an incoherent interface between dissimilar elastic
materials and provide a certain insight into the interface elastic moduli. For the sake of comparison, we rewrite
these equations as

[[u]] = h 〈〈c1 divS (u) n + (c2N + c3P) · t + c61Tn〉〉 ,

[[t]] = h 〈〈divS [c1 (n · t) P + c4εS + c5 divS (u) P − c71TP]〉〉 . (39)

In the particular case ci0 = ci1 = ci (where the matrix and inclusion are made of the same material), the
compared models coincide, provided we take

a1 = −hc4, a2 = h

(
c2

1

c2

− c5

)
, a3 = −

c1

c2

, a4 =
1

hc2

,

a5 =
1

hc3

, 〈〈p〉〉 = −
c6

c2

1T , f = hc71T − hc1 〈〈p〉〉 .

Recall that our approach is not confined to the thermal stress problem. The theory that we have developed is
valid for eigenstresses of any kind, hydrostatic in the isotropic constituents, and hydrostatic plus hoop stress at
the interface.

The following is also worth mentioning here. It is asserted in [50] that the moduli a4 and a5 are positive
(negative) if the interface is more (less) compliant than the bulk material, while the opposite applies to a1 and
a2. Equations (18) and (25) are consistent with this assertion and specifically express ai in terms of the bulk and
interface elastic constants. In particular, these equations give a simple explanation to the often debated issue
of possible negative values of the interface elastic constants (being, in fact, a difference between two positive
numbers).

To complete this discussion on the incoherent interface model, we note that h enters it as a free length (skin)
parameter. Note that equation (39) is written in a such way that its right-hand-side terms describe perturbation
owing to an interface. The small dimensionless number δ = h/R1 is a parameter governing the interface con-
tribution to the elastic fields and effective moduli. For a fixed h and the interface constants ci, this contribution
can be interpreted as the inhomogeneity size effect, inherent in nanostructured solids.

5. Unit cell model

5.1. Composite with transversely isotropic interphase

Consider a periodic composite comprising a homogeneous matrix and spherical inhomogeneities composed of
core particles of radii Rh = R1 − h and interphase layers of thickness h. To keep things simple, we assume
that the inhomogeneities are arranged in a simple cubic (SC) array. The unit cell of this structure is a cube with
side length a, containing a single inhomogeneity. The volume fraction of inhomogeneities is c = V1/V , where
V = a3 and V1 = 4πR3

1/3 are the volumes of the unit cell and the inhomogeneity, respectively. Consideration
of the many-particle representative unit cell model follows the same pattern [59].
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The macroscopically uniform stress field in the composite bulk is assumed. This implies uniformity of the
macroscopic strain 〈ε〉 and stress 〈σ 〉 tensors, defined as

〈ε〉 =
1

V

∫

S0

sym (n ⊗ u) dS, 〈σ 〉 =
1

V

∫

S0

x⊗ (σ · n) dS. (40)

where S0 is the outer surface of the unit cell. Importantly, this definition holds true for composites with inter-
phases and imperfect interfaces. Periodicity of the composite microstructure results in quasi-periodicity of the
displacement vector

u (x + aii) = u (x) + aE · ii (41)

and periodicity of the corresponding strain and stress fields. In equation (41), E = 〈ε〉 is the uniform macro-
scopic strain tensor. Owing to the periodicity of the local fields, the unit cell serves as the representative volume
element of the composite. The displacement vector u and the normal traction vector t = σ · n are continuous
across the core-to-interphase and interphase-to-matrix interfaces (equation (2)). It is noteworthy that the peri-
odic displacement boundary conditions of equation (41) automatically ensure the balance of angular momentum
at the macroscale and guarantee symmetry of the macroscopic stress tensor defined by equation (40) (e.g., [60]).

To solve the model boundary value problem, we use the multipole expansion method. Its application to
composites with isotropic constituents is discussed in detail elsewhere (e.g., [46, 61]). Here, we outline the idea
of the method and provide the necessary formulas. An appropriate formalism for the anisotropic interphase has
been recently developed [56].

5.1.1. Formal solution. The periodicity conditions of equation (41) are fulfilled by taking the displacement vector
in the form

u
(0)(x) = ufar (x) + udis(x), (42)

where ufar (x) = E · x is the linear displacement field corresponding to the uniform strain field 〈ε〉 = E and udis

is the spatially periodic perturbation field. In turn, udis is expressed in terms of the periodic vector functions Û
(i)
ts

[46, 61] as

udis(x) =
∑

i,t,s

a
(i)
ts Û

(i)
ts (x). (43)

Hereinafter, the short notation
∑

i,t,s =
∑3

i=1

∑∞
t=0

∑t
s=−t is used. The series expansion coefficients a

(i)
ts are the

complex constants to be found from the interface conditions, e.g., equation (2).

Obtaining an infinite set of the linear algebraic equations for the coefficients a
(i)
ts involves: (i) local series

expansion of u
(0) in the local spherical coordinate basis; (ii) substitution of the transformed u

(0), together with

u
(i), into the interface conditions; and (iii) decomposition of the functional equalities using orthogonality of S

(i)
ts .

The obtained infinite linear system is then appropriately truncated to t ≤ tmax and solved numerically.
The local series expansion of ufar (x) in a vicinity of inhomogeneity is

ufar (x) =
∑

j,t,s

c
(j)
ts u

(j)
ts (x), (44)

where the regular vector functions u
(j)
ts are defined by equation (65) of Appendix A and c

(j)
ts are the series

expansion coefficients:

c
(3)
00 =

(E11 + E22 + E33)

2(2ν0 − 1)
, c

(1)
20 =

(2E33 − E11 − E22)

3
,

c
(1)
21 = E13 − iE23, c

(1)
22 = E11 − E22 − 2iE12;

c
(i)
2,−s = (−1)sc

(i)
2s (45)

and all other c
(i)
ts = 0.
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The analogous local series expansion of udis (x) is obtained by re-expansion of Û
(i)
ts The final formula is [46,

61]

udis(x) =
∑

i,t,s

[
a

(i)
ts U

(i)
ts (x) + b

(i)
ts u

(i)
ts (x)

]
, (46)

where U
(i)
ts are the irregular vector functions defined in Appendix A and

b
(i)
ts =

∑

j,k,l

a
(j)
kl η̂

(j)(i)
ktls . (47)

The series expansion coefficients η̂
(j)(i)
ktls in equation (47) are the lattice sums providing periodicity of udis. For

their explicit expression, see [46, 61]. The regular part of equation (46) is the disturbance field induced by all
other inhomogeneities surrounding the selected one.

The displacement u
(1) inside the core inhomogeneity is represented by the series over the regular vector

functions u
(i)
ts :

u
(1)(x) =

∑

i,t,s

d
(i)
ts u

(i)
ts (x), (48)

where d
(i)
ts are the unknown complex constants. The series expansion of the displacement vector u

(c) in the

spherical interphase layer is analogous to equation (46) but uses the set of vector functions v
(i)
ts and V

(i)
ts (x),

(equation (70)):

u
(c)(x) =

∑

i,t,s

[
e

(i)
ts V

(i)
ts (x) +

(
f

(i)
ts + δt0Gr

)
v

(i)
ts (x)

]
, (49)

where e
(i)
ts and f

(i)
ts are the series expansion coefficients. By analogy with equation (5), equation (49) additionally

involves the linear term Gr aiming to counterbalance the body forces owing to thermal stress in the anisotropic
interphase layer.

5.1.2. Resolving linear system. Obtaining the resolving linear system for the coefficients of these series expansions
is straightforward. Let us consider the first equation of equation (2), namely, [[u]] =

(
u

(c) − u
(1)

)
r=Rh

= 0. We

substitute equations (46) and (49) into equation (2) and take the orthogonality property, equation (63), of S
(j)
ts

into account to get the infinite set of linear algebraic equations for t > 0. We write it in the matrix-vector form
as

(t − s)!(t + s)!VGt(Rh) · ets + VMt(Rh) · fts = UMt(Rh, ν1) · dts, (50)

where dts = {d(i)
ts }T, ets = {e(i)

ts }T and fts = {f (i)
ts }T. The matrices UMt, VMt, and VGt are defined by equations

(66) and (71), respectively.
Decomposition of the second of equation (2), namely, [[t]] = (t(c) − t

(1))r=Rh
= 0 follows the same pattern

and gives us another set of equations:

(t − s)!(t + s)!WGt(r) · ets + WMt(r) · fts =
2µ1

C44

TMt(r, ν1) · dts, (51)

where the matrices TMt, WMt, and WGt are defined by equations (69) and (77), respectively. Fulfilling the
matrix-to-coating (r = R1) interface conditions is analogous and yields

(t − s)!(t + s)!VGt(R1) · ets + VMt(R1) · fts = (t − s)!(t + s)!UGt(R1, ν0) · ats + UMt(R1, ν0) · (bts + cts) ,

(t − s)!(t + s)!WGt(R1) · ets + WMt(R1) · fts =
2µ0

C44
[(t − s)!(t + s)!TGt(R1, ν0) · ats + TMt(R1, ν0) · (bts + cts)] , (52)

where akl = {a(i)
kl }T, bts = {b(i)

ts }T, and cts = {c(i)
ts }T.
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For t = 0, only S
(3)
00 = er is nonzero. As expected, the equations related to S

(3)
00 equations closely resemble

those derived in Section 3:

R
ms1−1
h e

(1)
00 + R

mr3−1
h f

(3)
00 − γ 1

0 d
(3)
00 = −F,

R
ms1−1
h (2C13 + ms1C33) e

(1)
00 + R

mr3−1
h (2C13 + mr3C33) f

(3)
00 − 2µ1g1

0d
(3)
00 = (β33 − β1) 1T − F (2C13 + C33) ,

−
1

R3
a

(1)
00 + γ 0

0 b
(3)
00 − Rms1−1e

(1)
00 − Rmr3−1f

(3)
00 = −γ 0

0 c
(3)
00 + F,

2µ0

2

R3
a

(1)
00 + 2µ0g0

0b
(3)
00 − Rms1−1 (2C13 + ms1C33) e

(1)
00 − Rmr3−1 (2C13 + mr3C33) f

(3)
00

= −2µ0g0
0c

(3)
00 + (β0 − β33) 1T + F (2C13 + C33) . (53)

Equations (50) to (53) constitute a closed linear system, from which all the unknowns can be found with
any desirable accuracy using the truncation method. Numerical solution of the truncated linear system enables
accurate evaluation of the local displacement, strain, and stress fields at every point of the model composite.
Also, the unit cell model perfectly matches the Rayleigh homogenization scheme for the effective stiffness of
the composite.

5.2. Composite with transversely isotropic incoherent interface

To obtain the resolving linear system for a unit cell model with an anisotropic interface, we substitute equations
(42) and (48) and corresponding normal traction vectors into the right-hand side of equations (32) and (35) and

expand them in terms of S
(j)
ts . The derivation procedure is discussed in detail elsewhere [56]. Here, we give only

the final formulas. The infinite set of linear equations resulting from equations (32) and (35) is as follows. For
t ≥ 1, they are

(t − s)!(t + s)!ÛGt(Rc, ν0) · ats + ÛMt(Rc, ν0) · (bts + cts) = ̂̂
UMt(Rc, ν1) · dts, (54)

(t − s)!(t + s)!T̂Gt(Rc, ν0) · ats + T̂Mt(Rc, ν0) · (bts + cts) =
µ1

µ0

̂̂
TMt(Rc, ν1) · dts. (55)

For t = 0, they resemble equation (28) of Section 3:

−
[

1 +
h

Rc

(2µ0c20 − c10)

]
a

(1)
00

R3
c

−
[

1 +
h

2Rc

(c213k1 + 2c11)

]
γ 1

0 d
(3)
00

=
[

h

2Rc

(c203k0 + 2c10) − 1

]
γ 0

0

(
b

(3)
00 + c

(3)
00

)
+

h1T

2Rc

2β33 − β0 − β1

C33

,

[
4µ0

(
1 +

h

Rc

c10

)
−

h

Rc

(2c50 + c40)

]
a

(1)
00

R3
c

+
[

3k1

(
h

Rc

c11 − 1

)
+

h

Rc

(2c51 + c41)

]
γ 1

0 d
(3)
00

= −
[

3k0

(
h

Rc

c10 + 1

)
+

h

Rc

(2c50 + c40)

]
γ 0

0

(
b

(3)
00 + c

(3)
00

)
+

[
β0 − β1 +

h

Rc

(c70 + c71)

]
1T . (56)

For the explicit formulas of the matrices in equations (54) and (55), see [56] and Appendix C.

5.3. Effective stiffness and thermal expansion tensors

The macroscopic Duhamel–Neumann law reads

〈σ 〉 = C
∗ : 〈ε〉 − β∗1T = C

∗ : (〈ε〉 − α∗1T) , (57)
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where the macroscopic strain 〈ε〉 and stress 〈σ 〉 are defined by equation (40), C
∗ is the effective elastic stiffness

tensor, and α∗ is the tensor of the effective CTEs. Recall that in our model 〈ε〉 = E (equation (41)), whereas
〈σ 〉 is expressed in terms of the induced elastic dipole moment t = tijiiij of inhomogeneity by the formula

〈σ 〉 = C0 : 〈ε〉 + t − β01TI. (58)

For the spherical inhomogeneity,

t11 + t22 + t33 =
3κ

(1 − 2ν0)
a

(1)
00 , 2t33 − t11 − t22 = −4κa

(3)
20 ,

t11 − t22 − 2it12 = −8κa
(3)
22 , t13 − it23 = −2κa

(3)
21 , (59)

where κ = 8πµ0 (1 − ν0) [62]. Equation (59) is valid for the inhomogeneities of arbitrary structure and
interface bonding type and hence applies to both the interphase and interface problems under study.

The Rayleigh scheme for elasticity (see e.g. [61]) is conveniently formulated in terms of the stiffness con-
tribution tensor N of inhomogeneity related to the dipole moment t by the formula t = V1N : 〈ε〉 [63].
The components of the N tensor are found as Nijkl = tij, where t is induced by the macroscopic strain

〈ε〉 = 1
2

(ikil + ilik). Provided that 1T = 0, the effective stiffness tensor is given by the simple exact formula

C
∗ = C0 + cN, (60)

where C0 is the elastic stiffness tensor of matrix solid. Equations (59) and (60) apply equally to composites
with an anisotropic interphase or an anisotropic imperfect interface. Then, the effective CTEs are found from
equation (57) as

α∗ = −
1

1T

[
(C∗)−1

: t

]
, (61)

where t is the dipole moment induced by the constrained thermal stress for 〈ε〉 = 0.

6. Numerical study

In this section, we give a few numerical examples to illustrate (i) the accuracy and validity limits of the first-
order approximation of the transversely isotropic thermoelastic interphase layer, (ii) an effect of the interphase
anisotropy on the thermal stress and effective CTE of a composite, and (iii) its applicability as a model of
the nanolevel incoherent interface. In what follows, we will conveniently use the technical elastic constants in
parallel with the components of stiffness tensor. The Young moduli Ei, shear moduli Gij, and Poisson ratios νij

of transversely isotropic solid are related to Cij by

E1 = E2 = 2

(
1

C11 − C12

+
C33

1

)−1

, E3 =
1

(C11 + C12)
,

G12 =
1

2
(C11 − C12), G23 = G13 = C13, G12 = G44,

ν13 = ν23 = C13/ (C11 + C12) , ν12 =
E1

2

(
1

C11 − C12

−
C33

1

)
,

where 1 = (C11 + C12)C33 − 2(C13)2 and only five of these constants are independent.
The following fixed set of elastic constants is used in all numerical tests: ν0 = 0.3, ν1 = 0.2, µ1 = 10µ0,

ν12 = ν13 = 0.1, G12 = G13 = 5µ0, and E1 = 4E3 = 30µ0. By taking µ0 = 1, we thereby assume that all
the stress and elastic constants reported in this section are normalized by µ0. To minimize the number of model
parameters and highlight the contribution of the interphase or interface, we assign α0 = α1 = 0. The variable
parameters in our study are the interphase layer thickness h, interphase CTEs α11 and α33, volume fraction c, and
radius R1 of inhomogeneities. To obtain the fully convergent series solution, the equations and unknowns with
t ≤ tmax were retained in the truncated linear system, where tmax = 2 and tmax = 25 for the single inhomogeneity
and unit cell model, respectively.
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Figure 2. Stress σ
(0)
rr (R1) as a function of interphase thickness h.

6.1. Interface stress

In the first numerical test, we estimate the accuracy of the first-order approximation of equations (20) and (27)
in the case of spherically symmetric loading of an infinite solid with a single inhomogeneity. We consider the
unconstrained thermal expansion C = α1T , in this case, σrr(r) → 0 with r → ∞. In Figure 2, the matrix
thermal stress σ (0)

rr (R1) owing to the temperature change 1T = 1 is shown as a function of the interphase
thickness normalized by the inhomogeneity radius: 0 ≤ h/R1 ≤ 0.2. The solid curves represent the interphase
model; in this case, σ (0)

rr is calculated at the matrix side of the interface between the matrix and interphase
layer. The dash-dotted curves represent its approximation by the interface model and the stress is evaluated
in the matrix bulk r = R1 > Rc. Three CTE combinations are considered: α11 = 0, α33 = 2 (curve 1),
α11 = α33 = 1 (curve 2), and α11 = 2, α33 = 0 (curve 3). It can be seen from the figure that (a) the thermal
stress is greatly affected by the interphase CTE anisotropy and (b) the developed interface model works quite
well. The maximum relative error of approximation reaches 4% for α11 = 2, α33 = 0, and h/R1 = 0.2. For
h/R1 < 0.2 (recall that we assume the interphase layer to be thin), a closer agreement between the compared
models is expected.

Now, we proceed to the periodic composite containing a simple cubic array of spherical inhomogeneities.
This composite possesses cubic symmetry of the effective elastic moduli and is isotropic with respect to the
effective CTE. Again, we assume the unconstrained thermal expansion of the composite defined in this case
by the condition 〈σ 〉 = 0 or, alternatively, 〈ε〉 = α∗1T , see equation (57). An accurate solution to the unit
call model problem involves the higher-order spherical harmonics. This narrows the validity range of equations
(32) and (35) [56, 59]. In Figure 3, the stress σrr variation in the matrix along the arc r = R1, 0 ≤ θ ≤ π/2,
ϕ = π/2 owing to the thermal load 1T = 1 of the composite with c = 0.45 and h/R1 = 0.1 is shown.
For this volume content and packing type, the minimal separation between the particle surfaces is as small
as 0.1R1, which assumes significant local stress concentration. By analogy with Figure 2, the solid and dash-
dotted curves represent the interphase and interface model, respectively. Also, curves 1 to 3 correspond to the
previously defined combinations of the interphase CTE. As seen, the compared models predict very close stress
σ (0)

rr values. However, for other components of the stress tensor, the agreement is not as good. In Figure 4, the
stress σθθ variation along the arc r = R1, 0 ≤ θ ≤ π/2, ϕ = π/2 is shown for h/R1 = 0.02 (curve 1),
h/R1 = 0.05 (curve 2), and h/R1 = 0.10 (curve 3). The first-order approximation is, expectedly, quite accurate
for a thin (h = 0.02R1) interphase but becomes gradually worse with the increase in h/R1, especially in the
narrow gap between the inhomogeneities. Moreover, the first-order model of the interface that we consider
becomes unphysical for h > 0.1R1 in the high-filled particulate composite [56, 59].

It has already been discussed that the dimensionless number δ = h/R1 is a parameter governing the interface
contribution to the elastic fields and effective moduli of the composite. For a fixed skin parameter h and the
interface constants ci, this contribution can be regarded as the inhomogeneity size effect. Also, the surface
tension σ0 is conveniently modeled by the thermal stresses βii1T . In Figure 5, the stress σ (0)

rr at the pole point
r = R1, θ = 0 is shown as a function of R1/h for c = 0.15, 0.30, 0.40, and 0.45 (curves 1 to 4, respectively),
1T = 1, and α11 = 2, α33 = 0. The computations show that the thermal stress field may vary widely, depending
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Figure 3. Stress σrr variation in the matrix along the arc r = R1, 0 ≤ θ ≤ π/2, ϕ = π/4, owing to thermal load 1T = 1: simple

cubic packing of spheres, c = 0.45.
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Figure 4. Stress σθθ variation in the matrix along the arc r = R1, 0 ≤ θ ≤ π/2, ϕ = π/4, owing to thermal load 1T = 1: simple

cubic packing of spheres, c = 0.45.

on the volume fraction and size of inhomogeneities, as well as on the other structure parameters of the composite
and deserves a comprehensive study. This task, however, is beyond the scope of this paper.

6.2. Effective stiffness

In Table 1, the effective CTE α∗ of a periodic composite with a simple cubic array of spherical particles predicted
by the two models is given for h/R1 = 0.1, α11 = 2, α33 = 0, 0.1 ≤ c ≤ 0.5. The data in the two first columns
are obtained using the Maxwell scheme (equation (31)). The next two columns give the data corresponding
to the accurate multipole expansion solution (equation (61)). The data shown in the last column are found
from numerical, finite-element analysis of the unit cell model of the composite with a transversely isotropic
interphase. Our accurate data for the composite with the interphases practically coincide with the finite-element
solution. The interface model overestimates α∗, but the deviation is small; even for c = 0.5 (which is close
to dense packing), it is of order 0.2% . The Maxwell scheme also provides a reasonably good estimate, with a
relative error of 5% for c = 0.5.

In Table 2, the effective CTE of a periodic composite with an imperfect interface is given as a function
of h/R1, c, and the interface anisotropy type. As expected, α∗ is nearly proportional to the skin parameter h
and volume fraction of inhomogeneities c. For fixed values of h and c, α∗ varies about three times for the
combinations of α11 and α33 that we consider. In Figure 6, the effective CTE of the periodic composite with
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Figure 5. Stress σ
(0)
rr at the pole r = R1, θ = 0 as a function of R1/h for c = 0.15, 0.30, 0.40, and 0.45.

Table 1. Effective CTE α∗ of the periodic composite with transversely isotropic interphase and interface as a function of c.

c Maxwell, equation (31) Unit cell, equation (61) FEM

Interphase Interface Interphase Interface Interphase

0.1 0.0659 0.0661 0.0659 0.0661 0.0659

0.2 0.1265 0.1269 0.1267 0.1271 0.1267

0.3 0.1824 0.1831 0.1836 0.1842 0.1835

0.35 0.2087 0.2096 0.2111 0.2118 0.2111

0.4 0.2340 0.2351 0.2387 0.2393 0.2386

0.45 0.2585 0.2596 0.2667 0.2673 0.2666

0.50 0.2820 0.2833 0.2960 0.2966 0.2958

Table 2. Effective CTE of the periodic composite with transversely isotropic interface as a function of c and h.

c Interface CTE h/R1

0.02 0.04 0.06 0.08 0.10

0.15 α11 = 0, α33 = 2 0.0080 0.0155 0.0226 0.0291 0.0352

α11 = 1, α33 = 1 0.0144 0.0282 0.0415 0.0541 0.0662

α11 = 2, α33 = 0 0.0208 0.0409 0.0604 0.0792 0.0972

0.30 α11 = 0, α33 = 2 0.0151 0.0294 0.0427 0.0551 0.0667

α11 = 1, α33 = 1 0.0272 0.0534 0.0785 0.1025 0.1254

α11 = 2, α33 = 0 0.0393 0.0774 0.1143 0.1499 0.1842

0.45 α11 = 0, α33 = 2 0.0220 0.0427 0.0621 0.0801 0.0968

α11 = 1, α33 = 1 0.0396 0.0777 0.1141 0.1489 0.1820

α11 = 2, α33 = 0 0.0572 0.1126 0.1662 0.2178 0.2673

anisotropic imperfect interface is shown as a function of R1/h. By analogy with Figure 5, these data can be
interpreted in the context of nanomechanics as the inhomogeneity size-dependent macroscopic elastic bulk
strain of nanostructured solid owing to interface stress.

7. Conclusions

The findings of this study can be summarized as follows.
The model of an anisotropic imperfect interface in a heterogeneous solid with an initial stress is derived as

the first-order approximation of a thin transversely isotropic interphase layer. The developed model assumes
discontinuity of both the displacement and normal traction vector fields across the interface and involves eight
independent parameters. This set involves five elastic constants, two eigenstress-related parameters (CTEs, in
the case of thermal stress), and one length parameter. This ensures applicability of the model at various structural
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Figure 6. Effective CTE of periodic composite with imperfect interface as a function of R1/h.

levels and flexibility in modeling the interfaces in composites under the presence of interface residual stress and
discontinuity of the displacement and stress fields. The proposed theory covers most of the known interface
models. In application to polycrystalline solids, our model is consistent with the theory of curved deformable
interfaces [50] and provides a certain insight into the interface elastic moduli. It is believed that taking the
incoherency of the interface into account makes the model more realistic and thus increases the reliability of
predicting the elastic properties of nanostructured solids. The developed model is not limited to the spherical
geometry considered here and can be applied to a variety of heterogeneous solids with incoherent interfaces.
Such an extension might require computational efforts that could be a subject of future investigations. Another
promising direction of future work is an extension of the developed approach to composites with a graded
interphase.

To illustrate the derivation procedure and essential features of the anisotropic imperfect interface model, the
spherically symmetrical problem for an infinite elastic solid with a single inhomogeneity is considered first. The
analytical expressions for the displacement, strain, and stress fields in the matrix, anisotropic interphase, and
core inhomogeneity are derived. Retaining the O(h) terms in the asymptotic expansion of the solution yields the
displacement and stress jump conditions. The developed model is applied to estimate the effective bulk modulus
and CTE of a spherical particle composite with the transversely isotropic interphase and imperfect interface in
the framework of a Maxwell homogenization scheme. These results can be regarded as an extension of Levin’s
formula to composites with an anisotropic interphase or an imperfect interface.

The rigorous solution for the unit cell model of a spherical particle composite with a transversely isotropic
interphase and thermal stress has been obtained using the multipole expansion method. Accurate fulfillment of
the matrix-to-interphase and interphase-to-core inhomogeneity contact conditions reduces the model boundary
value problem of thermoelasticity to the linear algebraic system for multipole strengths and provides a highly
efficient algorithm for numerical study. This solution is readily incorporated in the many-particle representative
unit cell model and thus enables consideration of a composite comprising spherical particles of diverse sizes
and properties, with adequate account of their arrangement, interactions, and anisotropy of interphases. The
analogous approach is used to find a rigorous solution for the unit cell model of a spherical particle composite
with the newly developed model of an anisotropic incoherent interface. Numerical comparison of the interphase
and interface models supports our theory and provides an estimate of its accuracy and applicability limits in a
multiparticle environment. Both models are applied in the framework of a Rayleigh homogenization scheme for
evaluation of the effective CTE of a spherical particle composite with imperfect interfaces.

The reported accurate numerical data reveal a significant effect of the interphase or interface anisotropy and
eigenstress on the stress concentration and effective thermoelastic properties of particulate composite. This is in
sharp contrast to coherent interface models that predict the size effect to be weak and are confined to composites
with soft nanoinclusions and nanoporous solids. The extended set of material parameters used in the proposed
interface model may significantly improve the reliability or accuracy of the micromechanical simulation of
heterogeneous media.
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Appendix A. Background theory

A.1. Vector spherical surface harmonics

Vector spherical surface harmonics S
(i)
ts (θ , ϕ) [64] are defined in terms of their scalar counterparts, χ s

t (θ , ϕ) =
Ps

t (cos θ) exp (isϕ) as

S
(1)
ts = r∇

(
χ s

t

)
= eθ

∂

∂θ
χ s

t +
eϕ

sin θ

∂

∂ϕ
χ s

t ,

S
(2)
ts = r∇ ×

(
erχ

s
t

)
=

eθ

sin θ

∂

∂ϕ
χ s

t − eϕ

∂

∂θ
χ s

t ,

S
(3)
ts = erχ

s
t (t ≥ 0, |s| ≤ t). (62)

For t < 0, they are defined as S
(i)

−(t+1),s = S
(i)
ts .

The functions of equation (62) constitute a complete and orthogonal set of vector harmonics on a sphere.
Specifically,

1

S

∫

S

S
(i)
ts · S

(j)
kl dS = α

(i)
ts δtkδslδij, (63)

where the over bar indicates a complex conjugate, α
(1)
ts = α

(2)
ts = t(t + 1)αts and

α
(3)
ts = αts =

1

2t + 1

(t + s)

(t − s)
.

Any sufficiently smooth vector function F on the sphere S : r = R is expanded into a series over S
(i)
ts as

F (x) =
∑

j,t,s

f
(j)
ts (R) S

(j)
ts (θ , ϕ), f

(j)
ts =

1

4πR2α
(j)
ts

∫

S

F (x) · S
(j)
ts dS. (64)

A.2. Vector solutions of the Lamé equation

A complete set of the vector functions u
(i)
ts obeying Lamé equation is as follows [61]. The regular (bounded

everywhere but for r → ∞) functions u
(i)
ts are expressed in terms of S

(i)
ts of equation (62) as

u
(i)
ts (x, ν) =

1

(t + s)

3∑

j=1

UM
ji
t (r, ν)S

(j)
ts (θ , ϕ), (65)

where

UMt(r, ν) = rt−1




1 0 r2βt(ν)
0 − r

t+1
0

t 0 r2γt(ν)


 (66)

and

βt(ν) =
t + 5 − 4ν

(t + 1)(2t + 3)
, γt(ν) =

t − 2 + 4ν

(2t + 3)
. (67)

Owing to S
(1)
00 = S

(2)
00 ≡ 0, we have u

(1)
00 = u

(2)
00 ≡ 0. These functions, as well as u

(1)
1s and u

(2)
1s , which represent

translation and rotation, respectively, of a rigid solid, are excluded from consideration.
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The normal traction vector t = σ · n at the surface S : r = const yields

t(u
(i)
ts ) =

2µ

(t + s)!

3∑

j=1

TM
ji
t (r, ν)S

(j)
ts (θ , ϕ), (68)

where

TMt(r, ν) = rt−2




t − 1 0 r2bt(ν)

0 − r(t−1)

2(t+1)
0

t(t − 1) 0 r2gt(ν)


 (69)

and
bt(ν) = (t + 1)βt − 2(1 − ν)/(t + 1), gt(ν) = (t + 1)γt − 2ν.

The irregular (infinitely increasing at r → 0 and vanishing at infinity) functions U
(i)
ts = u

(i)

−(t+1), s are given by

equation (65) as well, by replacing t with −(t + 1). Equations (66) to (68) are also valid for irregular vector

functions U
(i)
ts , with UGt = UM−(t+1) and TGt = TM−(t+1).

Appendix B. Vector functions for the spherical transverse isotropy

Kushch [56] has introduced an infinite set of the vector functions obeying the equilibrium equation for the solid
with spherical transverse isotropy of elastic moduli. They are

v
(i)
ts (x) = αts

3∑

j=1

VM
ji
t (r)S

(j)
ts (θ , ϕ), (70)

where

VMt(r) =

(
rmr1 0 rmr3

0 rmr2 0
rmr1kr1 0 rmr3kr3

)
. (71)

Here, S
(j)
ts are the vector spherical surface harmonics defined by equation (62) and mi = mi (t) (i = 1, 2, 3) are the

roots of the equation mi (mi + 1) = υi. We denote mri = mi(t), kri = ki(t), and msi = mi(−t−1), ksi = ki(−t−1)
for the regular and irregular vector functions, respectively. Specifically,

mi =
(
−1 ±

√
1 + 4υi

)
/2, (72)

where the sign “+" and αts = 1/(t + s) are taken for the regular functions v
(i)
ts and the sign “−" and αts = (t − s)

are taken for the irregular functions V
(i)
ts = v

(i)

−(t+1),s. The corresponding VGt matrix has the same form as VMt,

but with mi and ki for the irregular functions.
The parameters υi = υi (t, C) entering equation (72) are defined as

υ2 =
(C11 − C12)

2C44

(t − 1)(t + 2) + 2. (73)

Here, υ1 and υ3 are the roots of the equation

C33C44υ
2 + υ

[
t(t + 1) (C13 + C44)2 − C33X1 + C44X2

]
− (X3 + X1X2) = 0, (74)

where

X1 = t(t + 1)C11 − C11 + C12 + 2C44,

X2 = 2C13 − 2C11 − 2C12 − t(t + 1)C44,

X3 = t(t + 1) (2C44 + C11 + C12) (C44 − C13 + C11 + C12) .
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The roots υi and mi are arranged in such a way that 0 < m1 < m2 < m3 for the regular functions and
m3 < m2 < m1 < 0 for the irregular ones. Given mi,

ki =
t(t + 1)C11 − (C11 − C12) − (mi − 1) (mi + 2)C44

C11 + C12 + C13mi + (mi + 2)C44

. (75)

Representation of the normal traction vector t(v
(i)
ts ) in terms of S

(j)
ts is given by the formula

t(v
(i)
ts )

C44

= αts

3∑

j=1

WM
ji
t (r, ν)S

(j)
ts (θ , ϕ), (76)

where

WMt(r) =




rmr1−1pr1t 0 rmr3−1pr3t

0 rmr2−1(mr2 − 1) 0
rmr1−1qr1t 0 rmr3−1qr3t


 (77)

and

prit = mri + kri − 1, qrit =
C13

C44

[2kri − t(t + 1)] +
C33

C44

mrikri.

Again, the WGt matrix for t(V
(i)
ts ) has the same form as WMt, with mi and ki for the irregular functions. For

more details, see [56].

Appendix C. Explicit form of the matrix coefficients in equations (54) and (55)

The matrices entering equation (54) are defined as [56]

ÛGt(R, ν0) = UGt(R, ν0) − FGt(R, ν0),

ÛMt(R, ν0) = UMt(R, ν0) − FMt(R, ν0),

̂̂
UMt(R, ν1) = UMt(R, ν1) + FMt(R, ν1),

where

FGt(R, ν0) =
h

2
[a10FGt(R, ν0) + 2µ0C0TGt(R, ν0)] ,

FMt(R, νi) =
h

2
[a1iFMt(R, νi) + 2µiCiTMt(R, νi)] , i = 0, 1.

Here,

FMt(R, ν) = Rt−2




0 0 0
0 0 0

−t (t − 1) 0 [2(2ν − 1) − (t + 1)γt(ν)] R2




and FGt = FM−t−1.
The matrices entering equation (55) are

T̂Gt(R, ν0) = TGt(R, ν0) − TGt(R, ν0),

T̂Mt(R, ν0) = TMt(R, ν0) − TMt(R, ν0),

̂̂
TMt(R, ν1) = TMt(R, ν1) + TMt(R, ν1),

where

TGt(R, ν0) =
h

2R2

[
a10W1TGt(R, ν0) +

1

2µ0

(a40W3 + a50W2) UGt(R, ν0)

]
,

TMt(R, νi) =
h

2R2

[
a10W1TMt(R, νi) +

1

2µi

(a4iW3 + a5iW2) UMt(R, νi)

]
, i = 0, 1.
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Here,

W1 = R

(
0 0 1
0 0 0
0 0 −2

)
, W2 =

(−t(t + 1) 0 2
0 0 0

2t(t + 1) 0 −4

)
,

and

W2 =

(
1 − t(t + 1) 0 1

0 1 − t(t + 1)/2 0
t(t + 1) 0 −2

)
.


