Selectivity Functions of Range Queries are Learnable

ABSTRACT

This paper explores the use of machine learning for estimating the
selectivity of range queries in database systems. Using classic learn-
ing theory for real-valued functions based on shattering dimension,
we show that the selectivity function of a range space with bounded
VC-dimension is learnable. Since many popular classes of queries
(e.g., orthogonal range search, inequalities involving linear com-
bination of attributes, distance-based search, etc.) represent range
spaces with finite VC-dimension, our result immediately implies
that their selectivity functions are also learnable. To the best of our
knowledge, this is the first attempt at formally explaining the role of
machine learning techniques in selectivity estimation, and comple-
ments the growing literature in empirical studies in this direction.
Supplementing these theoretical results, our experimental results
demonstrate that, empirically, even a basic learning algorithm with
generic models is able to produce accurate selectivity predictions
across settings, matching state-of-art methods designed for specific
query classes, and using training sample sizes commensurate with
our theoretical results.

ACM Reference Format:

. 2018. Selectivity Functions of Range Queries are Learnable. In Woodstock
’18: ACM Symposium on Neural Gaze Detection, June 03—05, 2018, Woodstock,
NY. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION

In this paper, we formally model and study the problem of learning
selectivity functions for selection queries in database (DB) systems.
The selectivity of a selection query on a database is defined as
the probability that a randomly chosen tuple from the database
satisfies the query predicate. Estimating query selectivity is a core
problem in the query optimization pipeline, and has a rich history of
research over many decades (see, e.g., [24, 30, 37, 38, 40]). In recent
years, the focus has shifted from traditional optimization methods to
machine learning (ML) techniques (e.g., [16, 25-27, 34, 36]), with the
latter outperforming the former in empirical studies. In this paper,
we establish a learning-theoretic framework for the selectivity-
estimation problem, show that the estimation problem is indeed
learnable for popular classes of selection queries from a small set of
training samples using this framework. Building on this framework,
we also develop a simple, generic learning algorithm and evaluate it
empirically: not only is this approach competitive against the state-
of-the-art methods designed for specific types of queries, but it also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Woodstock 18, June 03—05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Ro . . Rs

R4

Figure 1: An illustration of the learned selectivity problem.
There are 20 data points in the underlying dataset D and 5
training queries R;, Rz, R3, R4, Rs with their selectivities given
by sp(R1) = 0.1, sp(Rz) = 0.3, sp(R3) = 0.15, sp(R4) = 0.1 and
sp(Rs5) = 0.25. The goal is to estimate the selectivity of an un-
known query R¢ (in bold), the correct answer in this example
being 0.25. The shaded area will be explained in Section 2.3.

works effectively for other less-studied query types, demonstrating
the power and generality of our framework.

While the query selectivity estimation problem is indeed an
important component of DB research, we believe that our work
also has implications beyond this specific problem. Our research
adds to the growing and impressive body of work that seeks to
exploit the vast advances in ML in recent years to solve problems
in DB systems. The main thrust in this area of research has been in
developing ML models and algorithms, often using deep learning
techniques, that empirically outperform existing methods in real
world DB systems. We complement this by providing a formal
framework to establish the learnability of the selectivity estimation
problem. As “ML for DB” advances further, we hope that the formal
lens that we introduce in this paper can be adapted and generalized
to a broader class of DB problems.

Our Contributions. First, we formalize the learnability of the
selectivity-estimation problem. Recall that a database is a collection
of tuples, and a selection query is a predicate that selects a subset
of these tuples. The selectivity of a selection query is the proba-
bility that a randomly selected tuple satisfies the query. In order
to learn the selectivity function, we employ the agnostic-learning
framework [17], an extension of the classical PAC learning frame-
work for real-valued functions, where we are given a set of sample
queries and their respective selectivities from a fixed distribution
(the training set), and our goal is to design an algorithm that can
output the selectivity of a new query from the same distribution
with high accuracy (see Figure 1 for an example).

Classical PAC learning theory asserts that a Boolean function
is learnable if its VC-dimension is bounded. Generalizing this no-
tion, it has been shown that a real-valued function is learnable
using finitely many samples if its fat shattering dimension (defined
in Section 2) is bounded [5, 7, 21]. This reduces the question of
learnability of selectivity functions to bounding their respective fat

shattering dimensions. We further note that selectivity functions
correspond to selection queries on the underlying data. Each se-
lection query, in turn, is a binary function on the data (i.e., which
data items satisfy the query predicate), and the complexity of a
class of binary functions is captured by its VC-dimension [45]. Our
main result shows that if a class of selection queries has bounded
VC-dimension, then the fat shattering dimension of the correspond-
ing selectivity function must also be bounded, and therefore, the
selectivity function for such queries is learnable.

This result has several implications for important query classes:

e Orthogonal Range Queries. Such queries are specified as a
conjunction of range conditions on individual attributes, e.g.:

SELECT * FROM T WHERE a; < A; < by AND ap < Ay < by

They are widely used as building blocks in more complex queries,
and their selectivity-estimation (even for the simplest 1D range
queries involving just a single attribute) has been the bread and
butter of cost-based query optimizers, which uses selectivity
estimates to gauge the intermediate result sizes and choose low-
cost query execution plans. Taking a geometric view, we can
represent each data tuple defined on d attributes as a point in R4
and each query as a hyper-rectangle in the same space. Known
bounds on the VC-dimension of hyper-rectangles [22] then allow
us to conclude that their selectivity is learnable.

e Linear Inequality Queries. Such queries allow multiple at-
tributes to be brought together into one linear inequality, e.g.:

SELECT * FROM T
WHERE Oy + 601 X A1 + O X Ag+ - -+ 03X Ag =20

Able to capture more complex conditions that can encode data
correlations, these queries are popular in advanced analytical
data processing systems. As earlier, we can represent each data
tuple on d attributes as a point in R?. Then, each query is a half-
space in RC. Again, using known bounds on the VC-dimension
of halfspaces [22], we can conclude that the corresponding selec-
tivity function is learnable.

e Distance-based Queries. These queries specify a “reference”
object and find all objects that within some distance of it, e.g.:

SELECT * FROM T
WHERE (A1 —a1)2+ (Az —az)?+ - -+ (Ag —ag)? < r?

Here the reference object is (ay, ..., ay) and the Euclidean ()
distance threshold is r. Such queries have broad applications
in text and image search, product recommendations, database
optimization, network traffic, etc. Again, selectivity estimation
enables cost-based optimization of queries involving such con-
structs. Moreover, the estimates may be of interest themselves;
e.g., we might be interested in just counting how many other
objects are in the vicinity of one object. As before, we use a geo-
metric view where the data points are in R4 for d attributes, and
the above query is a d-dimensional #;-ball. Invoking the standard
bound [22] on the VC-dimension of #-balls, we can conclude
that the corresponding selectivity function is learnable.

While our framework establishes the learnability of the selec-
tivity of above query types from a small set of training examples,

it does not by itself prescribe any specific model or learning al-
gorithm. As part of establishing the learnability of our selectivity
query, we also need a procedure that, given a set of training samples
and a family of data distributions (e.g. histograms, discrete distri-
butions), constructs a data distribution from the given family that
“best fits” the training samples. Our framework then guarantees
that the learned data distribution estimates the selectivity of any
query chosen from the same distribution as the training samples
with high accuracy. For specific query types (e.g., orthogonal range
queries), there already exists a large body of work on the selectivity-
estimation problem, and our framework now gives them a solid
foundation. To demonstrate the power of our framework beyond
justifying existing methods, we further propose a simple, generic
approach that embodies our theoretical results, and empirically
validates its efficiency using extensive experiments. It is impor-
tant to note that we are not designing this generic approach to
“beat” existing methods with novel or sophisticated features; in fact,
we intentionally avoid sophisticated features so that experimental
comparison can focus on illustrating the power of our unifying
framework instead of the artifacts of extra features. Despite the
simplicity of our approach, our experimental results show that it
performs comparably to the state-of-the-art methods for orthog-
onal range queries. Furthermore, for query classes that have seen
less previous research, such as linear inequality and distance-based
queries, our generic approach also work effectively, demonstrating
the generality of the our theoretical framework.

Roadmap. This paper is organised as follows. In Section 1, we
introduce the background knowledge of range query and selectivity
estimation. In Section 2, we focus on the statistical learning question
of determining the sample complexity of training for selectivity
estimation problem under the agnostic-learning framework. In
Section 3, we propose two simple generic algorithms for computing
a data distribution that minimizes the expect loss function on a
finite set of training queries. In Section 4, we implement these two
algorithms to verify our theory, both of which are trained using a
certain number of queries for obtaining small predication error on
test queries, and compare them with state-of-art methods under
the same framework.

2 LEARNABILITY OF QUERY SELECTIVITY

A range space X is a pair (X, R), where X is a set of objects and R
is a collection of subsets of X called ranges. For example, X = R
and R can be the set of all d-dimensional rectangles, halfspaces, or
balls. Let D be a probability distribution over X. For a given D, we
define the selectivity function sp : R — [0,1] as

sp(R) = XI:rD[x €R].

Our goal is to learn the selectivities of the ranges in a range
space ¥ under an unknown data distribution from a finite sample
of ranges and their respective selectivities. Formally, we define this
learning task as follows.

2.1 The Learning Framework

Learnability. Following the agnostic learning model proposed by
Haussler [17] (see also [5, 7]), which generalizes the PAC model,
we define learnability in a more general setting. Let # be a family

of functions from a domain Y to [0,1]. Set Z = Y x [0,1]. For a
function H € %, we define the loss function ¢y : Z — [0, 1]. For
z=(y,w) € Z,

ty(z) = (H(y) - w)*.
For a probability distribution Q over Z and for a function H € %,
we define

ero(H) = /Z 11(2)d0(2))

to be the mean square loss of H with respect to distribution Q.

A learning procedure A is mapping from finite sequences in Z to
Z . Given a training sample z" = (21,22, -+ ,zn) € Z", A returns
a function A(z"). Given €, § € (0, 1) and an integer n > 0, we say
that A (e, 6)-learns (agnostically) from n random training samples
with respect to % if

sgpPr[erQ(ﬂ(z”)) > }}rel;f ero(H) +€] <6,

where Pr denotes the probability with respect to a random sample
2" € Z", each of z1, 23, - - -, z,, is drawn independently from Z at
random according to Q, and supremum is taken over all distribu-
tions defined on Z. For € > 0, # is called e-learnable if there exists a
function ng : [0,1]?> — N and a learning procedure A such that for
all § > 0 and for all n > ngy(e, 5), A (€,)-learns from n examples
with respect to #’; no (e, 6) is referred to as the minimum training
set size for # . Finally, # is learnable if it is e-learnable for all € > 0.

VC dimension. Returning to the selectivity function of range
space 2 = (X, R), let D be a set of distributions defined on X. Set
Ss.9 = {sp | D € 9}, a family of functions from R to [0, 1]. Set
Z =R X [0,1]. Our main result is a characterization of learnability
of Sy, ¢ in terms of the VC-dimension of X, defined below.

A subset P C X is shattered by R if (PN R | R € R} = 2P, The
VC-dimension of R, denoted by VC-dim(ZX), is the size of the largest
subset of X that can be shattered by X. An example is given in
Figure 2. If the VC-dimension of ¥ is not bounded by a constant,
then VC-dim(X) = co. Our main result, stated in the theorem below,
is that Sy, g is learnable if and only if VC-dim(X) is finite.

THEOREM 2.1. Let X = (X, R) be a range space, let D be a set
of distributions defined on X, and let € € (0,1) be a parameter. If
VC-dim(X) = A, for some constant A > 0, then the family Sy, ¢ of se-

lectivity functions is e-learnable with a training set of size O (€}+3).1

Conversely, if VC-dim(X) = oo, Sy, ¢ is not (agnostically) learnable.

Remark. Note that we do not assume training sample z; = (R;, s;) €
Z to be of the form s; = sp(R;) for some data distribution D € 9.
They are drawn from some distribution Q defined on R X [0, 1],
and the goal is to learn the selectivity function in Sy, ¢ that mini-
mizes the mean square loss. This is important, which allows us to
decouple training samples from the family of functions, and the
problem just becomes to find a function from the given family that
minimizes the expected loss. This model is more general than the
one assuming training sample in a form of z; = (R;,sp(R;)) for
some data distribution D € 9, for example, capturing the noisy
input for learning the selectivity functions.

Instead of using the mean square error in (1), we can use other
loss functions such as the Li-norm or Lo,-norm of the error, i.e.,

1O(.) to hide lower order terms that are in polylog (£, %) for constant A.

1
€

[] [] (o]
P,
[} [(o)

@) (if)

Figure 2: VC-dimension of ¥ = (R?,Rg), where Ry is the set
of all two-dimensional rectangles, is 4. (i) is an illustration
of a set of 4 points shattered by Ry. On the other hand, no
set Y = {p1, p2, p3., pa» p5} in R? can be shattered by Ry in (ii):
let {Py, P2, P3, P4} C Y be the subset of (at most 4) points of Y
with extreme x- and y-coordinates. Then any rectangle con-
taining P, P2, P3, P4 also contains Ps.

f(y’w) |H(y) —w|dQ(y, w) or SUP (4) |H(y) —w|. Furthermore, the
theorem holds for any 9, the family of data distributions and the
bound on the training size is independent of &. It might be possible
to obtain an improved bound on the training size for certain family
of data distributions. Finally, the theorem assumes the existence
of a procedure that efficiently computes the function in Sy, g that
minimizes, or minimizes within additive error €, the mean square
loss over the finite sequence of training samples; see Section 3.

2.2 Implications of Theorem 2.1
Before proving Theorem 2.1, we give some of its implications. We

begin with the query classes mentioned in the introduction.

Orthogonal Range Queries: The range space g = (R%, Rp) for
orthogonal range queries is defined as
Ro = {x{y[ai bi] : ai,bi € Roa; < by, Vi€ [d]).

It is well known that VC-dim(Zg) = 2d [22] (see Figure 2 for d = 3),
therefore Theorem 2.1 implies that for any family & of distributions
defined on R¢ and for any € > 0, the selectivity functions are e-

learnable with training set of size O ezlw)

Linear Inequality Queries: The range space 2\ = (RY, R) for
linear inequality queries is defined as

R\ = {R\(a,h) rae€ Rd,b e R},

where R\ (44) = {x € RY:gx > b}.Itisknown that VC-dim(Z\) =
d + 1 [22], therefore Theorem 2.1 implies that for any family &
of distributions defined on R and for any € > 0, the selectivity

functions are e-learnable with training set of size O (ﬁ)

Distance-Based Queries: The range space X, = (R?,Ro) for
distance-based queries is defined as

Ro = {Ro(a,b) :a € Rd, b e R},

where R, (q3) = {x € RY : ||x — al|z < b} and ||-|| is the Euclidean
norm. It is known that VC-dim(Z,) < d + 2 [22], therefore Theo-
rem 2.1 implies that for any family 9 of distributions defined on
R? and for any € > 0, the selectivity functions are e-learnable with

training set of size O (ﬁ)

<

Figure 3: (Left) Semi-algebraic range of R = {(x,y) € R? |
(WP +y2 <) AP +y% 2 1) A (y - 2x% < 0)}. (Right) A disc-
intersection query, discs intersected by the query disc (red)
are shown in blue.

Semi-algebraic Range Queries. A very general class of range
queries is the so-called semi-algebraic range query. A d-dimensional
semi-algebraic set is subset of R defined by a Boolean formula over
polynomial inequality. For example, R = {(x,y) € R? | (x> + ¢ <
4) A (x® +1y% = 1) A (y — 2x? < 0)} is a semi-algebraic sets; see
Figure 3. All the three above examples are special cases of semi-
algebraic range queries. Let Ty, o be the set of all semi-algebraic
sets defined by at most b d-variate polynomial inequalities, each of
degree at most A. It is known that the VC-dimension of range space
(RY, Tapa) is a constant A := A(d, b, A) [9]. Hence the selectivity
functions on (RY, Ty p) are also learnable for any constants d, b, A.

Semi-algebraic sets enable us to handle range spaces in which
X is not a set of points in R4, For example, let B be the set of all
discs in R2. For a query disc B, let Rg C B be the set of discs that
intersect B; see Figure 3. Define Re = {Rp | B € B}, and consider
the range space 2o = (B, Ro). We can map each disc in B to a point
(x,1,2) in R where (x, 1) is the center of the disc and z is its radius.
Then for a query disc B centered at (cx, ¢y) and radius r, the range
Rp maps to the set

vB={(xy,2) eR3 | (x—cx)2+(y—cy)2 < (r+z)2,z > 0}.

SetRiZO =R%xR,s0and Re = {ys | B € B}. Then 3, is mapped to

(Rizo, R.). Since ranges in R are semi-algebraic sets with b = 1and

A <2, VC—dim(R‘;O, R.) is finite and hence selectivity functions
on (B, R) are learnable.

We conclude this discussion by giving an example of range space
for which selectivity functions are not learnable.

Polygon range queries with arbitrary number of vertices. Let
C be the set of all convex polygons in R? with arbitrary number
of vertices. Consider the range space % = (R?, C). It is known that
VC-dim(Z) = oo [18], therefore Theorem 2.1 implies that selectivity
functions on X are not learnable.

2.3 Proof of Theorem 2.1

We prove Theorem 2.1 using the notion of fat-shattering dimension
introduced by Kearns and Schapire [21], which is a generalization
of VC-dimension, and the results by Alon et al. [5] and Bartlett-
Long [7] (see also [8]). As in Section 2.1, let # be a class of functions
from a domain X into [0,1]. Let y € (0,1/2) be a parameter. We
say that Z y-shatters a subset V C X if there is a witness function
o : V — [0, 1] such that for every subset E C V, there is a function

Hyy

T xTo
Figure 4: x1, x; are y-shattered by linear functions. we choose
H to be the linear function whose bit sequence byb; corre-
sponds to E (i.e., b; = 1if x; € E).

Hg € & with
Hg(x) 2 o(x)+y, Vxe€E,

Hg(x) <o(x)-y, VxeV\E. @

An example is shown in Figure 4.

The y-fat shattering dimension of Z, denoted by fatgy (y), is the
size of the largest subset of X that can be y-shattered by #. If
subsets of unbounded finite size can be y-shattered by #, then
we set fatgy (y) = oo. Note that if # is a class of functions from
X into {0, 1}, then y-fat shattering dimension is the same as VC-
dimension. An advantage of y-fat shattering dimension is that it
is sensitive to the scale at which difference in the function values
are considered important. Alon et al. [5] proved that if fatgy (ce) is
finite, where ¢ € (0, 1) is a suitable constant, then 7 is e-learnable.
The bound on the size of the training set was improved by Bartlett
and Long [7]. In particular, their result implies that # is e-learnable
with training-set size

1 e, 1 1
no(e, 8) =0 (e_z (faty/(a)log - + log 5))

Returning to the selectivity functions, let £ = (X, R) be a range
space, let @ be a family of probability distributions on X and y €
(0,1). Set S := S5 o to be the selectivity functions defined by
9. Our main technical result is that if VC-dim(Z) = A, for some

constant A, then fatg(y) = O (#) By plugging this result into

the results of [5, 7], we prove the first part of Theorem 2.1.
Let 7 C R be a subset y-shattered by S. To bound fatg(y), it

suffices to prove that |77 = O (#) First, we partition the ranges

in 7 based on the values of their respective witnesses o(R)?:
Ti={ReT :0(R) € [(j—1)v.j-ylforje[1/y]}.

LEMMA 2.2. Suppose Equation (2) is realized for some subsetE € 7;
by sp for some distribution D € . Then, for any pairR € E,R’ €
7; \ E, we have

sp(R) = sp(R) > y. ()
Proor. By Equation (2), we have
sp(R) 2 o(R)+y and —sp(R’) = -o(R")+y
2Note that although o(R) = 1 is excluded by this definition if 1/y is an integer, it is
a well-defined partition since o(R) cannot be equal to 1 for any range R € 7. This

follows from the observation that if 0 (R) = 1, then Equation (2) cannot be satisfied
for R € E since HE(R) < land y > 0.

Adding these, we get

(sp(R) = sp(R")) + (o(R") = a(R)) > 2y. 4)
Since R, R’ € 7; for some j € [1/y], we have 6(R") —o(R) < y. The
lemma follows by using this inequality in Equation (4). O

Now, consider any fixed ordering 7 = (R1, Rz, - -+, Rg) of the
ranges in 7}, where k = |7}|. Let us also fix the subset:

E={Ry|1<ix<[k/2]} ®)

to be the set of ranges with even index in 7. We say that an object
x € X crosses a pair of ranges R,R" if x € R ® R’, where & is the
symmetric difference (see Figure 1 for Ry @ R3). For 1 < i < k and
for every x € X, we define an indicator random variable as follows:

1
Ii,x = 0

and let I, = Z]i:l I x.

Since 7 is y-shattered by S, there is a distribution D, € 9
that satisfies (2) for E. The next lemma is a direct consequence of
Lemma 2.2, by summing up over the pairs of ranges R;, R;—; for
even i in 7;:

if x € R; ® Rij41,

otherwise,

LEmMA 2.3. Ex.p, [Lc] > y(k—-1).

Proor. By Lemma 2.2, Exep, [lix] = y for any index i since
exactly one of R;, Ri+1 belongs to E. The lemma now follows by
using linearity of expectation. O

The lower bound on Ex.p, [L] in Lemma 2.3 holds for any or-
dering 7 of the ranges in 7;; the distribution D, obviously depends
on 7. We now complement this lower bound with an upper bound
on E..p, [Ix] for a specific ordering of 7}.

LEMMA 2.4. There is an ordering Ry, Ry, - - - , R of the ranges in
7 such that for any distribution D defined on X, we have:

Exepll] = O(k'/*logk),
where A = VC-dim(X, R).

PrOOF. Let 3 = (X, 7;) be the range space defined by the ranges
in 7j. Note that VC-dim(3) < VC-dim(3) = A. Consider the dual
range space >* of , where 3* = (77, {Rx={Re€Tj:x€R} |x €
X}), i.e., the objects of =* are the ranges of 7; and for each object
x € X, we have a dual range in 3* consisting of ranges of 3 that
contain x. Note that X** = 3.

We compute the desired ordering of 7}, using the following re-
sults by Chazelle and Welzl [12]: Let £ = (V,T) be a finite range
space with |V| = m. We say that a range y € T crosses a pair
v;,0; € V if [y N {v;,05}| = 1. The result in [12] (Theorem 4.3)
proves that there is an ordering v1, vy, - - - , vy, of objects in V such
that any range in 7 crosses O (ml_l/’v log m) pairs (v;,vi41) for
1 < i < m, where 1* is the VC-dimension of the dual range space
of 23 Applying this result to 3* and using the fact that 3** = 3,
we obtain an ordering Ry, Ry, - -+, Ry of 7j such that any range

3For A* = 1, the original paper [12] proves a slightly weaker bound of O (log? m) on
the number of pairs crossed by a range. Using an improved bound on €-nets for range
spaces of VC-dimension 1 (see e.g. [35], Chapter 15), the bound can be improved to
O(logm).

of =* crosses O (kl_l/’1 log k) pairs (R;, Ri+1). By the definition, a
range Ry crosses R, Ri+1 if |[Rx N {Ri, Ri+1}| = 1, which is equiv-
alent to saying that x € R; @ R;4+1. Hence, for any x € X, there
are O (kl’l/)L log k) pairs (R;, Ri+1) crossed by x. Since this bound

holds for every x € X, we conclude that
Eypll] =0 (kl—W 1ogk). O

We are now ready to bound the size of 7;.

LeMMA 2.5. Forany j € [1/y], [7j] = O (()l/log %)A).

Proor. Plugging Lemmas 2.4 and 2.3 together, we conclude there
exists a constant ¢ such that

y-(k=1) <c- k'Y *1ogk,
2

which implies that % < 2c/y,ork=0 (()l, log)%)A) O

Summing this bound over all j € [1/y], we conclude that |77| =
0 (#) Hence, the size of any set of query ranges in R that can

be y-shattered by S is O (Y L), which implies the main technical

result of this section.

LEMMA 2.6. LetX = (X, R) be a range space with VC-dim(Z) = 4,
let D be a family of probability distribution over X, and let S := Sy,
be the family of selectivity functions on 3 by @. For anyy € (0, 1),

the y-fat shattering dimension of S is O (# .

Finally, plugging Lemma 2.6 into the results of Alon et al. [5]
and Bartlett-Long [7], we obtain the first part of Theorem 2.1.

We next turn to the second part of Theorem 2.1. As in Section 2.1,
let # be a class of functions from a domain X into [0,1].Lety €
[0, 1] be a parameter. Alon et al. [5] proved that if fatg (e) = oo,
then % is not (e?/8 — 7)-learnable for any 7 > 0. Returning to
the selectivity functions S := Sy ¢ defined on the range space
3 = (X, R) and a family of probability distribution on X as &. Our
second technical result is that if VC-dim(Z) = oo, then fatg(y) = o
for any y € (0,1/2).

LEmMA 2.7. Let ¥ = (X, R) be a range space, let D be a family
of probability distribution over X, and let S := Sy, be the family
of selectivity functions on 2 by 9. If VC-dim(2) = co, the y-fat
shattering dimension of S is also co, for anyy € (0,1/2).

Proor. Consider the dual range space X* of ¥, where * =
(R, T) whereT = {Rx ={R € R :x € R} | x € X} as defined in
the proof of Lemma 2.4. As shown in [12], since VC-dim(Z) = co,
we have VC-dim(Z*) = co. In other words, for any integer k > 0,
there exists a subset 7 C R of k ranges shattered by T, i.e., for
every subset E C 7, there is a point xg € X such that xg € R; if
allR; € Eand xg ¢ R; forallR; € ¢ \ E.

Next, we show that 7% is y-shattered by S. Set o(R;) = 1/2 for
all R; € 7. Consider an arbitrary subset E C 7. We choose D € 9
as a delta function, which is 1 at xg and 0 everywhere else. The
corresponding selectivity function sp € Shassp(R;) = 1ifxg € R;
and 0 otherwise, which realizes Equation (2) for any y < 1/2. Hence
for any k > 0, there always exists a subset 7 C R of size k that can

000

1 001
/ Py
Py
110 ¢ ?010
10152 =011
100

Figure 5: An example of 3 convex polygons Pi, P, P; that are
y-shattered for any y € (0,1/2). To satisfy Equation (2) for
a subset E C {P1, P», P3}, we choose Dg to be the unit mass
at the point whose bit sequence b3b2b; corresponds to E (i.e.,
bi =1if P; € E).

be y-shattered by S for any y € (0, 1/2), i.e., the y-fat shattering
dimension of S is co. An example is illustrated in Figure 5. O

The above lemma proves second part of Theorem 2.1, thereby
completing the proof of Theorem 2.1.

3 LEARNING ALGORITHM

Recall that Theorem 2.1 gives an upper bound on the size of train-
ing samples, but the definition of e-learnability assumes the ex-
istence of a learning procedure that for a given a finite training
sample z" = {z1,2z2,- -, zn} where z; = (R;,s;) € R x [0, 1], and
a family 9 of data distributions, computes a distribution D € 9
such that sp minimizes the expected loss function, i.e., it returns
argminpcg % > (sp(Ri) = s;)2. In this section, we describe algo-
rithms for computing such a distribution. For simplicity, we focus
on selectivity queries discussed in the introduction, namely orthog-
onal range, linear inequality, and distance-based queries, though
our algorithm works for a much larger class of queries such as
semi-algebraic range queries. The aim of this section is to describe
simple, generic approaches, and we do not attempt to optimize the
learning procedure for specific selectivity queries.

3.1 A Generic Procedure

We focus on two families of distributions, histograms and discrete
distributions. In the former, a distribution is a piecewise-constant
function, i.e, D = {(B1,w1)," -, (Bm, Wm)}, where 372, w; = 1. D
has uniform density % over each bucket B;, where Vol(B;) is

the volume of B;, and each B; C R% isa simple region of constant
complexity homomorphic to a ball (e.g., boxes, simplices, etc), also
called Tarski cells [48]. B;’s are pairwise disjoint and partition R<.
For a query range R, sp(R) is defined as

m

Vol(B; N R)
sp(R) =) —— == - w; ©)
= Vol(B;)
Intuitively, % computes the fraction of the bucket B; that

intersects with the query region R. Note that we do not make any
assumption on the ranges, which can be bounded or unbounded.
Multiplying this fraction by w;, sp (R) in essence makes the simple
assumption that the data points within each cell are distributed
uniformly. We note that when the range R can be represented with
a simple function, such as an orthogonal range, a halfspace or a

ball, the volume of R and its intersection with a bucket (as hyper-
rectangle) can be easily computed exactly. In general, the volume
of a complex range can be estimated via MCMC sampling [15].

A discrete distribution also has a similar form D = {(By, w1), - -,
(Bm,wm)}, but B;’s are a set of m points, which we also call buckets,
in R?. As before >, wi = 1. For a query range R, sp(R) is now
defined as

k
sp(R) =) 1(Bi € R) - wi)
i=1

In both cases, the algorithm computes D in two phases. The first
phase, called bucket-selection, constructs the set 8 = {B1, By, -+ , B }
of buckets. The second phase, called weight-estimation, computes
the weight w; for each bucket B;.

Bucket design. Let {Ry, Ry, -, R} be the set of ranges in the
training set z”7; here we treat each range as a geometric region
defined by the query predicate (e.g. rectangles for orthogonal range
queries, halfspaces for linear-inequality queries, balls for distance-
based queries) rather than a subset of input objects. The arrange-
ment of {R1, Ry, - - -, Ry} is the partition of R4 into maximal con-
nected regions so that each region lies in the same subset of ranges
of R. We further refine each region into small regions, called cells,
so that each cell has constant complexity (i.e., constant number of
vertices, edges, and faces that only depends on d) and its boundary
is connected. It is known that such a decomposition of size O(n?)
can be computed in o(n? log n) time [4]. We choose B, the set of
buckets, to be the resulting set of cells. If we wish to construct a
discrete distribution, we simply choose a random point in each cell,
and these points form the bucket set 8.

Weight estimation Let B be the set of buckets constructed in
the previous phase. To estimate the weights wi, wa, -+, Wi, we
set them as variables and solve the following convex quadratic
programming;:
minimize Y7, (sp(R;) - si)?
subject to Zj.":l wj =1, ®)
0<wj<1 je{12.. k)

where sp(R;) is the function specified in Equation (6) and (7) for
histograms and discrete distributions respectively. We solve this
problem using open-sourced non-negative least squares solver [2].

The proof of the following lemma is given in the full version [3].

LEMMA 3.1. The above algorithm constructs a histogram (resp. dis-
crete distribution) that minimizes the loss function over all histograms
(resp. discrete distributions).

The main shortcoming of the above approach is that the com-
plexity of the distribution depends on the training set and increases
exponentially with dimension, in the worst case. Therefore, it is
desirable to consider distributions with bounded complexity. For
example, let 9 be the family of all histograms with at most k
buckets where each bucket is a rectangle in Rd, or the family of
discrete distributions with support size at most k.

Given a training set z", we are unaware of any polynomial-time
algorithm for computing an optimal distribution of complexity k.
The intractability of a number of related problems [33] suggests

update ‘
—

Figure 6: Bucket refinement for QuapHisT. The blue rectan-
gle is a training range R with selectivity 0.2 and the under-
lying grid is the quadtree leaves. Splitting is recursively ap-
plied to each node until the density of its intersection with R
is estimated no greater than v = 0.026. The left is the quadtree
before processing R, and the right is the quadtree after.

that the problem at hand is also NP-Hard, and we leave it as an
interesting direction of future research. In the next two subsec-
tions, we describe simple, efficient algorithms for constructing a
histogram and a discrete distribution. The weight-estimation phase
remains the same, so we focus on the bucket-design phase.

3.2 Histogram

We construct a histogram QUADHIST, intended for low-dimensional
data and queries. For simplicity, we assume finite lower and upper
bounds on the range of values for each dimension. Regardless of the
query class—orthogonal range, linear inequality, or distance-based
queries—QUADHIST’s buckets are a disjoint set of orthogonal ranges
coming from the partitioning of D by a quadtree. The construction
of the quadtree is guided by both the geometry of training queries
and their selectivities, such that the resulting partitioning of the
data space is finer in parts where queries and data are denser.
Letz" = (21,22, -+ , zp) be the training set with z; = (R;, s;). We
construct a quadtree on the ranges Ry, Ry, - - - , Ry, in the training set
z" as follows. We start with a single-node quadtree corresponding
to a single bucket spanning the whole data space. We process each
zi = (Ry, s;) to refine (if needed) the buckets as follows. For each

leaf node B of the quadtree (interpreting B as a range), we compute

Vol(BNR;)
VOl(Ri)

the fraction (out of all data points) of the data points in R that are

also in B. We compare this estimate with a predetermined threshold
7 € (0,1). If the estimate is higher than 7 (informally, B carries
“too much” density), we split the quadtree leaf B into 2¢ children
and recursively apply the procedure on them. See Figure 6 for
an illustration. After going through all training queries, we take
all leaves of the final quadtree to be our QuapHIsT buckets (and
proceed to the weight-assignment phase). We can control the model
size k by varying the parameter 7 or adding a hard termination
condition on the number of leaves in the splitting procedure.

- sj. In the same spirit as sp(R), this quantity estimates

Remarks. Several points are worth noting here (details are in
the full version [3]). Considering the selectivities in bucket design
protects us from devoting more buckets than necessary to regions
where data is sparse (although the weight estimation step utilizes
selectivities, the buckets would have been chosen already).
Second, the simplicity of quadtree-guided bucket design proce-
dure gives rise to an interesting and desirable property of stability:
given a training workload, the resulting collection of buckets is
always the same regardless of the ordering in which we process the

workload. This property is unfortunately missing for many com-
plex selectivity estimation schemes with more bells and whistles.
Combining the stability of bucket design with the determinism of
weight estimation, we know that QUADHIST trained on the same
query workload would always behave consistently.

Third, the quadtree doubles up as a convenient data structure
for speeding up the bucket design step of the training process. For
example, the 7-based splitting procedure can piggyback on the
efficient and generic quadtree procedure for answering R as range
query, regardless of R’s shape.

3.3 Discrete Distribution

We present a discrete distribution PTsHIST as an alternative
instantiation of our generic approach for high dimensions. In high
dimensions, QUADHIST is not expected to perform well because of
the well known challenges: 1) rectangles are poor representations of
high-dimensional data distributions, and 2) computing volumes of
intersections between orthogonal ranges and other types of query
ranges (e.g., balls) in high dimensions is difficult. Hence, PTsHisT
turns to using a collection of points in the data space (as opposed
to ranges) as buckets.

Given a target model size k, we take the following two steps to
generate the points representing buckets. 1) We draw 0.9k points
from the interior of all training query ranges. More specifically, for
each z; = (R;, s;) € z", we draw Z+IISJ - (0.9k) points uniformly at
random from the range defined by IJQ In other words, each R receives
a “share” of points proportional to its selectivity. 2) We then draw
the remaining 0.1k uniformly at random from the whole space.
This step essentially makes it possible to allocate some density to
regions not covered by the training queries.

Although sampling from the interior of geometric objects in high
dimensions has its own challenges, it is a well-studied problem for
specific shapes such as hyperrectangles, halfspaces, and balls. Our
sampling implementation in Section 4 in fact uses straightforward
rejection sampling from the smallest bounding box [42] of R (see our
full version [3] for details), and we have found the generic approach
to offer adequate performance in practice. Figure 7 illustrates the
real data distribution, the histogram by QUADHIST, and the discrete
distribution by PTsHisT over the Power dataset (see Section 4).

Remarks. The sampling procedure used by PTsHist does not guar-
antee an unbiased sample from any data distribution D —but that
is not our goal of this procedure in the first place. Instead, we only
aim to generate a number of points whose positions serve as buck-
ets; the subsequent (generic) weight estimation step ensures the
consistency between the PTsHisT model and the training workload.

4 EXPERIMENTS

In this section, we implement QUADHIST and PTsHIST in Section 3
as instantiations of our theoretical results in Section 2. We em-
pirically evaluate their performance on real-world datasets and,
when applicable, compare them against state-of-the-art solutions
(for orthogonal range queries). As mentioned in Section 3, they are
not intended to “beat” state-of-the-art solutions; rather, they are
simple, generic implementations so that our experiments can focus
on illustrating the power of our theoretical results instead of the
artifacts of additional features. We implemented all our algorithms

Figure 7: Illustration of underlying data distribution and our learned model. The left is the distribution of 1000 data points
randomly drawn from Power dataset. The middle is the set of buckets of QUADHIST constructed under threshold 7 = 0.01. The
right is the set of buckets of PrsHisT. Both QuapHisT and PTsHisT of size 1000 are built on 1000 training queries from the
random workload of Power dataset. We darken the buckets with their associate weights.

in Python and ran all our experiments on a server with 8 Intel Core
i7-9700 CPUs (3.00GHz). All codes are public at [1].

Datasets [13]. We use real-world datasets adopted by a recent
benchmark paper [46] for evaluation:

e Power contains electric power measurement gathered from a
house over 47 months, with 2.1M tuples over 7 attributes.

o Forest contains forest cover type data, with 581k tuples over 10
numerical attributes. It is named as CoverType in [13].

e Census contains the basic population characteristics, with 49K
tuples over 13 attributes (8 categorical and 5 numerical).

e DMV contains the vehicle registration records of NYC, with 11M
tuples over 11 attributes (10 categorical and 1 numerical).

As datasets have multiple attributes, for a given experiment, we
will choose a subset of attributes randomly and project the tuples
on the chosen attributes. For simplicity, we normalize the domain
of each attribute into [0, 1].

Workloads. We consider orthogonal range queries, halfspace queries,
and ball queries. For orthogonal range queries, we generate three
different synthetic workloads. Each orthogonal range query R can
be represented by a center point and d side lengths (one per di-
mension). After fixing the center point, we sample each side length
independently and uniformly from [0, 1]. Depending on the distribu-
tion of centers points, we distinguish the following three workloads
(illustrated in Figure 8):

e Data-driven: we generate centers by uniformly sampling from
the underlying dataset.

e Random: we generate centers by uniformly sampling from the
d-dimensional unit cube.

e Gaussian: we generate centers by uniformly sampling from a d-
dimensional Gaussian distribution. We set the mean and variance
for each dimension of the Gaussian distribution as 0.5 and 0.167.

The Data-driven workload is arguably more realistic as queries
typically “follow” the underlying data distribution, but we also
want to evaluate on Random and Gaussian, which are independent
from the underlying data. We will only generate equality predicates
for categorical attributes; hence the width is zero in this case.
Workloads for other query types are generated in an analogous
fashion. For ball queries, once we pick the center point, we then
sample the ball radius uniformly from [0, 1]. For halfspace queries,
once we pick the center point (lying on the boundary plane of

R —
! EEESE fHE=Ee =
Figure 8: Illustration of workloads (100 orthogonal range
queries in 2D) generated for Power dataset: Data-driven

(left), Random (center), and Gaussian (right).

the halfspace), we then randomly pick a d-dimensional unit vector
(normal to that plane) that defines the orientation of the halfspace.

Unless explicitly noted otherwise, the set of training and test
queries for each experiment are sampled uniformly and indepen-
dently from the same query workload. Note that there could be very
few queries in the overlapping, as well as the subset of predicates.

Methods Compared. For fair comparison, we restrict ourselves
to methods that only have access to query workload, but not the
underlying data. Since this paper is concerned with learned se-
lectivity estimation models that can provide provable guarantees,
we also do not include methods based on deep learning that may
return models that do not correspond to any valid hypothesis, and
consequently, have been observed to produce selectivity estimates
that are not monotone or consistent [46].

For orthogonal range queries, based on the recent empirical study
on cardinality estimation in [46] (see Section 5 for more details),
IsoMER [39] produces the best accuracy and QUICKSEL [36] achieves
the best tradeoff between accuracy and efficiency, so we include
both in our comparison with QUADHIsT and PTsHisT. For halfspace
and ball queries, there are no obvious candidates for comparison
with our methods, as traditional histogram-based methods have
not focused on these queries.

Error Measures. We adopt two common error measures for eval-
uating selectivity estimators. For a test query R, let §(R) and s(R)
be the estimated and true selectivities of R, respectively, and let n
be the number of test queries.

1 n
e Root Mean Square (RMS) Error = 4| — Z (3(Ry) — s(Ri))>.
n

i=1
max{$(R;).s(R)} . _ [n]}-

e Q-Error(p) [32] = p-th quantile of { m :

Q-error is a good complement of RMS error because Q-error is better
at capturing errors that are small in absolute terms but large in
relative terms, which occur frequently since many database queries
tend to be selective. Lo, error is used for investigating different
objective functions in model training.

Outline. In the remaining of this section, we will investigate the
following questions on the learned model for selectivity functions
to verify our learning theory developed in Section 2:

o Section 4.1: How does the training size affect the learned model?

o Section 4.2: What is the performance of learned model if the query
workload is not correlated with the underlying data distribution?

o Section 4.3: What is the performance of learned model if training
and testing query distributions do not match?

e Section 4.4: How does the dimensionality of data space affect the
learned model?

e Section 4.5: How does the query type affect the learned model?

4.1 Learnability with Enough Training Samples

We start with selectivity estimation for orthogonal range queries,
which has been studied extensively, and validate the learnability
of selectivity functions. Recall that Theorem 2.1 shows a clear de-
pendency between error € and training size m: we now explore
this dependency empirically. We first take a closer look at the 2D
case, where QUADHIST is our generic implementation. Figure 9
shows the QUADHIST results for Data-driven query workload over
Power data. We vary the number of training queries from 50 to
2000; each line plot corresponds to a specifically sized training set.
Since the accuracy of QUADHIST also depends on its model com-
plexity (number of buckets), given a specific training set, we further
vary 7 in the bucket design step (Section 3.2) to adjust the model
complexity. As we can see from Figure 9, error generally decreases
with model complexity, although it eventually flattens out, and in
one case even trends up because of overfitting (when using 10000
buckets for merely 50 training queries). As we increase the number
of training queries, error decreases (the series of line plots push
toward the origin), although the rate of decrease also diminishes,
consistent with Theorem 2.1’s prediction. The good news is that
with 200 training queries and 500 buckets, QUADHIST already offers
practically acceptable accuracy with RMS error smaller than 0.02.
To help put our results in a boarder context, we next bring other
state-of-the-art competitors, ISOMER and QUICKSEL, into compari-
son. For completeness we also compare with our PTsHisT (although
it is intended for higher dimensions). The results are shown in Fig-
ures 10, 11, and 12. Again, we consider 2D orthogonal range queries
for Data-driven query workload over Power data. As we have seen,
model complexity can affect prediction accuracy, so for comparison,
we adopt QUICKSEL’s convention of using number of buckets 4X the
number of training queries, for both QuADHIST and PTsHisT.* For
ISOMER, it is difficult to enforce this convention, so we let it choose
the number of buckets by itself; in our results, ISoMER ends up using
number of buckets 48-160% the number of training queries.

“4Note that this setup unfairly disadvantages PTsHIsT, because it uses much less space
per bucket than QuickSEL and QUADHIST. For example, assuming 2D, each bucket
(point) in PTSHIST requires 2 numbers, while each bucket (2D range) in QuIcKSEL and
QUADHIST requires 4, twice that of PTsHIsT.

As we vary the number of the training queries, Figure 10 shows
the actual number of buckets used by different models; Figure 11
shows their prediction accuracy; and Figure 12 shows their training
time. All models become more accurate when more queries are used
for training. While ISOMER is the most accurate, it uses more buck-
ets and is much slower than others: it could not finish training in 30
minutes with 500 training queries, so the figures do not show Iso-
MER for larger training workloads.? On the other hand, QUADHIST,
PrsHist, and QUICKSEL are comparable on all fronts and work very
well: their training scales to large training sets, and they are able to
deliver RMS error lower than 0.01 with 1000 training queries. An
encouraging observation is that despite the simple, generic nature
of QuAaDHIST and PTsHIST, they are able to match (if not beat) the
performance of the state-of-the-art methods. Such competitiveness
can only be attributed to the fundamental learnability of the task.

Finally, another important practical consideration is prediction
time. Note that all these models work similarly in terms of predic-
tion. QUICKSEL, QUADHIST, and ISOMER have the same estimation
procedure that involves computing intersections between orthogo-
nal ranges, while PTsHisT involves checking whether an orthogonal
range contains a point. Therefore, their prediction time is dictated
by their model complexity and already reflected in Figure 10; we do
not separately report the prediction time for these different models.

4.2 Data vs. Query Distributions

So far, we have only presented results on Power data. We have also
repeated these experiments in the last section on other datasets and
made similar observations. Due to space constraints, we present
our complete results in the full version [3].

A second question is how the query distribution—in connection
with the underlying data distribution—may affect accuracy. We
note that one strength of our theoretical results in Section 2 is
that they hold for arbitrary data distribution and arbitrary query
distribution—even if they are highly skewed. Indeed, most real-
world datasets exhibit skewness, including for example Power, and
we have seen that our approach indeed works well on them. How-
ever, the query workload used so far was Data-driven. A valid ques-
tion arises: what if the query workload is not correlated with the
underlying data distribution? According to our theory, we should
still do fine, but let us validate it empirically with other query dis-
tributions Random and Gaussian, which are independent from the
underlying data distribution. Figures 13 and 15 show the prediction
errors of different models, using the same exact setup on Power
data as Figure 11 earlier, except we replace the Data-driven query
workload with Random and Gaussian, respectively. We also report
the prediction errors of non-empty queries in Random workload
in Figure 14, since we have observed up to 97% Random queries
with selectivity near 0. The result in Figure 14 is very similar to
Figure 13, except with slight increase in the RMS error of ISOMER.
Overall, we can make similar observations as before—consistent
with our theory, selectivity is still learnable even if query distri-
bution is independent of data. (Figures on model complexity and
training time are in the full version [3].)

5To be fair, we note that [soMER was not originally designed for batch training; instead,
it builds its histogram by partitioning existing buckets upon observing the selectivity
of each new query, which contributes to its slow training time in this setting.

Orthogonal - Data-Driven Workload - Power

0.07 m: training size
m =50
0.06 m = 200
—e— m =500

5 0.05 —+— m = 1000
5 0.04 —&— m = 2000
g
 0.03

0.02

0.01

0.00 +— . . . :

100 500 1000 5000 10000

Model complexity (#buckets)
Figure 9: Model complexity on Data-driven
workload of Power.

Orthogonal - Data-Driven Workload - Power

103 B :
QuickSel —&— PtsHist
, —— QuadHist —&— Isomer
10
_ 10t
“
[
£ 10°
=
107!
1072
50200 500 1000 2000

Number of training queries
Figure 12: Training time vs. training size on
Data-driven workload of Power.

Orthogonal - Gaussian Workload - Power

QuickSel
0.07 ® GOHist
0.06 -+ PtsHist
& |somer
*g 0.05
(7]
> 0.04
=
© 0.03
0.02
0.01

50200 500 1000

Number of training queries
Figure 15: RMS Error vs. training size on
Gaussian workload of Power.

2000

Orthogonal - Data-Driven Workload - Forest

—@- QuadHist —&— PtsHist
QuickSel

0.05

RMS error

2 4 6 8 10
Number of dimensions

Figure 18: RMS error vs. dimensions on Data-
driven workload of Forest.

Orthogonal - Data-Driven Workload - Power

M PtsHist
M Isomer

QuickSel
Hl QuadHist

Number of buckets

50 200
Number of training queries

Figure 10: Model complexity on Data-driven
workload of Power.

500 1000 2000

Orthogonal - Random Workload - Power

QuickSel
0.081 -® QuadHist
- PtsHist
0.06 1 & Isomer
g
@
g 0.044
4
0.02
0.001 e -
50200 500 1000 2000

Number of training queries
Figure 13: RMS error vs. training size on ran-
dom workload of Power.

Orthogonal - Gaussian - Power

(0.7, 0.7)*.... 0.0025 0.0006
(0.6, 0.6)*.... 0.0006 0.0003
.. 0.0068 0.0042 0.0008 0.0007
(0.4, 0.4)*-. 0.0077 0.0044 0.0008 0.0005
. 0.0075 0.0113 0.0111 . 0.0092
(0.2, 0.2)*..-- 0.0117 0.0038

(0.2,0.2)(0.3, 0.3)(0.4, 0.4)0.5, 0.5)0.6, 0.6)(0.7, 0.7)
Training query workload

Figure 16: RMS Error vs. Difference between
training and test query workload.

S
o
°
&

Test query workload

S
&
°
o

Orthogonal- Data-Driven Workload - Forest

QuickSel
—@- QuadHist
—k— PtsHist

Time (s)
©

2 4 6 8 10
Number of dimensions

Figure 19: Training time vs. dimensions on
Data-driven workload of Forest.

Orthogonal - Data-Driven Workload - Power

0.08
QuickSel
0.07 —e— QuadHist
0.06 —*— PtsHist
—&— Isomer
§ 0.05
b}
" 0.04
s
@ 0.03
0.02
0.01
50200 500 1000 2000

Number of training queries
Figure 11: RMS Error vs. training size on
Data-driven workload of Power.

Orthogonal - Random Workload (non-empty)- Power

0.08 QuickSel
0.07 —— Quavlelst
—*— PtsHist
0.06 —&— Isomer
5 0.05
@
n 0.04
=
©0.03
0.02
0.01
000 T T T T T
50200 500 1000 2000

Number of training queries
Figure 14: RMS error vs. training size on non-
empty queries in random workload of Power.

Orthogonal - Data-Driven Workload - Forest

—k— PtsHist (d=2)
—— PtsHist (d=4)
—#— PtsHist (d=6)

—— PtsHist (d=8)
PtsHist (d=10)

0.08

RMS error

50200 500 1000

Number of training queries
Figure 17: RMS error vs. training size on or-
thogonal ranges.

2000

Halfspace - Data-Driven Workload - Forest

0.20 —e— QuadHist (d=2)
—*— PtsHist (d=2)
—— PtsHist (d=4)
0.15 —#— PtsHist (d=6)
5 —&— PtsHist (d=8)
= PtsHist (d=10)
$o0.10
=
o
0.05
0.00 L4 * " 1
50200 500 1000 2000

Number of training queries
Figure 20: RMS error vs. training size on
halfspace queries.

Halfspace - Data-Driven Workload - Forest

Ball - Data-Driven Workload - Forest

Ball - Data-Driven Workload - Forest

10
102 0251 —e— QuadHist (d=2)
—#— PtsHist (d=2)
0.204 —&#— PtsHist (d=4) 10!
10! —#— PtsHist (d=6)
= §O.15* - PtsH?st (d=8) =
; . . 5 PtsHist (d=10) ; 100 .
g 10 —e— QuadHist (d=2) g £ —e— QuadHist (d=2)
= —*— PtsHist (d=2) x 0.104 = —*— PtsHist (d=2)
1ot] —+— PtsHist (d=4) 101 —+— PtsHist (d=4)
—#— PtsHist (d=6) 0.054 —#— PtsHist (d=6)
) ~o— PtsHist (d=8) \\,\‘\M ~o— PtsHist (d=8)
10-2 " PtsHist (d=10) 0.004 + 10-? PtsHist (d=10)
50200 500 1000 2000 50200 500 1000 2000 50200 500 1000 2000

Number of training queries

Number of training queries

Number of training queries

Figure 21: Training time vs. training size on Figure 22: RMS error vs. training size onball Figure 23: Training time vs. training size on

halfspace queries. queries.

Besides RMS error, we also report Q-error results in Table 1 for all
query workloads. The additional insight provided by Q-error is use-
ful because a data-independent query workload (such as Random)
on skewed data (such as Power) may result in many low-selectivity
queries, where Q-error would be more informative. For example,
we have observed up to 97% Random queries with selectivity near
0. From Table 1, we see that QUADHIST and PTsHIsT, despite (and
perhaps thanks to) their simplicity, are able to provide robust ac-
curacy in terms of Q-error, often beating the more sophisticated
QUICKSEL: QUICKSEL sometimes see Q-error larger than 50 even
when the training size is up to 2000, while QuapHIsT and PTsHist
have lower Q-errors even with just 50 training queries. The result
on Q-error for non-empty queries are reported separately, for which
P1sHisT performs the best over all training sizes.

It is also instructive to dig deeper to see how QUADHIST and
PTsHisT are able to work well on query workloads that do not
correspond to the underlying data distribution. Figure 7 shows the
set of buckets in QUADHIST and PTsHIsT that are learned from the
Random query workload over Power. Unknown to the learner, the
real data is concentrated in the lower half. However, the Random
query workload contains enough number of large queries that
span both dense and sparse regions of the data space; the learner
unfortunately only gets the overall selectivity of each such query,
so some of the density “bleeds” into the sparse upper region, and
we can see that the buckets are actually not ideal. Luckily, the
subsequent weight assignment step (Section 3) mitigates this issue
by assigning low weights to the upper region, making the resulting
distribution more consistent with the underlying data distribution.

4.3 Training vs. Testing Query Distributions

Our next question is: what if training and testing query distributions
do not match? The learning theory will not provide us with any
guarantee on the performance over a different query workload, but
in practice, if the test query workload is not completely disjoint from
the training query workload, we should still expect to gain some-
thing from a learned model. In this set of experiments, we explore
different combinations of training and testing query workloads. We
use 2D Gaussian query workloads , but shift the Gaussian distribu-
tion (from which the center points of queries are drawn) such that its
mean is located at (0.2, 0.2), (0.3,0.3), (0.4,0.4), (0.5,0.5), (0.6, 0.6),
or (0.7,0.7) (while the covariance remains at 0.033). Figure 16 shows,

ball queries.

as a heat map, the prediction error of QUADHIST under each train-
ing/testing combination. First, we can see that when the training
and test query workloads are the same (along the diagonal), the
error is the smallest in most cases. If we fix the training query work-
load, say the column indexed by (0.6, 0.6), we observe that error
gradually increases with the test query workload shifting away
from (0.6, 0.6) to (0.2,0.2) or (0.7,0.7). Symmetrically, if we fix the
test query workload, say the row indexed by (0.7,0.7), we observe
that the error gradually decreases with training query workload
shifting from (0.3,0.3) to (0.7, 0.7). In this case, even when the shift
between two query workloads is large, there is still considerable
overlap between their coverage of the underlying data space; hence
the error remains manageable.

4.4 Effect of Dimensionality

Recall that Theorem 2.1 shows a training size m = éd((%)f (d)),
where f(d) = 2d + 3 for orthogonal range queries, f(d) = d + 4
for linear inequality queries, and f(d) = d + 5 for distance-based
queries. For all these range types, we see an exponential depen-
dency of sampling complexity m on the dimensionality d. We now
investigate this dependency experimentally. Recall that PTsHisT
is our method of choice in higher dimensions. For each setting of
dimensionality d, we use a d-dimensional subspace of Forest and
a d-dimensional Data-driven orthogonal range query workload;
Figure 17 shows the error of PTsHisT under different training sizes
for the given d as a line plot. The model complexity of PTsHIsT is
always set to 4X the number of training queries, consistent with
earlier experiments. For each line plot, we see that the error gradu-
ally decreases with more training queries, and eventually flattens
out. As we increase d, we see the series of line plots pushing away
from origin. Moreover, if we set the desired accuracy by drawing a
horizontal line in Figure 17, its intersections with various line plots
will show that as the dimensionality goes up, the number of train-
ing queries required to achieve this accuracy also goes up, as our
theory predicates. (Figures on model complexity and training time
are in the full version [3].) Since PTsHisT’s training time primarily
depends on the model complexity, which is pegged to the training
size here, we do not see significant differences among different d.
However, combining this observation with the observation from
Figure 17 that a higher d demands more training queries, we still
conclude higher dimensions require longer training time.

Training Isomer QuickSel QuadHist PtsHist

Size 50th 95th 99th MAX | 50th 95th 99th MAX 50th 95th 99th MAX | 50th 95th 99th MAX

= 50 1.032 1.33 2.046 2.05 1.11 1.641 3.962 4.682 1.013 1.647 3.315 3.759 |1.042 247 3.644 3.826
E 200 1.006 1.051 1.232 145 |[1.027 1411 1.743 2.699 |1.008 1.265 1.588 1.59 |1.011 1.512 175 2.621

'E 500 - - - - 1.008 1.157 1.546 1.644 |1.004 1.121 1.344 1906 |1.006 1.227 1.997 3.26
% 1000 - - - - 1.004 1.068 1.566 5.329 |1.001 1.066 1.097 1.179 |1.004 1.126 1.28 1.297
A 2000 - - - - 1.003 1.052 1.212 1.469 |1.001 1.039 1.096 1.115 |1.001 1.052 1.292 1.298
50 1.149 9.819 644.864 861.236 | 1.154 28.949 3572.99 18401.38 | 1.176 8.917 31.271 35.798 | 1.029 5.238 12.491 13.154
g 200 1.05 3444 21.317 385.339|1.047 9.056 85.699 1434.633 | 1.015 1.972 7.378 9.97 |1.047 7.801 24.433 46.537
= 500 - - - - 1.036 49.032 354.379 1277.717 | 1.014 1.713 16.876 20.619|1.031 2.195 8.329 17.208
& 1000 - - - - 1.025 2238 28491 686.495 | 1.006 1.829 2.712 9.605 |1.025 3.208 5.419 13.947
2000 - - - - 1.012 5.077 32.203 53.021 |1.004 1.764 2.293 4.439 |1.006 1.731 995 20.35

= 50 1.246 10.921 36.016 60.037 | 1.324 30.459 48.154 203.101 | 1.233 7.419 85.900 550.55 | 1.157 3.147 5.018 5.403
g% 200 1.053 2.047 11.491 26.253 | 1.11 7.091 28.577 32.144 |1.050 2.731 6.140 9.720 | 1.111 2.797 4.734 10.011
=3 500 - - - - 1.027 6.813 36.431 54.352 |1.032 1424 2216 3.129 |1.028 1.770 2.139 2.165
Q‘E g 1000 - - - - 1.041 3.048 6.625 33.086 |1.025 2.057 3.110 3.218 |1.023 1.788 2.540 2.607
£ 2000 - - - - 1.024 3876 5.748 8.448 |1.028 1425 2.126 2457 |1.013 1.301 1.379 1.672
50 1.041 2324 7.011 21.751 | 1.135 7.192 21.298 101.17 |1.044 2.328 4.954 5.079 |1.120 4.492 7.683 7.920

g 200 1.009 1.146 2.591 3.879 [1.058 13.036 36.542 152.506 |1.019 2.049 3.029 4.522 |1.044 2507 5.388 6.788
E 500 - - - - 1.038 6.956 58.594 596.505 |1.015 1.598 3.166 3.478 |1.025 1.391 1.982 2.625
S 1000 - - - - 1.032 3.526 9.092 447.129 |1.012 1439 2719 4.070 |1.034 2.009 2.457 2.895
2000 - - - - 1.018 2.74 10.127 218.331 |1.009 1.365 1.785 2.163 |1.014 1.295 1.666 2.513

Table 1: Q-error over Power. The bold numbers are those ranking the smallest in 99th Q-error.

Next, we compare PTsHisT with other methods. IsoMER is dif-
ficult to scale to higher dimensions due to the exponential depen-
dency of its model complexity on d, so we compare with QUICKSEL
and our own QUADHIST here. As before, the number of buckets
used by QUADHIST and PTsHIST is set to be no larger than that of
QuickSEL. We vary the dimensionality of Forest from 2 to 10, using
1000 Data-driven training queries in each case. Figures 18 and 19
show the error and training time of the three methods. Overall, the
three methods have competitive prediction accuracy, and all see
larger error in higher dimensions. Since the model complexity is
fixed (across d), differences in training time primarily come from
solver speed (which can be highly situational and hard to interpret)
and per-bucket computational cost. Thanks to PTsHisT’s simpler
buckets and lower per-bucket computational cost, we see that Pr-
sHisT holds significant advantage in terms of training time in high
dimensions, which is the case that it is intended for.

4.5 Other Query Types

Beyond orthogonal range queries, we are also interested in other
classes of range queries, such as halfspace and ball, which have
many applications in databases but have seen much less work on
selectivity estimation than orthogonal range queries, perhaps since
the problem is perceived to be more difficult. From our theory in
Section 2.2, however, selectivity functions for these queries are also
learnable. This last set of experiments is designed to verify this
claim.s We focus on QuaDHIST and PTsHisT show results across
different dimensions for Forest data: Figures 20, 21 for halfspace
queries and Figures 22, 23 for ball queries. All query workloads
are Data-driven, and the model complexity is always no more than
4x the number of training queries. We only show the results on
QuaDHISsT for d = 2, since in higher dimensions, its prediction for
halfspace and ball queries involve complicated intersection opera-
tions that make it too slow compared with PTsHisT. In Figures 20

and 22, we see that error generally decreases as we increase the
training size, and higher dimensionality generally requires a bigger
training size to achieve the same level of accuracy. QUADHIST is
more accurate than PTsHisT in 2D, although it is not applicable in
higher dimensions. In terms of training time shown in Figures 21
and 23, we observe that QUADHIST is slow than PTsHIsT in 2D, and
as dimensionality increases, PTsSHiIsT’s training procedure remains
very scalable, because its complexity is primarily dependent on its
model complexity instead of d. Overall, we observe that as simple
as it is, PTsHisT provides a reasonable solution for learning the
selectivity of halfspace and ball queries, thanks to the theoretical
guarantees on the learnability of these query classes.

Summary. Our main findings can be summarised as follow:

o The empirical results have verified our learning theory by show-
ing a clear dependency between error €, training size m and
dimension d. When fixing d, more training samples lead to more
accurate modeling of data distribution, thus smaller predication
error. On the other hand, when fixing m, higher dimension leads
to more coarse-grained modeling of data distribution, thus larger
prediction error. (Section 4.1 and 4.4)

o The empirical results have verified that our learning theory holds
for arbitrary data distribution and query distribution, even if they
are highly skewed. (Section 4.2)

e Our learning theory does not provide us with any guarantee on
the performance of learned model when the training and test
query distributions do not match. The empirical results imply
that we will get the most accurate model when training and
test query distribution matches exactly, but we can still gain
something from a learned model when there is overlap between
their coverage of the underlying data space. (Section 4.3)

o Two simple algorithms proposed in Section 3 work very well in
practice, matching or even outperforming the state-of-art meth-
ods. QUADHIST stands out for efficiency and accuracy in lower

dimensional space while PTSHIsT scales better in higher dimen-
sional space. (Section 4.1, 4.2 and 4.4)

5 RELATED WORK

Orthogonal range queries. There has been much work on learn-
ability of the selectivity estimation for orthogonal range queries.
We summarize them in Table 2 (see [46] for a comprehensive re-
view) under two metrics: methodology and input. First, there are
two main approaches in tackling this problem: one is to build a map-
ping between queries and their selectivities via feature vectors, and
the other is to learn the underlying data distribution. Secondly, de-
pending on the input of learned models, we divide them into three
cases: only the underlying data, only the previous queries from
workload, and both data and query (hybrid). Combing these two
metrics, we review the literature from the following four categories:

e Regression model with hybrid input. MSCN [23] represents a
query as a feature vector which contains three modules (i.e., table,
join, and predicate) and uses a multi-set convolutional network for
training. MSCN enriches the training queries with materialized
samples from underlying data. LW [14] a lightweight selectivity
estimation method, uses both query range and heuristic selec-
tivity estimators as features. It adopts both neural network and
gradient boost tree model separately for training.

o Regression model only with query as input. DQM [16] pro-
poses one-hot encoding to encode categorical attributes (and
treats numerical attributes as categorical attributes by automatic
discretization), and uses a neural network for training.

e Data distribution model only with data as input. This line
of work takes samples from the underlying data distribution.
Both Naru [49] and DQM-D [28] decompose the data distribu-
tion into conditional data distributions using the product rule:
Naru uses progressive sampling to sample values attribute by at-
tribute according to the internal output of conditional probability
distribution, and DQM-D selects samples in proportional to the
contribution they make to the query cardinality according to the
result from the previous stage. DeepDB [19] builds sum-product
networks on random data samples to capture the data distribution.

e Data distribution model only with query as input. As far
as we are aware, query—driven histograms [11, 20, 28, 29, 36, 39]
are the methods that learn data distribution only from previous
queries, for example STHoles [11] exploits results of queries in
the workload and gathers associated statistics to progressively
build and refine a histogram; Isomer [39] applies STHoles for
histogram bucket creations, and computes the density for buckets
by maximizing entropy distribution; QuickSel [36] uses a mixture
model of uniform distributions to represent the underlying data
distribution, which can be viewed as overlapping histograms.

Distance-based queries. Deep learning has been studied to esti-
mate the selectivity for distance-based queries. Wang et al. [47]
learned the cardinality by resorting to the VAE (Variational Au-
toencoders) and embeddings for different thresholds separately for
enhancing accuracy and guaranteeing monotonicity. Sun et al. [41]
utilized deep neural network to learn cardinality and adopt two
strategies to improve the accuracy and reduce the size of training
data, i.e., query segmentation and data segmentation. There are

Models Data Hybrid Query
; MSCN [23]
Regression - LW [14] DMQ-Q [16]
Data Naru [49] STHoles [11]
Distribution | DPPP [19] _ Isomer [39]
DMQ-D [16] QuickSel [36]

Table 2: Taxonomy of Learned Cardinality Estimation.

some other methods depending on the underlying data, for example,
clustering-based methods [10], kernel-based methods [31].

Learning theory. It is beyond the scope of this paper to review the
relevant work on learning theory and we refer reader to a few clas-
sical books on this topic [6, 22, 44]. In the literature of ML, Valiant’s
pioneering work [43] first established the notion of learnability and
the framework of probably approximately correct (PAC) learning.
Intuitively, the learner in this framework receives random sam-
ples from underlying training data, and aims to select a hypothesis
from a set of possible hypotheses which has low generalization
error (€) with high probability (1 — §) on the unobserved samples
from the same distribution. Surprisingly, relationships between
the PAC-learnability of a hypothesis class and its inherent proper-
ties have been proved. For example, a Boolean hypothesis class is
learnable if and only if it has finite VC-dimension [6, 44, 45], and a
real-valued function class is PAC-learnable if and only if it has finite
fat-shattering dimension [6, 8, 21]. This framework of PAC learning
is exactly the theoretical foundation behind our investigation of
learnability of selectivity functions.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an ML-based technique for estimating
the selectivity of selection queries in DB systems. Central to our ap-
proach were generalization bounds that we proved for this problem
(Theorem 2.1), thereby establishing a formal framework for apply-
ing classical ML theory (PAC learning) to DB problems. In contrast,
the predominant approach in previous work has been to use deep
learning techniques, which have consistently outperformed tradi-
tional optimization methods for a range of important problems in
DB research. However, in spite of much empirical success, obtaining
generalization bounds for deep learning remains one of the out-
standing open challenges of the modern era. We expect the trend
of using ML for DB will accelerate even further in the future, and
hope that our work in initiating a formal study of the learnability
of DB problems will complement the existing efforts at leveraging
deep learning for improving the performance of DB systems in
practice. There are several interesting directions for future work.
As mentioned earlier, understanding the complexity of finding an
optimal distribution with a given model complexity is an open prob-
lem. Although our framework does not assume query ranges to
be bounded and thus works even if we consider data distributions
with unbounded support, e.g., Gaussian mixtures, developing an
algorithm that computes a Gaussian mixture (or another model)
with a small loss given a training sample is also an open problem.
Developing theory and algorithms for learning selectivity of range
queries of practical interest with unbounded VC dimensions and
extending the learning framework to unsupervised approaches are
other intriguing directions for future work.

REFERENCES

]
1

[
[2
(3]
[4]
(5]
(6]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

[25]
[26]
[27]

[28

[29]

[30

[31]

[32]

[33]

[34]

https://anonymous.4open.science/r/selectivity-estimate-0C6B.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html.
https://drive.google.com/file/d/1ZzPfRaZCmK3MnF2_dIIKZQ8fPxz4b3s]/view.
P. K. Agarwal and M. Sharir. 2000. Arrangements and their applications. In
Handbook of computational geometry. Elsevier, 49-119.

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. 1997. Scale-sensitive
dimensions, uniform convergence, and learnability. JACM 44, 4 (1997), 615-631.
M. Anthony and P. L. Bartlett. 2009. Neural network learning: Theoretical founda-
tions. cambridge university press.

Peter L Bartlett and Philip M Long. 1995. More theorems about scale-sensitive
dimensions and learning. In Proceedings of the eighth annual conference on Com-
putational learning theory. 392-401.

P. L. Bartlett, P. M. Long, and R. C. Williamson. 1996. Fat-shattering and the
learnability of real-valued functions. J. Comput. Syst. Sci. 52, 3 (1996), 434-452.
S. Ben-David and M. Lindenbaum. 1998. Localization vs. identification of semi-
algebraic sets. Machine Learning 32, 3 (1998), 207-224.

N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and R. Uribe. 2008. Clustering-based
similarity search in metric spaces with sparse spatial centers. In SOFSEM. Springer,
186-197.

N. Bruno, S. Chaudhuri, and L. Gravano. 2001. STHoles: A multidimensional
workload-aware histogram. In Proc. 20th ACM SIGMOD Int. Conf. Management
Data. 211-222.

B. Chazelle and E. Welzl. 1989. Quasi-optimal range searching in spaces of finite
VC-dimension. Discrete & Computational Geometry 4, 5 (1989), 467-489.
D. Dua and C. Graf. 2017. UCI machine learning repository. (2017).
//archive ics.uci.edu/ml/index.php

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri. 2019.
Selectivity estimation for range predicates using lightweight models. Proc. VLDB
Endow. 12, 9 (2019), 1044-1057.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. 1995. Markov chain Monte Carlo
in practice. CRC press.

S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. 2020. Deep
Learning Models for Selectivity Estimation of Multi-Attribute Queries. In Proc.
39th ACM SIGMOD Int. Conf. Management Data. 1035-1050.

D. Haussler. 1992. Decision theoretic generalizations of the PAC model for neural
net and other learning applications. Inf. Comput. 100, 1 (1992), 78-150.

D. Haussler and E. Welzl. 1987. e-nets and simplex range queries. Discret. Comput.
Geom. 2, 2 (1987), 127-151.

B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019.
DeepDB: learn from data, not from queries! Proc. VLDB Endow. 13, 7 (2019),
992-1005.

R. Kaushik and D. Suciu. 2009. Consistent histograms in the presence of distinct
value counts. Proc. VLDB Endow. 2, 1 (2009), 850-861.

M. J. Kearns and R. E. Schapire. 1994. Efficient distribution-free learning of
probabilistic concepts. J. Comput. System Sci. 48, 3 (1994), 464-497.

M. J. Kearns and U. Vazirani. 1994. An introduction to computational learning
theory. MIT press.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. 2019. Learned
cardinalities: Estimating correlated joins with deep learning. (2019).

R. J. Lipton, J. F. Naughton, and D. A. Schneider. 1990. Practical selectivity
estimation through adaptive sampling. In Proc. 9th ACM SIGMOD Int. Conf.
Management Data. 1-11.

R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. 2020. Bao:
Learning to Steer Query Optimizers. arXiv preprint arXiv:2004.03814 (2020).

R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
and N. Tatbul. 2019. Neo: A learned query optimizer. 12, 11 (2019), 1705-1718.
R. Marcus and O. Papaemmanouil. 2018. Deep reinforcement learning for join
order enumeration. In aiDM. 1-4.

V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T. M. Tran. 2007.
Consistent selectivity estimation via maximum entropy. The VLDB journal 16, 1
(2007), 55-76.

V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. Haas, and U. Srivastava. 2005.
Consistently estimating the selectivity of conjuncts of predicates. In Proc. 31th
Very Large Data Bases. 373-384.

Y. Matias, J. S. Vitter, and M. Wang. 1998. Wavelet-based histograms for selectivity
estimation. In Proc. 17th ACM SIGMOD Int. Conf. Management Data. 448-459.
M. Mattig, T. Fober, C. Beilschmidt, and B. Seeger. 2018. Kernel-Based Cardinality
Estimation on Metric Data. In EDBT. 349-360.

G. Moerkotte, T. Neumann, and G. Steidl. 2009. Preventing bad plans by bounding
the impact of cardinality estimation errors. Proc. VLDB Endow. 2, 1 (2009), 982—
993.

S. Muthukrishnan, V. Poosala, and T. Suel. 1999. On rectangular partitionings
in two dimensions: Algorithms, complexity and applications. In ICDT. Springer,
236-256.

P. Negi, R. Marcus, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. 2020. Cost-
Guided Cardinality Estimation: Focus Where it Matters. In Proc. 36th Annu. IEEE

http:

(35]

[36]

(37]

Int. Conf. Data Eng. IEEE, 154-157.

J. Pach and P. K. Agarwal. 2011. Combinatorial geometry. Vol. 37. John Wiley &
Sons.

Y. Park, S. Zhong, and B. Mozafari. 2020. Quicksel: Quick selectivity learning
with mixture models. In Proc. 39th ACM SIGMOD Int. Conf. Management Data,.
1017-1033.

V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. 1996. Improved histograms
for selectivity estimation of range predicates. ACM Sigmod Record 25, 2 (1996),
294-305.

V. Poosala and Y. E. Ioannidis. 1997. Selectivity estimation without the attribute
value independence assumption. In VLDB, Vol. 97. Citeseer, 486-495.

U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. 2006. Isomer:
Consistent histogram construction using query feedback. In Proc. 22th Annu.
IEEE Int. Conf. Data Eng. 39-39.

M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. 2008. SPARQL
basic graph pattern optimization using selectivity estimation. In Proc. 17th Int.
Conf. World Wide Web. 595-604.

J. Sun, G. Li, and N. Tang. 2021. Learned Cardinality Estimation for Similarity
Queries. In Proc. 40th ACM SIGMOD Int. Conf. Management Data.

G. T. Toussaint. 1983. Solving geometric problems with the rotating calipers. In
Proc. IEEE Melecon, Vol. 83. A10.

L. G. Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (1984),
1134-1142.

V. Vapnik. 2013. The nature of statistical learning theory. Springer science &
business media.

V. N. Vapnik and A. Y. Chervonenkis. 2015. On the uniform convergence of
relative frequencies of events to their probabilities. In Measures of complexity.
Springer, 11-30.

X. Wang, C. Qu, W. Wy, J. Wang, and Q. Zhou. 2021. Are We Ready For Learned
Cardinality Estimation? Proc. VLDB Endow. 14, 9 (2021), 1640-1654.

Y. Wang, C. Xiao, J. Qin, X. Cao, Y. Sun, W. Wang, and M. Onizuka. 2020. Mono-
tonic cardinality estimation of similarity selection: A deep learning approach. In
Proc. 39th ACM SIGMOD Int. Conf. Management Data. 1197-1212.

R. S. Wenocur and R. M. Dudley. 1981. Some special vapnik-chervonenkis classes.
Discrete Mathematics 33, 3 (1981), 313-318.

Z.Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-
stein, S. Krishnan, and L. Stoica. 2019. Deep unsupervised cardinality estimation.
Proc. VLDB Endow. 13, 3 (2019), 279-292.

