Session 3: Machine Learning and Security

PAcT: Detecting and Classifying Privacy Behavior of Android
Applications

Vijayanta Jain
University of Maine, Orono
Orono, ME, USA
vijayanta.jain@maine.edu

Sai Teja Peddinti
Google Inc.
Mountain View, CA, USA
psaiteja@google.com

ABSTRACT

Interpreting and describing mobile applications’ privacy behav-
iors to ensure creating consistent and accurate privacy notices is a
challenging task for developers. Traditional approaches to creating
privacy notices are based on predefined templates or questionnaires
and do not rely on any traceable behaviors in code which may result
in inconsistent and inaccurate notices. In this paper, we present an
automated approach to detect privacy behaviors in code of Android
applications. We develop Privacy Action Taxonomy (PAcT), which
includes labels for Practice (i.e. how applications use personal infor-
mation) and Purpose (i.e. why). We annotate ~5,200 code segments
based on the labels and create a multi-label multi-class dataset with
~14,000 labels. We develop and train deep learning models to clas-
sify code segments. We achieve the highest F-1 scores across all
label types of 79.62% and 79.02% for Practice and Purpose.

CCS CONCEPTS

« Security and privacy — Privacy protections; - Computing
methodologies — Natural language processing.

KEYWORDS

privacy-behavior, privacy notices, Android applications, inconsis-
tency analysis

ACM Reference Format:

Vijayanta Jain, Sanonda Datta Gupta, Sepideh Ghanavati, Sai Teja Ped-
dinti, and Collin McMillan. 2022. PAcT: Detecting and Classifying Pri-
vacy Behavior of Android Applications. In WiSec °22: 15th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks, May 16-May
19, 2022, San Antonio, Texas, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3507657.3528543

@ This work is licensed under a Creative Commons
Attribution International 4.0 License.

WiSec 22, May 16-May 19, 2022, San Antonio, Texas, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9216-7/22/05.

https://doi.org/10.1145/3507657.3528543

Sanonda Datta Gupta
University of Maine, Orono
Orono, ME, USA
sanonda.gupta@maine.edu

104

Sepideh Ghanavati
University of Maine, Orono
Orono, ME, USA
sepideh.ghanavati@maine.edu

Collin McMillan
University of Notre Dame
Notre Dame, IN, USA
cmc@nd.com

1 INTRODUCTION

A “privacy notice” is an application’s artifact that describes how
and why that application uses personal information, such as for pro-
viding services or monetization [34]. Regulations, such as General
Data Protection Regulation (GDPR) [7] and California’s Consumer
Privacy Act (CCPA) [9] require applications to provide users with
privacy notices [1]. However, developers face several barriers in
creating high-quality privacy notices. First, developers often do not
comprehend concepts of privacy well [10] and therefore, use privacy
policy generators [47] that incorrectly capture privacy behaviors
of their application. Second, they often use default configurations
for third-party libraries without understanding their privacy be-
haviors and how it affects privacy of their applications [27]. Third,
developers often do not consider privacy notices as software engi-
neering artifacts and thus, they do not update them with source
code [48]. Lastly, developers are not always included in the process
of creating privacy notices; instead companies hire legal experts
to ensure compliance which may result in mismatches between
the application and its privacy notice [40]. These problems may
result in creation of inconsistent privacy notices, which may lead
to privacy harms for both users and developers.

Some work focus on resolving the above challenges by creating
privacy notices using questionnaires or predefined templates [24, 37,
38, 45, 48]. While these approaches are promising, they generate
generic notices without making them traceable to source code
or matching them with applications’ privacy behaviors. Without
traceability, privacy notices become inconsistent when source code
changes. In our previous work [15], we proposed a framework
called PriGen, which identifies and extracts code segments that
access personal information and then, uses a deep learning model
to directly translate them into short descriptive privacy sentences
called privacy captions. PriGen introduces traceability and achieves
good accuracy for very short code segments (~4-5 LOC), but the
accuracy decreases significantly when code segments become larger.
Additionally, training a deep learning model for caption generation
requires a large high-quality dataset (>20,000 samples), which is
laborious and expensive to create manually. Furthermore, privacy is
subjective; therefore, creating semantically similar privacy captions
for the same source code is challenging, especially when there are
multiple annotators.

In this paper, we develop an automated approach that can detect
privacy behaviors of applications’ source code which can later be

https://doi.org/10.1145/3507657.3528543
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3507657.3528543
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Session 3: Machine Learning and Security

used as input to PriGen to create the privacy captions dataset. First,
we formally define categories of privacy behaviors in source code
and develop Privacy Action Taxonomy (PAcT). PAcT consists of
two categories of labels: Practice and Purpose. The Practice cate-
gory focuses on understanding how a code segment uses personal
information? and Purpose category helps understand why?. This
approach aides us in two ways: (1) defining privacy behavior cate-
gories alleviates any privacy subjectivity of annotators and makes
labeling source code a structured process. It also enables us to cre-
ate a dataset with consistent labels. (2) labeling code segments is a
much simpler and cost-efficient task than writing privacy captions.
Hence, we can manually create large datasets of code segments and
their privacy behaviors. Second, we use PAcT and its guidelines
to label privacy behaviors of ~5,200 code segments and create a
large multi-label multi-class dataset with ~14,000 labels. For this
labeling task, we developed a custom built open-source annotation
tool, Codr. Finally, we develop and train a simple Recurrent Neural
Network (RNN) model to classify privacy behaviors of Android ap-
plications. We conduct 32 experiments to examine how the unique
characteristics of various Practice and Purpose labels as well as the
amount of data extracted from source code can impact the model’s
performance. Our model achieves the highest F-1 scores of 79.62%
and 79.02% across the label types for Practice and Purpose respec-
tively (see Tables 2 and 3), which demonstrates the feasibility of
classifying privacy behaviors in source code. While source code
classification tasks were previously done for malware detection
and other similar tasks showing very high performance, there is no
prior work that detects Practice and Purpose from source code. Our
work is the first to conduct such comprehensive analysis. Hence,
our experimentation establishes the first baseline.

Our approach to detect privacy behaviors helps resolve the short-
comings of creating consistent privacy notices in the following
ways: first, our trained models provide simple labels which help
developers better understand privacy actions of their applications.
For instance, a code segment accessing location and tagged with
Collecting Practice and Functionality Purpose indicates that

their application ‘collects location data to provide functionality’.

In cases that developers create privacy policies via policy genera-
tors, they can use the predicted labels as an input to modify relevant
sections of the generated policy to ensure the policy matches with
the application’s privacy behaviors. Additionally, since we create
labels for all source code that access personal information, we mit-
igate the problem of missing privacy statements in policies [49].
Second, developers can use the generated labels to create interme-
diate notices. These intermediate notices can then be provided to
legal experts writing privacy policies to help reduce the number of
mismatches between application’s privacy behaviors and notices.
Appendix A - Figure A.1 presents a few more examples about how
to create privacy notices using the generated labels. Lastly, since
the labels are generated directly from source code, they can be
traced as part of software engineering artifacts. Hence, any time
the code gets updated, a new sets of labels will be generated which
can result in updated or new intermediate privacy notices. This
way the privacy notices will remain consistent with applications
throughout their life cycle.

The main contributions of this work are as follows: (i) PAcT - a
unique taxonomy to help detect privacy behavior of applications’

105

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

source code. To the best of our knowledge, this is the first work to
create such a taxonomy. PAcT bridges the linguistic gap between
applications’ source code and their respective privacy notices by
creating a common vocabulary. This common vocabulary can then
be used to describe privacy behavior of source code, and can later
simplify the process of creating accurate and consistent privacy
notices. (ii) Annotated Dataset of Privacy Actions (ADPAc) and
Models - a dataset of ~5,200 code segments annotated with Practice
and Purpose labels along with trained RNN models to classify them!.
(iii) Codr - our open-source annotation tool to facilitate the creation
of ADPAc dataset. Codr can be used by the research community to
annotate code and other text for various tasks.

2 RELATED WORK

Figure 1 illustrates trends in the prior work. In recent years, much
work have been done to help generate concise privacy notices for
mobile applications by considering a set of questions or predefined
templates [22, 37, 38, 45-47]. The first attempts, such as PAGE [38]
and AppProfiler [37], concentrated on generating privacy policies
from a set of questions, similar to most privacy generator tools.
In the next attempt, some work focused on developing automated
approaches or predefined templates to help write the rationales
behind the required permissions, or create privacy notices or de-
scriptions by analyzing sensitive APIs [45-47] and mapping them
to natural language text. AutoPPG [45], PrivacyFlash Pro [47], and
Honeysuckle [22] are all closely related to our work, and aim at
creating privacy notices by analyzing code. AutoPPG uses a pre-
defined subject form object [condition] format to create
privacy statements, which results in generic statements that do not
provide Purpose of privacy behavior. Both PrivacyFlash Pro and
Honeysuckle provide rationales for using personal information,
however, they both rely on developers to provide them. Our work
differs from these approaches in that we classify privacy actions of
source code and provide Practice and Purpose labels without using
specific formats or relying on developers to annotate their code.

While these approaches attempt to generate privacy notices, they
still lack traceability between the code and privacy notices which
may result in inconsistencies between the applications’ privacy
policies/notices and code, especially when the code evolves. As
such, some research focus primarily on evaluating the extent of
such inconsistencies [36, 39, 40]. Some of these work analyze the
discrepancies between applications’ API calls and their privacy poli-
cies [11, 12, 23, 26, 28, 32, 39, 40, 43, 49], or with their applications’
descriptions [8, 33, 35]. The main goal of these approaches is to
identify violations and not to mitigate and resolve them. In contrast,
our work supports traceability and helps resolve inconsistencies,
since Practice and Purpose classifications in code can be directly
translated to privacy notices.

Source code summarization is the task of automatically gener-
ating natural language descriptions of source code which ranges
from creating commit messages and descriptions of source code
changes [16, 25], predicting a method’s name using a code snip-
pet [2], to creating descriptions of a code segment [4, 13, 42]. The
primary focus of most code summarization approaches is on writing
high-level descriptions suitable for general-purpose programming

!https://github.com/PERC-Lab/PAcT

https://github.com/PERC-Lab/PAcT

Session 3: Machine Learning and Security

0/ In s
Feltet al. (2011) X
Aueral (2012) X
Rosen et al. (2013)
Rowan ef al. (2014)
Ramanath ef al. (2014)
Lin er al. (2014)

Liu et al. (2014)
Sadeh ef al. (2014)
Petronella ef al. (2014) X
Zimmeck et al. (2014, 2016, 2019, 2021)
Schaub er al. (2015) X
Yuetal (2015, 2017, 2021)

Zhang et al. (2016) X
Slavin er al. (2016(a), (b))

Smullen ef al. (2014, 2016)

Bokaie eral. (2016, 2018, 2021)

Liu ef al. (2018) X
Maitra er al. (2018)

Reyes ef al. (2018)

Story er al. (2018, 2020) X X
Okoyomon ef al. (2019)

Emami ef al. (2020, 2021) X X
Peddinti er al. (2020) X
Jam et al. (2021) X
Gupta eral. (2021) X
Lieral(2021)

Wang et al.(2018)

Gorla er al.(2014)

Pandita et al. (2013)

Quetal (2014)

Gorla et al. (2014)

Aueral (2012)

Petronella ef al. (2014)

Jiang er al. (2017)

Loyola ef al. (2017)

Allamanis et al. (2016)

Alon er al. (2018)

Hu et al. (2018)

Sutskever er al. (2014)

ERC IR
»

E
i
i
B

El
il LR RN
ERE R R LR R R R R]

BOM oM Mo M
"

R R]

Figure 1: Selection of closely-related, peer-reviewed
publications in the past 10 years that generate notices.
Column PN’ = ML/NLP-based; ‘T’ = template-based; ‘Q/A’ =
question/answering based; In’ = inconsistency analysis; ‘SA’
= static/dynamic analysis; and ‘CS’ = code summarizing,.

documentation. In this paper, we extend these efforts to the unique
problem of detecting privacy behaviors of source code.

3 PRIVACY ACTION TAXONOMY (PACT)

As mentioned in Section 1, our goal is to detect and classify privacy
behaviors of applications’ source code. However, this is a chal-
lenging task for two reasons. First, we need to define the scope of
relevant code segments in applications that access or use personal
information. Second, we need to alleviate privacy subjectivity of
annotators to identify privacy behaviors of these code segments.
Each application’s source code consists of several different files,
which contain different classes and methods, and potentially any
of these methods can use personal information to implement some
functionality. Moreover, a single method can use personal infor-
mation in multiple ways. For example, a method in a ride-sharing
application can use location to find near-by rides and to share it
with a third-party advertisement library. Consistently detecting
all privacy behaviors in such methods becomes difficult due to the
privacy subjectivity of annotators [44].

The complexity increases when we define a relevant code seg-
ment that is larger than a single method. To mitigate the complexity
of consistently detecting the same privacy behaviors among multi-
ple annotators, we need to create a taxonomy. Nickerson et al. [30]
define a taxonomy for classifying objects as a set of dimensions (or
categories) where each dimension has a set of characteristics (or
labels) such that each object has one label under each category. We
relax this definition for PAcT to include more than one label for

106

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

each category. We provide the rationale for this modification with
an example, later in this section.

Before explaining the details of PAcT, we describe the structure
of the code segments we use to detect privacy behavior. In Android
applications, the personal information (PI) can be accessed in two
ways: System APIs? and User Interface (UI) [5, 14, 29]. In this paper,
we focus on the usage of System APIs and leave the process of
accessing the PI through UI for future. To access PI with system
APIs, developers are required to declare necessary permissions in
AndroidManifest.xml. In [15], we defined the code segments that
call system APIs as Permission-Requiring Code Segments (PRCS).
A PRCS may consist of multiple methods that are linked via call
graph. This is because a method that calls an Android’s permission-
requiring system API to access personal information can use and
further share the information with other methods. Since the PI can
“hop” between methods in a PRCS, each method is referred to as a
hop. In a PRCS, the “first hop” refers to the method that calls the
permission-requiring API and each subsequent N th hop refers to the
method that is called by the (N — 1) hop. Each PRCS has at least
one hop, i.e. the first hop. We use PDroid [15] to extract PRCS for 109
permission-requiring APIs (an additional 40 APIs than in [15]) from
12 different permission groups. We extract up to 3 hops for each
PRCS (an additional 2 hops in comparison to [15]). We stop at 3 hops
instead of tracing the complete flow of information from source
to sink for the following reasons: (1) research suggests that 2-3
hops from a call graph provide sufficient information and anything
beyond the 3 hops either becomes superfluous or challenging to
handle [21]; (2) in our preliminary analysis, we found that in ~80%
of the cases, the information returned by permission-requiring APIs
is used within the first three hops; and (3) prior research has shown
that the model’s F-1 score decreases when we increase the number
of lines of code [4, 15].

To develop PAcT, we follow the guidelines suggested by Nick-
erson et al. [30]. As mentioned in Section 1, we attempt to answer
two questions regarding privacy actions of each PRCS: how does
a PRCS use personal information? and why?. The answers to these
two questions correspond to two categories of Practice and Pur-
pose in our taxonomy, respectively. For each category, we create an
initial set of labels: for Practice category, we follow the terminolo-
gies defined by GDPR [7] and CCPA [9]; whereas for Purpose, we
use Apple’s Privacy Nutrition Labels® as an initial guideline. Other
works [6, 44] also introduce data practice labels. However, Wilson
et al. [44] focus on web privacy policies pre-GDPR and CCPA, and
Kumar et al. [6] focus only on Opt-in/Opt-out choices in policies.

The initial set of labels for Practice category include: Processing,
Collecting, and Sharing. We formally define them as follows:

e Processing: When code uses a sensitive information for
functionalities related to a first-party or a third-party library.
It may include several operations - not limited to — retrieval,
consultation, use, adaptation, or alteration.

e Sharing: When a first-party code shares a sensitive infor-
mation with third-party code or if a third-party method calls
a permission-requiring APL

2https://developer.android.com/reference/
3https://developer.apple.com/app-store/app-privacy-details/

https://developer.android.com/reference/
https://developer.apple.com/app-store/app-privacy-details/

Session 3: Machine Learning and Security

o Collecting: When sensitive information is either explicitly
saved in a persistent location off-device or implicitly saved
in JSON objects or Maps, or returned beyond the last hop
that indicates further use of information without calling
permission-requiring API again.

The initial set of Purposelabels are Functionality, Advertisement,

and Analytics. We formally define each label as follows:

e Functionality: When code executes a core functionality
either in first-party or third-party library. (E.g. a messaging
application accessing SMS messages).

o Advertisement: When code accesses PI for advertisement
purposes, or an advertisement library accesses PL.

e Analytics: When code accesses PI for analyzing applica-
tion’s behaviors, or for analyzing/tracking user’s behaviors.

We then expand these initial sets of labels using a conceptual-
to-empirical approach [30]. In this step, we annotate PRCS over
multiple iterations. In each iteration, the first two authors annotate
each PRCS with the existing Practice and Purpose labels, and then
analyze and discuss the annotations together to decide upon adding
or removing labels from the existing label sets. If both agree that a
label describes the privacy action of a PRCS, we keep that label and
evaluate the ending conditions as shown in Appendix A - Figure A.2.
If they do not agree or if ending conditions are not met, they conduct
another round of iteration, else they finish the label expansion
process. Figures A.4 and A.3, in Appendix A, show our final set of
labels and their sub-labels for each category of PAcT. We describe
how our initial set of Practice and Purpose labels evolved across
iterations. In each iteration, we extract mutually exclusive PRCS.
— Iteration 1. We first randomly selected ~160 PRCS to annotate.
We observed that several PRCS use third-party libraries to imple-
ment a core Functionality, such as authentication and payment
services which provides additional information about the nature of
Functionality label. Hence, we decided to add sub-labels when
necessary. In iteration 1, we added two sub-labels, Payment and
Authentication, under the Functionality label. We also discov-
ered third-party libraries for measuring user-engagement and thus,
added a sub-label, User Experience, under the Analytics label.
Because of the additional sub-labels, we needed to go through an-
other round of iteration.

— Iteration 2. We annotated a different set of randomly selected
~150 PRCS, and found two additional sub-labels, Location and
Marketing, for Functionality and Advertisement respectively.
We also identified Crash Analytics sub-label, for Analytics and
created an Other label for Practice and Purpose categories to label
one-off PRCS cases. Thus, we conducted another iteration.

— Iteration 3. We annotated another set of randomly selected ~140
PRCS, but we did not find any additional labels or sub-labels to
add. Hence, we ended our iterative process and concluded that our
taxonomy is complete.

As mentioned above, we omit a requirement proposed by Nicker-
son et al. [30] where each object must have one label under each cat-
egory. This is because privacy practices are interrelated and it may
be inaccurate to assign a single characteristic to each dimension.
For example, if an application collects user id and email, it may use
both to authenticate the user and to analyze the user’s experience
via a third-party library. Therefore, Practices for this application are

107

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Processing and Sharing, and Purposes are Functionality and
Analytics. If we choose to label the Practice as only Processing
or the Purpose as only Functionality, then privacy action classi-
fication is incomplete. Thus, each PRCS can have multiple labels
which results in a multi-label multi-class dataset.

4 DATASET PREPARATION

In this section, we discuss the process of preparing a dataset of an-
notated PRCS with their privacy actions’ labels (defined in Section
3) to use for training and classification tasks. Since currently such
publicly available dataset does not exist, we manually annotated
and created the Annotated Dataset of Privacy Actions (ADPAc).

We downloaded 15,000 APK files from the curated PlayDrone
dataset as part of Androzoo Collection [3] and extracted ~180,000
PRCS using PDroid [15]. From this set, we randomly selected ~5,200
PRCS to create ADPAc and another 100 PRCS to compute inter-
annotator agreement between the two expert annotators (i.e. the
first two authors). Note that, these PRCS are in addition to the ~450
PRCS we extracted to identify the labels of PAcT (i.e. Section 3). We
used 2 expert annotators to balance the trade-off between a larger
number of annotators and poor label quality. Research suggests that
expert annotators are better than a larger number of annotators
for tasks where subject expertise is required [31]. We computed
the inter-annotator agreement to alleviate the subjectivity of the
annotations to the extent possible. To help the annotation process,
we also extracted some metadata about each code segment and
provided them as comments in source code. The metadata includes
the name of the APK file from which the PRCS is extracted, the
class name, the method name, the list of permission-requiring APIs
called in the first hop, and their descriptions. Finally, we developed
a set of guidelines and an annotation tool Codr* to help annotators
with labeling PRCS.

Annotation Guidelines. In addition to the definitions of the
labels in PACcT, we developed a set of instructions to guide the an-
notators in detecting and annotating Practice and Purpose labels
in PRCS. To help better understand these guidelines, we will ex-
plain a few annotated PRCS examples shared in Figure 2. In each
sub-figure, we show a different PRCS sample with its labels and
highlight aspects that annotators require for annotation. We high-
light the method name in blue, permission-requiring APIs in red,
and important variables and objects in boxes. We also provide
APK and class names in black boxes. We anonymize the APK, class,
and certain object names to not draw attention to individual APKs
or third-party libraries. The annotation instructions are as follows:
1. In each hop, analyze the following information:

e Name of the method: In most cases, the method name
describes its behaviors which makes it easier to identify its
Practice label. For example, sendLocationInfo in Figure 2(a)
suggests that the method is sending location information [off-
device] which indicates Collecting Practice.

e Name of the APK and class: Class and APK names help
identify Sharing Practice. Class name of an application is
derived from its package name. If this class name matches the
APK name then it indicates that the code segment belongs
to the APK file and is first-party code; otherwise, the code

“https://github.com/PERC-Lab/Codr

https://github.com/PERC-Lab/Codr

Session 3: Machine Learning and Security

public void [SendLocationInfo)android.location.LocationManager p9) {

android.location.Criteria v@_1 = new android.location.Criteria();
ve_1.setAccuracy(1);
ve_1.setAltitudeRequired(@);
ve_1.setBearingRequired(@);
ve_1.setCostAllowed(1);
ve_1.setPowerRequirement(1);
android.location.Location(v3 = p9 fgetLastknownLocatior)(po [getBestProvideq(ve_1, 1));
Double v1 = 0;

Double v2 = 0;

APK Name: fooClubApp
Class Name: com. fooClubApp.Server.wAppServerClient

if {v3 1= null) {
Vi| = Double.valueOf (V3. getlatitude())
= Double.valueof(v3.getlongitude()); }

if ((v1 != null) 8& (v2 1= null)) {
this [SendRequestAsync]new StringBuilder().append(this.config.getLocationurl())
.append(?1d=).append(String.valueOf(this.config.getApplicationId())).append(“8lt=")

.append (V1. tostring(}).append(“81lg=").append(V2. tostring(J) - tostring(),

com.fooClubApp. Server. fooClubAppServerClient$RequestType.LOCATION); }
return; }

IPraclice:Processing, Collecting | Purpose:Functionalityl
()
public static com.adLibrary.wifi.WifiInfo[getConnectedwifiInfo(hndroid.content.Context p6,
boolean p7, boolean p8)
{

com.adLibrary.WifiInfo vl = @;
android.net.wifi.WifiInfo(v3 } ((android.net.wifi.WifiManager) p6.getSystemservice(wifi))

[getConnectionInfo();
i#) «

com.adLibrary.u nfo v2_1 = new com.adLibrary.wifi.WifiInfo();
v3.getBSSID()

long v4_0@
int ve_1 = [3.getssID();

if ((v4_e !=0) R& (Tcom.adLibrary.wifi.WifiUtil.a(p7, ve_1))) {
v2_1.bssid = com.adLibrary.wifi.WifiUtil.macToLong(v4_0);
if (p8) { ve_l-=o;}

v2_1.ssid

v2_1.rssi

APK Name: Recipes App

v2_1.ip|= [v3.getIpaddress(); Class Name: com.adLibrary.wifi.WifiUtil
Vi - v21;|}
)
)
|Practice: Sharing, Processing | Purpose:Advertisement
private void(notifyLastKnownLocation() J{ APK Name: Club App
if (this.mProvider == null) { Class Name: com. thirdPar- location.SimpleLocati

if (this.mNetworkProviderEnabled) {
thig{mCurrentBestlocation) = this.mLocationManager{getlastknownlocation}network); }
(this.mGpsProviderEnabled) {
android.location.Location(V@)= this.mLocationManager(getlastknownLocation}gps);
if (com.thirdPartyApp.location.SimpleLocationManager
{isBetterLocation(ve, this.mCurrentBestLocation)) {

[this.mCurrentBestlocation = ve;
}

} else [this.mCurrentBestlocation = this.mLocationManager.getLastKnownLocation(this.mProvider); }
android.util.Log]d(com. thirdPartyApp. Location. SimpleLocationManager. TAG,
new StringBuilder().append(“Last known location:")
(.append(this.mCurrentBestLocation).tostring()};
this.notifyClientOnLocationChange(this.mCurrentBestLocation);
return; }

i

[Practice: Collecting, Sharing, Processing | Purpose: Functionality

©

Figure 2: Example PRCS with Metadata and their Practice
and Purpose Labels to Demonstrate the Usage of Guidelines.

segment is third-party code. Information accessed by third-
party code suggests Sharing. For example, if the APK name
of an application is "MyApp" and the class name of a PRCS is
com.DemoLibrary.DemoClass, it indicates that DemoClass
class is not part of "MyApp" application, and thus it is third-
party code (similar to Figure 2(b) which we label as Sharing).
On the contrary, in Figure 2(a), the APK and class name
match and indicate first-party code. Therefore, it is not a
Sharing practice.

o Permission-Requiring API(s) called: Each PRCS calls these
APIs to access or use sensitive information, which serve as
good starting points inside a method to detect its Practice. In
Figure 2(b), getConnectionInfo API returns Wifi informa-
tion. The method then extracts IP and MAC addresses and
stores them in WifiInfo objects which are returned by the

108

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

method. This also indicates Sharing Practice labels, since
the method returns information beyond the current hop (as
defined in Section 3).

¢ Android Developer Documentation: This documenta-
tion® describes API usage of all system APIs in Android. In
Figure 2(b) the method calls getSystemService API before
calling getConnectionInfo. The documentation explains
that when getSystemService® is called with "wifi" param-
eter, it returns WifiManager which is then used to get con-
nection info. This corresponds to Processing.

e Names and types of variables: Variable names often de-
scribe purpose, especially variable(s) that store values re-
turned by permission-requiring API(s). Analyzing how val-
ues stored in them are accessed or changed helps detecting
Practice labels. In Figure 2(c), variable mCurrentBestLocat
ion stores the location information returned by getLastKn
ownLocation. The name distinctly indicates that it is used
to store the current best location. If variable names are ob-
fuscated, we analyze the variable type to infer its purpose.
In Figure 2(a), the variable v3 is a Location object, thus, it
must be used to store location information.

2. Analyze the above information for each PRCS to understand how
a PRCS uses personal information. Then, trace the flow of infor-
mation between hops to check if they return sensitive information
directly, after processing it, or do not return it at all. Based on the
definitions, identify its Practice. For example, in Figure 2(b), the
method returns WifiInfo. If the PRCS has a second or third hop,
we trace how Wifi information is further used to identify the labels.
3. If the class name does not match with the APK name, then search
for the class name on the web to identify if the third-party code
belongs to an advertisement or analytics library. For example, in
Figure 2(b) the name of the APK file and class name do not match.
Searching for “adLibrary” class on the web indicates that it is an ad-
vertisement library. Therefore, the purpose here is Advertisement.
4. In case Practice or Purpose of a method does not match with
definitions of any label and is unique, annotate that sample as
Other.

Annotating PRCS using Codr: We developed a web-based
annotation tool called Codr to annotate PRCS with Practice and
Purpose. There are several annotation tools available for various
annotation tasks [18, 41]. However, none of them allow source code
formatting, which is a fundamental requirement to create ADPAc,
since without any formatting annotators would find it difficult to
read and comprehend the source code. Codr also supports other
features such as: (i) having multiple annotators for each annota-
tion project, (ii) creating individual annotator roles and granting
permissions, (iii) being hosted on a private server to ensure better
privacy, and (iv) having features such as classification, highlighting,
and annotation of text either in source code or in natural language.

Figure 3 shows the interface of Codr. In Codr, an annotator can
view all the three hops of a PRCS and the guidelines for the annota-
tion task. The tool also includes two drop-down menus that consist
of sub-labels of Purpose and Practice. Codr has a text field, where
annotators can suggest additional labels as well. We used Codr to

Shttps://developer.android.com/docs
®https://developer.android.com/reference/android/content/Context#WIFI_SERVICE

https://developer.android.com/docs
https://developer.android.com/reference/android/content/Context#WIFI_SERVICE

Session 3: Machine Learning and Security
. ine Dialog Box
| cuideines = —
Metadata] Label
Lot
Label Drop-Down Box
) || c=» c==m P
O Procsssg
L
| Navigation buttons
- Collapsible bars for 2% and 3¢ hops
| —

Figure 3: Screenshot of Codr, our Annotation Tool.

annotate ~5,200 PRCS. Since, each PRCS can have multiple Prac-
tice and Purpose labels, we ended up with a multi-label multi-class
dataset. Table 1 shows the distribution and percentage of samples
annotated for each label. For example, there are 3,407 PRCS (~66%)
in the ADPAc annotated with Processing and 28% with Other in
Practice category. This number is the sum of all segments annotated
using the Other label with (807 PRCS (16%)) or without (632 PRCS
(12%)) other types of Practices. Similarly, the counts for segments
annotated using the Other label with and without other Purposes
are 378 (7%) and 273 (5%), respectively. This shows that we can
identify 88% and 95% of PRCS with Practice and Purpose labels, with
at least one label different from the Other label. However, using the
“Other" label in privacy notices may result in vagueness. To resolve
this, we plan to evaluate the code segments labeled as Other with
respect to regulations and best practices to identify new labels that
could better describe the privacy behavior.

Table 1: Distribution of Labels in our Annotated Dataset.

Label Count Label Count

Processing 3,407 (66%) || Functionality | 3,606 (69%)
Sharing 2,425 (47%) || Analytics 1,204 (23%)
Collecting 970 (19%) || Advertisement | 979 (19%)
Other(Practice) | 1,439 (28%) || Other (Purpose) | 651 (13%)

Inter-Annotator Agreement: To ensure that the annotators la-
bel PRCS reliably, we compute inter-annotator agreement scores
using Fleiss’ Kappa’. The annotators labeled the randomly selected
100 PRCS with Practice and Purpose. As mentioned in Section 3, a
PRCS may contain more than one label for Practice or Purpose. For in-
stance, Annotator; may label a PRCS as Sharing and Processing,
whereas Annotatory may label the same PRCS as only Sharing.
Hence, we consider a range of agreement. For the lower bound, if
the two annotators do not annotate a PRCS with the exact same
labels, we consider this as a disagreement. For instance, we re-
garded the annotations in the previous example as a disagreement.
To compute the upper bound, we consider the two annotations
as an agreement, if there is at least one common label. Therefore,
in the previous example, the two annotations are regarded as an
agreement since they have a common label, Sharing. The range of
agreement for Practice label is 0.20 - 0.70. The 0.7 value for Kappa

https://www.statisticshowto.com/fleiss-kappa/

109

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

entails a substantial agreement between the annotators for at least
one common Practice label. The lower bound score of 0.2 entails a
“slight” agreement. We manually inspected annotations to better
understand this score range, and found that there is a complete
agreement between the annotators in 29 cases and a disagreement
in 71 cases out of 100 PRCS annotations. However, in 54 out of the 71
disagreement cases, annotations differed only by a single label. For
example, for a particular PRCS, Annotator; labeled it as Sharing,
Collecting, and Processing whereas Annotatory labeled it as
Sharing and Collecting. This implies that the annotators either
had a complete agreement or a disagreement for a single label in
83 out of 100 annotations which indicates a high agreement. Fleiss’
kappa for Purpose label is 0.65 which means a substantial agreement
between the annotators for Purpose label. We achieved the same
score for both lower and upper bounds for Purpose labels. This
agreement metrics demonstrate the efficacy of creating a dataset of
PRCS and their privacy behavior with multiple annotators.

5 EXPERIMENT DESIGN

In this section, we describe the experiments we conducted with the
ADPACc dataset to detect Practices and Purposes of PRCS.

5.1 Research Questions

Our research questions, in this paper, are as follows:

RQ1. What is the baseline accuracy to identify individual Practice
and Purpose labels? Our goal is to establish performance baselines in
detecting these labels from PRCS, using standard ML performance
metrics which serves as a base for evaluating future improvements.

RQ2. Does increasing the number of hops impact the performance
of models? In this work, a PRCS may include up to 3 hops and each
hop provides additional information about processing of personal
information, which may or may not be useful to identify Practice
or Purpose. We assess how each additional hop impacts the model’s
performance for each label to help understand if we need to extract
the complete information flow.

5.2 Methodology

To conduct the experiments, we will (1) prepare datasets for each
research question, (2) create an embedding model to use in each
experiment, (3) create AST path representations of PRCS, and (4)
develop and train a simple Neural Network model.

Generating Training Data: As mentioned in Section 4, our
dataset is a multi-label multi-class dataset (ADPAc), i.e. each PRCS
is annotated with multiple labels of Practice and Purpose. However,
in this paper, we formulate the label identification as a binary clas-
sification task i.e., a separate model to identify each of the Practice
or Purpose labels. This is to analyze and determine if different labels
require different configurations (such as number of hops) for ac-
curate classification. This analysis provides us with insights about
how each data practice is implemented in source code and across
different hops. Furthermore, a binary classification task facilitates
creating a performance baseline that needs to be met when creating
a unified multi-label multi-class model.

We, first, converted ADPAc to 8 individual binary class datasets
corresponding to the 8 labels of Practice and Purpose. In each dataset,
we ensure that there is an equal number of positive and negative

https://www.statisticshowto.com/fleiss-kappa/

Session 3: Machine Learning and Security

samples. Positive samples are the PRCS that are annotated with
one label, for example, Collecting in Practice category, and nega-
tive samples are PRCS annotated with all the other labels except
Collecting. In case a code segment contains two PAcT labels, we
created two copies of the sample and ensured that the same sample
is not repeated in both the positive and negative entries in the
respective binary datasets. To address RQ1, for each sample in
each binary dataset, we only extracted the code of the first hop,
even if the sample contained more than one hop. For RQ2, we first
filtered the 8 binary datasets to only include samples that contain 3
hops and then balanced the datasets. Next, we created three derived
datasets for each label from the label’s binary dataset, where each
of the three derived datasets contained the exact same samples but
varied in the number of hops. For example, we created 3 datasets for
Sharing - Sharing1gop, Sharingagop, and Sharingsgp. All three
contain the same samples, with Sharingp,p containing only the
first hop; Sharingsp,p containing the first and second hops; and,
Sharingspep containing all the 3 hops. Since, there are 8 labels, we
ended up with 24 datasets in total (3 datasets for each of the 8 labels).
Note that, the dataset of RQ2 with only 1 hop is different than the
dataset of RQ1 — while RQ1 contains the 1st hop information from
all samples, RQ2 contains only the 1st hop information for samples
with 3 hops.

After creating RQ1 and RQ2 datasets, we used a tool called
astminer [19] to extract the Abstract Syntax Tree (AST) paths
from the source code. We used AST paths instead of source code as
input, since the paths contain more structural information about
the code than the source code text. AST paths are also the standard
in code summarization work [4, 20]. To understand more about
AST paths, please refer to the Appendix Section A.3.

Creating Embedding: Next, we created an embedding model
to generate token representations. For this, we downloaded another
~10,000 APK files from Androzoo collection [3], extracted ~100,000
PRCS using PDroid [15] (different from the ~5,200 PRCS we anno-
tated earlier), and used astminer to extract the AST paths of all
the code samples. We then used Gensim?® to create a skip-gram em-
bedding model of the extracted AST paths. For this model, window
size and embedding dimension are the hyperparameters, and we
chose them as 3 and 100 respectively based on the results of our
pilot studies.

AST Path Representations: As described in Appendix Section
A 3, each AST path contains 3 tokens where the second token is a
sequence of non-terminal nodes. We do not split the second token
into individual non-terminal nodes, but instead consider it as a
single token - since the influence of individual non-terminal nodes
in comparison to the sequence is uncertain. In each PRCS P, each
AST path p, isrepresented as p = [ts; tn; t] where ts and t, are start
and end terminal nodes and t, is a sequence of non-terminal nodes.
Each sample P consists of several paths p; depending on the length
of the source code. Since a model requires a fixed input length, we
only select num_paths number of paths for each sample. If a sample
contains more than num_paths paths, we consider the first set of
paths and remove the rest. On the other hand, we pad the sample
with zeros if there are fewer than num_paths paths. Therefore
P ={p1,p2 -, Pnum_paths} Where each p; is an individual path.

8https://radimrehurek.com/gensim/

110

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Model Architecture: We base our binary classification model
on Code2Seq [4] but we modify it in two ways: (i) we do not use an
attention layer. For translation tasks, an attention layer is added to
the encoder-decoder models to identify relevant tokens in input and
help decoder generate output. For a binary classification task, an
attention layer increases the model’s complexity since it increases
the number of parameters to train, even for a small dataset such as
ours. Hence, we omit the attention layer. (ii) we replace the decoder
with fully-connected layers, since we perform a classification task.
Decoder generates sequences from hidden states provided by the
encoder. In our work, we do not need to generate any sequences.

Fully Connected Layer (F;) Fully Connected Layer (F,)

... D

R — ‘/-» = |

Sigmoid

| LSTM Layers

Embedding Layer (E)

Figure 4: The Architecture of our RNN Model.

Figure 4 shows our model architecture. The first part is the em-
bedding layer, where we load our trained embedding model E and
extract embedding for each token in an AST path. After embedding,
each AST path [ts; tp; t] becomes embedded_path = [E;; Ey,; Ey,].
For an embedding dimension of embed_dim, each embedded_path
becomes a 3 X embed_dim matrix. There are num_paths paths in a
PRCS sample P, therefore, each P is num_paths X 3 X embed_dim
tensor. To represent each embedded_path, we concatenate the to-
kens to form a single vector of size 3 X embed_dim and then apply a
fully-connected layer to reduce the dimension to embed_dim,since
in our earlier experiments, we found that using a smaller represen-
tation for a path is very effective given our dataset size and the
model architecture. Thus, the output of the fully-connected layer
is a num_paths X embed_dim matrix. We then encode this output
with 2 LSTM layers and apply a recurrent dropout of 0.5. We use
the final hidden state of LSTM layers as an input to a fully con-
nected layer with 100 units and then apply a Sigmoid non-linearity.
We conducted preliminary experiments and found the following
model hyperparameters are the most optimal for RQ1 and RQ2
tasks: we use binary cross-entropy loss and Adam optimizer [17]
with a learning rate of 1e-5 for 50 epochs; chosen batch size is 8
and clip size is 5; number of AST paths is 100; and as mentioned
earlier, embedding dimension is 100.

For both RQ1 and RQ2, we use 80:10:10 split ratio of samples for
training, validation, and test set, respectively. After 50 epochs, we
load the model with the highest validation accuracy and report the
model’s accuracy and F1 scores on the test set. We also show the
test set confusion matrices to draw additional insights. The only
difference between the experimental setup of RQ1 and RQ2 is that
in RQ1, we select the first 100 paths from a sample while in RQ2, we
randomly select these 100 paths. This is because when we extract
AST paths from a sample that contains three hops, the extracted
paths include first hop paths, followed by the second and third hop
paths. Since in RQ2, we aim to analyze how each additional hop
impacts the models’ performance, we randomly select the paths to
ensure having enough representation from all the three hops. We

https://radimrehurek.com/gensim/

Session 3: Machine Learning and Security

o 265 o) 231 8 o n 16
1 286 1 191 50 1 27

o 1
Precicted Label

o] 1
Pregicted Lavsl Predicted Label

(a) Processing

° 129 o 226 73
‘ . 1 ;
o T
o

o 1
Predicted labsl

(b) Sharing (c) Collecting

True tabel

(d) Others (e) Functionality (f) Advertisement

oo 105

True tabel
True Label

1101

o 1
Predicted label

o 1
Pregicted label

(g) Analytics (h) Others

Figure 5: RQ1 Confusion Matrices. Practice: Sub-figures (a),
(b), (c), (d); Purpose: Sub-figures (e), (f), (g), (h). 0 is positive
label and 1 is negative label in each dataset.

use PyTorch 1.8.1 in Python 3.7 to train and test the models on a
workstation with a Xeon CPU, 54 GB RAM, and a Tesla T4 GPU.

6 EXPERIMENT RESULTS

Tables 2 and 3 show the scores for RQ1 and Figure 6 shows the
scores for RQ2 experiments. We also analyze confusion matrices for
a better interpretability of models’ performances (i.e. Figure 5 and
Figures 7 - 14 for RQ1 and RQ2 confusion matrices, respectively).
In each confusion matrix, 0 denotes the positive label and 1 denotes
the negative label of the dataset and the horizontal axis is for the
predicted label and the vertical is for the true label.

6.1 RQ1: What is the baseline accuracy to
identify each Practice and Purpose labels?

Remember from Section 5.2 that the data for RQ1 contains 8 bal-
anced datasets, with one hop for each sample. Out of all Prac-
tice labels, our model identifies Collecting with the highest ac-
curacy of 77.84% and F-1 score of 79.62%. The confusion matrix
for Collecting shows larger counts for true positives and true
negatives resulting in a true positive rate of 0.84 and a true nega-
tive rate of 0.71 which demonstrates that the model is not biased
towards either the positive or the negative label. While we do not
weigh false positives and false negatives differently in our current
model, we prefer to have higher recall than precision because we
want to maximize the coverage of detecting a particular privacy
action. Since a developer will consume the results of our model
to write privacy notices, having a false positive is not as harm-
ful compared to missing out detecting a particular behavior. This
is because, in case the model predicts a false positive label, say

111

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Collecting, developers can verify the prediction and not include
the Practice in their notice. On the other hand, if the model does
not detect Collecting Practice when it is present, developers will
not create such a notice making it inconsistent with the applica-
tion’s privacy behavior. Our model achieves the next best scores for
identifying Sharing and Other Practices with F-1 scores of 69.89%
and 70.68%, respectively. For both of these Practices, we observe a
similar pattern in the confusion matrices - a high recall value and
low precision. For instance, for Sharing, we see a precision of 55%
and a recall of 97%. This shows that the model is not able to identify
Sharing or Other with only one hop and requires multiple hops
to classify them (as discussed in the next sub-section).

Table 2: Metric Scores for Identifying Practices in PRCS.

Positive Label | Accuracy | F-1 Score
Processing 56.18% 39.18%
Sharing 58.54% 69.89%
Collecting 77.84% 79.62%
Other (Practice) 62.85% 70.68%

Table 3: Metric Scores for Identifying Purposes in PRCS.

Positive Label | Accuracy | F-1 Score
Functionality 78.57% 79.02%
Advertisement 61.98% 68.67%
Analytics 56.67% 66.88%
Other (Purpose) 64.84% 45.78%

Our model achieves the lowest scores for detecting Processing
Practice. Based on the confusion matrix in Figure 5(a), our model
predicts the negative label more often. This is in contrast with all
the other confusion matrices of Practices labels, where the true
positive rates are higher, because Processing is a more complex
Practice and encompasses different operations — such as, using lo-
cation to calculate distance, checking the network connection type,
or retrieving available accounts. Thus, Practice cannot be identified
by the presence of an API call, an information type, or a single
hop. On the other hand, it is easier to identify when a PRCS is not
Processing, and as a result, the count for predicted negatives is
higher. We also observe from the confusion matrices for all Practices,
with the exception of Processing, that the count for false negative
is much lower than the count for false positive. This demonstrates
that our model is most likely to detect a Practice, correctly or in-
correctly, than miss a Practice that is present. However, to improve
our model’s performance, we need to include more paths from the
second or third hops (which we discuss in the next sub-section).

Our model identifies Functionality Purpose with the highest
accuracy and F-1 scores of 78.57% and 79.02%. This is because code
segments written for Functionality are often first-party code
composed of one or two methods that access personal information.
The sufficiency of one hop is also evident from the confusion matrix
in Figure 5(e), where we observe a low count of false negatives and
false positives. For Advertisement and Analytics Purposes, our
model achieves low accuracy (61.98% and 56.67%) and F-1 (68.67%
and 66.88%). The confusion matrices in Figure 5(f) and (g) show
that the recall is high while precision is low, a pattern we observed

Session 3: Machine Learning and Security

for Sharing Practice as well. Sharing is generally correlated with
Advertisement and Analytics Purposes, since they all involve
third-party libraries (as defined in Section 3). Both labels have low
false negative counts which demonstrate our model’s efficacy.

Lastly, for Other Purpose, our model achieves an accuracy and
F-1 scores of 64.84% and 45.78%. Detecting Other is also a difficult
task since it does not have a specific feature to help identify them.
On the contrary, it is easier to identify not Other labels, which
consist of Functionality, Advertisement, and Analytics labels.
Thus, as shown in Figure 5(h), the model predicts negative label
more often than positive label resulting in more false negatives. We
suggest that increasing the number of hops could help improve the
performance. Overall, we observe that our model’s performance
differs based on the types of Practice and Purpose labels.

6.2 RQ2: Does increasing the number of hops
impact the performance of the model?

As described in Section 5.2, data for RQ2 contains 24 balanced
datasets, with 3 datasets containing different number of hops for
each label. Before evaluating the impact of increasing the number of
hops, we compare the effect of using randomized paths. For example,
if a model can detect a label from five AST paths out of 100 then
randomly selecting these paths could adversely effect the model’s
accuracy since these relevant paths may not be selected each time.
On the other hand, if the model can identify a label from 30 paths,
then the model has a higher probability of correctly detecting the
label each time. As described in Section 5, a key difference between
the RQ1 and RQ2 experiments is that in RQ1, we select the first 100
paths while in RQ2, we randomly select 100 paths from each sample.
When we compare the scores for 1 hop of RQ2 in Figure 6 with the
scores from RQ1 in Tables 2 and 3, we observe noticeable differences
between the two sets of metrics. In some cases, the performance
of the model decreased while in others it increased. For example,
our model’s accuracy for classifying Collecting is ~78% in RQ1
whereas it is ~70% for 1 hop in RQ2. On the other hand, the accuracy
for Functionality increased from 79% in RQ1 to 86% in RQ2. This
inconsistency between the two quantitative results is related to
random path selection as well as the proportion of relevant paths
in a sample, which can affect the model’s performance. A sample
with a higher proportion of relevant paths is impacted differently
(and probably less) due to random path selection compared to the
one with fewer relevant paths. This inconsistency in the model’s
performance further demonstrates the complexity and challenges
to detect privacy behavior in a code segment.

Figure 6(a),(b) and Figures 7 - 10 show the quantitative scores
and confusion matrices for identifying Practice labels for RQ2. In
summary, we notice the largest gain in accuracy by 6 points between
1 and 2 hops when classifying Processing and similar gain between
1 and 3 hops for Sharing. We also observe a large gain of almost 9
points in F-1 score between 1 and 2 hops for Processing. The F-1
scores also improve by 8 and 14 points, for Sharing and Other.

As shown in Figure 6, although the performance of our model in
detecting Processing label increases when adding a second hop,
any additional hop (i.e. adding the third hop) does not impact the
performance of the model. Similarly, the confusion matrices in Fig-
ure 7 do not show any noticeable difference between the second

112

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Labels
Processing

1Hop
58.75%
65.1%
70.39%
66.5%

2 Hops
64.75%
67.1% 71.09%
68.42% 71.09%
69.91% 69%

3 Hops
64.25%

Sharing
Collecting
Other

(a) Accuracy Scores (Practice)

Labels
Processing

1Hop

51.04%
69.82%
74.58%
59.06%

2 Hops
59.83%
73.39%
73.03%
68.87%

3 Hops
59.49%
77.58%
74.36%
72.99%

Sharing

Collecting
Other

(b) F-1 Scores (Practice)

Labels
Functionality

1Hop
85.9%
70.24%
61.98%
72.5%

2 Hops
86.97%
78.57%
70.83%
68.8%

3 Hops
85.64%
79.76%
70.83%
72.5%

Advertisement

Analytics
Other

(c) Accuracy Scores (Purpose)

Labels
Functionality

1 Hop
88.89%
73.96%
70.45%
73.81%

2 Hops
87.59%
80%

75.65%
69.14%

3 Hops
86.43%
80.46%
74.07%
73.17%

Advertisement

Analytics
Other

(d) F-1 Scores (Purpose)

Figure 6: RQ2 Metric Scores. Top: Practice Labels. Bottom:
Purpose Labels. Bold values indicate the highest score in
each row.

and third hops. The main reason is that most often code segments
Process personal information within the first two hops. There-
fore, adding a third hop does not affect the performance. Improve-
ment beyond the 64.75% accuracy is hard due to the complexity of
Processing label as discussed in RQ1.

Our model’s performance increases with every hop while detect-
ing Sharing label. Adding the second hop increases the accuracy
by 2 points and F-1 score by 3 points, while including the third
hop improves the accuracy and F-1 score by another 4 points each.
As stated in RQ1, Sharing often occurs in the second or third
hop, which is the reason that the model’s performance increases
with more hops. The confusion matrices in Figure 8 illustrate the
increase in the count of true positive predictions from 155 in Fig-
ure 8(a) to 192 in (c). The count of false negative decreases with
each subsequent hop, as well.

The model’s accuracy and F-1 score improves for Other Prac-
tice when we add more hops. We notice a consistent performance
for Collecting, with a small dip when we add the second hop
information. This is because the model could be over indexing on
the personal information being returned by the first hop, without
analyzing how it is used in the second or third hops. The confu-
sion matrices in Figure 9 also show that adding each additional
hop marginally helps the model identify not Collecting Practices.
Overall, adding multiple hops does not impact the performance for
this task. It impacts the count for false negative with additional
hops but the increase in the count is small.

Figure 6(c), (d) and Figures 11 - 14 show the quantitative scores
and confusions matrices for identifying Purposes labels. We observe
overall increases in performance scores for Advertisement and
Analytics. The accuracy and F-1 scores increase with each addi-
tional hop for both labels. Their confusion matrices in Figures 12
and 13 illustrate that the count for true positives relatively stays

Session 3: Machine Learning and Security

o 86 o 96 o 96
° - ® bresictes tovet * resictes tovet

(a) 1 Hop (b) 2 Hops (c) 3 Hops

Figure 7: Hop Analysis- Processing

.) ' ;
1

85 95 1 il 89 1 99 81

(a) 1 Hop (b) 2 Hops (c) 3 Hops

Figure 8: Hop Analysis- Sharing

. ' ' | - ' ’
1 1 1 28 54

(a) 1 Hop (b) 2 Hops (c) 3 Hops
Figure 9: Hop Analysis - Collecting

. 31 . 52 o 60
Y 57 : 53 B
° Predicted label N ° Predicted label) ¢ Predicted label *

(a) 1 Hop (b) 2 Hops (c) 3 Hops
Figure 10: Hop Analysis - Other(Practice)

the same across all three hops, while the count for true negative
increases. This is because the model is learning to differentiate
between false negatives and true negatives, thereby improving the
performance for both labels. We do not notice a significant differ-
ence in the performance when classifying Functionality since
the first hop itself determines if an application uses personal in-
formation for Functionality. Adding additional hops includes
paths from other hops and may add noise. The confusion matrices
in Figure 11 also confirms that additional hops do not improve
the performance. Similarly, the performance does not improve for
Other, which indicates that the model does not require additional
hops to identify this label, as well. The count for false negative
is constant for almost all labels with each additional hops which
is promising. Overall, when identifying Purposes, including more
hops helps the model differentiate between true negative and false
negative samples; thus, improves the performance for some labels.

7 CONCLUSION AND FUTURE WORK

In this paper, we developed an automated approach to help detect
privacy behavior of Android code segments which access or use per-
sonal information. These labels can help developers modify relevant
sections of their generated privacy policy or provide intermediate
notices to legal experts writing privacy policies, thereby reducing

113

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

|) .) .)
'vnra\\l ‘veazu\n\‘ H:ra\'nll‘

(a) 1 Hop (b) 2 Hops
Figure 11: Hop Analysis - Functionality

. ' ‘ " 4
| 1 . | - '
'Vﬂ(ﬂh ;l .b'ed(ulhl‘ H»azax Al

(a) 1 Hop (b) 2 Hops (c) 3 Hops
Figure 12: Hop Analysis - Advertisement

E) . -) ' ')
1 32 1 38 49 1 31

(a) 1 Hop (b) 2 Hops (c) 3 Hops
Figure 13: Hop Analysis - Analytics

(c) 3 Hops

28 o 30

aaaaaaaaaaaaaaaaaaaaaaaaaaa

(a) 1 Hop (b) 2 Hops (c) 3 Hops
Figure 14: Hop Analysis - Other (Purpose)

the number of inconsistencies between applications’ code and pri-
vacy notices. We defined privacy behaviors in terms of Practice
and Purpose categories, and developed a Privacy Action Taxonomy
(PACT) to identify various labels within these categories. We manu-
ally created ADPAC, a dataset of ~5,200 code segments annotated
with Practice and Purpose labels and then developed a simple RNN
model to conduct binary classifications in two sets of experiments:
one to establish the baseline accuracy for classifying each individual
label, and second to measure the impact of including multiple hops
for the same task. We achieved the highest F-1 scores of 79.62% and
79.02% across the label types for Practice and Purpose, respectively.
These results demonstrate the efficacy of our approach in detecting
privacy behavior in source code.

We focused on binary classification in this paper to analyze if dif-
ferent labels require different configurations, and to gather insights
about how each data practice is implemented in source code and
across different hops. In future, we plan to include UI code segments
in our analysis. We will also conduct multi-label multi-class classi-
fication experiments by developing more complex models, such as
Convolutional Graph Neural Networks (ConvGNN) [21], and train
them to identify all Practice and Purpose labels for each code seg-
ment. We will use attention layers to analyze which code segment
features the models rely on to determine Practice or Purpose labels.

Session 3: Machine Learning and Security

REFERENCES

(1]

[2

—

=
&

=
=2

(1]

[12]

[13]

[14]

[15]

[16

[17

[18]

=
o

[20]

[21

[22

[23

2017. Privacy and Data Security Update (2016)). Federal Trade Comission. https:
/Iwww.ftc.gov/reports/privacy-data-security-update-2016.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091-2100.

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468-471. https://doi.org/
10.1145/2901739.2903508

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
sequences from structured representations of code. International Conference on
Learning Representations (2019).

Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and
Tao Xie. 2017. Uiref: analysis of sensitive user inputs in android applications. In
Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 23-34.

Vinayshekhar Bannihatti Kumar, Roger Iyengar, Namita Nisal, Yuanyuan Feng,
Hana Habib, Peter Story, Sushain Cherivirala, Margaret Hagan, Lorrie Cranor,
Shomir Wilson, et al. 2020. Finding a choice in a haystack: Automatic extraction of
opt-out statements from privacy policy text. In Proceedings of The Web Conference
2020. 1943-1954.

European Union. 2021 (accessed Oct 1st, 2021). The EU General Data Protection
Regulation (GDPR). https://gdpr-info.eu/.

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking app behavior against app descriptions. In Proceedings of the 36th Inter-
national Conference on Software Engineering. 1025-1035.

Government of California. 2021 (accessed Oct 1st, 2021). California Consumer
Privacy Act (CCPA). https://oag.ca.gov/privacy/ccpa.

Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia
Sherman, and Arod Balissa. 2018. Privacy by designers: software developers’
privacy mindset. Empirical Software Engineering 23, 1 (2018), 259-289.

Mitra Bokaei Hosseini, Travis D. Breaux, Rocky Slavin, Jianwei Niu, and Xiaoyin
Wang. 2021. Analyzing privacy policies through syntax-driven semantic analysis
of information types. Information and Software Technology 138 (2021), 106608.
https://doi.org/10.1016/j.infsof.2021.106608

Mitra Bokaei Hosseini, Xue Qin, Xiaoyin Wang, and Jianwei Niu. 2018. Extracting
information types from android layout code using sequence to sequence learning.
In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence.
Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension.
ACM, 200-210.

Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. {SUPOR }: Precise and scalable sensitive user input
detection for android apps. In 24th {USENIX} Security Symposium ({USENIX}
Security 15). 977-992.

Vijayanta Jain, Sanonda Datta Gupta, Sepideh Ghanavati, and Sai Teja Peddinti.
2021. PriGen: Towards Automated Translation of Android Applications’ Code to
Privacy Captions. (2021).

Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 135-146.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Jan-Christoph Klie. 2018. INCEpTION: Interactive machine-assisted annotation..
In DESIRES. 105.

Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli.
2019. PathMiner: a library for mining of path-based representations of code. In
Proceedings of the 16th International Conference on Mining Software Repositories.
IEEE Press, 13-17.

Alexander LeClair, Zachary Eberhart, and Collin McMillan. 2018. Adapting neural
text classification for improved software categorization. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 461-472.
Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved
Code Summarization via a Graph Neural Network. In 28th ACM/IEEE International
Conference on Program Comprehension (ICPC’20).

Tianshi Li, Elijah B Neundorfer, Yuvraj Agarwal, and Jason I Hong. 2021. Honey-
suckle: Annotation-Guided Code Generation of In-App Privacy Notices. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 3
(2021), 1-27.

Xueging Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang Zhai, and Tao Xie.
2018. A large-scale empirical study on android runtime-permission rationale
messages. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 137-146.

114

[24

[25

[26]

&
=

[28

[29

[30

[31

[32

[33

[34

[35

[36

(38]

[39

[40

N
=

[42

[43

=
&

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai, and Tao Xie. 2018. Mining
android app descriptions for permission requirements recommendation. In 2018
IEEE 26th International Requirements Engineering Conference (RE). IEEE, 147-158.
Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A Neural Archi-
tecture for Generating Natural Language Descriptions from Source Code Changes.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 287-292.

Sayan Maitra, Bohyun Suh, and Sepideh Ghanavati. 2018. Privacy Consistency
Analyzer for Android Applications. In 2018 IEEE 5th International Workshop on
Evolving Security & Privacy Requirements Engineering (ESPRE). IEEE, 28-33.
Abraham H Mhaidli, Yixin Zou, and Florian Schaub. 2019. " We can’t live without
them!" app developers’ adoption of ad networks and their considerations of
consumer risks. In Fifteenth Symposium on Usable Privacy and Security ({SOUPS}
2019). 225-244.

Hosseini Mitra Bokaei, SudarshanzWadkar, Breaux Travis D, and Jianwei Niu.
2016. Lexical similarity of information type hypernyms, meronyms and synonyms
in privacy policies. In 2016 AAAI Fall Symposium Series (AAAI '16).

Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. 2015. Uipicker: User-input privacy identification in mobile applications.
In 24th {USENIX} Security Symposium ({USENIX} Security 15). 993-1008.
Robert C Nickerson, Upkar Varshney, and Jan Muntermann. 2013. A method for
taxonomy development and its application in information systems. European
Journal of Information Systems 22, 3 (2013), 336—359.

Stefanie Nowak and Stefan Riiger. 2010. How reliable are annotations via crowd-
sourcing: a study about inter-annotator agreement for multi-label image anno-
tation. In Proceedings of the international conference on Multimedia information
retrieval. 557-566.

Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, Irwin Reyes, Alvaro Feal, and Serge Egelman. 2019. On
the ridiculousness of notice and consent: Contradictions in app privacy policies.
(2019).

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013.
{WHYPER }: Towards Automating Risk Assessment of Mobile Applications. In
Presented as part of the 22nd { USENIX} Security Symposium ({USENIX} Security
13). 527-542.

Sai Teja Peddinti, Igor Bilogrevic, Nina Taft, Martin Pelikan, Ulfar Erlingsson,
Pauline Anthonysamy, and Giles Hogben. 2019. Reducing Permission Requests
in Mobile Apps. In Proceedings of the Internet Measurement Conference. 259-266.
Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. Autocog: Measuring the description-to-permission fidelity
in android applications. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. 1354-1365.

Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas Raza-
ghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t somebody
think of the children?” examining COPPA compliance at scale. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 63-83.

Sanae Rosen, Zhiyun Qian, and Z Morely Mao. 2013. Appprofiler: a flexible
method of exposing privacy-related behavior in android applications to end
users. In Proceedings of the third ACM conference on Data and application security
and privacy. 221-232.

Mark Rowan and Josh Dehlinger. 2014. Encouraging privacy by design concepts
with privacy policy auto-generation in eclipse (page). In Proceedings of the 2014
Workshop on Eclipse Technology eXchange. 9-14.

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. PVDetector: a detector
of privacy-policy violations for Android apps. In Mobile Software Engineering
and Systems (MOBILESoft), 2016 IEEE/ACM International Conference on. IEEE,
299-300.

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. 2016. Toward a framework for
detecting privacy policy violations in android application code. In Proceedings of
the 38th International Conference on Software Engineering. 25-36.

Pontus Stenetorp, Sampo Pyysalo, Goran Topi¢, Tomoko Ohta, Sophia Ananiadou,
and Jun’ichi Tsujii. 2012. brat: a Web-based Tool for NLP-Assisted Text Annota-
tion. In Proceedings of the Demonstrations Session at EACL 2012. Association for
Computational Linguistics, Avignon, France.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104-
3112.

Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D. Breaux,
and Jianwei Niu. 2018. GUILeak: Tracing Privacy Policy Claims on User Input
Data for Android Applications. In Proceedings of the 40th International Conference
on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Com-
puting Machinery, New York, NY, USA, 37-47. https://doi.org/10.1145/3180155.
3180196

Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain
Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zimmeck,

https://www.ftc.gov/reports/privacy-data-security-update-2016
https://www.ftc.gov/reports/privacy-data-security-update-2016
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1016/j.infsof.2021.106608
https://doi.org/10.1145/3180155.3180196
https://doi.org/10.1145/3180155.3180196

Session 3: Machine Learning and Security

[45

[46
[47

[48

[49

]

]

]

Kanthashree Mysore Sathyendra, N Cameron Russell, et al. 2016. The creation
and analysis of a website privacy policy corpus. In Proc. of the 54th Annual Meeting
of the ACL.

Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. 2016. Toward au-
tomatically generating privacy policy for android apps. IEEE Transactions on
Information Forensics and Security 12, 4 (2016), 865-880.

Mu Zhang and Heng Yin. 2016. Automatic Generation of Security-Centric De-
scriptions for Android Apps. In Android Application Security. Springer, 77-98.
Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash Pro:
Automating Privacy Policy Generation for Mobile Apps. (2021).

Sebastian Zimmeck, Rafael Goldstein, and David Baraka. 2021. PrivacyFlash
Pro: Automating Privacy Policy Generation for Mobile Apps. In 28th Network &
Distributed System Security Symposium (NDSS 2021) (NDSS 2021). Internet Society,
Online.

Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Zigi
Wang, Joel Reidenberg, N Cameron Russell, and Norman Sadeh. 2019. MAPS:
Scaling privacy compliance analysis to a million apps. Proceedings on Privacy
Enhancing Technologies 2019, 3 (2019), 66-86.

115

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Session 3: Machine Learning and Security

A APPENDIX

A.1 Examples of Privacy Notices

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Information Type

Practice Label

Purpose Label

Sample Privacy Notice

Location Processing Functionality | \o¢ o nformation for functionality purposes.
witotormation | S0, | pcverssement | e i e sharing and processing you wit
W Ioormaton | roesen, | acverusement | W ¢ sollecine, arocessng s sharing,
Account Information | Processing Other We will be processing your account information

for other purposes.

Figure A.1: Example of Sample Privacy Notices that Can be Generated with the Help of Labels Identified by PAcT .

A.2 PAcT Process and its Labels

Objective End Conditions

Subjective End Conditions

No dimension is duplicated.

They are concise.

At least one PRCS is classified under every characteristics of every dimension.

They are robust.

No new dimension was added in the last iteration.

They are comprehensive.

Every dimension is unique and not repeated.

They are extendable.

Each combination of characteristics is unique.

They are explanatory.

Figure A.2: Objective and Subjective End Conditions of Our Taxonomy Development Process [30]

Privacy Actions

!

Practice

Purpose

Processing] [Collecting] ’ Sharing l [Others] [Functi[)nality] [Advertigement] IAnaIytics] ’ Others]

Figure A.3: Hierarchical Breakdown of PAcT.

116

Session 3: Machine Learning and Security

WiSec ’22, May 16-19, 2022, San Antonio, TX, USA

Practice Labels

Purpose Labels

Processing: When code uses a sensitive information
for functionalities related to a first party or third-party
library. This practice can include several operations
including but not limited to - retrieval, consultation,
use, adaptation, or alteration.

Functionality: When a code executes a core functionality either in first-party
or third-party library, (E.g. an SMS messaging app accessing SMS).

+ authentication - when functionality is related to authentication services.
- payment - when functionality is related to payment services.

+ location - when functionality is related to location services.

Sharing: When a first-party code shares a sensitive
information with third-party code or if a third-party
method calls a sensitive API.

Advertisement: When code accesses PI for any advertisement purposes, or
when an advertisement library accesses PI.
« marketing

Collection: When sensitive information is either
explicitly saved in a persistent location off-device or
implicitly saved in JSON objects, or Maps, or returned
beyond 3 hops that indicates further use of PI without
calling permission-requiring API again.

Analytics: When code accesses personal information for analyzing
application’s behavior, or for analyzing/tracking the user’s behavior.
« user experience

+ crash analytics

Other: When the use of PI is not clear.

Other: When the purpose is not clear.

Figure A.4: Definitions of Practice and Purpose labels, and sub-labels.

A.3 AST Paths

Figure A.5 which shows a PRCS in (a), part of its AST in (b), and selective extracted AST paths in (c). In the tree, (Figure A.5(b)), the terminal
nodes are shown in rectangular boxes whereas non-terminal nodes are shown in oval. We also highlight two AST paths in the tree, that are
also shown in Figure A.5(c), with blue and red nodes. Each AST path consists of nodes that occur when traversing from one terminal node to
another. For example, the first AST path (highlighted in blue in the tree), starts from the terminal node boolean, followed by PrimitiveType,
MethodDeclaration, and SimpleName non-terminal nodes, and ends at gpsEnabled terminal node. In Figure A.5(c), each path is separated
by a comma and consists of 3 tokens separated by a space, where each token represents one of the terminal nodes or a concatenation of the

non-terminal nodes in the path.

(public static boolean gpsEnabled()]{
java.util.List v@ = com.foocam.common.android.location
.GeolLocationManager.locationManager
.getProviders(1);
boolean v2_3 = ve@.iterator();
while (v2_3.hasNext()) {
com.foocam.common.android.util.DLog.Vv(
new StringBuilder("GPS Loction Provider list contains: ")
.append(((String) v2_3.next())).toString());

¥

return v@.contains(gps);

member (MethodDeclaration)
type(PrimitiveType)

type = ‘BOOLEAN’

|

argument (Modifier)

name (SimpleName)

keyword=‘PUBLIC’

| |identifier = ‘gpsEnabled’

(a) code sample

(b) Abstract Syntax Tree (AST)

boolean PrimitiveType|MethodDeclaration|SimpleName gps|enabled,
public Modifier|MethodDeclaration|SimpleName gps|enabled,
a SimpleName|TypeDeclaration|MethodDeclaration|Modifier public,
public Modifier|MethodDeclaration|PrimitiveType boolean,
a SimpleName|TypeDeclaration|MethodDeclaration|Modifier static,

(c) AST Paths

Figure A.5: Code Segment, Abstract Syntax Tree, and AST Paths

117

Session 3: Machine Learning and Security

WiSec

A.4 Overview of Privacy Behavior Detection Approach

2]
o l Ending Conditions o 1

Q =) S0 2 —) L /3
. PRCS
Initial Label Set

% g Updated tabel sex
Label Set

€@ Annotate PRCS €) Analyze Labeis and Evaluate Ending Conditions

Final Label Set

Developing Privacy Action Taxonomy (PAcT)

© update Labels and Repeat OR Halt

APK Static PRCS
Dataset Files Analysis Embedding
Tool

o Download 10, 000 APK Files e Extract 100,000 PRCS e Train using Gensim

4

Creating PRCS path embedding

2
-

’22, May 16-19, 2022, San Antonio, TX, USA

_ o 0 20 O oo
E ' —]; r"x—pé‘E x&%— [+P8
Androzoo APK PDroid PRCS Codr Annotators Annotated Dataset of
Dataset Files Privacy Actions (ADPAC)
@ vownload 15, 000 APK Files © Extract 180,000 PRCS © Annotate 5,200 PRCS using Codr
I Developing ADPAc
| =8| %

o, @eo|

EAL)

; ASTPathsand RNN Model | sy /\j

N Binary Datasets BinaryLabels incl. PRCS

s % L2} rRQL Embedding Metric Scores and

Annotated Dataset of Confusion Matrices for RQ 1
Privacy Actions {ADPAc) - % :"6.

0 (5 ., 0 N
% ¥ | asteathsand RN Mode)|
28 Binary Labels incl. PRCS
Binary Datasets

Embedding Metric Scores and
RQ2

Confusion Matrices for RQ2

@ Create & Binary Datasets for RQ1 @) Filter and Create 24 Binary Datasets for RQ 2 € Extract AST Paths and Prepare for Training

@ Train Models and Report Results

Running experiments to answer RQ1 and RQ2

create PRCS path embedding, and (iv) conduct experiments.

Figure A.6: An overview of steps for detecting privacy behavior in code segments: (i) develop PAcT, (ii) develop ADPAcC, (iii)

118

	Abstract
	1 Introduction
	2 Related Work
	3 Privacy Action Taxonomy (PAcT)
	4 Dataset Preparation
	5 Experiment Design
	5.1 Research Questions
	5.2 Methodology

	6 Experiment Results
	6.1 RQ1: What is the baseline accuracy to identify each Practice and Purpose labels?
	6.2 RQ2: Does increasing the number of hops impact the performance of the model?

	7 Conclusion and Future Work
	References
	A Appendix
	A.1 Examples of Privacy Notices
	A.2 PAcT Process and its Labels
	A.3 AST Paths
	A.4 Overview of Privacy Behavior Detection Approach

