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TIME DISCRETIZATIONS OF
WASSERSTEIN-HAMILTONIAN FLOWS

JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

ABSTRACT. We study discretizations of Hamiltonian systems on the proba-
bility density manifold equipped with the L2?-Wasserstein metric. Based on
discrete optimal transport theory, several Hamiltonian systems on a graph
(lattice) with different weights are derived, which can be viewed as spatial
discretizations of the original Hamiltonian systems. We prove consistency of
these discretizations. Furthermore, by regularizing the system using the Fisher
information, we deduce an explicit lower bound for the density function, which
guarantees that symplectic schemes can be used to discretize in time. More-
over, we show desirable long time behavior of these symplectic schemes, and
demonstrate their performance on several numerical examples. Finally, we
compare the present approach with the standard viscosity methodology.

1. INTRODUCTION

In recent years, there has been a lot of interest in studying Hamiltonian systems
defined on the probability space endowed with the L2-Wasserstein metric, also
known as Wasserstein manifold, and several authors have been concerned with
their connections to some well-known partial differential equations (PDEs); e.g.,
see [1,21,35,45].

Our present study is influenced by the point of view in [13], where the authors
showed that the push-forward density of a classical Hamiltonian vector field in
phase space is a Hamiltonian flow on the Wasserstein manifold. To be more precise,
consider a Hamiltonian system subject to initial condition (g, v(0, gp)):

2 ota(ta0)) = 2L (it a(t,00)). (b 0)).

L) 4 %
%'U(t, Q(t7 QO)) = _a—q (U<t7 Q(tv QO))7 Q(t7 QO))a

where the position q(t, qo) € R?, the conjugate momenta v(t, q(t,q)) € RY, and H
is the real-valued Hamiltonian H (v, q) = 3|v|>+F(¢) with a smooth potential F'(q).
Here, |v|? = v - v. If the initial position qq is a random vector having probability
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1020 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

density ©°, it can be shown that the position q(t,qo), following (1.1), is also a
random vector whose density p(t, q) satisfies

%p(t, q) +V. (%(U(t7Q)vQ)p(t7q)) = 0’

(1.2)
%v(t,q) + Vou(t,q) - v(t,q) + V- %—Zl(v(t, q),q) =0,

where V is the gradient operator with respect to ¢. In other words, viewing (1.1)
as a push-forward map, it transforms p° to p(t, q) according to (1.2). When v(t, q)
has a primitive function S(¢,q), meaning v(t,q) = V.S(t, q), the second equation in
(1.2) can be written as a Hamilton—Jacobi equation

%S(u q) + H(Vs(ty Q)v Q) = C(t)v

where C(t) is an arbitrary function independent of ¢. Taking C(t) = 0, (1.2)
becomes

(1.3) %p(t,Q) +V - (VS(t,q)p(t,q)) =0,

0
%9(15, q) + H(VS(t,q),q) =0,

which can be viewed as a Hamiltonian flow on the Wasserstein manifold [13].
Inspired by the relationship between (1.1) and (1.3), in this paper we focus on
the following coupled system of PDEs,

%p(t,q) +V. (%H (VS(t,q),q)p(t,q)) =0,

(%

(1.4) P
aS(t, q)+ H(VS(t,q),q) =0.
This can be rewritten as
0 1)
ap(tv(p = 5S(t q)H(P(t, ')’S(t’ ))7
57 5(0.0) = = H(p(t, ). 5(0.).

6 é

where 550 55 are functional derivatives, and

Ho.5) = [ 3I9S@Psda+ [ Flaplada

with |[VS|? = VS - VS. This viewpoint explains that (1.4) is a Wasserstein—
Hamiltonian system as defined in [13].

The formulation (1.4) is remarkably powerful and general. Indeed, with different
choices of the Hamiltonian H, the Wasserstein—Hamiltonian system (1.4) leads
to differential equations arising in many different applications. For example, by
taking H (v, q) = 3|v|?, one obtains the well-known geodesic equations between two
densities u° and p' on the Wasserstein manifold:

(1.5) %p(t’Q) +V - (p(t, ) VS(t,q)) =0,

) 1 ,
as(tﬂﬁ + §’VS(t7Q)’ - 07
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1021

subject to boundary conditions p(0) = u% p(1) = u'. In the seminal paper [2], it
has been proven that the solution of (1.5) is a minimizer of the following variational
problem, commonly known as the Benamou-Brenier formula:

1
e t) = int { [ (0(0) 00}t
(1.6) vi®) *Jo

0

i)+ V- (p(t, vt 0)) = 0,p(0) = 1, p(1) = ul},
where (v(t),v(t)) ) = fRd lv(t,q)?p(t,q)dq. As shown in [2], the optimal
value gy (1", ul) is the L2-Wasserstein distance between p° and ut.

Similarly, a problem known as the Schrodinger Bridge Problem can be

stated as

1 2

. 1 h
it { [ 500,000 + g Lot
(1.7) *®*>Jo

0

5iP(Ha) + V- (p(t, vt q)) = 0,p(0) = 1, p(1) = ul},
where i > 0 is the Planck constant and I(p) = (Vlog(p), Vlog(p)), is
the Fisher information. The minimizer of (1.7) satisfies the Wasserstein—
Hamiltonian system (1.4) with the energy H(v,p) = %fRd lv(q)1?p(q)dg —
%2[ (p) in density space. Although the Schrédinger Bridge problem is nearly
100 years old, it has recently received attention in control theory and ma-
chine learning, see [32,40,44].

If we change the sign of the Fisher information in (1.7), we get

11 h2
L | 500003, = St

gt (t.z) + V- (p(t,z)v(t,2)) = 0,p(0) = u°, p(1) = Ml},

which is the variational formula that Nelson used to derive the Schrodinger
equation, [38]. Its reformulation as Wasserstein—Hamiltonian system be-
comes the well-known Madelung system [37].

Remark 1.1. The Benamou-Brenier formula (1.6) has been extensively used
to study Wasserstein gradient flows; e.g., see [30,39,45,46]. However, much
less is known for Wasserstein—Hamiltonian flows, hence for solutions of (1.4)
for given initial values. The problem is subtle, mainly because—depending
on the initial condition—the solution of (1.4) may develop singularities.
Moreover, there are several important properties of the Wasserstein—Hamil-
tonian flow, such as preservation of symplectic structure and other quanti-
ties, which make the numerical approximation of Wasserstein-Hamiltonian
flows quite challenging. These considerations have motivated us to carry
out the present numerical study.
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1022 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

The Wasserstein-Hamiltonian system we investigate in this work may
find potential connections to two other active research fields, namely mean-
field control and mean-field games, in which various Hamiltonian structures
on the Wasserstein manifold are of interest. For instance, the first-order
necessary optimality conditions for optimal control problems in multi-agent
systems analysis [6-8,42], as well as in machine learning problems [19, 27],
often lead to Hamiltonian flows on the density space. Besides, the Hamilton—
Jacobi equation in Wasserstein space, the second equation in (1.4), plays a
central role in mean-field control [5,11,28], mean-field games [9,10,31], and
also in the study of the so-called “master equation” [4,23] and in problems
arising from fluid mechanics [22].

To the best of our knowledge, prior to our present work, there are no
numerical analysis results on the full (i.e., space and time) discretization of
Wasserstein—-Hamiltonian systems. The way we approach this problem is
by first using discrete optimal transport techniques to obtain Wasserstein—
Hamiltonian systems defined on general graphs, and view these as spatial
discretizations of the original Wasserstein-Hamiltonian system. We explic-
itly show the consistency of the semi-discretizations, and derive lower bounds
for the probability density function on different graphs. Then, we com-
bine ideas from discrete optimal transport and symplectic integration to
construct fully discrete numerical schemes for the solution of Wasserstein—
Hamiltonian systems.

We would like to emphasize the crucial role of the Fisher information
in our study. The Fisher information is widely used in many areas in sta-
tistics, physics and biology (see e.g. [20]). It appears naturally in some
Wasserstein-Hamiltonian systems, such as (1.7), and it has recently been
used as a regularization term in computations of optimal transport and
Wasserstein gradient flows (see [33,34] and references therein). In this pa-
per, we advocate the use of Fisher information as a regularization technique
to construct symplectic schemes for Wasserstein—-Hamiltonian systems. Our
analysis, as presented in Theorem 4.1, indicates its clear benefits in numer-
ical computations. Not only the Fisher information helps to maintain the
positivity of the density function, but it is also conducive to time reversible
and gauge invariant schemes. Moreover, the resulting regularized schemes
preserve mass and symplectic structure, and they almost preserve energy
for very long times (of O(77"), where r is the order of the numerical scheme
and 7 is the time step size). In addition, the proposed schemes can be
used to solve the two-point boundary value optimal transport problem; see
(1.6). Indeed, by combining a multiple shooting method with the proposed
structure-preserving numerical methods for (1.4), in [17] we construct a
continuation multiple shooting method to solve the optimal transport prob-
lem. We want to mention that other regularization techniques, like entropic
regularization, have been used in numerical methods for optimal transport
problems. For more information, we refer to [3,41,43| and references therein.
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This paper is organized as follows. In Section 2, we introduce the Wasser-
stein—Hamiltonian vector field on graphs and study its properties. In Section
3, we give an explicit lower bound of the probability density for the discrete
Wasserstein—Hamiltonian flow on different graphs; the proofs of the tech-
nical results in this section are in the Appendix. Section 4 is devoted to
constructing and analyzing time discretizations, and in particular we de-
velop and study symplectic schemes. To compare with the results we obtain
using Fisher information as regularization device, in this Section 4 we also
investigate regularized schemes obtained by adding a viscosity term; here
(see e.g. [16]), this means adding a small multiple of the discrete Laplacian
operator to the Hamilton-Jacobi equation (1.4). Several numerical exam-
ples are given in Section 5, and in Section 6 we give a limited discussion of
the the limiting behavior as the Fisher regularization parameter goes to 0.

2. WASSERSTEIN-HAMILTONIAN FLOW ON A FINITE GRAPH

Our goal in this section is three-fold: to introduce the Wasserstein—
Hamiltonian flow on a graph, to recognize it as a consistent spatial dis-
cretization of the PDE (1.4), and to show relevant properties of the asso-
ciated flow. The latter effort is a prelude to Section 4 where also the time
discretization is examined.

2.1. Wasserstein—Hamiltonian flows via discrete optimal transport.
Throughout this paper, we will consider an undirected, connected, graph G,
with no self loops or multiple edges (see e.g. [25] for more details on the
graph theory). That is, G = (V, E,Q), where the node set is V = {a;,1 <
i < N}, the edge set is E, with the corresponding weights Q = {wjl};\fl:l
satisfying wj = wy; > 0 if there is an edge between a; and q;, and wj; = wy; =
0 otherwise. Below, we will write (¢, ) € E to denote the edge in E between
the vertices a; and a;, and finally we let N (i) = {a; € V : (i,j) € E} be the
set of neighbors of the node a;.
Let us denote the set of discrete probabilities on the graph by P(G):

N
P(G) = {(pz),f\il : Zpi =1,p; >0, fora; € V},
i=1

and P,(G) is its interior (i.e., all p; > 0 for a; € V).

To describe the discrete Lagrange functional and Hamiltonian flow on the
graph, we introduce the following notation. A vector field v on Fisa N x N
skew-symmetric matrix, and a weighted inner product of two vector fields
u, v is defined by

1
(u, v)g(p) = 5 Z w;iv1051(p),
(4,Her

where the coefficient 1/2 is taken because every edge in G is counted twice.
The density dependent weight 6;;(p) on the edge (i,j) € E was introduced
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in [12,14,36] to capture the long time dynamics for Fokker-Planck equations
on graphs and the dispersion relationship for the Schrodinger equation on
graphs. By comparison, we denote the standard I-inner product of vectors
u,v by (u,v) = Z,f\; 1 uv;. We introduce the discrete divergence of the flux
function pv as

divZ(pv) Z /Wi Vij 01,

JEN()

Accordingly, the gradient operator Vg on the graph is given through the
following dual formulation

—(divg(pv), ®) = (v, Va@)(y).

where @ is a function defined on every node of the graph. Clearly, Vg maps
a node defined function to a vector field on the edges. For convenience, on
graphs we denote

p(t) = (pi(1)ily, v(t) = (vij(t))}—1, for t > 0.
Given real-valued functions V; on each node a; and W;;, with W;; = W;;,
on each edge (i,7) € F, we define a linear potential functional ¥V and an
interaction potential functional YW on G by

N 1 N
= ZVim, Wip) =5 Z Wijpip;-
i=1 2,7=1
The discrete Fisher information is defined by

N
1 _ ~
(2.1) Ip) =5 > @illog(pi) —log(p;)*0i;(p)-
1=1 jEN(3)
Remark 2.1. Note that in (2.1), we are allowing use of edge weights w and

probability weights 5, different from w and 6; this added flexibility can be
exploited to obtain more robust space discretizations than those obtained
when choosing W = w and 0 = 0, as it was done in [12].

For a given parameter 8 > 0, we define the discrete Lagrangian by

Tr1
(22) L(p,v) = /0 |50 0o = V(o) = W(p(t) = BI(p(1)) | dt

where T' > 0, p(t) € Po(G),t € [0,T], is subject to the constraints p(0) =
0, p(1) = pt, and
d

’C’Zi ) 4 div%, (p(t)v(t)) = 0.

The goal is to study the critical point of L(p,v) subject to the constraint
(2.3). Here p,v in £ means p(t),v(t),t € [0, T].

As shown in [12], the critical point (p,v) of £ can be written as v =
VoS = (, fa51(S; — Sl))(j,l)eE for some function S on V. Consequently, the

(2.3)
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1025

minimization problem leads to the following Wasserstein—-Hamiltonian flow
on the cotangent bundle of P(G):

d/)éit) + Y wi(S(t) = Si(1)0i5(p(t) = 0,
FEN(4)
oa) Tl %%) i (8it) = 5,0 PUA) 4 gETAD) L,

N
+ > Wijp;(t) =0.
j=1

With respect to the variables p and S, we can rewrite (2.4) as a Hamiltonian

system
dp(t) 0

(2.5) e @;f@(m S(1)),
T = 5. 5(0),

where the Hamiltonian H(p, S) = K(p, S) + F(p), with
1
(26)  K(p.5) = 5(VaS, VoS)a and Flp) = BI(p) + V(o) + W)

Particularly, if T =1, 8 = 0, V = 0, and W = 0, the infimum of L(p,v)
induces the Wasserstein metric on the graph, which is a discrete version of
the Benamou-Brenier formula:

W(po,pl) = inf{(/01<7)(t),’u(t)>9(p(t))dt>% :

v(t)
dp(t)

5 + divg (p(t)v(t)) =0, p(0) =, p(1) = Nl}-

Example 2.1 illustrates the importance of adding the Fisher information
in order to regularize the discrete Hamiltonian, so as to avoid singularities
when solving the initial value problem (2.4). (Here, and later, the word
singularity refers to either the density becoming negative, or S blowing up,
at a finite time.)

Example 2.1. Consider a 2-point graph G. Let pi(0),p2(0) > 0, let
S1(0), .S2(0) be the corresponding initial values on the two nodes, and take
the weights to be constant (e.g., take them to be 1). By choosing 012(p) =
021(p) = 2322 = 1 (2.4) becomes

(2.7)
dp;t(t) = —%(52(75) — S1(t)), dpjt(t) = —%(Sl(t) — So(t)),
dS;t(t) _ —i|52(t) — S (D2 = p(0), dS;t(t) _ —i|81(t) ~S5(8)[2 — palt).
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1026 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Combining the above equations and using p;(t) + p2(t) = 1, we get

d(p1 (t)d; pa(t)) —(Sa(t) — S1(t)),

d(sl(t)d; Sa(t) _ pa(t) — p1(D).

The solution of this system may may give negative values for p; and py at
a finite time. Indeed, we have that pi(t) — pa2(t) = (p1(0) — p2(0)) cos(t) +
(51(0) — S2(0)) sin(t). Then we obtain explicit expressions for p; and ps as

p1(t) = 5+ 5 €os(t)(p1(0) — pa(0)) + 5 sin(t)($1(0) — Sa(0).

pa(t) = 5+ 3 €os(t) (p2(0) — p1(0)) + 5 Sin(t) ($:(0) — $1(0)).

It is clear that either p; or ps can exit the boundary of P(G), i,e, p1 < 0 or
p2 < 0, at a finite time if the initial condition satisfies |S1(0) — S2(0)| > 1.
When taking S1(0) = S2(0), the solution can be given in the following cases,

p1(8) = palt) = 5, i p2(0) = pa(0),
pi(t) >0, pz()>0 if [p1(0) — p2(0)] <1,
p1(nm) =0, or pa(nm) =0, if [p1(0) — p2(0)] = 1.
From this example, we see that a smooth potential in (2.4) on P(G) can
lead to the development of a singularity of (p,S) at a finite time. Let T

be the first time when a singularity occurs, if any. That is, if it is finite,
T = Tp”‘O go > 0 is the first time such that

< im S;(t) =
Jm pi(t) <0, or i §i(t) = oo

for some index i. In the rest of this article, we mainly consider the initial
value problem of (2.4) before T™*, since several properties of (2.4), including
the local existence of a unique solution, can be established.

Proposition 2.1. For any u° € P,(G), S® on V and B > 0, there exists
T* > 0 such that (2.4) has a unique solution and it satisfies properties (i)—
(vi) below.

(i) Mass is conserved, i.e.: before time T,

N N
Sl =Y =1
i=1 i=1

(ii) Energy is conserved, i.e.: before time T,

H(p(t), S(t)) = H(u’, 5°).

(iii) The solution is time reversible in the following sense: if (p(t),S(t))
is the solution of (2.4), then (p(—t),—S(—t)) also solves (2.4).
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1027

(iv) The solution is time transverse invariant with respect to the linear
potential: if V¢ =V + «, then S* = S + at is the solution of (2.4)
with potential V<.

(v) If a time invariant p* € Po(G) and S*(t) = —vt form an interior
stationary solution of (2.4), then p* is the critical point of

N
1
p* cargminf(p,S) and v="H(p")+= > Wipip;,
2 <
PEPL(G) 1,7=1
where H(p*) = H(p*, —vt) is independent of the time t.
(vi) Assuming that f > 0 and 0;;(p) = 0 only if p; = p; = 0, then
there exists a compact set B C P,(G) such that p(t) € B for all
t €1[0,+00).

Proof. The proof of properties (i)—(v) is the same (except for the use of 6;;
instead of 5”) as that of [12, Theorem 6], thus we omit it. We prove (vi).
Since the coefficient of (2.4) is locally Lipschitz and p(0) = % € P,(G), it
is not difficult to obtain the local existence of a unique solution (p(t), S(t))
in [0,7%*), where T* > 0 is the largest time for which (p(¢),S(t)) exists
and p(t) € Po(G). Thus, it suffices to show that the local solution can
be extended to T* = oo, i.e., to show that the boundary is a repeller for
p(t). More precisely, we show that for any given u° € P,(G), there exists a
compact set B C P,(G) such that T* = +o00 and p(t) € B.

We define B as follows:
(28)  B={pePu(G)|BI(p) <H(u" ") — min V(o) +W(p)}.

pEP(G)

Since H (1", S°) < oo, the set B is nonempty. Due to the fact that P(G)
is a compact subset of RY, to show that B is a compact set, it suffices to
prove that I(p) is positive infinity on the boundary of P(G). Assume that
this is not true. It means that there exists a constant M > 0, such that
BI(p) < M if min;—; . np; = 0. This implies that

N
M2 03 ST Gyon(or) —loa(0) B ()

=1 jEN(7)

Consequently, if we have that p; = 0 for some ¢ and that for j € N (i),
B (log(ps) —log(p;))6i;(p) < 2M,

which yields 60;;(p) = 0 for any j € N(4). Since G is connected and V is
a finite set, we get that min;—; _np; = 0, which leads to a contradiction.
Therefore, B is a compact set.

Finally, we show that T* = +oo and p(t) € B for ¢t € [0,+00). The
energy conservation (i) yields H(p(t),S(t)) = H(u°, SY). Denoting M =

Licensed to Georgia Inst of Tech. Prepared on Tue Jul 19 14:22:54 EDT 2022 for download from IP 143.215.16.70.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1028 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

H (0, %) — min ey [V(p) + W(p)], we have

BL(p(t)) = H(p(t),S(t)) — %(Vcs(t), VaS(t)apw) — V(e) +W(p(t)))

< H(p", %) — min [V(p) + W(p)] = M.

Thus p(t) € B C Po(G) for t € [0, +00). O

From Property (vi) in Proposition 2.1, it is clear that the Fisher in-
formation term helps maintain positivity of the density function in the
Wasserstein—Hamiltonian flow. This fact motivated us to regularize the
discretized Wasserstein—Hamiltonian system (2.4) by adding the Fisher in-
formation, and the details are discussed in Sec:gion 4.2.

There are many possible choices for 8;; and 0;;, as long as we require that
52-]- (p) = 0 only if p; = p; = 0. Indeed, this property is needed in order to
get the lower bound estimate on the density in Section 3. For instance, the
probability weight can be chosen as one of the following three options

(2.9) 05 (p) = pi, if S; > Si,
Ay PitPi
(2'10) eij(p) = 92] (P) = 9
L Pi — Py
(2.11) 0i;(p) = ’

~ log(pi) —log(p;)

Here 9% is called the upwind weight (see e.g. [14] for more details). When
the graph is a lattice, 05 corresponds to an upwind numerical scheme for
hyperbolic PDEs. Recently, it has also been applied to study the stochastic
Hamiltonian process on a finite graph, [18]. HiA} is simply the average weight
(see e.g. [12]), and QZ-LJ- is called the logarithmic weight (see e.g. [36]), both
of which have been used in the study of the continuous time Markov chain
as gradient flow of the discrete entropy.

Remark 2.2. The above results hold even when G is not connected, in the
following sense. Consider the decomposition of GG into disjoint connected
components, i.e. G = Ué-zlGj. Then on each subgraph G; = (VI EJ QJ),
the properties (i)—(vi) in Proposition 2.1 also hold, with

S opilt)y= > u.
a; VI a; VI

2.2. Spatial consistency for Wasserstein—Hamiltonian flows. In this
subsection, we show that (2.4) is a spatially consistent discretization for the
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1029

following system of PDEs on a domain M C R :
0

0 1 9 o
(2.12) —S(t,z) + §|V5(t,a:)| + Bép(t,x)

ot
+ / W(z,y)p(t, y)dy = 0.
M

Z(p(t,-)) + V(z)

Next, introduce the Hamiltonian

H(p,5) = /M VS (@) Po(x)de + F(p),

F(p) = /M V(@)p(x)dz + % /M /M W(z,y)p(x)p(y)dzdy + BL(p),

T(p) = /M 1V log(p(2)) o) dz.

Then, Equation (2.12) can be rewritten as a Wasserstein—Hamiltonian flow,

that is,
B 6 =
g5 0) = —5 et ), 8(2 )

Here %, % are functional derivatives (see e.g. [24]). We would like to

mention that in some cases there is a time 7™ > 0 such that a unique
smooth solution (p, S) of (2.12) exists for ¢ € [0,7™). For example, for the
geodesic equation (5 = 0), the local existence of a unique smooth solution
can be obtained as follows. By the characteristic line method (see e.g. [29,
section 2.2]), one can get the classical solution S € C*°([0,T*); R?) for the
Hamilton—Jacobi equation; then, using the fact that the continuity equation
is linear and smoothness of S, one can also get p € C*([0,T*); R%). For
the local existence result of a smooth solution for the Schrodinger equation,
B > 0, we refer to [47] and references therein. Finally, for more properties
of Wasserstein—-Hamiltonian flow, we refer to [1,6,7,12]. The Hamiltonian
structure is also helpful for studying time periodic solutions and the long
time behavior (e.g., see [15] in potential mean field games).

To illustrate the spatial consistency of (2.4), we consider a lattice graph G
which is a Cartesian product of d 1-dimensional lattices: G = G1 x -+ x Gy
with Gy, = (Vi, Ei), k = 1,. .., d. For simplicity, let us assume that M = R?,
and there is no interaction potential (W = 0) in both (2.4) and (2.12).
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1030 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

We denote h the mesh size of the lattice, w;; = h_12 for (i,5) € E, T >
0 is a constant representing the length of the time interval. We also let
i = (1,49, - ,iq) represents a point (i) in R It can be seen that its
neighboring set N (i) = U¢_ N (i) with

Ne(@) = {01, k1, Jk ks, 50a) @ (iks Jk) € By}

We call (2.4) a consistent numerical scheme for (2.12) (equivalently, a con-
sistent discretization of (2.12)) if for any smooth functions

(p.S) € C>([0,T7; (0,1)%) x ([0, T]; R),

it holds that for any ¢ € [0,7] and = € R?,

9 plt,2) + V- (plt, )V S () — 20
— > wii(S5(t) — Si(1)0i5(p(t)) — 0,
JEN(3)
%S(t, x) + %WS(t, z)|? + B(Sp(j x)I(p(t, ) + V()
dsi(t) 1 09, (p(t)) L OI(p(1))
- 5j§i)wij<si<t> SO g = A = Vi 0,

as h — 0 and (i) — z. Here we use the notation p;(t) = p(t, z(j)), S;(t) =
S(t,2(5)), p(t) = (pj(t)jev, S(t) = (S;(t))jev, and V; = V(x(j)).

For the probability weights 6;;(p) and 6;;(p) in (2.4), we assume that

0i5(p) = O(pi, pj), 0ij(p) = Olpi, p;),

where © and © are symmetric and belong to C2((0,1) x (0,1)) N C([0,1] x
[0,1]). In order to show the spatial consistency of (2.4), we further assume
that

00(z,x) 1 B

As customary, to show consistency of the scheme in Proposition 2.2, we will
tacitly assume that p and S are sufficiently smooth.
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1031
Proposition 2.2. The system (2.4) with 6 and 0 being selected to satisfy
(2.13) is a consistent finite difference scheme for (2.12).

Proof. Let ey, ..., eq, be the standard unit vectors. The lattice graph in the
ey direction contains two points near i, i.e., 2:(i) + exh and x(7) — exh, which
we label T and i~ for short. By Taylor expansion at i in every e}, direction,
we obtain

=2 % (Si(t) = Syt ()8 (p()) + D % (Si(t) = 8= (1)) B3- (p(t))
k

2
22%(_85(15;1;('))11 ;gf( ())h2+0(h3))
k

8$k
90ii(p(t)) Opi(t)
Ip; Oz

2
+§kj%(§< i)~ g (D) + O0H)

h+ O(h2)>

x@m» ot >>8pz<>h+o<h2>>

(t) oxy,
B 828 85 -\ 98ii(p(t)) Opi(t)
where the summation is over k = 1,--- | d. Similarly,
1 90:5(p(t))
- = wij (Si(t) — 8;(t))*—L—=+
2 3ENG) o
e 20 (p(1)
= —5 ; m(sﬁ(’f) - Sz(t)) dp;

- %; %(Si—(t) - Si(t))Qagii_a—x(m
1

== (S—i(t, 2(i))h + O(h2)>2 (%{f@) +O(h))
k 7
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1032 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

and

200+ (p(t))
Ipi

-8% %| log(pi- (1)) — log(pi(t))IQMrTW
- 7

s A 3 galogtois () = log(p(0)

=283 1 (108(pu(1) ~ 108+ (1)) st (1)
k 7
=28 % 7 (loa(p0) ~ ot () - i ((0)
01 i 903 (p
——ZWZ\ Oifk )
2
- ﬁz )+ O(h).

Thus, if 865;(1. 2 — d%;(zp) =1 0ii(p) = 0i(p) = pi, we have

JEN(i)
= WO | g (St (i)ott, 2() + Oh),
45(o(0) | %j 3 wulsitt) =5 P 1 g7 4 via )
_ w + 2 IVS (@) + 6;5—;(;)(@ )) + V(z(i)) + O(h).

Taking the Taylor expansion of p(t,z) and S(t,x) at x(i) completes the
proof. O

As we show next, even if © and © are not sufficiently regular, spatial
consistency still holds as long as (2.13) holds. For example, one can take

6 as the upwind weight, QZ(p) = pi, if S5 > S, f satisfies (2.13) and © €
C2((0,1) x (0,1)) N C([0,1] x [0,1]) is symmetric.

Proposition 2.3. Assume that 0 = 0V, and that 0 satisfies (2.13). Then
(2.4) with 8V and 6 is a consistent spatial discretization of (2.12).

Proof. We use the same notation as in the proof of Proposition 2.2. For
simplicity, we assume that S(t,z(i) + exh) < S(t,z(i)) < S(t,z(i) — exh).
Similarly, we can show the same results for other possible configurations.
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1033

By Taylor expansion, we obtain

— Z wij(Sj(t) - Sz(t))em(p(t))

JEN(3)

(1) = 8- ()8 0 (9) + 3 73 (51(0) = Si- (18- (o)
k

-]
=

-y %(5@,95@)) — S(t,x(i) + exh))pi-+ (t)

33 (St 2(0) = S(t,2(0) — exh))pilt)

2
o ())h_%g_f( 2(0)h + O(2)) pis (1)

1,08 10%S 2
;ﬁ(a—xk( ())h——a—xk( x(i))h* + O(h*)) pi(t)

==V - (p(t,z(i))VS(t,x(i))) + O(h)

and

Based on the above estimates and the calculation of —f M(f)) in the proof
of Proposition 2.2, we have that

L) 5™ s (S5(0) — Si0)6us o)
JEN(7)
= WD) | g (st (0)olt. () + O(h),
dS(t,z(i)) 1 90i;(p(t)) | ,0I(p(t)) ,
— ="+ 53'6%2(1) wig (Si(t) = 8j(8))* =5 == 4 B = + V(@ (i)
AS(t, 2(i)) oI

1
=0+ / : h).
ST 4 SV + B s ol a(0) + V(a() + O)
Taking the Taylor expansion of p(t,x) and S(¢,z) at x(i) completes the
proof. 0
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1034 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Remark 2.3. Let us take § = % > (0 in (2.4), where h is the Planck constant
(see e.g. [37,38]) . By introducing the discrete Madelung transformation

(2.14) u(t) = (ui(t) )y = (We Sh(t)>j:1

(2.4) can be rewritten as

du h?
215) P T Gu(e) sV, gt Zwﬂruz ,

where the Laplacian on the graph (see e.g. [12]) is defined by

(Agu); = —uj(ﬁ[ > wi(Im(log(uy)) — Im(log(w)))d;
71 1eNG)
+ Z cszl(Re(log(uj)) —Re(log(ul)))é}l]
(2.16) Y
- + Z wji| Im(log(u;) — log(u ‘288]1
leN(y)

~ 0,
+ Z w;ji| Re(log(u;) — log(u |2 ﬂ)

lEN(3)
When the graph is a lattice graph of a bounded domain, (2.15) becomes
a nonlinear spatial approximation of the nonlinear Schrédinger equation
2

0
hM—u(t,x) = -

pr u(t, ) + u(t,x)V(x) + u(t, x) /Rd W(z, y)|u(t,y)|>dy.

This viewpoint may give advantages insofar as the preservation of desir-
able properties, like dispersion relationship, Hamiltonian structure and time
reversibility.

Remark 2.4. Taking 8 = 0, W = 0, the Wasserstein-Hamiltonian flow (2.4)

also has a close relationship to the linear Vlasov equation

%f(t,a:,v) +v- fo(t,x,v) - VV(':B) ’ va(t,x,v) = 07

which is the governing equation for the joint density of the particle system

(2.17)

d d
—X(t,z) =v(t, X(t —
SX(6) = olt, X(4,0),
with random initial positions and vector field. More precisely, if the initial
distribution f(0,z,v) is p(0,2)dy(0,2)(v), the joint density f(¢,z,v) enjoys
the form p(t, 2)d,(; ) (v) before T when the characteristic lines first intersect
(see e.g. [29]). By [12, section 3|, the joint distribution f(¢,z,v) (¢t < T%)

v(t, X (t,x)) = -VV(X(t,x))
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1035
can be characterized by the Wasserstein-Hamiltonian flow,

(2.18) %P(t z) 4+ V- (p(t,z)VS(t,x)) =0,

0 1 2 _
55 (t:2) + 5| VS(t2)? = ~V(2) + C(),

where C(t) is a constant function independent of x. Therefore, (2.4) can be
viewed as a special discretization of (2.17) up to a constant function C(t).

3. LOWER BOUND ESTIMATE OF THE DENSITY

In this section, we give an explicit lower bound for the density function
in (2.4) with the logarithmic weight 6; ij = 0L defined in (2.11). We take two
basic finite graph structures to illustrate the derivation of the lower bound.
We believe that similar techniques can also be used, with appropriate mod-
ifications, to obtain the lower bounds for more general graphs and different
probability weights.

To introduce the type of graphs we consider we need Definition 3.1.

Definition 3.1. Given a graph G = (V, E, ), we call a; € V' a boundary
node if it has only one edge connecting it to other nodes in V. We call
boundary set the set of all boundary nodes, and denote it as V.

3.1. Lower bound for graph with empty boundary set. Here, our goal
is to analyze the properties of the extreme point of the Fisher information
(2.1) over P,(G) on a graph G = (V, E,Q2) whose edge set satisfies
(i,j)e E, if j=i+1 or j=i—1,
(I,j)e E, if 7j=2 or j=N,
(N,j)eE, if j=N-1 or j=1.
To illustrate, an instance of the graph we consider is that resulting from
discretizing a circle of circumference 1. The corresponding finite graph G is

defined by the set of N equidistant points on the circle V = {az,z <N }
(1, )GElfandonlylfj =i—1ori+1 (mod N), and wi = Wij = 72,

h = %. We take 0;; in Section 2.2 satisfying (2.13). When 6 = 6, the Fisher
information (2.1) in this case can be rewritten as

(3.1)  I(p) = Z@,iﬂ(log(f)z‘) —log(pi+1))(pi — pi+1) s pPN+1=p1 -

Denote the tangent space at p € P,(G) by

T,P,(G) = {(o—i)gil c RV ‘ if%’ - o}.

i=1

Lemma 3.1. The Fisher information in (2.1) is strictly convex on P,(G)
and achieves its unique minimum at the uniform distribution.
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1036 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Proof. The convexity of I can be obtained by directly calculating its Hessian
matrix, Hess(I(p)), and proving that

: T T
Hess(1 =1} >0.
Jeiin Ao Hess(I(p))olo o =1}

Direct calculation yields that

( 1 . 1 ) )
Wii+1—3 (pi + piv1) + Wii-1— (pi + pi-1) for j =1
Pi P;
- 1 .
9 I(p) =4 S, (pi + pit1) for j=i+1;
6[)@3,0] P i Pi+1
— Wii—1—— , (pi + pi—1) for j=1i—1;
TM1—
0 otherwise.

\

Thus, we obtain

ol HessI(p)o

- 1 _ 1
= E (Wz‘,i+1 — (pi + piv1) + Diic1— (pi + pi—l)) o}
; Pi Pi

=1
N 1

+ Z <&3i,i—|—1—(pi + Pit1)0i0i41 + Wii—1 (pi + Pz'—l)Uz'Ui—1>
i—1 PiPi+1 PiPi—1

N g g 2

_ ; i+1
= sz‘,i—i-l (pi + piv1) (— — s )" >0,
i1 Pi  Pi+l

which implies that Hess(I(p)) is positive semi-definite. To show strict con-

vexity, assume that there exists a unit vector o* such that o*T HessI(p)o* =
0. Then we have U—i = % for i =2,---,N. Since 0 € T,P,(G), then

P
N N
ZO’Z' 201(1—1—2&) =0.
i=1 i=2 P1
As p € P,(G), we conclude that o; = 0 for all ¢, which contradicts that
o*To* =1.
The strict convexity implies that there is a unique minimum point for the
Fisher information on P,(G).
We use the Lagrange multiplier technique to find the minimum of I(p)
under the constraint Zf\; 1 pi = 1. We consider the critical point of

N
I(p)—A(Zm—l),

where \ € R.
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1037

Taking the first derivative with respect to p, we obtain that the extreme
point satisfies

p¢+1) + @—1,z’¢(pi*1) =, for i<N,

(2 7

where ¢(t) = 1 —t — log(t),t € (0,00). It can be verified that ¢ is strictly
decreasing, convex, and ¢(1) = 0. Then when A = 0, p; = %, and the
extreme point p; = % is the unique minimum point and gives I(p) =0. O

Wi ir10(

Below we present the lower bound estimate of the density p(t),t € [0, +00)
of (2.4) with 8 > 0 by studying the lower bound of the Fisher information.
Our analysis is based on the following two facts. On one hand, by Proposi-
tion (2.1)-(vi) , p(t) € B,t € [0,400), where B is defined in (2.8). Denote

M =H(u®, 8% — min [V(p) + W(p)].
(1, 57) = min V(p) +Wip)]
It follows that sup,~q I(p(t)) > % On the other hand, the continuity and
convexity of I yields that for any C > 0, there exists ¢ < % such that

inf  I(p(t)) > C.

0<min;(p;)<c

Thus, if we could find ¢ such that I(p) > % over the subset
(penie| pn <)

the explicit lower bound can be obtained.

The following result gives the anticipated lower bound, and its proof is
given in the Appendix, where we assume that w; ;41 = 1 for simplicity. We
denote with [y] the integer part of y € R.

Proposition 3.1. Let min;<y u? < % Then it holds that

sup min p;(t) > min (Ho, /11),

t>0 <N
where
1 .y M(N = 1)([*F] +1)\\ L
ﬁoziglj{flui and K| = (1—|—Nexp( 3 )) .
Proof. See the Appendix. O

3.2. Lower bound for graph with nonempty boundary set. Again,
our goal is to analyze the extreme point(s) of the Fisher information (2.1),
but now the graph G = (V, E, Q) has 0V # 0.

To illustrate the graph structure, consider that resulting from discretiza-
tion of [0,1]. V hasnodes a; = (i—1)h,i=1,...,N, h = %, wij = Wij = %
and (i,j) € Eifand onlyif j=i—1ori+ 1, fori=2,...,N — 1. In this
example, the boundary nodes of G are a; and ay. We take 60;; satisfying
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1038 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

(2.13), and when 0 = 0L, the Fisher information (2.1) in the present case is
rewritten as

N—-1
(3.2) I(p) =Y @iir1(log(pi) — log(pis1))(pi — pit1);
=1

which corresponds to Neumann boundary conditions (%(0) = g—g(l) =0).

Similarly to Lemma 3.1, and with much the same proof, we have strict
convexity of I(p).

Lemma 3.2. The Fisher information in (2.1) is strictly convex on P,(G)
and achieves its unique minimum at the uniform distribution.

To obtain a lower bound on the density, we let

k < N—1 be the number of nodes in OV, and dnqz be the largest distance!
between two nodes in V.

The proof of the following lower bound estimate is given in the Appendix,
where for simplicity we assume that w;;11 = 1.

Proposition 3.2. Let minj<n(p)) < +. Then it holds that

sup min p;(t) > min (Ko, K1),

t>0 iI<N
where
1 . M (dpaz—1)(N—1)\ 1
/@02512(211]{]1;1? and K1= <1+/£(dmax—1) exp (2 maz 5 )) )
Proof. See the Appendix. O

4. TIME DISCRETIZATION OF WASSERSTEIN-HAMILTONIAN SYSTEMS
ON GRAPH

In this section, we construct and study the full discretization of Wasser-
stein—Hamiltonian systems. In particular, we discuss the time discretization
of the (regularized) spatial discretizations (2.4) and (2.12). Our main goal
is to devise a symplectic discretization of the Wasserstein—-Hamiltonian flow
(2.4) with 8 > 0. We also discuss general regularization strategies for (2.12).

To illustrate our strategy, we need to introduce an equivalent formulation
of the Lagrangian functional (2.2), the symplectic structure, as well as some
preliminary estimates for the Wasserstein—-Hamiltonian flows with 8 > 0 on
graph.

First, we introduce an equivalent formulation of (2.2) to derive (2.4) on
graph, that is, we seek the critical point of

T
L(p,VeS) = /O L(p(t), VaS(t))dt

I'The distance d;; between two nodes a; and a; is the smallest number of edges connecting a;
and a;.
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1039

subject to the constraint

d )

5 P(t) = —divg(p(t)VeS (),
with the Langrangian functional defined by

L(p(t),VaS(t) = %<V5(t)7 VS(E)o(p)) — V(p(t)) = W(p(t)) — BI(p(t)),

where p(t) € P,(G),t € [0,T], S(t) € L*([0,T],RY). Let us denote (—Af;)T
as the pseudo inverse of the operator Af;- = div%(pVG-) as that defined in
[12]. This pseudo inverse operator, together with the constraint, induces the
Legendre transformation S(t) = (—Az( t))Tp'(t) between the primal coordi-
nate (p(t), p(t)) with p(t) = %p(t) and the dual coordinate (p(t), S(t)). By
using the integration by part formula and S(t) = (— Ae(t)) p(t), the func-

tional L(p, VS) can also be written as L(p, p) in the primal coordinates as
follows,

L(p(), (1)) = 5{VaS (1), VoS (1), — F(ol)

- §<S< 0,808 — Flp(t)
= (Va8 0(0), Vel (~A)) p(t))a, , — Flo(t)
= =A%) H), (A8 (A% pl8)) — F(p(t),

where (-,-) is the [?-inner product and F(p(t)) = BI(p(t)) + V(p(t)) +
W(p(t)), 5 > 0.

Recall that the critical point (2.4) is a Hamiltonian system on graph since
it has the form (2.5). Consequently, its phase flow preserves the symplectic
structure

(4.1) dp(t) A dS(t) = dp(0) A dS(0),

e., the sum of oriented areas of projections onto the coordinate planes
(p1,51), -+, (pn,SN) is an integral invariant (see e.g. [26]).
At last, we present some estimates of the coefficients and their derivatives
of (2.4). We assume that

co < wij < Co,co < wij < Cp, for some ¢y, Cy > 0,

0 0
M, _rria}\;}cv +(£1;1)&1,€X Wij, Ho=H(p,S").

For simplicity, we also restrict our consideration to 6;; = 9;-3 in (2.10), and

@;j = OZ-L]- in (2.11). Denote the maximum numbers of edges connecting to a
node by FEy,4.. Let ¢ be the uniform lower bound of p derived in Section 3.
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1040 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

We first give a uniform upper bound estimate of |S;(t)—S;(t)| and
|log(pi(t))—log(p;(t))],t € [0,T] as follows. Recall that H(p, S) = K(p,S)+
F(p) in (2.6). Due to the conservation of H in (2.4), we have that

K(S(p(1)), p(t)) + BI(p Z > wilSi(t) = S;(6)1*05 (p(t)

i=1 jeN(7)

N
+ 5 D Bylog(pi(t)) — log(ps (1)) (4(0)

1,j=1
<Ho— min [V(p)+W = M.
<Ho— min [ (p) +W(p)
Then we get

2M 2M
max |S; — S;|* < 0. < ;

isN Co M jye g Yij (p(t)) coc

M M
max | log(p;) — log(pi)|? < . < —,

max | log(pi) —log(p;)|” < coming ) ep 0 (0(8) ~ coc

where ¢ is the lower bound of the denisty function of (2.4) in Proposition
3.1 for the graph without boundary or Proposition 3.2 for the graph with
boundary. Since z — y < log(z) — log(y) for 0 < y < z < 1, we also obtain

9 M M
7 <— < —
CoMIN(; j)ep Qij (p(t)) coc’

max |p; —

By Proposition 2.1, we have that (p(t), S(t)) always stay in a subset B =
{p e Py(G),S € RN|K(S,p)+ I(p) < M}. Hence, we can get the estimates
of the coefficients and their derivatives of (2.4) on B. Taking the first
derivatives of H, we obtain

H Hloo z<N‘ Z R

< EmasCoy| 22
cco’
5o <15 32 wotsi =55t 5+ 3
N(1) ¢
<Emam00<%% + CCO+6 )—I—Mo.
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Similarly, we obtain the estimates for higher derivatives of H,

(4.2)
M
082 Hl‘x’ S l;ri%{ Z wi]el](p)‘ S COEmaX7
- JEN(1)

O*H 1 1 57

< - (g — g\l <2 2M
asaszoo =Y ,Z, wij (S; Sg)‘ < 5CoEmax o

JEN(i)
827-[ - ), '
sz < max ‘5 > @yl p—jz)\ + My < BCoEmaX(1 n 6—2) + M,

JEN(2)

By recursive calculations, we verify that

H o < BCoBmaz((n — 1)1 L forn >3,
(4.3) ‘
H 8?927;/)“100 = %COEmax-

and all other partial derivatives are 0 for n > 3.

4.1. Symplectic methods. Let 7" > 0 and 7 be the time step size such
that ¢y, = m7, m < M and T" = t57. In this part, we use the discrete
Hamiltonian principle in [26, Chapter VI] to obtain the symplectic schemes
whose numerical solution preserves the discrete symplectic structure (4.1)

(4.4) dp™ A dS™ = dp® A dS°.

This is a standard procedure to derive symplectic schemes. We present
it here for the completeness of this paper. Given the initial density X
and target density ﬁM , the discrete Hamiltonian principle is looking for the

critical point (p"™)M_, of the functional

M-
LT( Z m m—|—1).

Here the discrete Lagrangian L.(p™, p™*1) is an approximation of the con-
tinuous Lagrangian ftm“ L(p(t), p(t))dt, where p(t) is the solution of (2.4)

with boundary values p(t,,) = p" and p( mt1) = pm L
Then, letting 3 8ST =0, form=1,- M — 1, we get the discrete Euler-
Lagrange equatlon
8LT m m+1 6L7— m—1 m
-r -0
o (" ")+ G ) =0,
0L~ oL,

where %= and
and second argument.

90 refer to the partial derivatives with respect to the first
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1042 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Thus it gives a three-term difference scheme determining p!,- - - ,p]‘7 -1

By introducing the discrete momenta via the discrete Legendre transforma-

tion S™ = —%(pm,pmﬂ), we can get
dL, = SMdpM — 5%°,

where L is also called symplecticity generating function. This implies the

symplecticity of the map (S9, p¥) — (SM, pM) (see e.g. [26, Chapter VI]).
Indeed, we get

gm — _8[’7' (pm pm—i—l) Sm—l—l — aLT

Ox ’ ’ oy

Next, we give the derivation of symplectic Runge-Kutta methods as an

example of symplectic integrators. We consider the numerical integration of

Y

(o, ).

L% p") =7 biL(u(cr),i(qr)),
=1

where 0 < ¢; < -+ < ¢s < 1 and u(t) is the polynomial of degree s with
u(0) = p° and u(7) = p' which extremizes the right-hand side (see [26] for
more details on the collocation polynomial). Thus, our goal is to find the
critical point of

S
Lo(p", ") = 7 biL(2', &),
=1

S
o =p0 47 Z a1, ®",
n=1

where ® € P(G) and ®! € RN are chosen to extremize the above sum
subject to the constraint

S
pt = p° +72bl<i>l.
I=1
We assume that all the b; are nonzero and that their sum equals 1. By
applying the Lagrange multiplier method to the above problem (see e.g.
[26, Chapter VI] for a standard derivation), the extreme point satisfies

S S
S'=8"+7> bE, pt=p"+7) b,

=1 =1
s - S .
B =po+7Y amE", ' =qo+7Y  ad”,
n=1 n=1
where

. oL . OL )
- l l —l l l
E=—(d" P E=—(P"

8.17( Y )7 8y ( Y )
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. -~ o b'ﬂa’lll _ T . .

with aj, = b, — . By noticing that H(p,S) = S'p — L(p, p), one may
also rewrite the above system into its dual coordinates, that is,

> OH(PEY
St =60 h————7

L OH(PLE
1 — 0 b 9
pt=p +le; T

(4.5)
0 @n,:n)
=S5 -7 E CLln ,

@n,:n
o' = p +Tzam HELE)

where the coefficients satisfy the condltlon by +ayn by, = biby, of partitioned
Runge Kutta symplectic methods for the Wasserstein—-Hamiltonian system
(2.4).

Example 4.1. By taking s =1, a;; = 0,a11 =0, by = 1 in (4.5), we obtain
the symplectic Euler method, i.e.,

87‘[(Sm+1, pm)

1
m—+ m_|_

P =P 95 T,
=o' = > wi(SIT = S0 (p™) T
JEN(9)
4.6 m m
( ) Sm+1 —gm _ aH(S +17p )7_
i 1 ap )
_qgm _ 1 o qm+1l _ om+l Qaelj(pm) . a‘F(pm)
J 1
where F(p) = BI(p) + V(p) + W(p). O

In the following, we focus on the case of symplectic Runge—Kutta meth-
ods, i.e., a;, = aj,. With minor modifications, similar results hold for the
partitioned symplectic Runge-Kutta methods (see [26] for more details),
i.e., aiy,b; + anb, = biby,.

Theorem 4.1. Assume that G = (V, E,Q) is a connected weighted graph
and that minj<;<n p? > 0,S% € RN. Let 7 be the time step size and T >
0. Then the symplectic Runge—Kutta scheme (4.5) satisfies the following
properties:

(i) It preserves mass:

N N
Y= 0
i=1 i=1
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1044 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU
(ii) It preserves symplectic structure:
dp™ A dS™ = dp® A dS°.

(i) If (4.5) is symmetric, then it is time reversible: if (p™,S™) is the
solution of the full discretization, then (p~™,—S~"™) is also the so-
lution of (4.5).

(iv) It is time transverse (gauge) invariant: if V¢ = V+a, then (S*)™ =
S™ + amrT is the solution of (4.5) with linear potential V.

(v) If a time invariant p* € Po(G) and (S*)™ = —vmr form an interior
stationary solution of (4.5), then p* is the critical point of H(p,S)
and

1 N N

(vi) When % 15 small enough, the scheme almost preserves the Hamil-

tonian up to time T = O(r™"):
H(S™, p™) = H(S()? :00) +O(7"),

where r is the order of the symplectic numerical scheme.

Proof. Property (i) holds since gg‘ in (4.5) is linear with respect to p. Prop-

erty (ii) can be verified by using the symplecticity condition a;;b; + ajib; =
bib;.
Denote the exact flow of the original system (2.4) by

Ti(p%,8%) = (p(t, p°), S(t,57)).

It follows from Proposition 2.1 that I'; is g-reversible, i.e., goI'y =T, Loy,
with ¢g(5,p) = (=5, p). Since the one-step method (4.5) is symmetric, i.e.,
fT(,OO7 SY) = (pt, ') satisfies [,ol_, = I, then I, is g-reversible, i.e.,
goT; =T-10og, by [26, Theorem 1.5 Chapter V], and (iii) holds.

Property (iv) can be directly verified because K(p, S) is an even function
of S; — S5}, (i,7) € E and the potential V is linear with respect to p. To show
Property (v), we only need to show that p* satisfies the Karush-Kuhn-Tucker
conditions of the optimality for the minimization of

H(p,S*) = min (81 % Wi(p)),
pe%i?m (p, S¥) pe%i?c;)(ﬁ (p) +V(p) + W(p))

which can be done using the Lagrange multiplier method as in the continuous
case.

We next focus on the proof of (vi). Denote (y™)" = (p™, ™) T, (™) T =
(@l =) T 1 < s, and f(y)T = (55 (p,S), =Gk (p, )T for yT = (p,9)".
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1045

Then r-th order Runge-Kutta scheme can be rewritten as

S
y' =y > b f (@),
=1

S
7 =9"+7) ay ().
i=1

Notice that

W)s € B={p € Po(G) | 61(p) < Ho— min (V(p) + W(p))

Let K be the smallest number such that (y* )N, ¢ B. Thus, there exists
some index 7 < N, yf“ = mini:Lm’N|yiK+1| = ac,0 < a < 1, where c is
the lower bound of the density of (2.4). By applying the Taylor expansion
repeatedly and using (4.2) and (4.3), there exists a constant Cy pr.¢,.co > 0

such that
B

vi(tres1) =y 7 < |yilts) — v + Croaeo,c0 (1 + s )7t

B

cr—|—1

< K7Cr Me,00(1 + )"

which implies that for¢=1,--- | N,

K+1 6 + CT+1
vi 2 yiltka) = KTCraeo, o7 -

Thus we have a lower bound of K, that is,

Cr—l—l
Kt > 1 —a«a).
T T Cr Moo, Co (€T + /J’)( )

As a consequence, before T=K 7, the lower bound of the density is uni-

formly controlled by ¢ since %0 is small by the lower bound of (2.4) in

Section 3. We complete the proof of (vi) by using the Taylor expansion on
the energy before T'= K. O

By (4.2), the solvability of the scheme requires the classical condition,

1 2M 1 1
max (CoEm(m, ~CoEmazt| — BCoEmag (1 + —2) + M()) < —constant,
2 cco c T

where the constant only depends on the numerical method.

4.1.1. Backward error analysis. In spite of point (vi) in Theorem 4.1, sym-
plectic methods nearly preserve the Hamiltonian for times much longer than
O(17"), since the backward error analysis allows for an exponentially small
error between the symplectic scheme and its modified equation. To apply
the backward error analysis, we need to verify that the coefficients of the
equation admit an analytic extension on the complex domain, which we will
do next.
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1046 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

By choosing the principle value of the logarithm of z in C/{0}, denoted
by Log(z) := log|z| + iArg(z), it is known that Log(z) is analytic except
along the negative real axis. Since % and log(p;) can be extended to analytic
complex functions for p; € C/{0}, we can extend

fy)' = (%»—%>T

= (% Z wij(Si—Sj)(/?z‘—ij),

jeN(‘)
. . T
_ Z wZJS S Z LT)ZJ< —%—log(%)>>
jGN FEN(4) ! ¢

to a complex function in C*V such that for any interior point y° of B, f(y)

is analytic in the neighborhood of y° and that there exists R > 0, M, > 0
such that

IF@)l < Me, for [ly —4°|| < 2R.
Here M. is constant depending on c. This is applicable since we can choose
R < Ldist(yo, OB), where OB is the boundary of B in (2.8), such that

= >
_q}ln’N|yz| _q}lr}Nlpzl ¢,

and

1 /2 1
||f(y)||l°° < max <COEmaa?7 icoEmax BCOEmax(l —|— ) + Mo))

by (4.2). Thus, we can apply the backward error analysis in our case. We
first introduce the truncated modified differential equation of (2.4) with
respect to an r-th order numerical scheme,

A7) y=En@) Ev@) = @) + 7 fea (@) o+ T ()
with 7(0) = y(0). It is well-known that the above modified equation is

also a Hamiltonian system with the modified Hamiltonian H(y) = H(y) +
T Hyer1(y)+- - -+ 7V 11 (y). According to [26, Theorem 7.2 and Theorem
7.6], we have that for (4.5), if f(y) is analytic and [|f(y)|| < M. in the
complex ball Bar(yo), then the coefficients d; in the Taylor expansion of the
numerical method

Tr(y) = y+7f(y) + T2day) + -+ 7d;(y) +
are analytic and satisfy ||d;(y)| < C(%)j_l in Br(yo) for a constant C' > 0.

If 7 < 19 with 79 < CLX/@? then there exists N = N (1) satisfying TN < hg
such that

IT-(4°) — dn-(°)]| < CTMee™ 7,

where 3! = I';(y°) is the numerical solution and M(yo) is the exact solu-
tion of (4.7) at t = 7.
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1047

As a consequence of the above, by [26, Theorem 8.1] the long-time energy
conservation is obtained as follows. Assume that the numerical solution of

the symplectic method (4.5) I';(y) stays in the compact set B, then there
exists R, 7p and N(71p) such that

0

H(y™) - H(y")| < mTMee =,
MPH
Rpr
We summarize the above discussion in Corollary 4.1.

TP,

H(y™ —H°)| < C

Corollary 4.1. Under the same condition of Theorem 4.1, when % s small

enough, there exist 19 small enough, Cypr > 0, and a modified energy 7:2:
O(7")-close to H, such that for any T < 19, m7 < T,

H(S™, ™) — H(S°, p°)| < mrChre .

4.2. Regularizations. Here we look at two instances of regularization for
the geodesic equation (2.12) with V = 0,W = 0 and 5 = 0. The first is based
on the Fisher information, and the other is based on the standard viscosity
solution. We assume that M = [0,1] C R and for simplicity restrict to
(2.12) subject to periodic boundary conditions without the term F(p). The
initial condition p(0) > 0, and S(0), are smooth and bounded functions on

M.

4.2.1. Fisher information reqularization symplectic scheme. For the geo-
desic equation, its Lagrangian formalism is equivalent to its Hamiltonian
formalism. We can directly apply the Fisher information regularization sym-
plectic scheme (4.5) to the semi-discretization of the Hamiltonian system.
We use the mid-point scheme applied to the graph generated by the cen-
tral difference scheme under the periodic condition as an example of a fully
discrete scheme,

(4.8)
OH(S™ 3, p3)
m+1l _ m )
pi _pz + aSZ T,
m T m+l m+l m 1
=P — Z ﬁ(sj 28, )0i(pm ")
JEN()
I 1
Sm+1 —gm _ 8H(Sm+2,p +2)7_
i 1 api ’

A Tt e

' h? B dpi Op;

i j 7,
JEN(i)

where h is the space step size, 7 be the time step size such that h = %,
T=Mrandi <N —1,m < M — 1. Then all the properties in Theorem
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1048 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

4.1 hold. According to the lower bound estimate of p in Section 3 and (4.2),
we have the following space-time step size restriction,

1 [2M 1
T max (COEmaacy §COEmaw aa BCOEmax(l + 6_2) + MO> = O(1),

where
. 1
c > min (/@0,/11) and ¢g = Cy = 72
with
1 N M(N — 1)([M=1] +1)h2 -1
Ko = §mi{1pi(0), K1 = (1+Nexp( ( )([5 7| ) )> .
1=

Theorem 4.2. Let h > 0 be the spatial step size, T the temporal step size
and T = Mt > 0. Assume that G is the lattice graph of M with the
periodic boundary condition and that mini<;<n pg > 0,50 ¢ RN, Then the
symplectic Runge—Kutta scheme (4.5) has the following properties:

(i) It preserves mass:

N N
D oth=> pih.
=1 1=1

(ii) It preserves symplectic structure:
dp™ A dS™ = dp® A dS°.

(i) If (4.5) is symmetric, then it is time reversible: if (p™,S™) is the
solution of the full discretization, then (p~™,—S~"™) is also the so-
lution of (4.5).

(iv) It is time transverse (gauge) invariant: if V¢ = V+a, then (S*)" =
S™ 4+ amt is the solution of (4.5) with linear potential V.

(v) When % 18 small enough, the scheme almost preserves the Hamil-

tonian up to time T = O(1™"):
H(S™, p™) = H(S", p%) + O(1"),
where r is the order of the symplectic numerical scheme.

If we do not add a regularization term, like the Fisher information, to
the numerical scheme of (2.4), then the numerical scheme may develop sin-
gularities and produce unstable behavior. Example 4.2 indicates that even
the structure-preserving numerical scheme which uses the upwind weight 6V
without regularization may fail—at a finite step m—to maintain positivity
for pi*, or it may lead to blow up in S}".

Example 4.2. Assume that the graph has only two points. Assume that
p1(0), p2(0) > 0 and S1(0), S2(0) are the corresponding initial densities and
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TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 1049

potentials of the two points:
05 (p) = pj, if Si > Sj,
05 (p) = pi, if S; < ;.

For simplicity, take S1(0) > S2(0), F(p) = 0. Then the finite dimensional
system becomes

pL(E) = (S1() — Sa(t))pas folt) = (Sa(t) — S1(8)) o,
$1(6) =0, $(1) = —5151() — Sal0)-

Then S;(t) — Sa(t) = 1_%‘5;}?(1()()()3525(2()()())) 5 Until t < m, p1 and py are

strictly positive, but when ¢t = m, p1 =1, po =0.

4.2.2. Regularization by adding viscosity. As alternative to adding the Fisher
information as regularization term, a classical regularization procedure is
adding small viscosity in order to obtain monotone schemes for S (see e.g.
[16]). For example, by introducing the viscosity regularization term

(4.9) a;(S™) == af ?-IH — 25" = S"1),

where o € R is used to guarantee the monotonicity of SimH. This is a
standard procedure (elliptic reqularization), which we detail and further use
it in our numerical tests for comparison purposes. As we shall see, although
adding viscosity does lead to a well defined discretization (see (4.10)), unlike
the regularization scheme (4.8), the resulting numerical scheme does not
preserve time reversibility, symplectic structure nor nearly preserves the
energy. This will be highlighted in the numerical tests in Section 5.

Let h be the space step size, 7 be the time step size such that h = %

sm
T=Mr and 1 < N, m < M. Assume that max;<n— 1maxm<M|M| <

R for some R > 0. Then, we can choose a (0 < a < &, > RT) such that

T(Sm ST (S-St
h( h + h

1— )—20420,

h h

Doing so, we get the following scheme (viscosity reqularization):

S — + St — +
pzﬂ—i—l_pz +T< . z—|—1> m +7_( : i— 1) pm

h Pi+1 n i—1
SP = Sy ST ST
(4.10) +T<T+1) P +T(Tl> P

1 Sm _ gm = 9 1 gm _ gm =2
S?”L—l-l:S;m_ET‘( 7 hz—l—l) ’ __7_’( 7 hz—l) ‘
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1050 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Let p° and S° be the grid function of p(0) and S(0) on the grid G. Then
(4.10) enjoys the following properties, which implies that the numerical vis-
cosity term leads to positivity of the density function and uniform bound-
edness of S.

sgm _gm
m§M| Z+lh : | S R7 (6% 2 R%.
Then there exists a unique solution (p™,S™M_, of (4.10) and it satisfies
the following properties.

Theorem 4.3. Assume that max;<y_1 max

(i) Mass is preserved: for m < M,

N N
Yot= 0
=1 i=1

(ii) It preserves strict positivity: if minizl,,_”Npg > 0, then min;—y _ npi"
>0 form < M.

(iii) If s sufficiently small, and 7,h — 0, then S]* converges to the
viscosity solution of the Hamilton—Jacobi equation.

(iv) Let 7 > 0 be fized. Then it holds that lim,, - S™ = S°° and
limy, 00 P = p>°, where p>° € P(G).

(v) It holds that

m m T m
1™ lio < [15°lzse, [1p™ 220 < max((1+ R-) 1°l15 1/).

Proof. For Properties (i), (iii) and (v), we refer to [16] for their proofs relative
to the numerical approximation

1 m.o_— §m,2
1 m +1 m
S+l — gm if‘%‘ +ai(S™).
We proceed to prove (ii) and (iv).
Due to the expression of pzmﬂ, we get
Sm _ gm Sm _ gm T
m+1> m I( 7 i+1\— 7 1—1 —> mo, 1—2R— m
p'L —p2+h( h )+( h ) pl—( h)’L?

which leads to

m T m
pit 2 (1-2R) P

Thus we have that
m>e % min p?
pi = i:l,...,NpZ
for some ¢; > 0 and thus (ii) holds.
Now we are in a position to show (iv). Since S™ is uniformly bounded with
respect to m, there exists a sub-sequence (S™*)7° ; converging to a constant
S°°. By using the comparison principle, we get that for any k,1,n € NT,

S — ST < ([ S — ST
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Thus (S™*)%2; is a Cauchy sequence in [*°(V x NT) and converges to the
same limit S*°. On the other hand, one can also check that the solution of
the following relation

1)(S5° — z+1)_’2+1‘(550_ )72
2 h 2 h

must be 0. Indeed, let us assume that there is a nonzero solution for (4.11).
From the fact that «;(S*) > 0 if Sp° — S, < 0, S7° — S, < 0 and
a;(8%°) <0, if §5° — S+1 >0, 5 —S°°1 > 0, the nonzero solution of (4.11)
should have dlfferent signs for SOO Sty and SP° — S7°; at each node a;.
For simplicity assume that S° — Sool < 0 and SOO S2°, > 0. Now, adding
all the equations together, we obtain that

(4.11)

+ a;(8°) =0

_’ ) Py
L~ 2 h ’
=1
which contradicts the fact that SP° — 577, <0 fori=1,---,N. Repeating
this argument, it follows that for any 1 < j < N, the solution of the following

relation

J - _
1S = S22) 712, (577 = 52,)7 |12
— — ! (S)| =0
i_lu e I | e e I G
must be 0. As a consequence, for any subsequence (S5™*)7°, we have that
the quantity

Slmwl — Sk _ _1‘ (S — S )~ ‘ B 1‘ (S — Sk~ ‘2 T an(S™)
T 2 h 2 h '
converges to
[o.9] — [o.9] —
1 i) ‘2 ‘(S —521) ‘2 ooy _

which only possesses the unique zero solution. Since ||p||; = 1, there exists
a subsequence (p"*)2°; which converges to a density probability p>°. From
(4.10) and the convergence of S, we are in a position to show that all the
subsequence of (p")>°_; converges to the same limit p

Next, we show that for given k sufficient large, then {p"™*1"}°°, is a
Cauchy sequence. Indeed, we have

ot = o < el e (G 2 —<%>*)le
I N [t S s =S
e (B - RSy
o | (e - BB
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1052 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

which, together with the uniform convergence of S, implies that p™**" is a
Cauchy sequence and possesses the same limit p°. U

5. NUMERICAL EXAMPLES

Here we show performance of the numerical schemes on several examples.
All the numerical tests are performed under periodic boundary conditions
in space, for given initial conditions p(0,z) = pu°(z) and S(0,z) = S%(z), as
specified below.

Example 5.1. Geodesic equation. This is (1.5), but we replace ¢ with x
following the convention in PDEs:

(t,x)+ V- (p(t,z)VS(t,x)) =0,

0 1
—S(t ~|VS(t,z)> = 0.
£S(t,2) + 5| VS( )
We report on the results of two different strategies: the upwind scheme
(4.10) with numerical viscosity, and the Fisher information regularization
symplectic scheme (4.8). We look at three different sets of initial values,
cases (I)-(IT)-(III), to compare the evolution of the density function and
energy. (The different behaviors of S and V.S for (4.10) and (4.8) are not of
interest, since for (4.10) S will always converge to a constant; see Theorem
4.3.)
(I) In Figure 5.1, we show the behavior of (4.10) and (4.8) with initial value
2
pl(x) = eXp(_lOI(g_O'E’) ) and SY(x) = —% log(cosh(5(x—0.5))), for 0 < x < 1.
Here K is a normalization constant so that fol pl(x)dxr = 1. We observe
that for T" < 0.15 the two scheme behave quite closely to each other and
the density concentrates at the point 0.5. But, after 7' = 0.15, the density
of (4.8) begins to oscillate. Here, we choose spatial step size h = 5 x 1073,
temporal step size 7 = 10™*, viscosity coefficient o = 1/12 for (4.10), and
bii(p) = Og(p), 0ii(p) = HiLj(p), B = 107" for (4.8). In Figure 5.2, we also
plot the density functions computed for (4.8) with different schemes and
different temporal and spatial step sizes, and clearly the oscillations appear
to be independent of the choice of schemes and mesh sizes; this indicates

that the oscillations exist for the continuous system.
(IT) In Figure 5.3, for 0 < x < 1, we take u’(z) = 1 and

9
ot”

$O(z) = —% log(cosh(5(z — 0.5))).

We choose spatial step size h = 1.5 x 1073, temporal step size 7 = 1.3863 x
1075, viscosity coefficient a = 8 x 1072 for (4.10), and 6;;(p) = 65(p),
0ii(p) = 05 (p), B=15x 10" for (4.8).

(II) In Figure 5.4, for 0 < « < 2, we choose pu’ = £, S = Lsin(27z), the
spatial step size h = 1072, temporal step size 7 = 10™%, viscosity coefficient
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FIGURE 5.1. Example 5.1, case (I). The contour plot of p(t,x)
(left), snapshots of p(t,z) at ¢ = (0.3,0.2,0.15,0.1,0.05) (middle)
and energy error before T' = 0.315 (right) for the upwind scheme
(4.10) with numerical viscosity (top) and the Fisher information
regularization symplectic scheme (4.8) (bottom).

a =5 x 1072 for (4.10), and 6;;(p) = Og(p), 0ii(p) = QZ-Lj(p), B =10"* for
(4.8).

All the numerical tests show that the Fisher information regularization
scheme (4.8) preserves more of the relevant structures for (2.12), such as
the energy evolution and time transverse invariance, compared to the nu-
merical scheme (4.10). Meanwhile (4.8) causes oscillatory behavior after the
singularity of (2.12) is developed.

Figure 5.5 shows the relationship between 3 and the largest time step size
7 in (4.8) that still gives the correct approximation to the solution. In this

numerical test, we use h = 5 x 1072 T =4, 0 < x < 1, S%2) = M,
p(x) = 1. From Figure 5.5, we can see that the relationship between %

and 7 is very sensitive when % is large.

Example 5.1 shows the dramatic difference between the numerical
schemes regularized via viscosity, (4.10), or via the Fisher information, (4.8),
when the continuous system (1.5) develops a singularity. Next, we test the
impact of 5 in (4.8) when (1.5) does not develop any singularity in Example
5.2. It turns out that the numerical solution of (4.8) converges to the true
solution as 3 goes to 0, just as the standard Hamilton—Jacobi solver (i.e.,
(4.10)) does.

Example 5.2. Push-forward density in optimal transport problem. We
use the Wasserstein geodesic equations from optimal transport in a case
where the exact solution is known, to check whether the Fisher information
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FIGURE 5.2. Example 5.1, case (I). In (a) and (c), there are snapshots
(0.3,0.2,0.15,0.1,0.05) for the solution computed wirth
= 0.25 x 107 (left) and h =

O 0T 02 0304 05 0607 0809 1
X

0.125x 1072, 7 = 0.2 x 10~* (right). In (b), we show snapshots of p(t, ) at
t =(0.3,0.2,0.15,0.1,0.05) for (4.8) with h = 0.25 x 1072, 7 = 1/3 x 10~*

(left) and h = 1/8 x 1072, 7 = 1/2 x 107° (right).
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FIGURE 5.3. Example 5.1, case (II). Contour plot of p(t,z) (left),
snapshots of p(t,z) at ¢ = (0.2773,0.2079,0.1386,0.0693, 0.0347)
and the energy error before T = 0.315 or the upwind scheme (4.10)
with numerical viscosity (top) and the Fisher information regular-
ization symplectic scheme (4.8) (bottom).
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FIGURE 5.4. Example 5.1, case (III). Contour plot of p(¢, z) (left),
snapshots of p(t,x) at ¢t = (0.5,0.4,0.3,0.2,0.1) and the energy er-
ror before T' = 0.5 for the upwind scheme (4.10) with numerical
viscosity (top) and the Fisher information regularization symplec-
tic scheme (4.8) (bottom).
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FIGURE 5.5. Example 5.1, 0 <z <1, Sp(z) = Sin(w—m), po(z) =1,
T = 4. Relationship between % and the largest time step size

7 for which (4.8) gives the correct behavior, for values of § =
0.005788,0.005513, 0.00525, 0.005, 0.00476, 0.00454.

TABLE 1. Example 5.2. The Ly-error between p(t,x) produced
by (4.8) and the density produced by the Hamilton—Jacobi solver.

B 0] 1w02]103%[100%7] 107 10°° 1077
Loo-error | 0.2312 | 0.1945 | 0.0940 | 0.021 | 0.0029 | 3.337 x10~% | 6.291x10°°

regularization scheme converges to the true solution. Following the approach
in [2,43], we take p(1,2) = 1 and p(0,2) = 1 — ysin(27rx)(27)? with v =
%(27‘(’)_2. It can be verified that the minimizer of (1.6) is concentrated on
the characteristic line X (¢,z) = x + ycos(2mx)t,t € [0.1]. In this case, the
potential function is S(0,x) = 7 sin(27z) up to a constant.

In Figure 5.7, we present the evolution of probability density function
against different scales of the Fisher information, i.e., 8 = 1071,---,1076.
In Table 1, we compare the numerical solutions of (4.8) to those produced by
the Hamilton—Jacobi solver (4.10). In these experiments, all the parameters
except (3 are kept fixed. It can be observed that when 3 — 0, the differ-
ence between the two computed solutions vanishes. Still, from Figure 5.6
we observe that the Fisher information solution (obtained with 3 = 1079)
maintains energy on the time interval [0, 1] whereas for the viscosity solution
there is a linear deterioration in energy preservation.
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FIGURE 5.6. Example 5.2. Energy error between H(t) — H(0) for
Fisher information regularization scheme and viscosity regulariza-
tion scheme.

Example 5.3. Madelung system. Consider the Wasserstein—Hamiltonian
system (2.12):

9 (t,x)+ V- (p(t,z)VS(t,x)) =0,

ot
%S(t, ) + %yVS(t, z)]? + 68/)57 m)l(p(t, Y)) + V(z)

" /M W (a2, )| o(y) Pdy = 0.

We use the scheme (4.8) for given 8 > 0. Figure 5.8 shows the behaviors
of pand S when V=0 and W = 0, as well as the mass and energy evolution.
Here, for the evolution of p and S, we choose 3 =1,T = 0.5, 7= 1073, h =
1072, S%(z) = §sin(2mz), pO(x) = 1. We also plot the evolution of energy
error H(t) — Ho with H(t) = H(p(t), S(t)) and mass error up to 7' = 400,
which shows the good long time behavior of the proposed scheme. In Figure
5.9 and Figure 5.10, we present the behavior of p and 5, as well as the mass
and energy evolution, for V.= 1, W = 0, and V = 1, W(x,y) = 26(x — y),
respectively. It can be seen that the contour plot of S i is influenced by
the linear and interaction potentials. The step sizes and initial value are
chosen to be the same as in the case V = 0,W = 0. Note the very small
scale in these figures. The preservation of desirable long time behavior for
the schemes using the Fisher information as the regularization of choice is
observed in all cases.

6. DISCUSSION ON THE LIMIT OF VANISHING REGULARIZATION

From Example 5.2, we observed that the solution obtained by using the
Fisher information regularization scheme converges to the exact solution
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(c) B=107" (left), 1076 (right)

FIGURE 5.7. Example 5.2. The plot of p(¢,z) by the Fisher in-
formation regularization symplectic scheme (4.8) with different
g=10""1---,107C.
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FIGURE 5.8. The evolutions of p and S (V =1, W = 0) before
T = 0.5 (a), the mass conservation law and the energy error before
T =400 (b). Note the extremely small scales in the plots.

as B — 0 when the classical solution of (1.4) exists. On the other hand,
Example 5.1 shows that the numerical solution of the Fisher information
regularization scheme can be computed beyond the blow-up time of (1.4).
It inspires us to theoretically study the behaviors of the density, via vanishing
B in front of the Fisher information regularization even when the classical
solution does not exists.
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FIGURE 5.9. Example 5.3. Evolution of p and § (V =1, W =
26(z — y)) before T'= 0.5 (a), the mass conservation law and the
energy error before T' = 400 (b).

Our first consideration is whether the weak limit of semi-discrete scheme
(2.4) exists as f — 0 or not. To simplify the discussion, we assume that
V =0 and W = 0. The corresponding continuous system is

gl p(t,x) +V - (VS(t,z)p(t,z)) =0,

0

1 , 5
Es(t’ T) + §|V5(t,=’17)| +Bﬁ
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FIGURE 5.10. Example 5.3. Evolutions of p and S (V = 1,
W(z,y) = 26(x — y)) before T = 0.5 (a), the mass conservation
law and the energy error before 7' = 400 (b).

on M = [0, 1] with periodic boundary condition. Then (2.4) becomes

D pit) + 25 (Sua(t) — 5,00 2Ly g
B Si(t))pi(t) +2p¢+1(t) _o

CS:0)+ 73 (Si— S101)* + gg(Si — Sis1)” + (S — Siv)?
+ B (0(0) =0,
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where the corresponding graph G is an one dimensional lattice graph, i.e.
(i,j) € Eifandonly if j =i—1ori+1, N = % Here we take w;; = w;; = h%?
_ Pitp; n.. Pi—Pj
0ij(p) = =5~ and 0i;(p) = log(pi)— lgg(pg)
Assume that p(0,z) > 0 and S(0,z) are smooth functions,

~ 1

K(p(0,-),5(0,-)) = 3 /M IVS(0,2)?p(0, 2)dz < co.

To avoid confusion while emphasizing the S dependence, in this part we
denote the density and potential function of (2.4) by p®(t) and S#(t). Recall
that the discrete kinetic energy functional

N
1
=3 > 167 Sil?6ii 11 (p)h
i—1

with 6;7S; = LS Then it follows that K(10, S%) = K (p(0,-),5(0,-)) +
O(h) by Taylor expanblon Moreover, we define the density function on M
by p?P(x) = 05:41(pP) = %(pf + pfﬂ) for x € (x(i), z(i+1)], and denote 5"
as its corresponding Borel measure, i.e. 99" has density function p®". Simi-
larly, we can define a piecewise function 77" (z) = 5;5’? ifr e (z(i),z(i+1)].
Hence, the discrete flux function p®"(2)o%"(x) is the density function of a
signed measure EA".

Proposition 6.1. For anyt > 0 and h > 0, the sequences of measures with
density functions (p*"(t, ), pPMoP"(t,2))s<1 produced by (2.4) have weak

limits (§h7 E’h) satisfying

. h
/ doh =1, / ‘dE ‘ do" < 2K(u°, 50).
M

Proof. See Appendix A.2. O

Another interesting question to consider the weak limits of (5}‘ Eh) h>0,
as h — 0. We can show that they exist. They are a nonnegative measure
denoted by 9 and a signed measure E respectively. We can further derive
the equation governing the time evolution of J. Those results are stated in
Proposition 6.2.

Proposition 6.2. Under the same conditions of Proposition (6.1), (@‘m,
EMm) weakly converges to (9, E), as hy — 0, satisfying
v
6.1 — 4+ V- 0.
(6.1) L (B) =
Proof. See Appendix A.2. O

However, the evolution equation for E is not known yet. This question
and a few others are of interests theoretically. We feel they are beyond the
scope of the current paper, and hope to report more findings in the future.
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APPENDIX
A.1. Lower bound of the density.

Proof of Proposition 3.1. It suffices to find a constant 0 < ¢ < % such that
M
inf I(p) > —.

0§mini:11rf,..,sz-Sc (o) 2 B

Since the graph is finite, we have that
inf I(p) = min inf I(p).

0<m1n L pi<c 1<N 0<p;<c
Due to the convexity of I(p) on 0 < p; < cfor afixed i < N, and the fact that
I(p) approaches oo when p approaches the boundary of P,(G), I(p) takes
the minimum at the boundary, i.e., info<,, <. I(p) = inf,,—. I(p) on Py(G).
Because of the periodic boundary condition, without loss of generality we
can assume that p; = c¢. By calculating the Hessian matrix of I(p), we get

for any o # 0,
N-1 oy
THGSSI = (_2 Pi + pit1 + pi— 1))
1=3 Pi
N-1
+ < (pi + pis1)0iciy1 + (pi + pi—l)UiUi—1>
PiPi+1 PipPi—1

1=3
1 1

+ —=(2p; +p3+c¢c)+ — +
p%( Pi T P3 C) P (Pz PS)

+i(2 + +c)+#( + )

P%v PN T PN-1 ONPN—1 PN T PN-1
iy 0; Ojxr1.2 1 1

= (pi+pis1)(—— )+ 5 (p2 + ¢)o3+— (pn + )0
i—2 (b pZH)(Pi Pz'+1) Pg (p2 ) P?v (pN C)UN

which implies the strict convexity of I(c,-) on Zfi o pi = 1 —c. Using the
Lagrange multiplier technique on I(c, p2,---, pn) — )\( Zfiz pi— 1+ c), we
get that the unique minimum point satisfies

¢ P3
— )+ 7oy
o) +0(2)
(A.2) go(p;‘_l +¢(%) — )\ if3<i<N -1,
(2 1
PN—-1 c
+o(—) = A,
(b( PN ) (b(PN)
where ¢(t) = 1 —t — log(t).
We claim that py_;+1 = pit1, fori =1,---, N L if N—1 is even number.

When N — 1 is odd, we have py_;11 = pi+1, for i=1,-- [N2 11, where

[s] is the largest integer smaller than or equal to s € R. To prove this

Licensed to Georgia Inst of Tech. Prepared on Tue Jul 19 14:22:54 EDT 2022 for download from IP 143.215.16.70.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1064 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

claim, it suffices to show that ps = pxn. Assume that ps > pn, Due to the
monotonicity of ¢, we have p% < =

PN’
_ _ ; i N -1
(A.3) s N 1,& > PN=2 2. ,pH—Q > PN-i , for 1 <4< [——].
P2 PN P3 PN-1 Pi+l  PN—it+1 2
If N —1 is even, we obtain that
PN=1_9 PN-1_
o(—=—) <o(—=—),
Pz NG
. PN—1_4 PN—1_.o
which leads to —2 2 , i.e, pN-1,, > pn-1,,. Thus, we can
Nylya PNzl s et
conclude from (A.3) that
p_N>M>...>'O¥+2>1
P2 P3 p¥+1
which contradicts the assumption ps > pyn. If N—1is odd, similar arguments
yield that
PiN=1149 PIN=1119
PIrgtn PIagtes

which implies that PIN-1) g > PNy Thus from (A.3), we have that

_ Pu_,_g
p_N>pN1>...>—[2]
P2 P3 PIN=1y4q

which contradicts the assumption p2 > pn. One can show that po < py is
also impossible by the same arguments. As a consequence, po = py. By
further using (A.2), we immediately get py—_ij+1 = pit1, fori=1,--- [%]

Now, we are going to show that the extreme point possesses the mono-
tonicity along the path starting from a;. Indeed, p;;1 is increasing when
d1,i+1 is increasing for i < [M52] if N is odd and for ¢ < [N + 1 if N is
even. We use Figure A.1 to illustrate these two different cases.

Step 1. The Lagrange multiplier A > 0. Since A = 0 if and only if p; =
%, then I(p) = 0 which contradicts the fact that infocmind | pi<ed (p) >

0. Assume that A < 0. Then (A.2), together with the symmetry p;y1

PN—it1,0 =1, [%], implies that when N — 1 is even, it holds that
i ; N -1
o) + (B = if2<i< -1,
Pi Pi
=)=\
PN

Since A < 0, we obtain that
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Graph with N=7 Graph with N=8

FIGURE A.1. The picture of the graph with N = 7 (left) and with
N = 8 (right), where the red node represents vy .

which contradicts the fact that ZZJ\LQ pi =1—c. When N —1 is odd, then
(A.2) and symmetry of p; imply that

S(E) +o(H) = iz < gt}
(A.5) PIN-1111
2p(—Z ) = .
PINZL)42

Then we get Pzt < Pyzipyy < o0 < p2 < pr =G which is also not
2 2
possible. Thus it holds that A > 0. This indicates that

P > Py > > e > pL=c

Step 2. p;)% is strictly decreasing. If N —1 is even, % is strictly decreasing
for 1 < i <[], According to (A.4), it holds that

PN-1_4 PN=1 44 PN=1 PN=1_ 4
p(—=—) =A—o(—=—) =d(——) —o(——),
= N
PN=1_; 1 PN=1_ ;11 PN-1_,; PN=1_;1q
g Pjv_l —) =2 -ol pfv_l . ):(b(pzv_i —) =l P12\7—1 .
Tt B it ot
+ g(oT 1)
PN-L_ it
where 1 = 1,--- ,%. The monotonicity of p;, ¢ < %, together with
A > 0, leads to
PN-1_, 4 PN-1_, N -5
¢(272) > ¢(271), fori=0,-, ——.
PrZL PEZL i1 2
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If N—1is odd, % is strictly decreasing for 1 < i < [#2]+1. From (A.5),
it follows that

PIN-1; PIN=1119
Sy 2 p - g
P41 PigtH
N—1]+1 p[N—1]+2
:2¢(pN21 )_¢(p N2—1 )7
N1 42 [F3H)+1
p[b]_ -1 P[u]_ +1
(- 2——) =2 —o(— L —)
PN PIFt) i
PIN=1y_; PINZL] iyl PIN-1] 42
e R e ]
(M-t PIEA]—i PN —it1
where i =0, .-, [%] + 1. From the monotonicity of ¢, it follows that p;)—’:l
is strictly decreasing for 1 <4 < [M=1].
Step 3. Lower bound for p;“ i=1,--, [M] We first deal with the case
Py N—
that N —1 is even. Due to monotonicity of p [p_fv_—l]lﬂ.
[=5=]

Since Zi:l pi = 1, we have

NI] [Nl

c—i—QZpl—cl—l—QZ pz =

To find a lower bound of pip—tl, it suffices to find an upper bound of k£ such
that

]—1 1+c
1 Kl = .
+Z —1 < 2c

1

Let k£ < ( 20[15251]) . Then it holds that

Nl . .
i1 < e P
ZZ:; k - [ 2 ]k - 2c

Finally, we get that

(A1
inf I(p) =2 > (log(p;) —log(piy1)) (P} — pi1)
i—1
e
[ 15/«
2
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Since there exists at least p}, j < N such that p; > 11/101’ thus it holds that

(A.6)
P N1
. A+, , 1—c 1—c M
> o) > —o) > =
Jnf 1(p) = 2log(— - Ny— 9 = 2loe(h) (= —¢9) = 5

(551
Now, we are able to show the desired lower bound estimate. If there exists

1 mN N mN N, c= a—l
_ ] . < 3 .
5 Z.:1{1/)1(0) <a< izl{lpZ(O) , C ,

such that inf, —. I(p) > %, then

1
in p;(t) > = min p;(0).
st;ggg]rvlpz( ) 2 2%11]{,1[)1( )
Otherwise, ¢ < %a, for @ < 2 min;<y p;(0)N. From the estimate (A.6), it

follows that if .

— MN-D([FF)’
1+ 2[5 exp(— o507 )
then inf, —. I(p) > % Based on the above estimates, we have the following
lower bound for p,

c <

. 1 1
igg?ﬁ%pi(t) - 1+ 2[8AL exp(M(évﬁzﬂ?]) - 1+ Nexp(—M(N_;)[¥]).
Denote kg = %mini]\il pi(0) and
1
S 2[MH] exp(M(N_é)[¥]).

Thus, it holds that

in p;(t) > mi .
2121%) ?Suj{flpz( ) > min (ko, k1)

Similar arguments yield the estimate when N — 1 is odd.

g

Proof of Proposition 3.2. We use an induction argument and similar tech-
niques to those used in the proof of Proposition 3.1. Like the proof of Propo-
sition 3.1, it suffices to find the largest 0 <c< % such that nfocniny | pi<e I(p)

> % Since the graph is finite and I(p) is convex, we have that
inf I(p) = min inf I(p).
0<minl¥ ; p;<c (p) i<N pi=c (p)

When N = 3, then the graph only has two boundary nodes and we only
need to consider the case that p; = ¢ and py = ¢, due to the symmetry on
boundary nodes.
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When p; = ¢, the Lagrange multiplier method yields that the extreme
point satisfies
o(=)+o(2) =x o(Z)=x ot)=1—t—log(t).
P2 P2 P3
Then we get that A > 0, p3 > pp > c and = < Z—;. When ps = ¢, the
Lagrange multiplier method yields that the extreme point satisfies
c c
¢(P1) = (b(ﬂs) =
and so we obtain that A > 0, ps > ¢, p1 > c¢. From these, similarly to the
proof of Proposition 3.1, we obtain

3 (1 3 1
sgpr?:l{lpz(t) > min (2 min ;(0), 7 n 2eXp<4%)>-
Now we proceed with the induction steps. Assume that for the graph
with N — 1 nodes, if infj<y_1inf),, ;<. I(p) = inf,—c I(p) for some ¢, then
we get A > 0 in the Lagrange multiplier method, and that for any path
a,ap, ag, - - a,,, m < N —1, starting from a;, = a; to a boundary point q;,,
the probability density p;;, 0 < j < m is increasing and ng%’ 0<j<m-—1,
is decreasing. We are going to prove that the above statenient also holds for
the graph with N nodes. Let inf;<y inf|, <. I(p) = inf,,—c I(p) for some i.
Then either a; is a boundary vertex of the the graph, or a; is an interior
vertex of the graph.

Case 1: a; is an interior node of the graph. Assume that the number
of edges connecting to a; is n;. By using the Lagrange multiplier method
and taking the partial derivative with respect to p;, j # 7, we obtain N —1
equations. Since a; is an interior node, these N —1 equations can be rewritten
as n; systems of equations which are related to n; subgraphs sharing the same
node a;. Notice that the number of the nodes of each subgraphs is smaller
than N —1. According to our induction assumption, it holds that A > 0, for
any path aj,a;,as, -+ - a;, ,m < N—1, from a;, = a; to a boundary point q;,,,

Plit

the probability density p;;,0 < j < m is increasing and T—l’ 0<j<m—-1,
J

is decreasing.
Case 2: a; is a boundary node of the graph. By the Lagrange multiplier
method, with ¢(t) = 1 —t — log(t), we obtain

3 o2y =) it ¢ NG,

lenG)
l C - .
> o) +e() = ifj € N(i).
lEN(5),1#i Pi Pi
We first show that A > 0. Assume that A < 0. If 9V has only two nodes,
then by the monotonicity of ¢, it holds that p is decreasing along the path

ai,ar, ay, - - - a,, from a;, to any other node q;,,. From the connectivity of
the graph, we have ¢ > p;,l < N, which leads to the contradiction that
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Zi\il pr =1 < Nc < 1. Similarly, ff OV has more than two nodes, we
could also show that A > 0 and the increasing property of p;; along the path
ap,ap,ag, - - a,,, m <N —1 from q;, = a; to any boundary node q;,, € V.

Next, we show the decreasing property of pJ +1 " Notice that
J

S et >+¢< w+mﬁ%=A>o,

lEN()itile T Ph

Z ( )+¢(10lj 1) ¢(plﬁ+1>:)\>072§]§m_1’
N2, 1, Pl Pl Pl
p(Zm=ty = X > 0,
Pl
The increasing property of p along any path from a; to the node in 9V yields
that
Pl — pL Pl Pl
P(—=) = A= > ¢( ) = (=) > ¢(—).

Pl_1 Ply_1 Ply_1 Pl

LEN (1)1l m b —2

The monotonicity of ¢ leads to Zim‘Q < plp”ll—l
m—1 m

procedures on a;;, 1 < j < m — 2, we obtain that

plj,1)+¢( Pi; )+ Z ¢( )+¢(plg+1) :)\—i-qﬁ(pi)

Pi; Plitq LEN (1) 1AL 1,41 Pi; Pi; Pl

Notice that ¢(t) + ¢(1/t) < 0,¢ > 0 and that gb( ) <0 whenl#j—1. As

a consequence, we get that

¢

By repeating the above

¢

Pty s 4 (L,

which implies that J “ ,0 <7 <m—1is decreasing along the path from a;

to any node in OV Thus the results holds for the graph with N nodes.
Now, we are going to derive the desired lower bound of the p;. Assume
that k < N — 1 is the number of nodes in OV and that d,,.. is largest
distance d;;,, < N — k + 1 from a; to a;,,. Since va 1 pi = 1, there exists
at least a node a, such that the density at a, > ]1, ~—7- Then for the path

Ay, -+ ag; - ay,,, a, = i, ay,, € 0V, a;; = an, m < dmax — 1, we have

m m
>op =i+ Y B,
r=0 r=1

Adding all the paths, which have a; as a common node, together, we obtain

Koms
c(l—i—ZZ%)Zl

s=1r=1
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pP1s
To find a lower bound of the ratio of % for all the paths, we denote

. Pis
k = ming< plsms and let

mg—1
K Mms
c(1+> Y k)<L
s=1r=1
It suffices to require that
1 1—c 1
1 K d . 1 kdmax—l < -, "6'7 k < - dma:c—l,
+ #(dmas ) c ' - (Cli(dma;,; — 1))
Thus it holds that
Pls 1-c .
min ——— > dmaz—1 if ¢ < .
s<k pis (c,%(dmam — ) K(dmaz — 1) + 1
When ¢ < m, we get that for some path which contains the node

a; whose density is large than ]%,;_Cl,

mi—1
min inf I(p) > min inf 2 (log(py;) —log(py  ))(pr —pri )
> i inf log(~2 )5 )
1 1— 1—
> log( . = o).

dmaz — 1 cr(dmag — 1))(N —1

If there exists %minl-pi(O)N < a < min; pi(0)N,¢c = a% such that

inf, —.I(p) > Mo then

B
inpi(t) > 5 min pi(0)
supmin pi(t) > 5 min p
Otherwise, taking
1 1—c¢ 1—c¢ Ho

log( ) —c) = —,

Amaz — 1 ck(dmaz — 1) "N — 1 I6;
. 1 1
¢ < min(« ),

where o < 1 N min; p;(0), we obtain the lower bound as

1
sup min p;(t) > :
t 7 ! 1 + /f(dmaa: _ 1) exp(ZM(dmawgl)(N_l))
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Denote g = 3 min,(p;(0)) and

M(dpmaz — 1)(N — 1) \—
B )

Combining all cases above, we have the following lower bound estimate

= (1 + k(dmaz — 1) exp(2

sup min p;(t) > min (/{0, /@1).
t 7

A.2. Proof of Propositions 6.1 and 6.2.

Proof of Propositions 6.1. By using the energy-preserving property in
Proposition 2.1 and the smoothness of p(0,z) and S(0,z), we have that
for any ¢t > 0,

K(p(t), S° () + BI(p°(t)) = K(u, S°(0)) + BI(u°)
< K (p(0),5(0)) + BZ(p(0) + Ch.5(0) p(0)s

where Cj, g0 0 — 0 when h — 0. Denote the spatial piecewise density
on M by pPl(t,x), pP(t, x)vP"(t,z). Thus when h > 0 is fixed, by the
mass conservation law, it follows that there exists a convergent subsequence
{pPh},>1 with a strong limit p* € P(G) when 3, — 0 if n — co. By
choosing such subsequence, we have that

PPot(@)P @) 2 5o s (B (%) S
Iy et = 3 G g e

< K(p(0), S(0)) + BuZ(p(0)),

which implies that the signed measure E®»" with the density pPrhvfrl ig
absolute continuous with respect to the measure 92" with the density p®»"
and its Radon—Nikodym derivative is mean square integrable with respect
to 9Pt

Now we are going to show the tightness of the signed measures EP»" with
the density p?"vfrh ie, for any € > 0, there exists a compact set K, of
M such that

Bnh Bnsh
sup| / ’ (ﬁx>: @) " a)de| <.

Here we omit the dependence on t since t is fixed. By using the conservation
of the energy, Holder inequality and the boundedness of M, we have that

Bna ﬂnv B’I’La /Bn7
‘/ P 6U ”’hdx‘ < / P ﬁv p Brshdy / pPrhdz.
M/Ke P nh M/K, pPnh M/K,
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The tightness of the ¥#7" implies the tightness of the the signed measures
EP»h Thus there exists a weak limit (9", E") of the subsequence of mea-
sures with densities (p%»", pBrhyfn) = Since the density functions of oh
and E" are the linear combination of step functions, one can choose suit-
able subsequence such that the density of 9" and E" is also strong limit of
{(pPnh, pPrshyPnhyy, 1. By Fatou’s lemma, we complete the proof. O

Proof of Proposition 6.2. Since (@‘)h in the proof of Proposition 6.1 is a se-
quence of probability measures on M, there exists a subsequence of ({97“” b,
which weakly converges to a probability measure J by the Riesz theorem
and Alaoglu’s theorem. By choosing such a subsequence, it is sufficient to
show that Efm possesses a weakly convergent subsequence. By the Holder
inequality, for any subset K of M,

/ | |9" (dx) / Zﬁhm dx) / m (dx).
M/K dﬁhm M/K dﬂhm M/K

The weak convergence of ({97‘7") implies the tightness of (ﬁhm)h , and thus

leads to the tightness of Ehm which yields the existence of a weak limit E.
According to (2.4), we have that

7 () + o) g g
(A7) % (pZ () +2,01+1 (t)> _ = (5+Sf+1 (pz—l—l (1) ‘; Piyo (t))

B B
B 5;5,1'5_1 (Pi_1(t)2+ Pi (t)))

By the definition of the piecewise density function p?", we get that

9 gn
aﬂﬁ’ (t, )X (w(i),2(i+1)]

5 8 5 8
8 Pz+1(t) + Pi+2(t) B pi_1(t) + p; (1)
o (5+52+1 5 — 0 S 5 )X(ato i

where x is the indicator function. Next, taking the inner product with a
smooth test function ¢ on both sides of the above equation and using the
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Taylor expansion, we obtain that

0
5 | oo

b N x(i+1)
— 5> [ s

ot 5 Ja(i)
-y / x(iﬂ)—i(ﬁs@ GECRGET)
i=1 7 z() 2h AT 2
B B
C o (t “(
— st (PO
N 8 B8 z(i+1 z(i+3)
1 pin(t) + pis(t) ¢ (D) "
; 2p h 2 < (i) =(i+2) )
N - px(i+1) p ;
P; (t)—f—Pz‘ (t)
:Z/ @ oSy ()= s Ve(x)dr + O(h)
i=1 70

_ / PP, )Pt 2)V () da + O(h).
M

Taking the subsequence S, hy, to 0 in the proof Proposition 6.1, by the
weak convergence of ¥5#"m and E"» we obtain (6.1) in weak sense. U
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