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Trajectory Optimization and Model Predictive Control for
Functional Electrical Stimulation-Controlled Reaching

Derek N. Wolf1, Member, IEEE, and Eric M. Schearer2, Member, IEEE

Abstract—Functional electrical stimulation (FES) offers
promise as a technology to restore reaching motions to individuals
with spinal cord injuries. To date, the level of reaching necessary
for everyday use has not been achieved due to the complexity
and limitations of the arm and muscles of an individual with a
spinal cord injury. To improve the performance of FES-driven
reaching controllers, we developed a trajectory optimization and
model predictive control scheme that incorporates knowledge
of the person-specific muscle capabilities and arm dynamics.
Our controller achieved 3D reaching motions with an average
accuracy of 8.5 cm and demonstrated an ability to reach targets
throughout the workspace. With improvements to the model, this
control scheme has the potential to unlock many daily reaching
tasks for individuals with spinal cord injuries.

Index Terms—Rehabilitation Robotics, Prosthetics and Ex-
oskeletons, Motion and Path Planning, Motion Control, Model
Learning for Control

I. INTRODUCTION

FUNCTIONAL electrical stimulation (FES) can restore
reaching motions to individuals with spinal cord injuries

(SCI) by applying electrical stimulation to activate the para-
lyzed muscles, but the success has been limited. To control
reaching motions with FES, techniques such as combined
feedforward-feedback control [1] and optimized PD control
[2] have shown success in controlling simulated full-arm
planar reaching motions. In practice, however, the two most
influential FES-driven reaching studies, MUNDUS [3], [4]
and the BrainGate2 clinical trials [5], controlled each degree
of freedom independently and struggled due to the coupled
motions of the other joints. To achieve daily reaching motions,
it is necessary to control the arm as a complete system.

There have been two main attempts at practical implemen-
tation of full-arm reaching motions, the Sharif Razavian con-
troller [6] and our own previous work [7], [8]. Both controllers
used machine learning methods to find person-specific models
of an individual’s arm and its response to stimulation. The
controllers then used a feedback control strategy to select
the muscle stimulation commands necessary to drive the arm
through a selected trajectory. The Sharif Razavian controller
drives the hand of a healthy subject in straight line paths
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through a 2D tabletop workspace using a PID control. Our own
control study implemented a similar PI control structure to
drive the hand of an individual with SCI through 3D reaching
motions with some success, but the controller was not able to
accurately reach targets throughout the entire workspace [8].
This was due to the unique muscle capabilities of individuals
with SCI including limited muscles which can be actuated,
rapid muscle atrophy [9], and increased muscle fatigue when
electrically stimulated [10]. Due to these limitations, FES
stimulation cannot produce torque in any desired direction in
every arm configuration. When moving in straight-lines, the
simple PD control structure often called for torques that either
saturated the muscles or could not be produced in the desired
torque-space direction. In these situations, the arm would
get stuck in a configuration. One solution is to use a more
advanced controller such as model predictive control (MPC)
which has been successful in controlling knee extension with
FES [11]. Unlike PID controllers, MPC controllers can avoid
infeasible torque commands by incorporating knowledge of the
actuation limits, system dynamics, and muscle capabilities.

The contribution of this work is a novel FES reaching
control strategy that uses a person-specific model of the arm’s
response to electrical stimulation as the basis of a trajec-
tory optimization and MPC control strategy. This structure
improves upon previous control strategies by finding and
following trajectories while directly accounting for the person-
specific muscle capabilities. In this study, we demonstrated our
strategy with a participant with SCI.

II. METHODS

We developed a controller to drive the arm of an individual
with high tetraplegia due to SCI along desired reaching
trajectories (see Fig. 1). We first identified a person-specific
dynamic model of the participant’s arm. We then used trajec-
tory optimization to find feasible reaching motions throughout
the subject’s workspace and used an MPC controller to drive
the arm along the desired trajectories.

The experimental session took place over a single 3.5 hour
experiment. Initial set-up (attaching motion capture markers
and setting up coordinate frames and finding comfortable arm
configurations) required 40 minutes. Data gathering for the
day of model identification and training the new model re-
quired 30 minutes. Finding feasible trajectories with trajectory
optimization required an additional 20 minutes. We spent 15
minutes tuning the MPC controller, and the remainder of the
time was used for completing reaches. The participant was
allowed breaks whenever requested.
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Fig. 1. Controller block diagram: We identified a person-specific model of the arm of an individual with a spinal cord injury. We used this model and a
dynamic arm simulation to find an optimal trajectory between a starting and target configuration. We used a model predictive controller to determine the
muscle group activations to best drive the arm along the trajectory. The corresponding stimulation commands were applied to the participant’s arm.

A. Experimental setup

We worked with a single individual with high tetraplegia
due to SCI. The individual sustained a hemisection of the
spinal cord at the C1-C2 level and is unable to voluntarily
move her right arm. Protocols used for this research were
approved by the institutional review boards at Cleveland
State University (IRB NO. 30213-SCH-HS) and MetroHealth
Medical Center (IRB NO. 04-00014).

The participant is implanted with the IST-12 stimulator
telemeter in her abdomen [12]. The device uses intramuscular
electrodes [13] and nerve cuff electrodes [14] to activate
paralyzed muscles. Control signals are sent from the computer
to the device via a radio frequency link. We controlled nine
muscle groups with the device: 1. triceps, 2. deltoids, 3.
latissimus dorsi, 4. serratus anterior, 5. biceps and brachialis,
6. supraspinatus and infraspinatus, 7. rhomboids, 8. lower
pectoralis, and 9. upper pectoralis. Muscle stimulation uses
a bi-phasic, charge balanced pulse delivered at 13 Hz. The
muscle activation is adjusted by modifying the stimulation
pulse-width. Stimulation safety limits existed.

We gathered model training data using a HapticMaster
(Moog FCS) robot with three degrees of freedom. The par-
ticipant’s wrist was attached to the robot via a ball and socket
joint. The robot recorded the 3D forces of its end-effector
during model identification. During control experiments, the
robot provided a supporting force which countered the arm
support and the force of gravity to allow the subject’s arm
to move freely. The robot also created a haptic bounding box
around the edge of the workspace to ensure patient safety.
An Optotrak Certus Motion Capture System (Northern Digital,
Inc.) was used to measure the arm configuration.

The control and data collection occurred at 52 Hz, but
stimulation inputs were updated at the stimulation frequency
of 13 Hz. The experiment was controlled using MATLAB xPC
target on a Dell Dimension 8400 PC with a Pentium 4 3.20
GHz processor. Trajectory optimization was completed using
MATLAB 2019b and IPOPT [15].

B. Person-specific dynamics model used with trajectory opti-
mization and MPC

Our strategy to plan and control the arm to move along
optimal trajectories with MPC requires a model of the arm’s
musculoskeletal dynamics. We developed a person-specific,
muscle capability model that uses Gaussian process regression
(GPR) to predict for a given arm configuration the muscle
torques about each joint produced by electrical stimulation.

To train the GPR models, we measured the amount of force
needed for a robot to hold the arm static at arm configurations
throughout the subject’s workspace when the arm is passive
and when each muscle group was independently fully acti-
vated. The kinematic Jacobian was used to calculate the equiv-
alent joint torques needed to hold the arm static. The difference
between the calculated torque for the passive and activated
configurations determines the amount of torque produced by
a given muscle group. We assumed that the muscle torques
combine linearly. The limits of the participant’s workspace
were determined by her stated comfort. The procedure is
presented in detail in [16], [17].

The dynamics model consisted of two links, a humerus and
a forearm, with four degrees of freedom —shoulder plane
of elevation, shoulder elevation, shoulder rotation, and elbow
flexion as defined in [18]. The participant’s segments were
measured to be 0.315 m for the humerus and 0.253 m for the
forearm (note: we define the wrist position as the position of
the endpoint of the forearm). The mass, moments of inertia,
and position of the center of masses for each link were
estimated using the properties from [19]. The equations of
motion were found using Autolev 4.3 [20].

The model made several assumptions regarding the dynam-
ics of the real-life system. The model included passive stiffness
of 1 Nm/rad and damping of 1 Nms/rad on each degree
of freedom to create an equilibrium configuration which is
critical for numerical stability. The stiffness also represents
some portion of the dynamics produced by the elasticity in
the participant’s mobile arm support, though these properties
were not explicitly measured. The model also did not include
gravity. For the control experiments, a GPR model was used
to predict the passive force needed to hold the wrist at a static
position. This predicted force was then applied by the robot
to support the arm against gravity and the army support and
allow the arm to move freely.

To account for day-to-day changes in muscle strength, we
developed a “day of” muscle model update. We gathered
new training data for our GPR models at 13 wrist positions
spread throughout the subject’s comfortable 3D workspace
while maintaining the hyperparameters of a previously trained
model. This process efficiently updated our model without
the need to repeat targets multiple times nor for significant
computation time recomputing the hyperparameters.

C. Trajectory optimization
Using the person-specific dynamic arm model produced

in II-B, we developed a trajectory optimization scheme to
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find feasible trajectories which accounted for the participant’s
muscle capabilities and the arm dynamics.

The starting configuration for all trajectories was the partici-
pant’s natural resting position which was the first configuration
of the “day of” model identification. The remaining 12 training
configurations were used as targets. The targets were selected
to be spaced throughout the subject’s comfortable workspace
and spanned 12 cm in the x direction, 7 cm in y, and 15 cm
in z.

We used the trajectory optimization technique described
for optimizing human gait in [21]. In this method, we used
the direct collocation method which transforms the optimal
control problem of calculating the optimal muscle activations
to achieve the desired motion to a constrained nonlinear pro-
gram. IPOPT [15] was used to solve this nonlinear program.
For each target configuration, we attempted to find a feasible
two-second trajectory between an initial configuration, q0, and
a target configuration, qtarg, by formulating and solving the
following nonlinear optimization problem,

minimize:
α,x

mean(α2) + γ mean((q − qtarg)
2)

subject to:
state constraints
xmin ≤ xk ≤ xmax, ∀k ∈ {1, 2, . . . , n}

activation constraints
αi,k ∈ [0, 1], ∀i ∈ {1, 2, . . . , 9} , ∀k ∈ {1, 2, . . . , n}

dynamics constraints
f(xk, ẋk+1,αk) = 0, ∀k ∈ {1, 2, . . . , n− 1}

task constraints
x1 = [q0 0]⊤ xn = [qtarg 0]⊤.

(1)
The first term of the objective function minimizes the

average of the squared muscle activations, α, for all n = 80
nodes of the trajectory. The second term attempts to minimize
the distance from each configuration across all n nodes of the
trajectory, q, to the target configuration, qtarg, leading to more
direct reaches. γ was selected to be γ = 1 rad−2 to achieve the
overall goal of balancing the objectives of minimal activations
and direct path reaches.

The optimization problem included constraints on the state
(joint angles and joint velocities), muscle activations, dynam-
ics, and task constraints. The joint angles were constrained
to be between the minimum and maximum joint angles seen
during the day of model identification with an additional
11.5◦ of rotation. The joint velocities could have a maximum
magnitude of 10 rad/s. The combined state constraints are
represented by xmin and xmax. The muscle activations were
required to remain between 0 and 1. The dynamics constraints
ensured that the dynamics of the arm were satisfied throughout
the trajectory and that the person-specific muscle capabilities
are accounted for. The dynamics are approximated using the
semi-implicit Euler method. The task constraints ensured that
the first node began at the start configuration with zero velocity
and the final node ended at the target configuration with zero
velocity.

Due to time constraints, for each target, a trajectory opti-
mization was attempted once for up to 1,500 iterations. For the

12 possible reaches, we were able to find 11 feasible reaching
trajectories in 15 minutes of computation time.

Once a trajectory was found, a full five-second trajectory
was created. The starting configuration was held for one
second followed by the two second optimized trajectory. The
final two seconds of the trajectory were to hold the target
configuration to allow the controller time to correct for errors.

D. Controller

We linearized the nonlinear person-specific model devel-
oped in II-B to form the basis of an MPC controller to drive
the arm of a subject with SCI along a desired trajectory (see
Fig. 1). The input to the controller is the optimized desired
trajectory and the current state of the arm. The MPC controller
then calculates the desired muscle activations to best achieve
the desired trajectory. The inverse recruitment curves block
determines the stimulation commands that correspond to the
desired muscle activations, and the stimulation is applied to the
arm. The recruitment curves, the mapping from stimulation in-
put to muscle activation, were identified using the deconvolved
ramp method [22].

The state of the arm is defined by the arm configuration
—shoulder elevation plane, shoulder elevation, shoulder rota-
tion, elbow flexion —and the joint velocities. The state of the
arm was measured with motion capture and a 5th order moving
average filter was used. The joint velocities were calculated
using numerical differentiation.

We developed an MPC controller based on the incremental
MPC formulation presented in [23] which incorporates integral
control. The Autolev equations of motion used in the arm
model from II-B were used to linearize the system model
about the current state. The MATLAB function c2d was used
to create a discretized state-space system. The output of the
system and the reference trajectory included only the joint
angles. To add integral action, the state is augmented with the
current muscle activations, and the control input is defined as
the change in muscle activations, ∆α.

For a given time-step, k, the augmented, discretized state-
space model of the system can be written as[

xk+1

αk

]
=

[
A B
0 I

] [
xk

αk−1

]
+

[
B
I

]
∆αk (2)

yk = [C D]

[
xk

αk−1

]
+D∆αk. (3)

The state-space matrices are assumed constant for the
control calculations. The controller aims to select the input
commands which minimize the objective function

J =

ny∑
i=1

ek+i
T ek+i + λ

nu−1∑
i=0

∆αk+i
T∆αk+i. (4)

The first term of the equation minimizes the error, ek+i, for a
given time-step which is defined as the difference between
the estimated joint positions, yk, predicted by (3) and the
reference trajectory. The prediction horizon, ny , determines
for how many time steps forward the model predicts states
and system error. The second term penalizes changes in muscle
activations. The control horizon, nu, determines the number of
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time steps forward that the controller optimizes control inputs.
For time steps nu < i < ny , ∆u = 0. The lumped scalar
weighting λ acts as a muscle group activation smoothness pa-
rameter by weighting the amount that the activation commands
change during a time-step.

The parameters of the MPC controller were tuned on several
trajectories with the goal of producing accurate reaches and
comfortable stimulation profiles and motions. To solve the
MPC optimization problem within the 52 Hz control loop us-
ing the active-set method, the prediction horizon was selected
to be ny = 3 and the control horizon was nu = 2.

The key features for subject comfort were limiting oscilla-
tion of the arm and smooth stimulation profiles. To create a
smooth stimulation pattern, we selected a scalar weighting on
the change in input, λ = 1. During our initial tuning, it became
clear that oscillations would be an issue with the controller.
Our previous simulation research has demonstrated that sig-
nificant oscillations occur with feedback FES control due to
the delays in the FES system, and controller performance can
be improved by adding physical damping to the arm support
[24]. Due to this finding, we used the robot to create a damped
environment of 70 Nm/s in all directions.

Due to the time constraints of the control loop, we linearized
the system offline. The output of the state-space models were
the joint angles, and the reference trajectory included only
the discretized desired joint angles as a function of time-step.
At each point during the reaching experiment, the controller
would use the linearized system matrices from the desired
reference state of the arm at the next time step. The reference
signal for the controller was the desired arm configuration.
Joint velocities were not included in the reference signal due
to the aforementioned issues with system delays leading to
derivative control instability.

E. Experiments and data analysis

For each target reach, the robot moved the subject’s arm
to the starting position. Because the internal arm joint angles
were not controlled by the robot, the first second of each reach
was to hold at the starting configuration to allow the controller
to correct for initial configuration errors. For the duration of
the five second reach, the arm was allowed move freely as
driven by the muscle stimulations. The robot provided only a
damped environment and support against the predicted passive
forces at the wrist during the movement. The set of 11 reaching
motions was repeated nine times based on the amount of time
defined by the subject’s schedule. A total of 99 reaches were
completed.

To analyze the effectiveness of the controller, we calculated
the accuracy as defined as the mean Euclidean distance of the
wrist away from the desired position over the final second
of each trial. The accuracy of the controller was recorded
based on the wrist position as placing the hand at a desired
location in space is the most important goal of a reaching
controller. The wrist position of both the desired position
and experimental measurements were calculated using for-
ward kinematics. To determine the controller’s effectiveness
throughout the workspace, a two-sample t-test was completed

for each grouping of targets to determine if there was improved
accuracy to the left or right side of the workspace, up or down,
and forward or backwards in the subject’s workspace. The
targets were grouped based on their position relative to the
average position of all the targets.

III. RESULTS

Over 99 reaching motions to 11 different targets, the
controller achieved an average wrist position accuracy of
8.5 cm (standard deviation of 2.8 cm). Table I shows the
accuracy results for all trials including a breakdown of the
accuracy based on the position of the targets relative to the
average target position. The controller was able to reach targets
throughout the workspace, but it was more accurate to targets
on the right side (p < 0.001), forward (p < 0.001), and down
in the workspace (p = 0.002). These differences in accuracy
based on target position are illustrated in Fig. 2. The image
shows the average accuracy over the nine sets of reaches for
each target. The size and color of each point represents the
relative accuracy for each target.

A representative reaching trial with an accuracy of 8.5 cm is
shown in Fig. 3. The target position is denoted by the red arrow
in Fig. 2. The reach is able to move in the correct direction,
but there are significant amounts of oscillation near the target
position. Shoulder rotation is the joint with the largest error
that the controller is unable to correct. As this joint moves
away from the desired target, the wrist position also moves
away from the desired target.

Fig. 3(c) shows the muscle activation commands for the
triceps, biceps/brachialis, and the upper pectoralis muscle
groups. These activations demonstrate the ability of the MPC
controller built on our muscle capability models to select
muscle activations which make sense physiologically. For the
elbow flexion angle, the reach first requires elbow extension so
the triceps, the main elbow extensor muscle, is activated. As
the position overshoots, the biceps/brachialis turn on to stop
the elbow extension. These two muscle groups work to control
the elbow flexion as it oscillates around the desired position.
Additionally, as the shoulder rotation moves away from the
desired target, the integral action of the MPC controller
is noticeable as the upper pectoralis, an internal rotator of
the arm, increases in activation. While this is a simplified
explanation of the reach (the biceps/brachialis and triceps
also produce torques about the shoulder), this example reach
demonstrates the potential of the control strategy to achieve
reaching motions throughout the workspace.

IV. DISCUSSION

We present a novel control structure that can achieve
FES-driven reaching motions throughout the workspace of
an individual with SCI. The use of trajectory optimization
and an MPC controller to directly account for the subject’s
muscle capabilities resulted in improvements to the perfor-
mance compared to past FES reaching controllers. First,
though there were differences in accuracy based on the target
position in the workspace, the controller could move the arm
throughout the space. The MPC controller avoided getting
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Target location All Left Right Forward Back Up Down

mean accuracy (cm) 8.5 10.0 6.7 7.2 10.0 9.4 7.7
standard deviation (cm) 2.8 2.2 2.2 2.4 2.3 2.3 2.9

p-value < 0.001 < 0.001 0.002
TABLE I

WRIST POSITION ERROR FOR ALL TARGETS AND BROKEN DOWN BY THE TARGET POSITION RELATIVE TO THE AVERAGE POSITION

11 cm 9 cm 7 cm 5 cm

x

z

(0,0)

Fig. 2. This figure shows the average accuracy of each target position over
nine sets of reaching trials. The starting position for every reach is denoted by
the red star. The accuracy of the target is denoted by both the size and color of
the circle. Relative to the average target position, the accuracy of the reaches
improved for targets to the right, to the front, and down in the workspace
(see Table I). The red arrow denotes the representative target position which
is shown in Fig. 3. The coordinate frame and origin of the reaching Cartesian
workspace is also shown.

stuck in configurations as seen with the straight-line feedback
controller in [8]. Additionally, by controlling the whole arm,
we are able to produce more natural motions than the reaches
achieved by MUNDUS [4] once a trajectory is found. Lastly,
our controller can be implemented in any individual with
SCI by accounting for the person specific muscle capabilities
while controllers demonstrated in healthy subjects may not
immediately translate to an individual with SCI.

While the positives are significant, there were important
limitations to the study. The accuracy of 8.5 cm is worse
than the accuracy produced by our own previous work in [8]
and other controllers [5], [4], [6]. This accuracy is not good
enough to complete many daily activities including eating off
a plate though some compensatory torso movements could
assist these errors. One potential cause of this inaccuracy is
a relatively short prediction horizon which was selected due
to computational limitations of the FES system to compute
activations in real-time. Improved hardware could use a longer
prediction horizon to improve accuracy while still providing
the benefits of accounting for muscle capabilities.

Another limitation of this study is that the spacing of
the targets was limited by the subject’s muscle hypertonia.
Additionally, the trajectory optimization can take a significant
amount of time (from ten seconds at minimum and up to
five minutes if 1,500 iterations occur). For daily use, the
optimization needs to occur faster to be practical. Another
issue is the oscillation which makes daily tasks difficult (e.g.,
eating off a fork that is oscillating) and uncomfortable. To
improve both the oscillation and the accuracy of the controller,

(a) configuration

(b) wrist position

      

        

 

   

 

  
  
 
  
  
 
 

triceps

upper pectoralis

biceps/brachialis

(c) muscle activations

Fig. 3. This figure shows a representative example of an FES-driven reaching
motion controlled by our MPC scheme in both (a) configuration space and (b)
Cartesian wrist position space. (c) shows the muscle activation commands for
three muscle groups, the triceps, biceps/brachialis, and the upper pectoralis.
These muscle group activations demonstrate the ability of the MPC control
scheme to select muscle activations which make sense physiologically and
are able to control the motion of the arm.
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the MPC controller’s model needs to be improved. Our current
model accounts for basic multi-body dynamics of the arm
with estimated mass properties and the capabilities of the
muscles. A more advanced model which explicitly included
muscle activation dynamics, the stiffness introduced by the
arm support, and delays in control inputs because of the
stimulation frequency could significantly improve the model.
Our previous simulation study [24] has shown that these
nonlinearities produce oscillation that derivative gain cannot
account for. By improving the modeling of these sources of
error, the controller could reduce oscillation.

Identifying the subject’s arm dynamics is a difficult process
which requires gathering a significant amount of data. One
option would be to use semiparametric models of the muscle
capabilities that include the arm dynamics [16]. With this
model of the arm dynamics and muscle force production
matrices, we could better predict the dynamics of the arm
and achieve more accurate trajectories. A similar method has
been used in robotic simulations using a receding horizon LQR
controller and a GPR model of the dynamics [25].

This study presents a novel control strategy for FES-driven
reaching motions. The use of trajectory optimization and MPC
control creates a control scheme which can account for the
unique muscle capabilities of individuals with SCI including
muscle weakness or a complete loss of muscle function due
to lower motor neuron damage. With an improved model, this
control scheme has the potential to unlock many daily reaching
motions for individuals with SCI.
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