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Abstract

We present a definition of stochastic Hamiltonian process on finite graph via its corresponding density
dynamics in Wasserstein manifold. We demonstrate the existence of stochastic Hamiltonian process in many
classical discrete problems, such as the optimal transport problem, Schrédinger equation and Schrédinger
bridge problem (SBP). The stationary and periodic properties of Hamiltonian processes are also investigated
in the framework of SBP.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Hamiltonian systems, including both ordinary or partial differential equations (ODEs or PDEs
respectively), are ubiquitous in applications. Their mathematical studies have a long and rich
history (see e.g., [25,1,21]). Traditionally, the ambient space on which to define a Hamiltonian
system is continuous, such as Euclidean space R” or smooth manifolds like torus T?2. What is
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a Hamiltonian process if the underlying space becomes discrete, such as a finite graph? This is
the question that we would like to explore within the framework of optimal transport (OT) in this
study.

Our motivation to consider this question is 3-fold. Curiosity is at the first place. Secondly,
the notion of gradient flow on graph has been investigated extensively using OT theory (see
e.g. [19,7] and references therein). For example, an irreducible and reversible continuous time
Markov chain on graph can be viewed as the gradient flow of entropy with respect to the discrete
Wasserstein metric [19]. Naturally, we are inspired to ask whether the concept of Hamiltonian
process on graph exists or not. To the best of our knowledge, the Hamiltonian mechanics on
graph has not been explored yet. Finally and most importantly, recent developments in several
practical problems, which can be defined in both continuous and discrete spaces, demonstrate
Hamiltonian principles on graph. They are

(1) the OT problem (see e.g. [30]),

1

W3 (po. p1) =igf{/E[|Xt|2]dr X =00, X0, Xo~ 0% X1 ~ ', (M
0

(ii) the SBP (see e.g. [26]),

1
1 . .
irvlf{ f SEl(, X)Pldr : Xy = vt X))+ VABy, Xo~ p. X ~ pl} ®)
0

and (iii) the Schrodinger equation (see e.g. [23,20,9]),

T
1 . . .
i‘Jf{ / EEHXIF]dr : X, =v(t, X;) +ViB,, Xo~p°, X1~ pl}- 3)
0

The above formulations are presented in Euclidean space where v € R? can be any smooth vector
field, X, is a stochastic process with prescribed probability densities p° and p! at time 0 and 1
respectively, B; is the standard Brownian motion and 7 > 0 is a constant.

A common property shared by these problems is that their critical points obey the Hamiltonian
principle. For instance, the minimizer of OT problem (1) satisfies a Hamiltonian PDE with the
Hamiltonian H(x,v,t) = %|v|2 (see e.g. [2]). The minimizer of SBP (2) is the solution of a
Hamiltonian PDE with H (x, v) = %|v|2 — %h%l (p)(t, x) where the Fisher information I (p) =

f]Rd |V log,o(x)lzp(x)dx (see e.g. [24,17]). Needless to say, the critical point of (3) satisfies the
Schrodinger equation, which is a well-known Hamiltonian system. The problems stated in (1),
(2) and (3) can be posed, with nominal changes, on a graph, and the density functions of their
critical points have been studied on the Wasserstein manifold (see [14], [18,8], [9]) showing
that they satisfy Hamiltonian ODEs. Based on those results, we investigate the properties of
stochastic process X () and provide an answer to the question in the title of the paper within the
OT framework.

Defining Hamiltonian process on graph must face several intrinsic difficulties. The most ob-
vious one is that X (¢) is a stochastic process jumping from node to node on the graph, while
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its continuous space counterpart trajectory is a spatial-temporal continuous function. Another
challenge is about characteristic line. In fact, it is not clear how to define characteristic on graph.
Furthermore, there is no reported result about examining whether a stochastic process, such as
discrete OT and SBP, can preserve Hamiltonian along its trajectory, just like a classical Hamilto-
nian system does in continuous space.

To fill the gaps on finite graph, our idea is lifting the process on graph into a motion on its
density manifold. To be more precise, we define the Hamiltonian process by a random process
whose density and generators of instantaneous transition rate matrix form a Wasserstein Hamil-
tonian flow on the cotangent bundle of density manifold. Meanwhile, we show that such defined
Hamiltonian processes exist in numerous practical problems, such as the discrete OT problem
and SBP. Two important classes of Hamiltonian processes, namely the stationary Hamiltonian
process and the periodic Hamiltonian process, are also discussed via the framework of SBP.
They correspond to the invariant measure and the periodic solution of the Hamiltonian flow on
the density space. We would like to mention that the Wasserstein Hamiltonian flow is firstly
studied by Nelson’s mechanics (see e.g. [23,4]). It is also pointed out that the Hamiltonian flows
in density space are probability transition equations of classical Hamiltonian ODEs (see [30,10]
and references therein).

There are several works with titles related to Hamiltonian systems on graphs, like the port-
Hamiltonian system on graphs (see e.g. [28,29] and the references therein). Our current work is
different from them. The port-Hamiltonian systems are the generalization of classical Hamilto-
nian system which describes the dynamics in interaction with control units, energy dissipating
or energy storing units. The graph structure is used to characterize the interaction of the systems
with ports, and their underlying phase variables are still in continuous spaces, like R¢ or smooth
manifold.

This paper is organized as follows. In section 2, we use the discrete optimal transport problem
as the motivation of studying the Hamiltonian process on finite graph. In section 3, we present
the definition and several properties of the Hamiltonian process on graph. In section 4, we study
several different Hamiltonian dynamics derived from the discrete SBP from two different per-
spectives. We also discuss the existence of stationary and periodic Hamiltonian processes of the
discrete SBP. We provide more examples of Hamiltonian process on graph in section 5.

2. Preliminary

In this section, we first briefly recall the relationship between the continuous OT problem and
Hamiltonian systems. Then we introduce our motivation example on a graph and review some
notations for inhomogeneous Markov process, which is used in our definition for Hamiltonian
process.

It is known that in a continuous OT problem (1) with given marginal distributions p° and p!,
the optimal transfer {X;};c[0,1] induces a trajectory concentrating on the geodesic path whose
position and momentum obey the Hamiltonian principle (see e.g. [30]). More precisely, recalling
that H(x,v) = %|v|2, the critical point of the OT problem (1) in density manifold satisfies the
Wasserstein—Hamiltonian flow,

op+V (8_H( VSp)=0
tP ' 9 X, P) =Y, (4)
S+ H(x,VS)=C(),
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where C(t) is a function depending only on 7 and v = V.§ with |[VS|> = VS - VS. Being a
Hamiltonian system on its own, (4) can also be connected to the following classic Hamiltonian
system closely (see e.g. [9]):

oH

div = _W(X’ v),

&)
oH
X =—(X,v),
ov

where X € RY, the conjugate momenta v € RY,d € N1, and the Hamiltonian H is smooth.
If the initial position X (0) is random following a distribution with density p°, the trajectory
X; is random too. Its density function p, defined by the pushforward operator induced by the
X, 0p=X f,oo, satisfies the Wasserstein-Hamiltonian flow (4). However, directly mimicking the
relationship between (4) and (5) is impossible if the underlying space becomes a graph. In the
next subsection, we illustrate the challenges in detail by an example on graph.

2.1. A motivation example

Consider a graph G = (V, E, W) with anode set V = {a,-}lNzl, anedge set £, and wj; € W are
the weights of the edges: w;; = w;; > 0, if there is an edge between a; and a;, and 0 otherwise.
Below, we write (i, j) € E to denote the edge in E between the vertices a; and a;. We assume
that G is an undirected and connected graph with no self loops or multiple edges for simplicity.
Let us denote the set of discrete probabilities on the graph by:

PG ={(, : Z,o_/ =1,p; >0, for j eV},
J

and let P,(G) be its interior (i.e., all p; > 0, for a; € V). Inspired by [9,12,18], we consider the
following discrete OT problem whose minimizer is the so-called geodesic random walk.

Example 2.1. OT on G (geodesic random walk).
The OT problem on a finite graph is related to the Wasserstein distance on P(G), which can
be defined by the discrete Benamou—Brenier formula:

1

W(/OO,,OI) = }}nlg{ /(U,v)g(p)dt :
0

dp

-+ div(p) =0, p(0) =" p() =p'}.

where p, p! € P(G), p € H'([0,1],RV) and v is a skew matrix valued function. The inner
product of two vector fields u, v is defined by

1
(u, v)o(p) = 3 Z ujrvji0jiw;i
(J.DeE
with the weight 6;; depending on p; and p;. The divergence of the flux function pv is defined as
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(diveG(,ov))j = —( Z w0,

leN(j)

where N (i) ={a; € V : (i, j) € E} is the adjacency set of node ;. Then its critical point (p, v),
with v = V5§ := (§; — 8)(j.nee for some function S on V, satisfies the following discrete
Wasserstein-Hamiltonian flow on the graph G:

dpi
l—l— Z w;j (S —8)0;j(p) =0
JEN()

LS wes - 5220,
dpi

JGN(l)

(6)

We may view this equation as a discrete analog of (4). Consequently, its Hamiltonian only con-
sists of the kinetic energy

1
H(p,S) = 4 Z(Si — 8)%6ij (p)w;.
ij

As discussed in [ 18], the goal of the discrete OT problem is to find an optimal transport of the
informal minimization problem

T

. 1
Héf{ / 3 Z(Utj)ZQijwijdt :dpr = pr Qrdt, X(0) ~ po, X(T) ~ PT}, @)
0 ijeE

where T =1 and the transition rate matrix ; may be written as

if 0;; = 6;;. In [18], the minimizer of the above discrete OT problem is called the geodesic
random walk which is defined as a random walk whose marginal probability is supported on
the set of geodesic paths on P(G), i.e., X; is determined by the marginal distribution and the
instantaneous transition rate matrix Q. However, examining the transition rate matrix, we can
find that the geodesic random walk X; may not be well-defined, because there may not exist
such a stochastic process due to possible negative probability and transition probability (See
Remark 3.2 for more details).

This example illustrates that when compared to the continuous case, where the Hamiltonian
system (5) on the phase space corresponds to the Hamiltonian PDEs (4) on Wasserstein manifold,
such a correspondence in discrete space can’t be easily established, because the counterpart of
(5) requires more careful treatments.
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2.2. Inhomogeneous Markov process

In order to define a stochastic process which plays the role of the Hamiltonian mechanics (5)
on a finite graph, we recall the definition of the inhomogeneous Markov process in [15]. The
linear master equation

dp
77 —r€
determines a linear Markov process. When Q = Q(), it corresponds to a time inhomogeneous
Markov process. Here Q(¢) is a family of infinitesimal generators of the stochastic matrix or Kol-
mogorov matrix, namely, a square matrix which has non-positive (resp. non-negative) elements
on the main diagonal (resp. off the main diagonal), and the sum of each row is zero. Among dif-
ferent types of inhomogeneous Markov process, the nonlinear Markov processes [15] whose
transition rate matrix Q may depend not only on the current state x of the process but also on the
current distribution p of the process is of particular interest to us.

Given an initial distribution pp, a time inhomogeneous Markov process { X };>( can be defined
as a process which has pg as the distribution of X¢ and (s, #) — Ps; as its transition mechanism
in the sense that

P(Xo=ai) = pi, P(Xs =a;j|Xo,0 €[0,5]) = (Ps.)X(s)a

where (P t)4;a i = P(X; =a;| Xy = a;). The corresponding forward Kolmogorov equation can
be rewritten as

dtPs,t = Ps,tQt-

Ift € [s, 00) = p; is continuously differentiable, then

Pt = p: Ot

is equivalent to

Pr = /OsPs,t,

for t > 5. Given (Q;):>0, po, there exists an inhomogeneous Markov process X, related to the
transition rate matrix Q; and the marginal distribution p;. On the other hand, given an inhomo-
geneous Markov process with transition matrices P;;, it will induce the equation of p with Q;
(seee.g. [15]).

3. Hamiltonian process on a finite graph

As shown in Example 2.1, although it may not be possible to find a stochastic process for
every discrete optimal transport problem, it reveals two key features that the density of such a
stochastic process, if exists, satisfies the generalized master equation and that its Q;-matrix is
determined by a potential S;, where S; satisfies a discrete Hamiltonian Jacobi equation. Inspired
by these properties, we introduce the definition of stochastic Hamiltonian process.
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Definition 3.1. A stochastic process {X;};>¢ is called a Hamiltonian process on the graph if

1. The density p; of X; satisfies the following generalized Master equation,

dipr = pr Qs

with (Q,),'j = wjifj,-(vji), (01)ii =— ZjeN(i) w,-jfj,-(vj,-), where the skew-matrix v is in-
duced by a potential function S, i.e. v=VsS+u, withdivg(pu) =0. And f;; : R — R,isa
real-valued measurable function which is piecewise continuous in x € R and may depend on
t and p.

2. The density p and the potential S form a Hamiltonian system on the cotangent bundle of the
density space.

The following theorem gives the structure of the Hamiltonian on the density manifold of the
Hamiltonian process.

Theorem 3.1. Suppose that the stochastic process {X;}>o with density {p;};>0 and potential
{St}i>0 defined in the Definition 3.1 forms a Hamiltonian process on the graph G. In addition
assume that the antiderivative F;; of fi; exists for ij € E. Then the Hamiltonian always has the
form

Hip, )= D piFji(Sj—Si,p,Dwji +V(p, 1) ®)

ieV jeN(i)

where V is a function depending p and t. Moreover, the Hamiltonian system on the cotangent
bundle of P(G) can be written as:

d
apz‘(t)= E wij fij(Si — Sj, p,)pj — wji fji(Sj — Si, p, 1) pi )
JEN(@)

d d d
—Si()=— E w;iFji(S; —Si, p,0) + pi — Fji(S; — Si, p, Dwji | — —V(p, ).
dt N () ap; 0p;

Proof. According to Definition 3.1, we have %pi(z‘) = ZjeN(i) w;j fij(Si — Sj.p,)pj —
wj; fji(S; — Si, p,t)pi. Since {p;, S;} forms a Hamiltonian system, we are able to state

0
aS;

Hp, S, 1) = Z wij fij (Si — Sj, p.)pj —wji fji(S; — Si, p, Dpi, 1€V.
JEN(@)

Considering the following quantity,

Ho(p, S,00=)_ > piFji(Sj—Si,p,Dwji,
ieV jeN(i)

we can directly verify that aa_s (H(p, S,t)—Ho(p, S, t)) = 0. This suggests that there exists some
function V' depending on p and ¢ such that H(p, S,t) — Ho(p, S,t) = V(p,t). This directly
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leads to form of Hamiltonian H(p, S,t) = oy Z_/eN(i) piFji(S; — Si,p,ywji + V(p,1).
Furthermore, the discrete Hamiltonian Jacobi equation is derived as

0 B
— S, =——H(p,S,t). O
a7 t 90 (p )

As a direct consequence, we have the following properties of Hamiltonian process.

Proposition 3.1 (Properties of Hamiltonian process). Assume that a stochastic process X; on a
finite graph is a Hamiltonian process. Then it holds that

1. there exists a Hamiltonian H on the density space such that its marginal distribution p; =
X f,oo and the generator S; of the transition rate matrix Q, forms a Hamiltonian system;
2. the symplectic structure on the density space is preserved, i.e.,

Wg(0,5) (&' (P, 9)E, & (p, S)N) = w(y,5)(§, 1),

where w denotes the symplectic form on T*P(G), &€, € T(, 5)(T*P(G)) and g'(p, S) is the
Jacobi matrix of the Hamiltonian flow on the density space;

3. H(t) = H(0), if the Hamiltonian H is independent of t;

4. and X, is mass-preserving, i.e., le\J:l pi(t) = ZIN=1 0i (0).

Remark 3.1 (Particle-level properties of Hamiltonian process). Consider the Hamiltonian with
specific form

7-[(,0,5)=Z Z pjFji(Sj — Siwj; +Z/Oivi-

ieV jeN(i) ieV

Suppose that {X (¢)} is a Hamiltonian process on G associated to the Hamiltonian 4. Then one
can verify E[H (X (¢), S(¢))] with

HX@®).SO)= Y Fixo(Sit) = Sxaiy)wjxa + Vxa).
JEN(X ()

remains constant as time ¢ evolves.

Based on the definition of Hamiltonian process, we are able to construct the discrete optimal
transport problem which retains the property that the minimizer is a stochastic process on the
graph for Example 2.1.

Proposition 3.2. There always exists a density dependent weight 6 such that the geodesic random
walk in Example 2.1 is a Hamiltonian process.

Proof. Define 05 = 05(](,0,-, p;j), where Qg(p,-, pj) = p; if §; > ;. Denote (x)T = max(0, x),
(x)” =min(0, x). Using the notations in Example 2.1, the geodesic random walk on G with the

probability weight & = 6Y satisfies
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dp; = Z wii(vij)Tpj + Z w;j(vij) Pi- (10)

JEN() JEN()

From the discrete Hodge decomposition on the graph [9], for any skew matrix v and probabil-
ity density p € P,(G), there exists a decomposition v = Vg S + u with div% (pou) = 0. Here
(V6S)ij == (S; — S;) and divl.(ou) := =3 JeNG) u,-jeg (p)). To see this fact, it suffices to
prove that there exists a unique solution of § such that di v% (oVgS) =di vg (pv). The connec-
tivity of the graph and the fact that p € P,(G) implies that if

1
(divg(pVGS), )= Y (i =S5)7)6ij(p) =0,
(i,j)eE

then O must be a simple eigenvalue of di v% (pVg) with eigenvector (1, ---, 1). Thus S is unique
up to a constant shift and the skew matrix v; = VS, + u satisfies

1 _ .
dS)i=—5 Y wij((5; = ST +C), divg(pu) =0,
JEN()

where C(¢) is independent of nodes. Meanwhile, f;; can be selected to achieve f;;(S; — ;) =
(Si — S;)* and thus

(Q)ii = Z w;j (S;i —8;)" = Z w;ij f7i(S; —Si),

JEN() JEN()

(Q)ji=w;i(S; — ST =wj; fji(S; — Si), ij € E, otherwise Q j; = 0.

We can define a time inhomogeneous Markov process as follows by the transition matrix
P(X; =vj|X:, 7 €[0,s]) = (PS,,)X(S)UJ. Given the past o ({X; : T € [0,7]}) of X up to time
t > 0, the probability of its having moved away from X; at the time ¢ 4+ & with 4 small enough
can be approximated by 1 — (Q;)x, x,h, 1.e.,

PX(@+h)=Xi|Xe, 1 <1) =1 = (Q0)x,x,h| = 0(h).

Here {—(Q;)ii}; is often called as the transition rate of X;. Given the history that the jump
appeared o ({X; : T € [0, 7]} U {X; 1 # X,}), the probability that X,,, = a; is approximately
(Ptt+h)X,a; which implies that

P(X(@t+h)=ajlXe,1<1) —h(Q)x,a;| =0(h). O

Remark 3.2. It is worth mentioning that the Hamiltonian system on P(G) does not necessarily
induce a stochastic process on G. This can also be illustrated by using the optimal transport
problem introduced in Example 2.1. Let us take w;; =1 if ij € E for simplicity. In order to
define a Hamiltonian process on G, the probability weight 6 can not be chosen arbitrarily here.
For example, if we take the probability weight 6;; = 64 (pi, p i) = %(pi + pj) in [9], the density
equation can be rewritten as
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dipr = p; Ot

where

1
Qi =5 Y (51 =5),

JEN(D)
1
(Ql)ij = E(SJ — Sl'), l] c E, otherwise Ql] =0.

The function f;;(x) = %x.

When 60;; = 0L (pi, p i) in [7], the density equation can be rewritten as

_ Pi—pPj
~ log(pi)—log(p;)
dipr = p1 Qs

where

- (Si = Sj)
(Q)ii jeiN%i) log(pi) —log(pj)’

(Si —§j)

(Qn)ij = ~log(pi) — log(p))

, ij € E, otherwise Q;; = 0.

' ()= — X
The function f;;(x) = g0 —Tog(s,)° . . Ny

In both cases, there is no guarantee that the off-diagonal of Q; is non-positive. Hence, Q;
is unable to admit a stochastic process X; which is time inhomogeneous Markov due to the
appearance of negative transition probabilities. For valid choices of 6 that may admit stochastic

processes, we refer to [7], [19] and references therein.

Remark 3.3.If 0;; > O for all ij € E, then the Hodge decomposition yields a unique potential S
up to a constant which induces v. If there exists i j € E such that §;; = 0, then the generator § may
be not unique. Meanwhile, the Hamiltonian Jacobi equation may become one-side inequality,

0
vij =38 —Sj, 0:Si + —H(p,S) <O0.
api

Remark 3.4. The initial value problem of the Hamiltonian system of p, S may develop singular-
ity at a finite time 7 > 0, i.e., either lim;_, 7 S; (t) = oo or lim,_, 7 p; <O0.

We would like to emphasize that a Hamiltonian process is not Markov in general. The suffi-
cient and necessary conditions when a Hamiltonian process gives a Markov process are presented
as follows.

Theorem 3.2. Given a Hamiltonian process {X;}:>0 on the graph with a Hamiltonian H(p, S) =
ZlNzl ZjeN(i) Fij(p, Sywijp;. If X; is a Markov process, then (p, S) in Definition (3.1) satisfies
the following system,
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0F;; 0 Fy;
< >, a—épiwiz+ > 8S-l leli) (1)

leNG) =~ * leNG) !

32 Fj
0S;dpi

9%F;; F ik dFyj
+as-al]‘( 2 s, vt 2 aS{p’wk-/)
10P] Mkengyy 00 keN() O

9%F;; dF;
— Y < Z p,w,1+ Z ,Ozwn + Z (Fzzwzl-i-ﬂzwlz))
d4S5;0S; opi

[eN(i) pi le N(z) i [eN(i)
9 F;; IF i dFy;
— ——pPjWjk + — Pk Wkj + F~w-+F'w')=0
8S,-BSJ~( Z op; PjWjk Z op; Pk Wk Z.( kW jk ki Wki)
keN(j) keEN()) keEN(j)

for i, j € V. Conversely, if (p,S) satisfies (11), then there exists a Markov process which is
Hamiltonian.

Proof. Since X; is a Hamiltonian process, the transition matrix is determined by p; Q; = % =
d; p;. This implies that

0F;j(p,S) 0F;i(p,S)
(1 Q1)i = Z ljaTwij,Oi+ Z J(;ijipj-
JEN() ! JEN () !

Therefore, (Q1)ii = )~ jenq) aF”(p D wij, (Qr)ij = Mw,-j. Since X, preserves the mass,

it holds that ZJ-GN(i)(aF’gg’? .5) + aF’éé‘? S))w,-i =0 foreveryi <N.
i J '

Notice that X, is Markov implies that d; Q;; =0, for i, j < N, that is

8F BF
d; =0,d; =0.
a5, 35,
Direct calculation leads to
IFij  0°F . 3 F; Oy,
o8, asiop T asiop,
+ O E d; S; + O Fj —4,S;
3S:08; 3S;08; "
. 32Fij ( Z 3le aFlz )
05i0pi IeN() 8S le N()
3% F;j dFjk 3 Fyj
+ < Z o PiWjkt Z —',Ozwkj)
8Si3pj kEN () aS_,- kEN(j) 8S_,~
3%F;; dFy dFy;
- - < Z —— piwir + Z ——prwgi + Z (Filwil—i-Fliwli))
08;05S; 1eNG op; 0p; .
i) IEN (i) IEN (i)
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azF" aFk
_BS-ag-( 2 p Pivik T Z ap < pwy + > (ijwjk+Fkiwki)),
! keNG) T keN(j) Y keN(j)

which yields the desired result. Conversely, if (p, ) satisfies (11), the previous arguments lead to
the equation of p becomes a linear Master equation. Then there always exists a Markov process
which is a stochastic representation of linear Master equation. Meanwhile, it can be verified that
this Markov process satisfies all the conditions in Definition 3.1 and is Hamiltonian. O

Corollary 3.1. Given a Hamiltonian H(p, S) = ZIN=1 ZjeN(i) Fij(p, S)w;jp;. Assume that
there exists (p*, S*(t)) satisfies the following conditions,

aF;ij(p,S) | 9F;i(p,S)
L Y jeniy —4s,— + —4s, =0
2. p* is independent of t and (p*, S*(t)) solves

0F;; d0Fy;
Z - Piwi + Z lplwli=0,
- 0S; MY
leN () leN ()
32Fij 8F,1
aS,-aSl-< 2 gy P Z

leN (i) leN(l)

prwii + Y (Fiwi + F wzz))

pi IeN (i)

aZF.. OF i 0Fy;
p TN ( § —Lpjwi+ Y —Lowi+ Y (E;kw,-k+Fk,-wk,-))=0
i) keN(j)

Then there exists a Hamiltonian process which is Markov and preserves the mass. Furthermore,
the Hamiltonian process is invariant with respect to p*.

4. Hamiltonian process via discrete SBP on graphs

Although the SBP [26] has a history close to 100 years, it has received revived attention from
control theory and machine learning communities recently, see [17,24]. For convenience, the
background of continuous SBP is presented in the appendix.

For the discrete counterpart of SBP on graph, there are two different treatments reported in
the literature.

(A) One is to consider a reference path measure R (induced by a reversible random walk) on the
graph and then study the optimization problem involving the relative entropy between the
reference measure R and the path measure P with given initial and terminal distributions
[17,18].) In this framework, the reference random walk is often related to a discrete version
of (33) (For example, the linear discretization of the Laplacian gives the time homogeneous
Markov chain as the reference in [5]).

(B) Another way is proposed by the discrete version of (30) or (32) directly [8].

We shall show that different treatments create differences on the structure and formulation of
equations, in particular the discrete Laplacian operator. Each of these formulations can determine

its corresponding Hamiltonian process on graph.

439



J. Cui, S. Liu and H. Zhou Journal of Differential Equations 305 (2021) 428457

4.1. Discrete SBP based on relative entropy and reference Markov measure

In the following discussion, we always assume that w;; = 1 if ij € E for conciseness of
formulations. By using the discrete Girsanov theorem on graph, the discrete SBP in the form of
relative entropy (A) becomes the following control problem

min /Zp(i,t) > (m_;flog (m;1> _ m;] +1> mj; di (12)

o i€V JEN() ij i ij
. d . _~ -~
subject to: Ep(z, 1) = Z m'pj —mipi p(-,0) = p°, p(, 1) =p',
JEN()
where the reference measure R is determined by the master equation d;p; = Y _ jeNG) m;i pj—

Remark 4.1. The formula for relative entropy between path measure P and reference path mea-
sure R is formulated as

mt\
H(P|R) = fZ,o(z n Yy ( flog< ;’)-#H)mlf.jdt.
iev jenay \"ij M mij

This result is provided in [17], [18]. A rigorous proof for this formula originates from Theorem
2.9 of [16].

Let us denote u(x) = xlogx — x + 1. By introducing Lagrange multiplier v, we obtain the
following Lagrangian functional

z(p,nﬁ,w:pr(z n Y u < )m d
J

o i€V JEN(i)

1

0 ~ A~
+/Z—p<i,r)5w<i,z)—w<i,r> Y mlp; —ig;pi | di

o eV JENG)
: 9 1 m m
:/—Zp(i,t)glp(i,t)—i Z [m—{f(w(i,t)—W(j,t))—u(lq—ff)]mjip(j,t)
ieV G, e " ! It

[ Y p(ot) — i n) — u(-— i )]m,,pa 1) dt.

ij mij
When solving the above saddle point problem, we minimize over m and get
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1

RN I o : :
f—Zp(z,mgw(z,r)—i WD = (G 0mip(, 1)

0 eV (i,))eE
+ut (Y (j, 1) =@, O))mijp, )] dt.

Here u™* is the Legendre dual of u: u™*(x) = sup,, {x -y —u(y)}, leading to u*(x) = e¢* — 1. By
formulating the Lagrangian, we can identify the Hamiltonian of this control problem, which can
be written as:

Hip, )= Y @p(j,n) =¥, 0) — Dmijp(i,1). (13)

ieV jeN(i)

Then the above control problem implies the following Hamiltonian system

M (p. aH(p,
g W) o WG
oy ap
that is,
9 _— . " .
S = Y ="V Omyp )+ e OO myip (o), (14)
JEN()
ad . SN (i
SWGn== ) IV — Dmy;.
JEN(@)

By using the Hopf-Cole transform, we can further verify that the discrete SBP problem de-
termines a Hamiltonian process on the graph. Let us consider the following transform t :
T*P(G) - T*P(G) as:

1
(o, )] = (o, ¥ — Elnp) (15)

Let us denote g’(p, ¥) = Dt(p, ¥). Then the symplectic form w is unchanged in the sense that

We(p.v) (8 (0, Y&, &' (P, V)N = w4 (E, 1),

where (¢, n) € T(y,4)T*P(G). By using the symplectic submersion from P(G) to RY, the sym-
plectic form can be represented by (g’ (p, ¥)&)T Jg'(p, ¥)n = &7 Jn, where J is the standard
symplectic matrix. Since d;7(p, ) = v'd;(p, ¥)T and that (¢)T Jt' = J, we conclude that
the Hopf—Cole transformation (15) is a symplectic transformation on the cotangent bundle of
the density manifold. Denote (p, S) as the new coordinate. Then {p;, S;} satisfies the following
Hamiltonian system:

dp(,1) _ 3H(p, S)

a  dS
9SG, 1) _ 9H(p, S)
ar Ap
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with
Hp, )=HT " (p.SN=D_ > Smy; /pip;. (16)
ieV jeN()
that is
9SG, 1) i VP
= —mii = 5 LY oSS, ——Ze Simji =, (17)
jeN(z) VPi JEN() Vi
8,0(iat)_ Z eSi—Sim .. N Z eSj_Sim..\/_. -
o JiN/Pi/Pi i PN P]-
JEN(@) JEN @)

As a consequence, we verify that, as reported in [17], the discrete SBP corresponds to
a Hamiltonian process with the transition rate matrix Q (Q;; = n’iij) defined by Q;; =

Z]EN(Z) €Sj Si */\/p:ml], Qlj —eSl S; \/\/p:m], lfl] e E.

Using the above procedures, we can naturally extend the original SBP problem to the follow-
ing generalized control problem

1 n
m. .
. . 12} t
mlz% f E p(i, 1) E u (m_t> m; dt (18)

o i€V JeN(@) tj

. d . . .
subject to: Ep(z,t): Z M pj — i pi p(-,0)=p% p(, 1) =p'
JEN()

Here u is an arbitrary convex function. Then the Hamiltonian associated with this general
control problem is

Hip. y)=Y_ Y w0 =i, 0)mijpl,1), (19)

ieV jeN(i)
where A;; = ()" (¥ — ¥i).
For the sake of completeness of our discussion, we also reveal the relations among the

so-called Schrodinger system [10,11,3] and our derived systems (14) and (17). All three PDE sys-
tems are derived from the SBP. We introduce the Madelung Transform ¢ : T*P(G) — T*P(G)

(f,e)=¢(p,S) = (Jpe S, /peS), (20)

or equivalently,

(f.9)=dp.¥)=(pe™",e"). 21
Combining (20) with (17), or combining (21) with (14) yields the Schrédinger system:
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d
S FG0= 3 (FUD =[G 0)m, (22)

JEN()

d
PUIGDES > (g —gli.t)ml;.

JEN()

Similar to our previous analysis, we can verify that both transforms ¢ and ¢ preserves the sym-
plectic form. And we know that (22) is a Hamiltonian system and its corresponding Hamiltonian
is

HLo)=) > figjm.
ieV jeN(i)

By applying the Theorem 3.2, we obtain the following result about the conditions under which
the Hamiltonian process in SBP enjoys the stationary measure and Markov property.

Proposition 4.1. Assume that the reference process is mass-preserving, i.e., Y ;p(i,1) =
> ,?)O (i), and possesses a stationary measure p*. Then there exists a stationary point (p*, S*)
of the Hamiltonian system (17) on the density manifold.

Proof. Take % =0 and % = 0 such that (p, S) is independent of time. The equation of p
leads to
2, T mjipi= ) € mij ;.
JEN (@) JEN()
Due to m;; = — ZjeN(i) m;j, the equation of § becomes

1 . .
S Y @ Imy eSS my) = Y mi o

JEN() JEN()

Applying the above relationships, we obtain that

Z e Sim i ;= Z mij~/Pi-

JEN@) JEN@)

This immediately implies that

JEN() JEN()

Now by taking eS| pj.‘ =¢S5/ p; forallij € E, the first equation is reduced to

> mjipi=Y_ mijp}.

JEN@) JEN@)
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This leads to

Z mjip; +miip; =0,
JEN()

which is the sufficient and necessary condition that the reference process admits the stationary
measure p*. From the above arguments, there always exists a stationary point (p*, $*) which
refers to the reference process itself and p%=p! =p*inthe SBP. O

In the following, we show that if the solution process of the SBP is Markov, then its density
function p must be invariant with respect to time.

Corollary 4.1. Assume there exists a Markov process solving the SBP and that the reference

S; -
process is mass-preserving, then forall ij € E, ¢;j = es;ﬁ is the solution of
1= &
- Z crimir + Z cijmijp —mjj +mj; = 0. (23)

keN (i) leN(j)

Moreover, p is the invariant measure of the solution process in SBP.

Proof. Since the solution process of the SBP is time homogeneous Markov, we can verify that

S; /o
%—m = ¢jj > 0 is independent of time and that
e’ Jpj
dip=pQ,
where Q;; = — ZjeN(i) Cjimij, Q,’j =cjimij. Let e¥i = ¢5i /pi. Then it holds that

J . Ui . (i .
a’o(l’ 1) = 2 —eVUn 1//(l,l)ml../.,0(l7 1)+ eV @) l/j(j’t)mj'ip(J, )
JEN(@)

9 S
SYEn== 3 (VT — ;.
JEN()

As a consequence, forij € E,

dicij = di[(eV" V1) (24)
=cij(—= ) " Vimy+ Y e Vim) +cij(—mjj +mi)
IeN (i) keN(j)
=cij(— Y cimi+ Y cjmjx—mjj+mi;)=0.
IEN(i) keN (j)

Since ¢;; > 0 for ij € E, we obtain (23). Next we show that the density function p is invariant
with respect to time.
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Notice that e%—Si = %ci j leads to

Ldp; 1dp: Ldp; 1dp;
d(S;— S ==L - 2Py din(eyy = - LL 29
2p; 20pi 2p; 2pi

This implies that

1 —s AP 1 . N/ Pk
—mi =5 Y e mi > eSSy

keN (i) Vi 2 keN (i) VPi
1 _s. o1 _ ol
tmijts 2 e S’mfl£.+§ 3 5 Simy Y
IeN()) VPRI 2 enG) VPi
1 o G
= =5 ) & mapipx— Y e mix/pipi)
Pi keN (i) keN (@)

1 _ _q.
+2—( Z eSi™Simy; /PP — Z S Sim 1. /o o),

PI1En) IEN())
which is equivalent to (23). Using (24), it yields that

1
Z Cikmkip(k,f)—Ckimikp(i,f)=—( Z lemljp(l,t)—Cljmjlp(j,t)),

keN () Pj IeN(j)
that is,
dipi = dy In(p;).
Similarly, we have d; p; = d; In(p;), which implies that
dipi = pipjd:pi-
Now we claim that p must be invariant with respect to . Indeed, if there exists ij € E such that
dp; # 0, then we have that p; p; = 1. However, this contradicts the mass conservation ZlNzl 0i =
1. It follows that d; p; = 0, and therefore p should be invariant with respect to time. We conclude
that p must be the invariant measure of the solution process in the SBP. 0O
4.2. Discrete SBP based on minimum action with Fisher information
Another way (B) to describe the discrete SBP (see e.g. [8]) lies on the discretization of the

variational problem (32). Consider the following control problem by directly discretizing the
Fisher information 7 (p) in (32):

1
1 1 1
n=min{ [ Glwv,+ g 1ondr+ 5 Y0 i) log(e! @)~ P loge @), @5)
0 i

where p; € H'((0. 1)), vij € L*((0, 1): 6;(p)) and
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dipr = p: Qr = —div%(pzvz)

with ,00, p! € P,(G). In this case, we look for a stochastic process which obeys the above mas-
ter equation and minimize the action with the Fisher information 7 (p) := %Zl e g(log(pi) —

log(p j))z’g‘i i(p). Here 6 is another density dependent weight which may be different from earlier
defined 6 on the graph G.

By using Lagrangian multiplier method, the critical point of the discrete variational approach
should satisfy

v (1) = (8; () — §; (1)),

dipi — ) (Si = 5))6ij(p) =0, (26)
JEN@)

200 19

dpi 8 0p;

1
diSi+5 Y (Si=5)) 1(p).

JEN()

It forms a Hamiltonian system on the density space with the Hamiltonian %Zi’ i(Si =

S J-)20,~_,- (p) — %I (p). In other words, the critical point gives a Hamiltonian process on the graph.
We can also reformulate the above system (26) in the form of Schrodinger system (33). By
taking differential on f = ﬁes and g = ﬁe‘s , we get

d f = e(%log(p)JrS)(ld’_p +4d,5)
2 p

— e(%log(p)JrS)(l 2jen Wi (Si = 50, (p) ! Z wi; (S — 85))° 00 + li1(,0)),
2 P 2 NG dpi 8 9p;

dig = e(%log(p)—S)(l%_p —d;S)
2 p

:e(%log(p)—S)G 2 jento Wi (51 = 5% (P) M > wi(S = S; 290 19

——Z 1),
2 P 77 9p; 8 p (p)>

Rewriting the above systems into compact form leads to

1
di f = _EAGf, (27)
1
dig = EAGg’

where A is the nonlinear discretization of the Laplacian operator,

(AGf)j

1 - ~
:_fj< — Z (wjl(log(fj/gj)—10g(fl/gl))9ij(fg)
1381 1 &Ny
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+wji(log(fjg;) — 10g(fzgz))9ij(fg))

5 36;,
£ Y (@anoats /g0 — tog(/enl 2L 4 uyinog(s))
IeN(j 318,
)
00;i(fg)
—1 2270 STN Y
og(f1g1)l 9, ))

Remark 4.2. In approach (A), the Hamiltonian systems ((14), (17) and (22)) are corresponding
to the control problem (12), which is derived from discretizing the relative entropy H (P|R) in
(29); In approach (B), the Hamiltonian systems ((26) and (27)) are corresponding to the control
problem (25), which is derived via discretizing the Fisher information I (p) in (30). It worth
mentioning that under continuous cases, (29) and (30) are equivalent under the transform (31)
and their corresponding Hamiltonian systems are also equivalent. However, this is not true for
discrete cases. Discretizing the SBP at different stages leads to different Hamiltonian systems.

Remark 4.3 (Nonlinear Markov process as reference process in approach (B)). Let us recall that
in continuous space R?, f, g solve the Schrédinger system

0

_ft :'thta

d
91 —8& = —Lig. with fo, g1 are given,

at
with £; corresponds to the generator of the reference process R (cf. Equation (32) of [17]).

By comparing the systems (22) and (27) related to f, g, it is observed that £; in approach
(A) can be viewed as a linear approximation of Laplacian operator, which is associated to the
Markov reference process R with transition rate matrix {m§ j}; On the other hand, £; = Ag in
approach (B) is a nonlinear approximation of Laplacian operator. We can thus interpret Ag as a
nonlinear generator depending on both the state and the distribution. According to the definition
of nonlinear Markov process mentioned in section 2.2, we can associate approach (B) with a
nonlinear Markov reference process R generated by Ag even though such reference process is
not needed in the original control formulation (25).

4.3. Periodic marginal distribution of Hamiltonian process in SBP

The periodic solution, as one classical topic of Hamiltonian systems, has been studied for
many decades (see e.g. [6,25,21]). For our considered Hamiltonian process, the periodicity of
the solution appears in the density evolution. Below, we present several examples of periodic
reference process, and prove that if the periodic Hamiltonian process exists, it coincides with the
reference process in SBP.

By using the Floquet theorem in [27], the fundamental matrix X (¢) satisfies X(r + T) =
X(t)exp(LT), where exp(LT) is a non-singular constant matrix. The Floquet exponents of
d;p = pQ; are the eigenvalues u;,i <k < N of the matrix L. If there exists some i such that
exp(u;T) =1 or —1, then there exists periodic density function with period T or 27. As a
consequence, we obtain the following results.

Lemma 4.1. Assume that {Q;};>0 is transition rate matrix and Q; is T-periodic. If there exists a

Floquet exponent p = %, k € Z, then d;p = pQ; has a periodic density.
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Example 4.1. Consider a 2-nodes graph G. Given a reference measure which possesses the
marginal distribution as follows,

dip1 = p1mi1 + pamoy,

dipr = p1mi2 + pama2,

%—% cos(t)—l—% sin(t)—% sin(?) cos(t) 1
(%—l—% cos())? %—I—% cos(t)
There exists a nontrivial periodic solution p1(¢) = % + }tcos(t), 02(t) =1— p1(¢). And the
periods of p; and p, are both T = 2. Therefore, there exists a time inhomogeneous Markov
process X; with periodic marginal distribution p; on G with the transition rate matrix Q; =

(mij)i j<2.

Wherem21=—m11,m22=—m12,m11=— andm22=—

We can also show the existence of time inhomogeneous Markov process with periodic
marginal distribution on any fully-connected graph.

Proposition 4.2. Suppose G is a fully connected graph, and {p;} is a periodic density trajectory
(with period T ) in P,(G), then we can always find a transition rate matrix Q(t) such that p; is

the solution to the master equation p; = p; Q(1).

Proof. Assume G contains n vertices. Let us assume the non-diagonal entries of Q(¢) to be
{m;;}, we rearrange these entries to form a n(n — 1) dimensional vector as:

T
m = (m127 ceey ml}’h m21 ’ m237 ceey mZn, ceey mn] LIRS ml’t}’t—l) .
Plugging m into the Master’s equation, we derive the linear equation for m:

POym=(p1 2 ... ) . (28)

Where P is an n x n(n — 1) matrix defined as

PO)=(Pi@) | @) | ... | Pa®)).
Pm (t) I Omx(n—m-1)
Py (t) = _pm(t)ez;; _pm(t)e,{_m_l forl<m=<n

0(n—m—l)><m /Om(t)ln—m—l

nxn—1)

Here we denote e,ﬂ = (1, ..., 1). We can verify that
———’

N —

m s

1 1 1
m® = en_1» en_ts e €1
(n—1)p (n—1p (n—1)pn

belongs to the kernel of P(¢), and that P(¢) is a full rank matrix. There must exist a solution m™*
to (28), where its entries are expressions of {p;, p;}icv. In other words, we can directly give such
a solution. To be more specific, let’s consider the transport process on the loop from vertex 1 to
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2,210 3,...n-1 ton and n to 1. This corresponds to setting m;; to 0 except m12, ma3, ..., My_1 p,
and m,1. Now the equation (28) becomes:

P2 mo3 02
Mpy—1n ,én—l
Therefore the solution is (—2=£r —£2 ... Lozl PuyT
P1 r2 Pn—1

Then we can directly take m(t) = KmP(t) + m*(¢), since {p;} is in the interior of P(G), we
can always find a large enough K > O that guarantees the entries of m(¢) to be always non
negative. And m(¢) forms the transition rate matrix Q(#) whose master equation admits the
periodic solution {p;}. O

Example 4.2. Consider the periodic marginal distribution p;:

cost  sint 1 cost sint 1 sint 1

Pr= (b o o )
T8 6v2 3 2v6 6v2 3 32 3

which is a circle centered at ( 3 3 3) with radius on P(G). Following the idea of Proposi-

2f

tion 4.2, one may take

6«/§+\/§sint —3cost

mi(t) = — , mipp=—myy, m3 =0,
ﬁcost+4sint+2\/§
o 24—4\/§cost 1 1
mo(t) = — , M| = —=mp), M3 =—=Mmy),
—6cost +/2sint + 4 2 2

m33(1) 3v2
BpRl) =7
V2 —sint

such that d; = p, Q; with Q; = (m;}); j<3.

mi3 =0,my3 = —m33,

Next we aim to use general SBP (18) to produce a Hamiltonian process with periodic marginal
distribution on G. In particular, when the convex function u = xlog(x) — x — 1, by using the
Nelson’s transformation ¥; = ./ 0;edi, the Hamiltonian system can be also rewritten as

das; ——m,,—— Z eSi S’ml Z eSi— S/mjl(t)'

jEN(l) JGN(l)

doi= ) & imi(0)/pi/Pi - Z R ONIN

JEN() JEN()

with the Hamiltonian H(p, S, 1) = Yiev ZJ-GN(,-) e(SJ'_Si)mij(t) /pip;. Taking ¥ as a time-
independent potential and choosing p°, p! as the initial and terminal distribution from the
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periodic solution, then the distribution of the solution process is exactly same as the reference
process. Thus it induces a Hamiltonian system which is periodic in time. Therefore there ex-
ists SBP with the given p°, p! such that the solution process is Hamiltonian and its marginal
distribution is periodic in time.

In the following, we assume that the Legendre transformation u™* of u in (18) is continuous
differentiable and satisfies

u (x)>0,ifx <0, u*(x) <0, if x >0,

ou* . ou™ ) ou
—(©0)=1, Ilim ‘—(x)‘ <00, lim —(x)=4o0.
0x x—>—o00l Jx x—>+400 Jx

*

Now we are able to give the characterization of the periodic Hamiltonian process on finite graph
via general SBP.

Theorem 4.1. Assume that the reference process is periodic with the marginal distribution and its
period T > 0. There always exists p°, p! such that the critical point of the general SBP problem
(18) is a Hamiltonian process and its marginal distribution is periodic in time.

Proof. Notice that the critical point of SBP satisfies

0 . ou* _ ou* .
S = Y = (U = Yimip( )+ —— Wi = Ymjip(j, 1),

JEN (@)

)
SV =— > ury — yim;,

JEN()

where p(0) = p°, p(1) = p'. Choosing 0%, p! as two different distributions at different time of
the reference process, and taking ¥; = ¥, we get

J . . .
5 PG = Y —mijp(, 0y +mjip(j. 1),
JEN(@)

o
SV =0.

This implies that the critical point forms a Hamiltonian system with Hamiltonian H (p, ¥, ) =
Zi’ jmij(t)p;i. Due to the fact that the marginal distribution of reference process is periodic in
time, the critical point is exactly equal to the reference process and its marginal distribution is
periodic. O

One may wonder whether there exists certain Hamiltonian process whose marginal distribu-
tion is periodic but is not the reference process. We first use a 2-nodes graph example to point
out it is not possible to get such Hamiltonian by using SBP when u(x) = xlog(x) —x — 1. Even
worse, we show that for general finite graph, the periodic Hamiltonian process exists if and only
if it equals to a reference process in general SBP.
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Example 4.3. Given G consisting of 2 nodes. Assume the reference process with transition rate
matrix m is periodic with period T > O and {z € [0, T']|m;;(z) =0, ij € E} has Lebesgue measure
zero. Notice that p, S of the Hamiltonian process X (¢) satisfies

d

Sp,0 = —eV @DV 551, 1) + VIOV 0162, 1),

d _ _

S WLn =y, 1) = —(eVEDVAD _ Pypyy 4 (¥ EDTVED gy,

Since m13, ma1 > 0, then ¥ (1) — ¥ (2) equals to constant if and only if /(1) = 1 (2). Meanwhile,
if Y1 — o > 0, then 1 — v is increasing to +00, and {1 — ¥» is decreasing to —oo if ¥ < Y.
Then we claim that p; is not periodic in time. If we assume that pj is periodic with period 77, then

it holds true k(;l_H)T‘ —eV D=V @Dy 501, 1) + eV DV @D 5 0(2, £)dt = 0. Without losing
generality, let us assume that ¥; — v, > 0. It is not hard to see that eV () ~¥ (21 5 increasing
to 400 and e¥ 10—V 2.0 jg decreasing to 0 as ¢t — oo. The boundedness of p(1, 1), p(2,t) yield

that there exists large enough k such that

(k+1)Ty
—eV OV p (1, 1) 4 eV DTV CD s p (2, 1dt > 0,

kT

which leads to a contradiction. Therefore, p(#) is periodic in time if and only if | = i». This
implies that X () is exactly the reference process.

Theorem 4.2. Assume the reference process with transition rate matrix m is periodic with period
T >0and {t €[0,T]lm;j(t) =0,ij € E} has Lebesgue measure zero. Then the Hamiltonian
process which has periodic density distribution in general SBP problem (18) is equal to the
reference process which has the periodic density distribution.

Proof. Assume that there is a maximum v;+ > v;, i #i* and ¥;= > ;. . Then according to
the evolution of i,

a . . :
S0 = .Z. W (1) = Y (i, D)mij,
JEN()
then the maximum principle holds, i.e., ¥« (t) > ¥, (t) > ¥ . (). Notice that
*

d du* ) ou .
Pl =) ——— (W = YImijp 0+ Wi = ¥ mjip (i 0).

JEN()

The periodicity of p; implies that there exists 77 > 0 for any k € N such that

(k+1)Ty
ou

ou* ) * = (i :
D oW = Ymipl ) + =i =y OV U mip(jnd = 0.
K1y JENG)
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Due to the maximum principle, if there exists one node / with a local maximum of v; connected
with another node k with a local minimum of v, it will lead to v — Yy — +00 as t — oo. This
contradicts with the periodicity of p; and p;. If any node / with a local maximum of ; is not
connected with another node k with a local minimum of ¥, we pick aroad /, ji, - -, jw, k which
connects / and k. Notice that ¥, — +00, Y, — —00, ¥, € (Vk, Y1), m < w. Then there must
exists j,; such that m is the smallest number which satisfies ¥, —v;, — —o0. Now consider the
periodicity of p;, . There exists k' large enough such that

K'+DT
*

ou ) ou* )
D Wi = iMoo+ = Wy = Yjmj, p( )t > 0.
K1 JENUm)

This leads to a contradiction, we complete the proof.
5. More examples and future work

In this section, we conclude the paper by presenting a few more examples of Hamiltonian
processes on graph and more questions to be considered in the future.

Example 5.1. (Euler-Lagrangian equations [14]) Assume that the Lagrangian in density man-
ifold is given by L(pr, pr) = %gW(bt,bt) — F(pr). Here gw (o1, 02) == —Ul(Ap)+0'2 where
ok € TyP,(G),k=1,2 and (A,)" is the pseudo inverse of the weight graph Laplacian matrix
Ap(r) = div@G (pVg(+)). Then the critical point of

T
inf/ﬁ(,o,, 0rpr)dt
Pt
0
with given pg and pr satisfies the Euler-Lagrangian equation

)
L(ps, 0:p1) = —L(ps, 1) + C(1).

a
'S 0t 01 5p1

By introducing the Legendre transform S; = (—A p,)+3t pr, 1t can be rewritten as a Hamiltonian
system. That is

3 pr + div;(pVeS) =0,

1 P
USi+ 3 D (Si=SP@n0i p) + 05001 pi)) + 5= F () = C ),
JENG) !

with the Hamiltonian H(p, S) = % > i (S — S_,')29,~_,- w;j + F (o). Therefore, if the transition rate
matrix in generalized master equation is well-defined, the Euler-Lagrangian equation in density

space determines a Hamiltonian process on G.
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Example 5.2. (Madelung system [10]) The energy is given by
1 2
H(p,S) = 1 Z(Si = 8;) 0ijwij + F (o) + B1(pr), B > 0.
ijeE
Here F(p) =Y, oiVi + Y, ; pipj Wij, and I(p) = 3 3;;c iz (log(pi) — log(p;))*6;;. Here 6

is another density dependent weight on the graph that can be the same or different from 6;;. The
Madelung system is

dypr + div% (pVGS) =0,

1 8 )
0;S; + 1 Z S — Sj)z(ap,ﬂ(pi, pj)+ 0,005, pi) + 5}_(,01) + ﬁgl(pt) =C(1).
JENG) ! !

When taking 6 = 0V, the Madelung system in density space determines a Hamiltonian process
on G. This system has a close relationship with the discrete Schrodinger equation [9].

Example 5.3. (L?”-Wasserstein distance) The L” Wasserstein distance, p € (1, 00), is related to
the following minimization problem,

Y
. 1 .
W,ﬁ’(po,pl)mgf{f}j > 50l dp+divg(pv) =0, p(0) = p°, p(1) = p'}.
o i=1jeN@)

We refer to [13] for a continuous version of L”-Wasserstein distance. Its critical point is related
to the Hamiltonian system in density space

3 pr + divg (0| V6 S92V S) =0,

1
0 (S;) + % Z (VG 8)ijl1(d16;; + 320;;) =0,
JEN()

with the Hamiltonian
1 q 1 1
Hp.$) =Y IVaSI%;j. —+—=1,pe(l,00).
29 4 q P
When the equation of p is determined by a transition rate matrix, this leads to a Hamiltonian
process.

To end the discussion, we want to mention two problems that are worth to be studied further.

e As shown in [10], the classical Hamiltonian ODEs induce the Wasserstein—Hamiltonian
flows on the density manifold. There are many special properties for Hamiltonian system
in continuous space, such as conservation of energy, preservation of the volume etc. The
particle-level counterpart on graph is the Hamiltonian process introduced in Definition 3.1.
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In addition to the conservation property discussed in Remark 3.1, are there other quantities
or structures being preserved by the Hamiltonian process on the graph G?

e As discussed in [22], stochastic differential equations can be well approximated by con-
tinuous time random walk on the lattices. Then it is natural to ask whether the proposed
Hamiltonian process on a lattice can be used to approximate a Hamiltonian system in R? or
not. If so, how well is the approximation?
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Appendix A
A.l. The background of SBP

Denote = C([0, 1], R?). Given R € M+ (Q) the law of the reversible Brownian motion
(here we consider the Brownian motion with the volume Lebesgue measure, denoted by Leb,

as the initial distribution). Consider the relative entropy of any probability measure with respect
to R,

dp
H(P|R)=-/‘log(ﬁ)dP.
Q

The SBP can be formulated as
min H(P|R), P € P(Q) : Py = g, Py = 1. (29)
Here Py := P(Xop € -), P1 := P(X1 € ) and X;(w) := w(t) is the canonical process with

w € . Itis proven (see e.g. [17]) that if H (ig|Leb) < oo and H (ji1|Leb) < oo, the SBP has a
unique solution P which enjoys the following decomposition

P = fo(X0)g1(X1)R € P(),
where fp, g1 are nonnegative measurable functions such that

Er[fo(X0)g1(X1)]=1.

Introduce the function f;, g; defined by

fi1(2) :=Eg[fo(Xo)| X =zl,
2(z) =Egrlg1(X1)|X, =2, Pi-a.e., z€ R,

and the constraint
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o = fogoLeb, 1 = fig1Leb.

Then the SBP (2) with i =1 is equivalent to the following minimal action problem, i.e.,

inf{H (P|R) : Py = jio, P1 = jt1} — H(polLeb) (30)

1
. v, |2 A
:mﬂ Tope(dx)dt s (3 = T+ - (o) =0,
0 R4

Po = 1o, P1=M1}

We denote p; the density of u, with respect to the Lebesgue measure. In addition, with the
assumption that g, ;1 have finite second moments, the critical point of the minimal action
problem satisfies the following system

A
(0 — E)p + V- (Vgp) =0, p(0) = po,

A1,
(9: + 5)(15 + §|V¢| =0, ¢(1) =log(g1)

with v; = V¢;,. There is also a backward version of this PDE system, namely

A
(=0 =)+ V- (Vip) =0, p(1) = p1.

A 1
(—0; + EW + EIVI/fI =0, ¥(0) =log(fo).

Here we have the relation Vi, + V¢, = Vlog(p;).
Applying the transformation

1
S = ¢ — 5 log(pr) 31

as being done in [23], we arrive at the Hamiltonian system on the density space,

0
5P TV (o, x)VS) =0,

aS+1wm2 1‘31()—0
0> 2 8op, VT

The corresponding Hamiltonian is H(p, S) = %fRd IVS|2pdx — %I(p) where I(p) =

f]Rd |V log(,o)l2 pdx is the Fisher information. Meanwhile, the action minimizing problem (30)
can be rewritten as
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1

- 1 2, , ] 1 1 1 0 0
1vntf{/IE[§v(t,X(t)) 1+ gl(p(f))df‘F 5/(/0 log(p") — p~log(p”))dx (32)
0

X, =v(t, Xpdt, X(©)~p°, X(1)~p'}.

Here p(¢) is the density of the marginal distribution of X;.

Next, by introducing the conjugate Madelung transformation f = ﬁes, g = ﬁe‘s (also
known as “Hopf-Cole” transformation), f and g satisfy so-called “Schrodinger system” (see e.g.
[10,11,3]),

A
(0 — )8 =0. g(0) = go. (33)

A
@ +5)f=0. fi)= 1.

This also implies the following relationships

1 1
¢ =log(f) =S + 7 log(p). ¥ =log(g) = =5 + 7 log(p).
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