Optimal Transport
on Networks

AN INTRODUCTION TO THE DIFFERENCES BETWEEN DISCRETE AND
CONTINUOUS SPACES WITH AN APPLICATION IN PATH PLANNING

HAOMIN ZHOU

ave you ever thought about how to ship a collection
of packages from their original locations to final
destinations, how to construct a wall using a pile
of bricks, or how to pair customers with providers
in an industrial supply chain? If your answer is yes
to any of these questions, you thought about optimal trans-
port. If your answer is no, you still must have encountered
problems like how to drive from one location to another in
the shortest time or distance or how to walk from one place
to another quickly. We all have thought about optimal trans-
port, either consciously or subconsciously. The problem can
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be as simple as moving a box from one point to another in
a straight line (which obviously is the optimal solution), or
it can be more complicated (when the number of packages
becomes large and the optimal solution can’t be identified
easily, even with the help of modern supercomputers).

It is undoubtable that optimal transport has been prac-
ticed throughout human history. See “Summary” for more
information. Mathematicians formulated those problems
as abstractions, as they always do, which reads as finding
the optimal way to change, by means of transport, one nonnega-
tive function f(x) to another g(x) with equal mass. In this state-
ment, the nonnegative function f(x) may refer to the number
of packages at their original locations, and g(x) represents
their final destinations. Alternately, f(x) and g(x) are piles of
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bricks in different shapes, before and after, respectively, the
construction of a wall. Optimality considers the lowest cost
or highest reward. The first recorded description was found
in an article written by the French mathematician/engineer
Gaspard Monge in 1781 [29], and a major breakthrough was
obtained by Nobel laureate Leonid Kantorovich during
World War II [19]. In light of their contributions, optimal
transport problems are often referred to as Monge—Kantoro-
vich problems in mathematics. See “Monge and Kantorovich
Optimal Transport” for more precise formulations.

Up to a constant scaling [namely dividing the two non-
negative functions by their mass; u(x) = f(x)/| f(x)| and
v(x) =g(x)/| g(x)|, where |-| is the Li-norm], the problem
can be equivalently posed as transporting a probability
density function u, a nonnegative function with unit mass,
to another v with optimal cost. This seemingly simply oper-
ation is a vital step allowing the study to be carried out in a
unified framework written in the language of probability,
which facilitates the modern theory on optimal transport.
At the core of this theory is a mathematical concept called
the Wasserstein distance between two probability distribu-
tions, defined as the lowest cost of transporting from one
distribution to the other. This canonical distance enables a
mechanism transforming the probability space into a Rie-
mannian manifold (known as a Wasserstein manifold), so
that geometric structures and partial differential equation
(PDE) techniques can be established and analyzed (which
provides powerful tools in many applications).

Monge and Kantorovich Optimal Transport

he first recorded mathematical formulation of optimal

transport (the Monge problem, when paraphrased in mod-
ern mathematical notation) can be posed as finding a map T
between two sets X and Y with equal mass, such that an as-
sociated cost function c(x, y) is minimized [29]. More precisely,
assume that the mass on X, denoted as u(X), equals the mass
on Y, v(Y), and the cost to transport by T a unit mass located at
X € X to another location y =T(x)e€Y is c(x,T(x)). The total
cost of transporting X to Y is

C(T)=fxc(x, T(x))du(x). (S1)

The notation of u(x) is also used as the Radon measure
defined on X. The optimal transport map T is the one that
minimizes C(T); that s,

C(T")=minC(T). (S2)

The Monge problem is a difficult mathematical problem, at-
tracting researchers to study it for generations. Whether or not
there exists a solution (and especially how to compute the solu-
tion, if it exists) remain challenging. The fact that T is a 1:1 map
in (S2) restricts the mass at one point to being transported only

In the past few decades, optimal transport has become
an active research area, attracting mathematicians, scien-
tists, and engineers. Its theory and applications have been

Summary
0 ptimal transport, also known as the Monge—Kantorovich
problem, is a mathematical theory that has received con-
siderable attention in recent decades because of its applica-
tions across different disciplines. It has a close tie to control
theory because it can be formulated as an optimal control
with partial differential equation constraints (known as the
Benamou—Brenier formula). The existing theory is mainly
developed for continuous underlying spaces (like the Eu-
clidean space R? or a smooth manifold, such as a sphere).
Its extension to networks was initiated more recently. The
discrete structure of a network creates extra difficulties, mak-
ing the extension surprisingly subtle. Among many contribut-
ing factors, the main challenges are that a network is not a
length space (in which one curve can be continuously moved
to another), a network may not be properly embedded in a
continuous space, and it is nontrivial to define white noise
on a network. These difficulties fundamentally change the
optimal transport theory on networks. This article discusses
those challenges and explains how to define the Wasser-
stein distance on networks and how it helps to construct an
algorithm for path planning in an unknown environment.

to another point (which prohibits mass splitting from one point to
multiple targets). Kantorovich’s relaxation removes this restriction
[19]. Instead of considering the map T, Kantorovich proposed to
study the total cost function

W)= [ c(xy)dr(xy), (83)

where k(x, y) is a joint distribution defined on X x Y. Let M be
the set of joint distributions with two marginals given by ¢ and
v; that is,

M = {K(X, y)is a Radon measure on X x Y |fy dk(x,y)= u(x),
JodkOy)=v(y)}.
The optimal joint distribution k" (x, y) is the one minimizing W (),
W (k") =min W(k). (S4)

Each map T induces a joint distribution in M, while the reverse
is not necessarily true. This is the reason that the solution of (S4)
is considered a “weak” or “relaxed” solution of (S2). The linear-
ity of Kantorovich relaxation (which is widely known as linear
programming in the discrete case [13] and its dual formulation)
makes it popular in applications [15], [32], [39].
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Three main ingredients are used to define the Wasserstein distance using
an optimal control viewpoint: the probability space, the cost function,
and a vector field used for transportation.

undergoing rapid developments with many remarkable
contributions, such as the relation between optimal trans-
port maps and the Monge-Ampere equation [4]; the exis-
tence, regularity, and structure of solutions [17], [25], [27];
gradient flows [1], [18]; and the Ricci curvature bounds on
Wasserstein manifolds [23], [35]. The list can go on. There is
no attempt to survey the vast literature on the subject in
this article. Readers are directed to an introductory note
[15]; several books for rigorous, yet comprehensive, descrip-
tions of its mathematical theory and applications [32], [34],
[39]; and a more recent book for its computational aspect
and applications in machine learning [31]. The discussion
of this article is based on the Benamou—Brenier formula,
which recasts the problem in the form of optimal control,
giving an explicit dynamical description of the optimal
transport process [3].

Currently, optimal transport has become a rich theory,
sitting at the intersection of several branches in mathemat-
ics, such as PDEs, probability, geometry, dynamical sys-
tems, and numerical analysis. It also finds connections to
other disciplines, including physics, chemistry, computer
science, engineering, and economics. The majority of the
existing theory assumes that the underlying space for
transportation is continuous (such as R”, the sphere, or
other smooth manifolds). Its extension to discrete spaces,
such as networks or graphs, emerged more recently. Rigor-
ous mathematical investigations were initiated indepen-
dently [9], [26], [28] from three different angles at around
the same time, providing complementary understandings
of the theory. Similar to the story in continuous space, the
introduction of the Wasserstein distance in a discrete space
transforms the probability simplex into a Riemannian
manifold, on which we can establish and perform PDEs
and geometric analysis. This leads to various advance-
ments in the theory, such as gradient flows and entropy
inequalities [5], [10], Ricci curvatures in discrete space [14],
[16], [30], and many applications, for example, in informa-
tion geometry [22], biological networks [33], opinion dynam-
ics in social networks [21], and game theory [12].

The goal of this article is to provide a quick introductory
tour, without getting into the technical details, of the ben-
efits and challenges regarding the fascinating topic of opti-
mal transport on networks. More attention is paid to the
differences between the discrete and continuous cases and
their incurred consequences through three questions: 1) How
does one define optimal transport and Wasserstein distance
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on networks using an optimal control framework? 2) What
is the gradient flow induced by the Wasserstein distance on
networks? 3) What is white noise in networks? Addressing
these questions helps to explain several conceptual and
technical difficulties that fundamentally change the opti-
mal transport theory on networks. As an application exam-
ple, a recently proposed algorithm for path exploration in
unknown environments is briefly described at the end of
the article. It is noted that there are other extensions, such
as optimal transport for vector- and matrix-valued func-
tions [7], [8], that are not discussed here.

DEFINING OPTIMAL TRANSPORT ON NETWORKS
The consideration of optimal transport on networks is
motivated by real-world applications. Some are from tradi-
tional lines of research, such as shipping products using
limited transport networks, in which the goal is to deliver
goods using the lowest cost. Others are from emergent phe-
nomena, such as information propagation on social media.
The network can be Facebook or Twitter, with each user
being a node. The objective is to determine the probability
of each node receiving the information at a given time. In
addition, the optimal solutions (also called optimal trans-
port maps in the literature) can only be found analytically
for special cases, such as in 1D problems. Computer simula-
tions become mandatory to calculate their solutions. In this
case, it is necessary to discretize the space and calculate the
solution on a grid, which can be viewed as a network. Ulti-
mately, addressing optimal transport on networks becomes
inevitable for certain practical problems.

There are several possible approaches to address the
problem on networks. Discretization is at the top of the can-
didate list. If the network is a grid, the problem can be stud-
ied by discretizing its continuous counterpart, and one
hopes that the theory and conclusions may be transferred
naturally. However, this approach is surprisingly subtle
because of the structural differences between continuous
and discrete spaces. Of course, if the network in consider-
ation cannot be regarded as a discretization of a continuous
space, this approach is not applicable. This marks the first
major difference between discrete and continuous problems.

Three main ingredients are used to define the Wasser-
stein distance using an optimal control viewpoint: the
probability space, the cost function, and a vector field used
for transportation. To better explain the problem, denote
G = (V, E) as the network, with V being the node set and E
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the edge set. A weight and/or direction may be associated
to each edge. However, for simplicity, those considerations
are not adopted here. It is also assumed that the network is
finite and connected without self-looping edges. The prob-
ability space is a collection of normalized nonnegative
functions defined on nodes,

(G) ={p eR’

> pi=1, pi=0, foranyie V},
i=1

where p; is the probability at node i, and 7 is the number of
nodes of the network G. In other words, p € £(G) means
that p is an n-dimensional vector whose entries are
between zero and one, and the sum of all entries is one. The
optimal transport problem is finding the vector field v to
transport one probability function x to another v within
the probability space #(G) so that the total cost is mini-
mized. The optimal cost is called the Wasserstein distance
between y and v.

In existing studies, the cost may be related to distance.
For example, the square of the Euclidean distance between
two points in R" is among the most commonly used cost
functions in continuous space, resulting in the famous
2-Wasserstein distance between two distributions # and v,
given by the Benamou—Brenier formula,

1 1
Walu,v) = int{ [ 5o ) o, faxat},

ai+V~(vp)=0,

ot p(O)=u, p)y=v. ()

subject to
This is an optimal control problem with a PDE constraint,
known as the transport equation, whose purpose is to
transfer the initial density u to the target density v by
vector field v (see Figure 1). It is known that not all vector
fields can transport u to v. However, among those that can,
the Benamou-Brenier formula seeks the one that mini-
mizes the total kinetic energy used in the transport pro-
cess. The minimizer vector field v" induces the optimal
transport solution for Monge—Kantorovich problems.

The generalization of Euclidean distance between two
nodes on a network becomes ambiguous. If the network is
obtained by discretizing a finite region in R", its inherited
Euclidean distance can be taken. Otherwise, the Euclidean
distance cannot be an option. A popular choice in practice is
the smallest number of edges connecting the two nodes,
which can be applied to any network. In this case, the distance
only takes nonnegative integer values, which may not neces-
sarily agree with the inherited Euclidean distance. Thus,
which choice of distance to use becomes a relevant question.

Each definition of distance between two nodes can
endow its own formulation for the Wasserstein distance in
P(G). In applications, the preferred one is consistent with
the 2-Wasserstein distance in the continuous case. In this
case, consistency means that the definition of the 2-Was-
serstein distance on a network should be the same as or

close to the 2-Wasserstein distance in the continuous space
if the network is from a discretization of a continuous
region. This seemingly simple question does not have a
simple answer, and the reason for this can be illustrated
with a 2D lattice grid, as shown in Figure 2. Consider four
connected nodes A, B, C, and D, forming a square with unit
length for each edge. The Euclidean distance between the
two diagonal nodes A and C is v2. The challenge is that
transportation cannot be done in the diagonal direction
because there is no edge. When going along the edges, via
either B or D, the travel distance becomes two. This dis-
crepancy creates problems. It is worth emphasizing that
consistency is vital since a consistent definition may allow
one to transfer desirable properties established in the con-
tinuous space to the discrete case and to empower its usage
in applications.

The fact that transportation is allowed only along edges
on networks causes intrinsic differences between the con-
tinuous and discrete cases. Let us still consider R* and a 2D
lattice grid G as an example. Transportation can happen in
all directions in the continuous case, while only four direc-
tions—up, down, left, and right—are allowed in the discrete
situation. In other words, the workspace is homogeneous in
the continuous case, while it is inhomogeneous on a net-
work. This becomes more problematic if the network is het-
erogeneous, meaning that the number of edges connected

Vector Field

FIGURE 1 The vector field v in the transport equation is selected so

that the initial density u can be transported to the target density v
through v.

FIGURE 2 On a lattice network, transport can only be done along
the edges. The travel distance between A and C is two, not the
Euclidean distance +2 .
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The fact that transportation is allowed only along edges on networks causes
intrinsic differences hetween the continuous and discrete cases.

to a node may be different for each node. Such differences
cause several technical difficulties in defining optimal
transport on networks. The first issue is that a vector field v
on a network must be defined on the edges, not on the
nodes. Meanwhile, the probability function stays on the
nodes, which is a mismatch. In contrast, v and p are defined
at every point in the continuous space. Thus, the integration
in (1) can be completed without any problem.

The second challenge is that R* is a so-called length space,
in which infinitely small adjustments in the transport direc-
tion can be made if needed, while adjustments must jump
from one edge to another in the discrete case. In other words,
there exists no small change in discrete directions. The prop-
erties of a length space play crucial roles in the development
of the existing theory for continuous problems. Not having
those properties prevents one from adopting many well-
established continuous techniques and conclusions. Much of
the recent theoretical research in mathematics on this topic is
devoted to overcome those difficulties. For example, it has
been proven that the optimal solution of (1) must be achieved
by using a constant-speed geodesic, a curve p(x,t) in the
probability space satisfying the scaling relation

Wa(p(s), p(t)) = |t —s| Wa(u,v), foranys,tin]0,1].

FIGURE 3 In the continuous case, the geodesic between x and v
must be a curve on the Wasserstein manifold with constant speed.
The Wasserstein distance between any two points p(s) and p(t)
must be |t —s| Ws(u,v) for any s, tin the interval [0, 1].
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In other words, as shown in Figure 3, the geodesic must
be a curve on the Wasserstein manifold with constant
speed. The Wasserstein distance between any two points,
p(s) and p(t), on the geodesic connecting x and v is pro-
portional to the time difference |t —s |. However, this is
not possible for curves in the discrete setting. These diffi-
culties fundamentally change the optimal transport theory
on networks.

Despite the challenges, the Wasserstein distance on G
can still be defined by an optimal control formulation,

Wa(u,v) = inf{ [ (v,v)pdt}%,

subject to % +dive(p) =0, p0)=x pl)=v, 2)

in which the discrete inner product and divergence opera-
tor are given, respectively, by

1 .
©0)p =75 2 vibi(p), dive(pv)i=— 2 vi6i(p).
(ij)eE JEN()

The weight function 6; is introduced to compensate the
mismatch between v and p so that the influence of the node-
defined p can be extended to the edges, and vice versa. It is
noted that (2) is an optimization with ordinary differential
equation constraints. Its goal is to find a time-dependent vector
v’, defined on the edges of the graph, so that the kinetic energy
is minimized while also transporting the node-defined
function u to v. Obviously, (2) can be viewed as an analog of
(1). The caveat is the choice of 6, which must be selected care-
fully. The conditions on how to select 6 have been studied in
the articles by Chow et al., 2018 [10] and Maas [26]. Among
many possible candidates, a commonly studied one is the
nonlinear logarithmic mean 6; = (o — pj) / (logpi —log pj)
[9], [26]. This nonlinearity has deep implications for the prop-
erties of optimal transport on networks.

The introduction of the discrete Wasserstein distance W»
transforms the probability space #(G) into a Riemannian
manifold, a function space equipped with a smooth metric
(the term metric is used interchangeably with distance in
this article, although their mathematical definitions are dif-
ferent) on which geometric operations can be conducted.
For convenience, the probability space, coupled with the
optimal transport distance, is also called the Wasserstein
manifold, denoted by (P (G), W2), in mathematics. Several
recent advancements in this direction have been reported.
For example, Ricci curvatures as well as gradient and Ham-
iltonian flows are studied on (P (G), W>) [11], [14].
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THE GRADIENT FLOW ON A
WASSERSTEIN MANIFOLD
Symbolically, the gradient flow of a functional F(p) on a
Riemannian manifold is

% ——gradwF (o),
where gradw is the gradient operator with respect to the
metric on the manifold. The negative gradient direction
is the steepest descent direction locally. Thus, the gradi-
ent flow describes the dynamics of p(t) reducing F(p) on
the manifold without an external force (such as a ball
rolling downhill on a smooth surface). The gradient oper-
ator can be derived explicitly on the Wasserstein mani-
fold. For example, in the continuous case, if F(p) is the
free energy functional given by a combination of poten-
tial energy and entropy,

Fp) = [ pix+p [ plogpix,

(Where ® is a given potential function and g is a constant),
the gradient flow becomes

% _ . (,70) + Ap,

o5t ©)

which is the well-known Fokker-Planck equation. If the
potential @ is a constant, the equation is reduced to the stan-
dard heat equation. This routine calculation reveals the sur-
prising fact that the Fokker-Planck equation is the gradient
flow of free energy J on the Wasserstein manifold. The heat
equation is a special case, indicating that the Laplace term Ap
is the gradient of the entropy f plogp with respect to the
Wasserstein distance. This result was first reported in the
seminal work of Jordan et al. [18]. It has profound impacts on
modern optimal transport theory and its related applica-
tions. Animmediate consequence, when viewing the Fokker—
Planck equation as a gradient flow, is that the free energy
F(p) is a Lyapunov function [meaning that the free energy

Discrete Potential

Gibbs Density

value decreases monotonically along the solution of (3)]. This
further implies that there exists a unique asymptotic limit of
the solution, regardless of where the initial distribution is.
Furthermore, a direct calculation verifies that the asymptotic
solution is actually the famous Gibbs distribution:

. Lo\ em
p=<fe B dx| e 5.

The aforementioned gradient flow derivation can be
mimicked, although not trivially, for Wasserstein mani-
folds on networks (leading to similar conclusions). How-
ever, the structure of the gradient flow shows significant
departures from the existing knowledge in the continuous
setting. A toy example can be used to illustrate the prob-
lem. Take G as a 1D lattice network with only five nodes. A
potential value ®; is assigned on each node, and they are
plotted in Figure 4(a). The potential function determines a
discrete Gibbs distribution,

5. o\ &
p?=<Ze‘7> e B,
i=1

which is plotted in Figure 4(b). According to the theory,
the Gibbs distribution is the unique minimizer for the free
energy and the asymptotic solution of the Fokker—Planck
equation. However, checking the minimizer is straight-
forward. Verifying the asymptotic solution is not. When
discretizing the Fokker—Planck equation by the center-
difference method (a commonly used numerical scheme
for parabolic equations), its asymptotic solution is depicted
in Figure 4(c) (which is different from the Gibbs distribution).
By monitoring the free energy along the solution, the
curve shown in Figure 5(a) is observed. It does not decay
in time. Instead, it increases along the solution. Those
disagreements indicate that the discrete Fokker—Planck
equation obtained by using the center-difference scheme
cannot be the gradient flow of the free energy with respect
to the discrete Wasserstein metric. From classical textbook
material [38], the commonly used schemes for (3) are all

Stationary Distribution
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4
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FIGURE 4 (a) The potential function defined on a five-point lattice network. (b) Its corresponding Gibbs distribution. (c) An asymptotic
solution of discrete Fokker—Planck equation (3) using the center-difference scheme.
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This routine calculation reveals the surprising fact that the Fokker—Planck
equation is the gradient flow of free energy 5 on the Wasserstein manifold.

linear because it is a linear equation. Numerical experi-
ments show that they also cannot reach the Gibbs distri-
bution. Hence, there must be something fundamentally
different for the Wasserstein manifold on networks. In
fact, it is rigorously proven [9] that the gradient flow of
free energy on the discrete Wasserstein manifold must be
expressed by nonlinear equations, for example,

% = %0 ((®;+ Blogp)) — (@i +Blogp))0i(p). (@4
JEN(

With different choices of 6j, (4) may result in different
nonlinear Fokker-Planck equations. This also echoes the

Free Energy Versus Time
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3

FIGURE 5 Free energy versus time along the solution. (a) The
Fokker—Planck equation (3) using center-difference scheme. It
doesn’t decay. (b) The nonlinear discrete Fokker—Planck equation (4);
it decays as the theory predicted.
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nonlinearity in the selection of 6;; on networks and contrasts
sharply with the linearity of the Fokker—Planck equation of
(3). Regardless of the choice of 6, the corresponding nonlin-
ear Fokker—Planck equation is always the gradient flow of
the free energy with respect to the Wasserstein distance
given by (2), and the Gibbs distribution is its asymptotic solu-
tion. For instance, in Figure 5(b), the free energy curve along
the solution of (4) decays as expected, and its asymptotic
solution is exactly the discrete Gibbs distribution shown in
Figure 4(b). The theory and experiments agree perfectly in
this example. It is interesting to note that the Fokker—Planck
equation (3) can be written in a conservative form,

%0~V (pV (@ + Blogp)),
whose discretization is consistent with the form used in (4).
It is also worth noting that, if the weight function 6;(p) is
chosen as the logarithmic mean, (pi — p;) / (logp: —logp)), it
cancels the logarithmic terms in (4), resulting in (pi— pj)
(which becomes linear). This is one reason why the loga-
rithmic mean is a favorite choice. However, its impact on ®
terms remains nonlinear, which marks a fundamental dif-
ference between discrete and continuous spaces.

WHITE NOISE IN NETWORKS

White noise, a seemingly remote concept, plays an essential
role in the development of optimal transport theory. This
can be seen through the connections between the Fokker—
Planck equation and stochastic differential equations (SDEs).
The classical diffusion theory, which was developed decades
earlier than the modern optimal transport theory, states
that the solution p of Fokker—Planck equation (3) is the
probability density function for a random variable X(f) sat-
isfying the well-known Langevin dynamics,

dX(t) =—VO (X () dt + /2B AW (t), ()

where W('t) is the Brownian motion, and dW(t) is the white
noise (which is added to model the randomness or uncertain-
ties of the vector field). The intrinsic links between Fokker—
Planck equation (3) and SDE (5) as well as between (3) and the
free energy J (p) reveal the deep connections between clas-
sical diffusion theory and optimal transport (thanks to the
gradient flow structure on the Wasserstein manifold).
Mathematically, the white noise dW(f) is defined as an
independent identically distributed random variable fol-
lowing a standard Gaussian distribution. It is homogeneous
in all directions. The word white is selected to indicate that
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White noise, a seemingly remote concept, plays an essential role in the
development of optimal transport theory.

there is no preference in frequency or direction, just as
white color is a mix of all other colors with equal contribu-
tions. Otherwise, a random perturbation is called colored
noise. The property of being homogeneous in all directions
is precisely the challenging point in extending the concept
of white noise to networks because (as explained before) any
perturbation to a dynamical process on a network must be
conducted along its edges. It is hard, if not impossible, to be
homogeneous on a heterogeneous network.

The challenge of properly defining white noise on net-
works can be demonstrated from another angle, through a
concept called a random walk, which is regarded as an
analog or approximation of Brownian motion in the litera-
ture. A random walk on a network is defined as a stochastic
process that has equal probability of jumping from a node
to one of its neighboring nodes. As explained in “Random
Walks on Networks,” randomly walking on a network
asymptotically leads to an equilibrium distribution p°

Random Walks on Networks

s its name suggests, a random walk on a network is a sto-
Achastic process with equal probability of jumping from a
node to one of its neighboring nodes. Considering the network
depicted in Figure S1 as an example, the probability from node
A to B or C is 1/2 because A has two edges connected to it.
The probability from A to D is zero since they are not directly
connected. The probability from B to one of its neighbors is
1/3.The probability is assigned similarly for C and D. If p(k), a
four-dimensional column vector, is the probability on the net-
work at step k, following the random walk, the probability at the
next step p(k +1) is calculated by

p(k+1)=Pp(k),

where P is the transition probability matrix

11
0350
1 1
2 3

1
0500

Performing a random walk on this network for an infinitely
long time (meaning k — ), the probability p(k) approaches
an equilibrium distribution p*=(1/8)[2,3,2,1]", where T is the
transpose operator. It is verifiable that p* is the eigenvector of

whose value at each node is linearly proportional to the
number of edges connected to the node. In other words,
the equilibrium p” is not a uniform distribution on a het-
erogeneous network, which contrasts sharply with a well-
known property of Brownian motion, namely, that its
probability becomes uniform in an asymptotic time limit.
This disagreement further suggests that a random walk
on a network cannot be used directly to construct white
noise on the network, at least not in the same way that the
Brownian motion is used to build white noise in the con-
tinuous case.

The connection between Fokker—Planck equation (3) and
SDE (5) may shed light on how to approach the challenge.
Examining the correspondence between these two equa-
tions, it can be found that —V® (X (t))dt and V - (oV (®)) form
a pair, and dW(t) is solely responsible for the Laplace term
Ap. The latter pair is the reason for a commonly known
statement that “adding white noise is equivalent to adding

C D

FIGURE S$1 A random walk on this network is defined as a sto-
chastic process having equal probability, inversely propor-
tional to the number of edges connected to a node, moving
from the node to one of its neighbors.

P corresponding to eigenvalue one, and it is the asymptotic dis-
tribution of the random walk [regardless of the initial probability
p(0)]. When the probability reaches the equilibrium, the intake
at each node must be the same as its output, so that the net
change remains zero. Alternately, the rate of change from A to
B is 1/2, while the rate is 1/3 from B to A. To maintain the bal-
ance, it is necessary to maintain a higher probability at B than
that at A. This explains why the equilibrium probability at each
node is linearly proportional to the number of edges connected
to the node. Therefore, the equilibrium p* cannot be a uniform
distribution for a heterogeneous network.
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The task of motion planning is to find a feasible path for the team to move
from given initial positions to target configurations while avoiding any
collisions with obstacles or violations of constraints.

diffusion” to a dynamical system. Following this rationale, it
is desirable to find the corresponding Laplace operator A on
a network. Considering the Laplace term as the gradient
flow of entropy on the Wasserstein manifold, the similarity
between (3) and (4) is compared. It is not hard to identify that
the Laplace term Ap, which can also be rewritten as
V- (pVlogp), corresponds to all of the terms involving loga-
rithmic functions in (4). This observation leads to the follow-
ing definition for white noise on networks given in [9].

A Markov process on a network G induced by a poten-
tial function @ is defined by a stochastic process whose
transition rate from j and i is given by (®; — @) if ®; > ®;
and there exists an edge between i and j. Otherwise, the
rate is zero. Adding white noise to this Markov process per-
turbs the transition rate by modifying ®; to (®;+ Slogp),
meaning that the transition rate from j and 7 is changed to
((@;+ Blogp)) — (Di+ Blogpy)) if it is positive. When the
potential function is a constant, the white noise becomes a
stochastic process whose transition rate from j to i is given
by (logpj—logpi) if p; > pi. Otherwise, the white noise
reverses its transition direction. This logarithmic-based
random process approaches the uniform distribution on
the network, regardless of the initial probability (which
meets the expectation that the asymptotic limit for the dis-
tribution of white noise is uniform). It is widely accepted in
the modern optimal transport theory that the heat equation
is the gradient flow of entropy with respect to the Wasser-
stein metric. The heat equation is also the governing
equation for the density evolution of white noise in the
continuous space. From this viewpoint, the logarithmic
definition of white noise on networks is the gradient flow
of entropy with respect to the discrete Wasserstein metric,
which is consistent with the conclusion in the continuous
setting. However, such a definition of white noise is nonlin-
ear in formula, and it can reverse direction depending on
the values of p; and p;. Furthermore, it requires the knowl-
edge of the probability function p on the network, which
may not be easy to obtain unless the available data set is
sufficiently large. At the completion of this article, this still
remains as a challenge, and further investigation is needed.

A PATH-PLANNING ALGORITHM

IN AN UNKNOWN ENVIRONMENT

Optimal transport has been used in different disciplines.
As an application example, an algorithm in robotics that
was inspired by the gradient flow on the Wasserstein
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manifold on networks is briefly discussed. The algorithm,
which was reported recently by Zhai et al. [42], is used for
motion planning of a team of agents in unknown environ-
ments in a high-dimensional configuration space. Instead
of presenting the technical details of the method, the focus
is on the similarities between the design ideas and proper-
ties of optimal transport on networks.

Before describing the algorithm, imagine a scenario where
water flows from a source to a sink on an uneven landscape
in a bounded domain. The terrain is unknown to water, yet
water flows in the descent direction, if possible. When
trapped at a local minimizer, water accumulates to form a
reservoir and eventually overflows at the lowest point of the
barrier. In any situation, water eventually reaches the sink.
The design principle of the algorithm mimics the motion of
water. However, instead of real water, the algorithm follows
the Wasserstein gradient flow of free energy [Fokker—
Planck equation (4)] on an existing but not explicitly con-
structed potential tree, which is a special graph structure
designed to guide the flow from the starting point (source)
to the target location (sink). The task of motion planning is
to find a feasible path for the team to move from given ini-
tial positions to target configurations while avoiding any
collisions with obstacles or violations of constraints. In this
consideration, the number of agents is fixed, and some of
the obstacles or constraints stay unknown unless one of
the team members traverses close enough to them. It is also
assumed that the obstacle information, once available, is
shared among the team members.

Compared to path planning in known environments,
there are several significant challenges when the problem
is posed in unknown environments. For example, replan-
ning becomes inevitable because the prior planned path
may become infeasible when a newly detected obstacle
blocks it. There may exist traps of local minima. When
there are multiple agents, one cannot plan their paths indi-
vidually if there are constraints imposed among team
members (for example, they can’t be too close to cause
collisions or too far away from each other to lose commu-
nications). If the number of agents grows, the dimension of
the configuration space increases, and the computation
cost may increase exponentially (which quickly becomes
intractable). This is called the curse of dimensionality in
computational mathematics. Note that there is an extensive
literature on path-planning methods. Many standard
methods (such as the family of bug algorithms [24], the
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probabilistic road map [36], and the rapidly exploring
random tree [20], [37]) have been adopted for motion plan-
ning in unknown environments. They may be efficient in
low-dimensional situations. Optimal transport is also used
for motion planning in different setups, such as robot
swarming by linear programming [2] and robust transport
over networks [6]. See Zhai et al. [42] for more references on
related work.

Unlike existing methods, the method proposed in [42]
explores the idea of Wasserstein gradient flow on a potential
tree. The nodes are connected according to the distance to the
target in the configuration space. The resulting algorithm is a
deterministic strategy with a provable convergence guaran-
tee, meaning that the algorithm stops in a finite number of
steps, either returning a locally optimal path or concluding
that a feasible one connecting the initial and target positions
does not exist. A major advantage is that, using the potential
tree, a flexible discrete structure allows the algorithm to be
scalable for higher dimensional problems.

The algorithm contains three steps: generate a tree in
configuration space, find a path on the tree, and update
environment information along the motion. These steps are

- lel®
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o I
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FIGURE 6 (a) The generated tree from the start point to the target.
(b) The path on the tree. Since the obstacles are not yet known to
the robot, the tree and path go through some obstacles.

repeated if planned paths are blocked. To illustrate the main
ideas while keeping the discussion simple, let us consider
one point robot moving in a 2D domain populated with
obstacles of different shapes and sizes. As shown in the
plots of Figures 6 and 7, the obstacles are in light gray when
they are unknown to the robot. They become dark gray
after being detected. Figure 6(a) shows the first generated
tree from the starting position near the upper-right corner
to the target at the bottom left. Initially, all obstacles are not
yet known. Thus, the tree is expanded from the starting
point toward the target through some obstacles and then
stops at the target. There is a unique path on the tree con-
necting the initial and final points [displayed in Figure 6(b)].
Obviously, when the robot moves along this path, it encoun-
ters obstacles, and the path needs to be replanned. Figure 7
depicts another iteration of tree generation and path find-
ing. In Figure 7(a), the current position is near a newly
detected obstacle, shown in dark gray. The tree is expanded
toward the target. However, it excludes the red nodes inside
the known obstacles. The red nodes near the target indi-
cate the new nodes added to the tree. Once reaching the
target, a new path on the tree can be identified, as shown in

ol ™,
ol’- ®
3

o e

FIGURE 7 (a) The tree from the current position. (b) The path from
the current position. The dark gray obstacles are known to the
robot; the generated tree and path no longer go through them.

(b)
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In this case, the algorithm introduces diffusion to grow the tree (meaning
new nodes along the houndary of obstacles are added to the tree until a new
feasible descent direction can he identified).

Figure 7(b). A YouTube video [40] demonstrates the com-
plete process of finding the path for this example.

Another video [41] shows the complete motion of a team
of five agents (in a 10D configuration space) in the same
environment. It is noticed from the example that the tree
grows by adding new nodes only along coordinate direc-
tions with a fixed step size. No diagonal node is used in the
tree. This keeps the computational complexity low. If the
diagonal nodes were added, there could possibly be up to
2% new nodes added to the tree at each step, where d is the
dimension of the configuration space. There are at most 2d
new nodes if only the coordinate directions are allowed.

FIGURE 8 (a) The whole potential tree. (b) The region containing the
nodes generated by the algorithm. The selected nodes are the ones
for which the solution of (4) takes nonzero values following the inter-
mittent diffusion process and also their immediate neighbors.
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With this choice, the complexity of the algorithm increases
linearly with respect to the dimension, which can be scaled
in the high-dimensional space. The tree is extended toward
the target by introducing a potential function ®, such as
the distance to the target position. The node with the lowest
potential value on the tree is selected, and its neighbors are
added to the tree if they are not in a known obstacle or
already on the tree. This procedure ensures that the tree
grows to reduce the potential value, mimicking gradient
descent actions. Since only the nodes along the coordinate
directions are used, the tree does not expand according to
the exact gradient descent direction. Instead, it grows in an
approximated potential decreasing direction. If the agents
move along the path without encountering an obstacle, the
task is finished. When the path is blocked, replanning is
needed. The agents may be trapped at a local minimum,
where there is no new feasible node with a lower potential
value to be added to the tree. In this case, the algorithm
introduces diffusion to grow the tree (meaning new nodes
along the boundary of obstacles are added to the tree until
a new feasible descent direction can be identified). It is also
observed from the video that the algorithm only explores a
subregion without knowing the environment a priori.
Recall the analogy of water flowing from a source to a
sink. This algorithm is designed by following not the flow of
real water, but the solution of Fokker—Planck equation (4) on
the potential tree. As illustrated in Figure 8, nodes of the
potential tree are the circles, and the edges are solid lines
connecting them. The tree is constructed according to the
distance to the target [which is the potential ®, whose level
lines are plotted in Figure 8(b)]. The start and end points are
marked in red. The initial value for (4) is a point mass distri-
bution at the start point. The evolution is completed with S
being zero when the solution is not trapped at a local mini-
mum (which corresponds to the gradient descent situation).
Otherwise, 8 is taken as a positive value that corresponds to
the diffusion scenario. Since the gradient descent and diffu-
sion processes take place alternately, the process is called
intermittent diffusion. This evolution determines the subre-
gion within which the algorithm searches for a path. The
solid nodes on the tree in Figure 8(a) are the ones where the
solution takes nonzero values. The tree generated by the
algorithm is within the region indicated by the solid nodes
in Figure 8(b). These nodes are the nonzero-valued nodes
and their feasible neighbors. Note that this path-planning
algorithm does not require one to explicitly construct the
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entire potential tree in advance or to solve (4) numerically.
The tree and (4) are only used in guiding the algorithmic
design and proving its theoretical properties, such as con-
vergence. As the gradient flow on the Wasserstein manifold,
the solution of (4) converges to the Gibbs distribution (which
takes the maximum value at the target configuration). This
property provides the mathematical foundation to prove the
completeness of the algorithm in a finite number of steps.
This differs from existing path-planning algorithms using
randomness, in which the completeness (if one exists) is
proven to be achievable only asymptotically.
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