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Abstract
We study Bayesian data assimilation (filtering) for time-evolution Partial differ-
ential equations (PDEs), for which the underlying forward problem may be very
unstable or ill-posed. Such PDEs, which include the Navier–Stokes equations
of fluid dynamics, are characterized by a high sensitivity of solutions to per-
turbations of the initial data, a lack of rigorous global well-posedness results
as well as possible non-convergence of numerical approximations. Under very
mild and readily verifiable general hypotheses on the forward solution operator
of such PDEs, we prove that the posterior measure expressing the solution of the
Bayesian filtering problem is stable with respect to perturbations of the noisy
measurements, and we provide quantitative estimates on the convergence of
approximate Bayesian filtering distributions computed from numerical approxi-
mations. For the Navier–Stokes equations, our results imply uniform stability of
the filtering problem even at arbitrarily small viscosity, when the underlying for-
ward problem may become ill-posed, as well as the compactness of numerical
approximants in a suitable metric on time-parametrized probability measures.
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1. Introduction

Partial differential equations (PDEs) are ubiquitous as mathematical models in the sciences
and engineering. A time-dependent PDE takes the following generic form,

∂tu +D
(

f , u,∇xu,∇2
xu, . . .

)
= 0, ∀ x ∈ D, t ∈ (0, T)

Bu = û, ∀ x ∈ ∂D, t ∈ (0, T),

u(x, 0) = ū, ∀ x ∈ D.

(1.1)

Here, D is a differential operator that depends on the solution u and its spatial derivatives, as
well as on a coefficient (source term) f . The PDE is supplemented with initial conditions and
with boundary conditions, imposed through a boundary operator B. The inputs to the PDE
are given by v = [ū, û, f ], which constitute the initial data, boundary data and coefficients
(source terms). These inputs are related to the solution u of the PDE (1.1) through the so-called
data-to-solution operator,

S† : X �→ Y, v �→ S†(v) = u, (1.2)

with u solving the PDE (1.1). X and Y are suitable (subsets of) Banach spaces.
Often, one is interested, not just in the solution field u of (1.1), but rather in finite-

dimensional quantities of interest or observables, which are given in the generic form,

L† : X → R
d, v �→ L†(v). (1.3)

The observable L† can be written as a composition L†(v) = G†(S†(v)), with G† : Y → R
d a

functional (e.g. given by point evaluations or local averages). Thus, the so-called forward
problem for the PDE (1.1), is to evaluate the solution operator S† or the observables L†, given
the inputs v.

However, it is not always possible to exactly know the inputs v (initial and boundary data,
coefficients, sources etc). Rather in practice, one has to infer information about the inputs v,
and consequently the solution u, from measurements of the observables in (1.3). Moreover in
general, these measurements are noisy. Thus one has to solve the so-called inverse problem for
a PDE, i.e., determine the input v (and solution u) for the PDE (1.1), given measurements of
the form,

y = L†(v) + η, η ∼ ρ(y)dy, (1.4)

with the noise sampled from a probability measure on R
d, defined by its density ρ.

It is well known that, in general, a deterministic formulation of the afore-mentioned inverse
problem can be ill-posed. Although different regularization procedures have been developed
over the last few decades to deal with this ill-posedness, it is now well-established that a sta-
tistical formulation of the inverse problem, based on a Bayesian framework, is very suitable in
this context [18, 36, 39].
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Within a Bayesian formulation of the inverse problem, associated with the mapping (1.3)
and measurements (1.4), one encodes statistical information about the system (say inputs
v in (1.1)) in terms of a prior probability measure. The additional information from the
measurements (1.4) can be used to improve the prior by an application of the well-known
Bayes’ theorem [36]. This results in a so-called posterior probability measure, on the inputs
v, which represents the conditional probability of the underlying inputs, given the measure-
ments (1.4). Thus, the Bayesian inverse problem (BIP) can be interpreted as a mapping from
the measurements (1.4) to the posterior measure.

In contrast to the generic situation for deterministic inverse problems, it has been shown
that the corresponding BIP for PDEs is often well-posed, i.e., the posterior measures
exists, is unique and depends continuously (in suitable metrics) on the measurements (1.4)
[25, 35, 36]. Furthermore, BIPs can incorporate the deterministic formulation of regularized
ill-posed inverse problems: as shown in [36], the latter can often be viewed as the maximum a
posteriori (MAP) estimator of a BIP with a suitable choice of the underlying prior.

However, these remarkable well-posedness results for BIPs for PDEs rely on the well-
posedness of the underlying forward problem, often requiring that the mapping L† in (1.3)
is Lipschitz continuous in suitable metrics and converting this Lipschitz continuity into sta-
bility results for the posterior measure with respect to perturbations in the measurements, see
[36] for a survey of these results and their applications to a variety of PDEs. More recently
in [25, 35], these Lipschitz continuity assumptions on the forward map L† in (1.3), have been
considerably relaxed. In particular, under suitable assumptions on the measurement noise η in
(1.4), mere existence and measurability of the forward map suffices for the well-posedness of
the underlying BIP [25].

For models describing the temporal evolution t �→ u(t) of a system, the forward operator
S† can either be interpreted as a mapping from the given data to a space of time-dependent
solutions t �→ u(t), or equivalently, as a time-parametrized operator S†

t : X → X, such that
t �→ u(t) = S†

t (ū; û, f ) describes the evolution of the system. For such systems, which include
the PDE (1.1), Bayesian inversion can be used to estimate the initial state ū, the boundary con-
ditions û, or the source term f , under very general conditions on the measurement operator
L†. However, for many problems of practical importance, one is ultimately interested in an
estimate of the underlying state u(t) at the present or a future time t. The resulting data assim-
ilation (DA) or filtering problem thus seeks to blend measurement data with the underlying
evolution model to make predictions about the future state. Besides its intrinsic interest, one
motivation for studying a statistical viewpoint of DA based on a Bayesian approach [1] comes
from the fact that many popular methods for DA, such as the three-dimensional variational
filter (3DVAR) [5], the four-dimensional variational filter [33] or the ensemble Kalman filter
(e.g. [8] and references therein) can suitably be interpreted as arising from MAP estimators
or Gaussian approximations of this Bayesian approach [1]. In fact, the Bayesian formulation
has been proposed as a ‘gold-standard’ against which other methods can be evaluated [27].
A mathematically rigorous introduction to DA from this Bayesian perspective is presented in
[26], where attention is restricted to finite-dimensional models and Gaussian noise. To the best
of the authors’ knowledge, a systematic investigation of the well-posedness of Bayesian DA for
infinite-dimensional models arising from PDEs, and the extension of the corresponding theory
on BIPs of [36] to the DA setting, has so far been outstanding.

DA is of particular importance in the context of fluid flows. For many fluid models, it is
well-known that predictions of future states can depend very sensitively on small perturba-
tions of the initial data (or boundary data, source terms, etc) [12, 32]. This sensitivity to small
changes can render the forward evolution (effectively) ill-posed. Prototypical examples for
such ill-posed PDEs are provided by the fundamental equations of fluid dynamics, such as
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the incompressible Navier–Stokes or the compressible Euler equations. For the incompress-
ible Navier–Stokes equations, there are currently no global well-posedness results in three
space dimensions. Although admissible weak solutions exist [28], the uniqueness, stability
and regularity of such solutions are outstanding open problems. Even for the two-dimensional
Navier–Stokes equations, for which existence and uniqueness results have been obtained [21],
the known stability estimates for the forward problem exhibit a very unfavourable, exponential
dependence∼ exp(t/ν) on the viscosity3 ν, reflecting the high sensitivity to small perturbations
of the initial data. As the viscosity ν 	 1 is often a very small number in applications, this can
render even the two-dimensional Navier–Stokes equations so unstable, as to be effectively
ill-posed. Similar remarks apply to the compressible Euler equations, which are canonical
examples of hyperbolic systems of conservation laws [7]. In this case, there are no rigorous
global-in-time well-posedness results in either two or three space dimensions, reflecting a lack
of stability of the underlying forward solution operator S†

t , or of (numerical) approximations
thereof SΔ

t ≈ S†
t . Due to the lack of stability of the forward problem for these fundamental

equations of fluid dynamics, it is thus not clear to what extent the well-posedness results of
[25, 35, 36] obtained for BIPs can be extended to this time-varying setting. Indeed, Bayesian
inversion apparently only yields estimates on the initial state in this setting, whereas DA
involves an additional prediction step to estimate future states.

This lack of stability of many fluids with respect to perturbations of the initial data motivates
the following question: does Bayesian DA suffer from a similar sensitivity to perturbations in
the measurement data? I.e., is the well-posedness of the Bayesian DA problem contingent on
the well-posedness of the corresponding forward problem? The Bayesian framework has been
remarkably successful in the context of weather forecasting, climate modeling and oceanogra-
phy [34]. Given that the underlying models include the incompressible Navier–Stokes and the
compressible Euler equations as the core governing PDEs, how does one reconcile the empir-
ical success of the Bayesian framework with the lack of stability of the underlying forward
problem?

This dichotomy sets the stage for the current article where we investigate the well-posedness
of Bayesian DA for PDEs where the forward evolution operator may be ill-posed. Besides
investigating the well-posedness of Bayesian DA for the exact solution operator S†

t , we also
consider approximations to the forward map, SΔ

t ≈ S†
t , which may stem from numerical

approximations of the underlying PDE (1.1). Such approximations lead to a family of approxi-
mate posteriors for the Bayesian DA problems. In this article, we will prove, under very general
hypotheses, that

• The Bayesian filtering problem is well-posed under mild assumptions, even if the forward
problem may be ill-posed; in particular, the mapping from measurements to posterior is
uniformly Lipschitz continuous, independently of the stability of the forward problem.

• Under mild conditions on the convergence of approximate solution operators
SΔ

t →S†
t , the corresponding approximate Bayesian posteriors are consistent, in the sense

that they converge in a suitable metric to the exact posterior as Δ→ 0, and with the same
convergence rate.

• Suitable families of approximate posteriors for the Navier–Stokes equations (and related
equations) are compact in an appropriate metric, as Δ→ 0, with uniformly continuous
dependence on the measurements y. This allows us to define a non-empty set of candidate

3 Physically, the non-dimensional quantity to consider is the Reynolds number 1/Re ∝ ν, obtained after suitable nor-
malization of the equation. We will assume that the equations are suitably scaled, and will not distinguish between
Reynolds number and the viscosity.
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solutions for the limiting Bayesian DA problem, as Δ→ 0, even for models for which

there are no known convergence guarantees, SΔ
t

??−→ S†
t , for the forward problem, such

as the three-dimensional Navier–Stokes equations.

Although uniqueness of the posterior is not necessarily guaranteed with these compactness
arguments, our construction could pave the way for proposing additional selection criteria on
the set of approximate posteriors to recover uniqueness.

1.1. Organization

This work is organized as follows: in section 2, we introduce the precise mathematical setting.
To this end, we first formalize Bayesian DA in the infinite-dimensional setting considered in
the present work, and provide a formal definition of well-posedness and consistency, following
similar considerations as for the BIP in [25, 35, 36]. We also briefly review key elements of
the well-posedness theory for the Navier–Stokes equations in section 2.3, which serves as our
main prototypical model, motivating the present work. In section 3, we point out the precise
connection between Bayesian inversion and Bayesian DA (filtering), before stating our main
results regarding the well-posedness, consistency and uniform stability of Bayesian filtering
(cp section 3.2). The technical details of the mathematical derivation of these main results are
collected in section 4, where we also comment on related results for hyperbolic conservation
laws. Conclusions are provided in section 5. Some mathematical background is summarized
in the appendix A.

2. Mathematical setting and notation

In the present section, we introduce notation that is employed throughout this work, and provide
definitions for the Bayesian DA problems of interest. Besides setting the background for our
main results, summarized in the subsequent section 3, we will also review some key results on
the well-posedness and numerical approximation of the Navier–Stokes equations which have
largely motivated the present work on the well-posedness of the corresponding Bayesian DA
problem, and the convergence of approximate posteriors obtained by discretization.

Throughout this work, we follow the convention that constants C appearing in estimates
may change their value from line to line. The dependency of the constant C on the given data
(e.g. parameters α, β, γ) should usually be clear from the context and will be indicated by
writing C = C(α, β, γ).

2.1. Bayesian data assimilation

DA seeks to provide an estimate for the underlying state of a system, by combining available
measurements with a model of the system. The temporal evolution of the system’s state can
often be described by a forward solution operatorS†

t : X → X depending on time t ∈ [0, T ] and
mapping the initial data ū ∈ X to the solution at time t. Here, we assume X to be a Banach space,
equipped with a norm ‖ · ‖X. The evolution of the system starting from initial state ū is thus
given by t �→ S†

t (ū). In view of the application to ill-posed problems, we will make essentially
no assumptions on the regularity of S†

t ; in fact, unless otherwise stated, we will merely assume
that:

(S.1) The solution operator defines a Borel measurable mapping

5
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Figure 1. Schematic illustration of the DA problem: measurements (red circles) are used
at times t = t0, t1, . . . , to periodically update the posterior measure ν y

t (indicated by its
credibility interval in blue), combining all available information from the deterministic
evolution and noisy measurements.

with t �→ St(ū) and ū �→ St(ū) measurable for all t ∈ [0, T], ū ∈ X.
(S.2) There exists a constant BS > 0, such that

for all ū, ū′ ∈ X, and t ∈ [0, T].

The Bayesian DA problem can then be stated as follows: given a prior probability measure
μprior ∈ P(X), we consider the initial state as a random variable ū ∼ μprior. Given a time interval
[0, T] and a sequence 0 = t0 < t1 < · · · < tN, we assume that noisy measurements y1, . . . , yN

are made, where y j depends only on the underlying state during the time interval [t j−1, t j] and
is of the form:

y j = G j(S†(ū)) + η j. (2.1)

These measurements (2.1) are defined in terms of certain measurement functionals G j and
random variables η j ∼ μnoise modeling (additive) measurement noise, both of which are further
specified next (figure 1).

2.1.1. Assumptions on observables. The (potentially non-linear) functionals
G j : L1([0, T]; X) → R

d, j = 1, . . . , N, will be referred to as observables, and are assumed
to depend only on the values S†

t (ū) for t ∈ [t j−1, t j]. We will say that the observables G j are
Lipschitz continuous, if there exists LG > 0, such that

|G j(u) − G j(u′)| � LG

∫ t j

t j−1

‖u − u′‖X dt, ∀ u, u′ ∈ L1([0, T]; X), (2.2)

for all j = 1, . . . , N. Here, we recall that the space L1([0, T]; X) consists of all measurable
mappings u : [0, T] → X, such that

∫ T
0 ‖u(t)‖X dt < ∞. We note that by (S.1) and (S.2), we

have t �→ S†
t (ū) ∈ L1([0, T]; X) for any ū ∈ X, and hence, we have a well-defined mapping

S† : X → L1([0, T]; X), ū �→ S†(ū). In particular, the composition G j(S†(ū)) in (2.1) is
well-defined.

Example 2.1 (Eulerian observables). If X = L2(D;Rn) consists of square-integrable
functions on a bounded domain D ⊂ R

m, then a specific class of (Eulerian) observables are

6
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functionals G j : L1([0, T]; X) → R
d of the following form:

G j(u) =
∫ t j

t j−1

∫
D
φ(x, t)g(u(x, t))dx dt,

where φ ∈ L∞(D × [t j−1, t j]), and g : Rn → R
d is a Lipschitz continuous function.

2.1.2. Assumptions on measurement noise. The measurement noise is modeled by random
variables η1, . . . , ηN ∼ μnoise which, for simplicity, we assume to be iid and independent
of ū ∼ μprior. Fix a symmetric, positive definite matrix Γ ∈ R

d×d, and denote by | · |Γ the
corresponding norm on R

d given by

|y|Γ =
√
〈y, y〉Γ, 〈y, y′〉Γ = 〈y,Γ−1y′〉, (2.3)

with 〈·, ·〉 the standard Euclidean inner product on R
d. We assume that the noise

η j ∼ μnoise = ρ(y)dy in (2.1) possesses a distribution that is absolutely continuous with respect
to Lebesgue measure dy on R

d with probability density ρ(y) > 0, satisfying the following
assumptions:

(N.1) Regularity: y �→ ρ(y) is Lipschitz continuous with respect to | · |Γ,4, i.e. there exists
Lρ > 0, such that

|ρ(y) − ρ(y′)| � Lρ|y − y′|Γ, ∀ y, y′ ∈ R
d. (N.1)

(N.2) Boundedness: y �→ ρ(y) is bounded from above, i.e. there exists C > 0, such that

sup
y∈Rd

ρ(y) � C. (N.2)

(N.3) Tail-condition: there exists a constant C > 0, such that

ρ(y) � exp
(
− 1

2 |y|2Γ
)

C
, ∀ y ∈ R

d. (N.3)

Remark 2.2. Note that if, instead of (N.3), ρ(y) satisfies a tail-condition of the form
ρ(y) � exp(−C|y|2Γ)/C, then upon simply rescaling Γ̃ :=

√
2/CΓ, we have ρ(y) �

exp(− 1
2 |y|2˜Γ)/C. Hence ρ(y) satisfies assumptions (N.1)–(N.3) with a rescaled matrix

Γ→ Γ̃ in this case. Therefore, the precise constant 1
2 in the tail-condition (N.3) can be

assumed without loss of generality. The factor of 1/2 turns out to be particularly convenient.

Assumptions (N.1)–(N.3) are clearly fulfilled for normally distributed measurement noise
η j ∼ N (0,Γ). This is the main application we have in mind. However, it is worth pointing out
that the assumption is satisfied for a much wider class of measurement noise: in particular,
since the tail-condition requires only a lower bound, our results apply to situations in which
one encounters noise with a heavy tail.

4 Although all norms on the finite-dimensional space R
d are equivalent, measurement noise such as Gaussian noise is

naturally associated with the norm | · |Γ induced by the covariance matrix Γ.
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2.1.3. Posterior/conditional probability. Given a time t � 0 and a given subset of measure-
ments y1:k = (y1, . . . , yk), we are interested in the conditional probability

ν
y1:k
t ( · ) :=P

[
S†

t (ū) ∈ ·
∣∣∣G j(S†(ū)) + η j = y j, ∀ j = 1, . . . , k

]
, (2.4)

providing a Bayesian estimate of the underlying state u(t) = S†
t (ū) at time t � 0 given the prior

distributionμprior(dū) at t = 0 and the measurements y1, . . . , yk. If all available measurements at
past times t j � t are taken into account, this estimate is referred to as the filtering distribution;
if the estimate also takes into account measurements obtained at times t j � t, i.e. the state is
estimated in hindsight, the posterior is referred to as the smoothing distribution. In the case
of filtering, the set of available measurements y1:k will itself vary with time t, i.e. k = k(t).
For concreteness, we will mostly focus on the filtering problem in the following; given all
measurements y= (y1, . . . , yN) over a time interval [0, T], the filtering distribution

ν y
t ( · ) = P[S†

t (ū) ∈ · |y j with t j � t], (2.5)

provides the best-estimate at time t given only the past measurements; the filtering distribution
can be written in terms of the conditional probabilities (2.4):

ν y
t :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν∅t , t ∈ [0, t1),

νy1
t , t ∈ [t1, t2),

...

νy1:(N−1) , t ∈ [tN−1, tN),

νy1:N , t � tN .

(2.6)

Here we have formally defined ν∅t :=S†
t,#μprior, corresponding to the best prediction in the

absence of any measurements. The filtering distribution (2.6) thus defines a mapping from
measurements y= (y1, . . . , yN) ∈ R

d×N to time-parametrized probability measures ν y
t .

2.1.4. Definition of well-posedness. We are interested in the well-posedness of the filtering
problem, as defined next:

Definition 2.3 (well-posedness of Bayesian-DA). Given a forward operator S†
t , a

prior μprior, a noise distribution μnoise, and a space (Σ, dT) of time-parametrized probabil-
ity measures t �→ ν t, we say that the Bayesian-DA problem is well-posed, provided that the
following properties are satisfied:

(a) Existence: for any y∈ R
d×N , the posterior filtering distribution (2.4) exists in Σ,

(b) Uniqueness: the filtering distribution is unique,
(c) Stability: the measurement-to-posterior mapping

R
d×N →Σ, y �→ ν y

t ,

is locally Lipschitz continuous wrt. dT, i.e. for any R > 0, there exists C(R) > 0, such that

dT(ν y
t , ν y′

t ) � C|y− y′|Γ,

for all y, y′ ∈ R
d×N, such that |y|Γ, |y′|Γ � R, and where we define |y|Γ :=

√∑N
j=1|y j|2Γ.

8
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One possible choice for the metric space (Σ, dT) will be discussed below (cp section 2.2).
At this point, we would like to point out that the above definition is a direct analogue of the
corresponding definition of well-posedness for the BIP [25, definitions 2.7 and 3.4], as well as
the notion of well-posedness for the forward problem:

Remark 2.4 (well-posedness of the forward problem). If S†
t : X → X is the solution

operator associated with a time-evolution PDE on a time interval [0, T], then the well-posedness
of the forward problem is usually defined as the existence, uniqueness and stability of S†

t on X,
where the stability requires S†

t to be continuous as a mapping ū →S†
t (ū) for any t ∈ [0, T]. In

fact, S†
t is often required to be Lipschitz continuous, i.e. there exists a constant LS � 0, such

that

‖S†
t (ū) − S†

t (ū′)‖X � LS‖ū − ū′‖X,

for any ū, ū′ ∈ X. Thus, the well-posedness of the forward problem is reflected in the regularity
ofS†

t . In the present work, we will study the well-posedness of the associated Bayesian filtering
problem (2.5) in the absence of such regularity, thus formally allowing for LS = ∞.

2.1.5. Numerical discretization and consistency. As the true forward operator S†
t is usually

not computable in practice, one often needs to replace S†
t by a numerical approximation

SΔ
t ≈ S†

t , depending on a parameterΔ > 0. The parameterΔ > 0 may reflect the grid size in a
numerical discretization, or may represent more general modeling errors; in the following, we
will usually refer to Δ as the ‘grid size’, and will focus on errors due to discretization of a given
PDE. Upon discretization, the exact posterior (2.4) is replaced by the following conditional
probability:

ν
Δ,y1:k
t ( · ) :=P

[
SΔ

t (ū) ∈ ·
∣∣G j(SΔ(ū)) + η j = y j, ∀ j = 1, . . . , k

]
. (2.7)

The corresponding filtering distribution νΔ,y
t is defined as in (2.6), but with ν

Δ,y1:k
t replac-

ing ν
y1:k
t . Given such a discretization, a fundamental question concerns the consistency of the

approximate posteriors νΔ,y
t with the limiting posterior ν y

t :

Definition 2.5 (consistency). The sequence of approximate posteriors νΔ,y
t is consistent

with the limiting posterior ν y
t , with respect to a space of time-parametrized probability mea-

sures (Σ, dT), if νΔ,y
t → ν y

t converges locally uniformly in y= (y1, . . . , yN) ∈ R
d×N; i.e., if for

any R > 0, we have

lim
Δ→0

sup
|y|Γ�R

dT(νΔ,y
t , ν y

t ) = 0.

2.2. Time-parametrized probability measures

Given our definition of well-posedness and consistency of the Bayesian DA problem, and the
solution (2.6) of the filtering problem, we need to define a suitable space (Σ, dT) of time-
parametrized probability measures, t �→ ν t. To this end, we follow [24], and introduce the
following space L1

t (P) = L1
t ([0, T];P1(X)):

9
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Definition 2.6. Let X be a separable Banach space with norm ‖ · ‖X, and let P1(X) denote
the set of Borel probability measures μ on X, with finite first-moment

∫
X ‖u‖X μ(du) < ∞. We

recall that P1(X) is metrized by the one-Wasserstein metric W1(·, ·) (cp appendix A.2 for defi-
nitions). Given a time T > 0, we define L1

t ([0, T];P1(X)) to be the set of weak-∗ measurable5

mappings [0, T] →P1(X), t �→ ν t, such that∫ T

0

∫
X
‖u‖X νt(du)dt < ∞,

and we introduce the following metric on L1
t ([0; T];P1(X)):

dT(νt, ν ′t ) :=
∫ T

0
W1(νt, ν ′t)dt, ∀ νt, ν ′t ∈ L1

t ([0; T];P1(X)).

We shall usually employ the simpler notation L1
t (P) = L1

t ([0, T];P1(X)), when the tempo-
ral domain [0, T] and the underlying Banach space X are clear from the context. Following
[24, proposition 2.1], we also recall

Proposition 2.7. Let X be a separable Banach space. Then L1
t (P) = L1

t ([0, T];P1(X)) is a
complete metric space under the norm dT( · , · ) =

∫ T
0 W1( · , · ) dt.

The motivation for considering this particular metric on time-parametrized probability mea-
sures is two-fold: firstly, this metric and closely related quantities have been shown to be
relevant empirically as well as analytically for the convergence of numerical approximations to
so-called ‘statistical solutions’, for several fundamental equations of fluid dynamics including
the incompressible Navier–Stokes [2], incompressible Euler [23, 24] as well as the compress-
ible Euler equations [10]. Secondly, metrics other than the Wasserstein W1-metric, such as the
Hellinger and total variation distances or the Kullback–Leibler divergence, which have been
considered in the context of BIPs [25, 35], may be less suitable in the context of Bayesian DA,
since these latter distances require absolute continuity of the involved measures. While this
requirement of absolute continuity is often not an issue for BIPs [25, 35, 36], the filtering dis-
tributions ν y

t , νΔ,y
t considered in the present work are generally singular with respect to each

other (due to the additional prediction step). Hence, we focus on distances which allow for
disjoint supports of the underlying measures, such as the Wasserstein distance.

2.3. Navier–Stokes equations

To illustrate ill-posed forward problems arising in fluid mechanics, we next review some
elements of the stability theory for the incompressible Navier–Stokes equations. The
Navier–Stokes equations are here viewed as a prototypical model of fluid flows, given by the
following system of PDEs:{

∂tu + div(u ⊗ u) +∇p = νΔu,

div(u) = 0, u( · , 0) = u.
(2.8)

These equations describe the evolution of the flow vector field u : D × [0, T] → R
n,

u = (u1, . . . , un), of a fluid in n dimensions. The parameter ν > 0 denotes the viscosity of

5 For any Φ ∈ Cb(X), the mapping t �→
∫

X Φ(u)ν t(du) is measurable.

10
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the fluid. The divergence term div(u ⊗ u) has components [div(u × u)]i =
∑n

j=1∂ j(u jui)(i =
1, . . . , n), ∇p = (∂1 p, . . . , ∂n p) is the gradient of the pressure p, and Δu =

∑n
j=1∂

2
j u on the

right-hand side denotes the Laplacian applied to u. For simplicity we shall focus on the case
of periodic boundary conditions.

Remark 2.8 (setting for Navier–Stokes equations). For n ∈ {2, 3}, we consider ini-
tial data ū ∈ L2

x := L2(Tn;Rn), consisting of 2π-periodic L2-integrable vector fields defined on
the periodic torus Tn � [0, 2π]n in n dimensions. In addition, any initial data is required to be
divergence-free, div(ū) = 0. For such initial data, we seek weak solutions u ∈ L∞([0, T]; L2

x)
of (2.8). We note that physically, the quantity 1

2‖u(t)‖2
L2

x
corresponds to the kinetic energy of

the underlying fluid, and hence the requirement that ess supt∈[0,T]‖u(t)‖L2
x
< ∞ is natural.

2.3.1. Theoretical results. It is well-known that for very small values of the viscosity ν 	 1,
solutions of the Navier–Stokes equations can exhibit turbulent behaviour, characterized by a
high sensitivity to perturbations to the initial data and involving dynamics across a wide range
of spatial and temporal scales [12, 32]. This empirically observed turbulent behaviour at small
viscosity is mathematically reflected by a strong ν-dependence in the available a priori stability
results for the solution operator S†

t of the system (2.8). This is summarized in the following
well-known theorem for the two-dimensional case:

Theorem 2.9 (stability of N–S in 2d, see [21, p 170, chap. 6, theorem 11]). Let
ū ∈ L2

x be initial data for the incompressible Navier–Stokes equations (2.8) for n = 2. There
exists a unique solution u(t) = S†

t (ū) of the Navier–Stokes equations with initial data ū. This
solution satisfies the energy bound ‖u(t)‖L2

x
= ‖S†

t (ū)‖L2
x
� ‖ū‖L2

x
. Furthermore, for any initial

data ū, ū′ ∈ L2
x, we have

‖S†
t (ū) − S†

t (ū′)‖L2
x
� ‖ū − ū′‖L2

x
exp

(
2
ν

∫ t

0
‖∇u(τ )‖2

L2 dτ

)
.

Thus, even if the solution u(t) = S†
t (ū) is assumed to be Lipschitz continuous, theorem 2.9

provides at best a stability estimate of the form ‖S†
t (ū) − S†

t (ū′)‖L2
x
� eCt/ν‖ū − ū′‖L2

x
, which

exhibits an exponential dependence on 1/ν.
In the three-dimensional case, a global existence and stability result such as theorem 2.9

remains unknown; it is well-known that solutions exist locally in time and when starting from
sufficiently regular initial data. For general initial data in L2

x , it has been shown in the celebrated
work of Leray [28] that energy admissible solutions satisfying ‖u(t)‖L2

x
� ‖ū‖L2

x
exist, but their

uniqueness remains an open problem; in particular, there are no guarantees on the stability of
a solution operator S†

t : L2
x → L2

x for the three-dimensional Navier–Stokes equations.

2.3.2. Numerical discretization. Popular numerical discretizations of the forward problem
for the incompressible Navier–Stokes equations, especially on periodic domains, are spec-
tral methods [4, 6, 13, 16, 19]. Spectral methods are based on the following ansatz
uΔ(x, t) =

∑
|k|∞�NûΔk (t)eik·x , where now and in the following we shall consistently denote

Δ = 1/N, and |k|∞ :=maxi=1,...,d|ki|. A straight-forward spectral approximation of the
Navier–Stokes equations is based on a Galerkin projection onto this ansatz space:{

∂tu
Δ + PN div(uΔ ⊗ uΔ) +∇pΔ = νΔuΔ,

div(uΔ) = 0, uΔ|t=0 = PNu.
(2.9)

11
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Here PN is the spatial Fourier projection operator, mapping an arbitrary function f (x, t) onto
the first N Fourier modes:PN f (x, t) =

∑
|k|∞�N f̂ k(t)eik·x . The scheme (2.9) can be equivalently

written in terms of a system of ordinary differential equaitons (ODEs) for the Fourier coeffi-
cients ûk(t), |k|∞ � N. Hence, combined with a suitable (e.g. Runge–Kutta) time-stepping,
(2.9) provides a numerical discretization of the Navier–Stokes equations. In the following
proposition, we summarize some basic observations on the numerical approximations (2.9):

Proposition 2.10. For any Δ = 1/N > 0, let SΔ
t : L2

x → L2
x denote the solution opera-

tor associated with the numerical scheme (2.9). Then for initial data ū ∈ L2
x, the numerical

solution uΔ(t) = SΔ
t (ū) satisfies:

(Δ.1) Energy bound: ‖SΔ
t (ū)‖L2

x
� ‖ū‖L2

x
,

(Δ.2) Coercivity:
∫ T

0 ‖∇uΔ(t)‖2
L2

x
dt � ν−1‖ū‖2

L2
x
,

(Δ.3) Weak time-regularity: there exist constants C = C(‖ū‖L2
x
), L > 0, such that

‖uΔ(t) − uΔ(s)‖H−L
x

� C|t − s|. In particular, we have uΔ ∈ Lip([0, T]; H−L
x )

uniformly in Δ > 0.

The basic properties summarized above will form the basis for the well-posedness results of
the present work. Additional control on the numerical approximations for the forward problem,
especially for the 3D Navier–Stokes equations and/or rough initial data, can be achieved by
refining the scheme (2.9) through the addition of suitable numerical diffusion; this can provide
additional control on the small scale behaviour, resulting e.g. in spectral viscosity schemes as
proposed in [16, 22, 37, 38]. The basic properties of proposition 2.10 will, however, suffice for
the purposes of the present work.

3. Main results

As pointed out in the last section, for many PDEs encountered in the context of fluid dynamics
(such as the Navier–Stokes equations in 3D), the current mathematical understanding does not
allow to rigorously prove the existence, uniqueness and stability of the corresponding forward
problem, i.e. a unique forward solution operator S†

t : X → X is not known to exist, and even
if it exists there may be no stability in the sense that we could have Lip(S†

t : X → X) = ∞.
Furthermore, even in those special cases, where the solution operator S†

t can be shown to exist,
stability estimates may exhibit a very unfavourable (exponential) dependence on small physical
parameters ν 	 1, e.g. yielding Lip(S†

t ) ∼ eCt/ν as for the Navier–Stokes equations in 2D.
Such an exponential dependence on 1/ν renders the forward evolution effectively ill-posed for
small values of ν 	 1.

In view of these observations, in this section, we will summarize our results on

• the well-posedness of Bayesian DA in the sense of definition 2.3, even when the forward
problem may be ill-posed,

• the consistency of approximate posteriors νΔ,y
t with the limiting distribution ν y

t in the
sense of definition 2.5, including convergence rates, when a unique solution operator S†

t

of the limiting problem exists,
• compactness and (uniform) stability properties of the approximate filtering distributions

(2.7), in the limit Δ→ 0, even when no rigorous convergence guarantees SΔ
t

??−→ S†
t to a

unique limiting forward solution operator are known.

12
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In section 3.1, we first start with several remarks on the connection between inverse prob-
lems, as considered in [25, 35, 36], and the Bayesian DA (filtering) problem of the present work.
We will also indicate the main mathematical difficulty encountered when considering ill-posed
forward problems, for which Lip(S†

t ) = ∞ or Lip(S†
t ) � 1 (cp proposition 3.4, below).

3.1. Connection with Bayesian inverse problems

Closely related to the Bayesian DA problem is the corresponding BIP, which can be
used to determine the following posterior probability on the initial data ū at time t = 0,
for L†

j(ū) :=G j(S†(ū)):

μy1:k ( · ) = P

[
ū ∈ ·

∣∣∣∣L†
j(ū) + η j = y j, ∀ j = 1, . . . , k

]
, (3.1)

or, upon discretization with LΔ
j (ū) :=G j(SΔ(ū)),

μΔ,y1:k ( · ) = P

[
ū ∈ ·

∣∣∣∣LΔ
j (ū) + η j = y j, ∀ j = 1, . . . , k

]
. (3.2)

A detailed analysis of the posterior (3.1) and (3.2) has been provided for infinite-
dimensional problems in [36]. An extended discussion of the well-posedness of the BIP under
minimal assumptions on the forward problem has been given in [25, 35]; as follows from
[25, theorem 2.5], under the present assumptions on the solution operator (S.1) and (S.2) and
the (strictly positive) noise distribution (N.1)–(N.3), the solution μy1:k of the BIP exists and is
explicitly given by

μy1:k (dū) =
1

Z†
k (y1:k)

exp

⎛⎝−
k∑

j=1

Φ
†,y j
j (ū)

⎞⎠μprior(dū), (3.3)

where

Φ
†,y j
j (ū) := − log ρ(L†

j(ū) − y j), (3.4)

denotes the log-likelihood function, and

Z†
k (y1:k) =

∫
X

exp

⎛⎝−
k∑

j=1

Φ
†,y j
j (ū)

⎞⎠μprior(dū), (3.5)

is the required normalization constant, which depends on y1:k = (y1, . . . , yk). We note that the
condition that ρ(y) > 0 implies that the log-likelihood Φ†,y1:k is finite, i.e., Φ†,y1:k (ū) < ∞ for
all ū ∈ X.

Remark 3.1 (Gaussian noise). If the noise η ∼ N (0,Γ) is normally distributed (Gaus-
sian), then (up to an unimportant additive constant)

Φ†,y j (ū) =
1
2
|y j − L†

j(ū)|2Γ,

13
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where the natural Γ-norm is given by (2.3). In this case, we have

dμy1:k

dμprior
(ū) =

1

Z†
k (y1:k)

exp

⎛⎝−1
2

k∑
j=1

∣∣∣y j − L†
j(ū)

∣∣∣2
Γ

⎞⎠. (3.6)

3.1.1. Push-forward of BIP and stability. In the next simple proposition, we note an explicit
expression for the distribution (2.4) in terms of the solution of the corresponding BIP (3.1):

Proposition 3.2. Let S†
t : X → X be a Borel measurable mapping. Let νy1:k

t , μy1:k be given
by (2.4) and (3.1), respectively, for observables G j and with measurement noise satisfying
(N.1)–(N.3). Then

ν
y1:k
t = S†

t,#μ
y1:k . (3.7)

Proof. Let A ⊂ X be a Borel measurable set. We have

ν
y1:k
t (A) = P

[
S†

t (ū) ∈ A|y1, . . . , yk

]
= P

[
ū ∈ [S†

t ]−1(A)|y1, . . . , yk

]
= μy1:k ([S†

t ]−1(A))

= S†
t,#μ

y1:k (A).

As A was arbitrary, it follows that νy1:k
t = S†

t,#μ
y1:k . �

Proposition 3.2 specifies the relation between the Bayesian-DA problem and the corre-
sponding BIP, via the push-forward under the solution operator.

Remark 3.3. Based on proposition 3.2, we also remark that the posteriors νy1:k
t are indeed

elements of L1
t (P), under the assumptions of the present work: if S†

t satisfies (S.1) and (S.2),
then the push-forward μ �→ S†

t,#μ defines a well-defined map P1(X) → L1
t (P1), and hence

P[S†
t ∈ · | y1, . . . , yk] = S†

t,#μ
y1:k ∈ L1

t (P), if μprior ∈ P1(X).

Furthermore, we note that proposition 3.2 immediately yields the following representation
of the filtering distribution (2.6) in terms of the push-forwardS†

t,#, and the solutions of the BIP
for the initial data μy1:k in (3.3):

ν y
t =

⎧⎨⎩S†
t,#μy1:( j−1) , t ∈ [t j−1, t j), j = 1, . . . , N

S†
t,#μy1:N , t � tN.

(3.8)

At this point, we recall that the well-posedness of the BIP has been studied under very mild
conditions on the forward operators and in a variety of metrics between probability measures in
[25, 35], including the Wasserstein distance. It is therefore natural to ask whether the results of
[25, 35] can be used to obtain corresponding results also for the Bayesian DA problem, based
on their relationship (3.7) via the push-forward under S†

t ? The following proposition indicates
that, in general, bounds on the Wasserstein distance for the BIP (as obtained in e.g. [35]) do

14
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not automatically translate to corresponding bounds for Bayesian DA, if the solution operator
is not sufficiently regular. For the straight-forward proof, we refer to appendix A.2, page 37.

Proposition 3.4. Let LS :=Lip(S†
t : X → X) denote the Lipschitz constant of the forward

operator. Then

W1

(
S†

t,#μ,S†
t,#μ

′
)

� LSW1(μ,μ′), ∀ μ,μ′ ∈ P1(X), (3.9)

and LS is optimal: if L > 0 is any other constant such that W1

(
S†

t,#μ,S†
t,#μ

′
)

� LW1(μ,μ′)

for all μ,μ′ ∈ P1(X), then L � LS .

As shown in proposition 3.4, the Wasserstein distance between two probability measures
is amplified by the Lipschitz constant of the forward solution operator (for general measures
μ, μ′). For the ill-posed problems considered in the present work, this Lipschitz constant is
either very large or even infinite, LS = ∞, and hence W1-estimates on the BIP—even under the
minimal assumptions of [25, 35]—do not suffice to conclude similarly robust well-posedness
results for Bayesian filtering problem. In view of applications to such ill-posed problems, it
would be highly desirable to obtain estimates which are independent of the stability of the for-
ward problem. This is one of the main goals of the present work. Overcoming the seemingly
fundamental limitations imposed by proposition 3.4 will rely on the specific form of the poste-
riors ν y

t , ν y′
t ∈ P1(X), which are not arbitrary probability measures but are instead constrained

by a common prior and potentially different measurements y �= y′.

3.1.2. Alternative representation of the filtering distribution. We finally point out a different,
recursive formulation of the Bayesian DA problem, which is closer in spirit to filtering schemes
such as the ensemble Kalman filter [8] or 3DVAR [5].

Remark 3.5 (recursive filtering). Fix a prior measure μprior at the initial time, and define

ν̃†,y0
t0 :=S†

0,#μprior. (3.10)

Given times 0 = t0 < t1 < · · · < tN = T and measurements y1, . . . , yN, carry out the following
two recursive steps.

(a) Correction step: given ν̃
y1:( j−1)
t j−1

as a prior at time t j−1, solve the BIP with new measurement

y j = G j(S†
t−t j−1

(u)) + η j, for t ∈ [t j−1, t j], to obtain a corrected Bayesian estimate

ν̃
y1: j
t j−1

(du) =
1

Z†
j (y j)

exp
(
−Φ̃

†,y j
j (u)

)
ν̃

y1:( j−1)
t j−1

(du), (3.11)

where Φ̃
†,y j
j (u) := − log

(
G j(S†

t−t j−1
(u)) − y j

)
.

(b) Prediction step: based on this corrected estimate, predict the probability distribution at
time t j, as the push-forward:

ν̃
y1: j
t j

= S†
δt j,#

ν̃
y1: j
t j−1

, (3.12)

where δt j = t j − t j−1.
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We note that,

Φ
†,y j
j (ū) = Φ̃

†,y j
j (S†

t j−1
(ū)), (3.13)

by definition (3.4) of Φ
†,y j
j .

We next observe that this recursive formulation is indeed equivalent to (2.4) (see section 4.1,
p 19 for a proof):

Proposition 3.6. Assume that the solution operator satisfies S†
s ◦ S

†
t = S†

s+t for all s, t � 0,
in addition to (S.1) and (S.2). Then the sequence ν̃

y1: j
t j obtained by the recursive prediction-

correction procedure of remark 3.5 agrees with the filtering distribution (2.5), i.e. we have
ν̃

y1: j
t j

= ν y
t j

, for all j = 1, . . . , N.

In the present section, we have discussed the precise relation between the BIP and the
Bayesian DA problem, showing that the DA problem is a combination of a suitably formu-
lated BIP for the initial data, followed by a prediction step. We finally point out that BIPs can
be thought of as a special instance of the Bayesian DA (with trivial forward solution operator).
This will allow us to translate certain results on DA to the context of BIPs.

Remark 3.7 (BIP as a special case of Bayesian DA). Set S†
t (ū) := ū for all t ∈ [0, T],

and assume that all measurements are obtained at t = 0. Then

μy1:N (du) = νy1:N
t (du) = ν y

t (du),

for all t ∈ [0, T]. Furthermore, we have for the discretized posterior

W1(μy1:N ,μΔ,y1:N ) =
1
T

dT

(
ν y

t , νΔ,y
t

)
,

W1(μy1:N ,μy′1:N ) =
1
T

dT

(
ν y

t , ν y′
t

)
.

Hence, all results regarding the well-posedness, stability and consistency obtained for the
Bayesian filtering setting in the present work, should readily imply corresponding results for
the BIP setting, under the Wasserstein W1-distance.

3.2. Well-posedness results for Bayesian DA

3.2.1. General well-posedness result. We can now state the following general well-posedness
result for the Bayesian filtering problem, which shows that the filtering problem is well-
posed under very mild boundedness assumptions, even if the corresponding forward problem
is ill-posed. Before stating our result, we recall that (cp notation defined in appendix A.1),
‖ū‖L1(μprior)

:=
∫

X‖ū‖X dμprior(ū). We then have:

Theorem 3.8 (filtering well-posedness). Let S†
t : [0, T] × X → X, (t, ū) �→ S†

t (ū) be a
Borel measurable solution operator, such that ‖S†

t (ū)‖X � BS‖ū‖X for all t ∈ [0, T]. Let
μprior ∈ P1(X) be a prior with finite first moment. Then the Bayesian filtering problem is well-
posed: more precisely, the conditional probability ν y

t in (2.6) exists for any measurements
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y= (y1, . . . , yN) ∈ R
d×N, ν y

t belongs to L1
t (P), and furthermore y �→ ν y

t is stable, in the sense
that for any R > 0, there exists C = C(R, ρ, N, BS , ‖ū‖L1(μprior)

, T) > 0, such that

W1

(
ν y

t , ν y′
t

)
� C|y− y′|Γ, ∀ t ∈ [0, T], (3.14)

and ∫ T

0
W1

(
ν y

t , ν y′
t

)
dt � C|y− y′|Γ, (3.15)

for all y, y′ such that |y|Γ, |y′|Γ � R.

The proof of theorem 3.8 is provided in section 4.3 on page 25.

Example 3.9 (filtering well-posedness for 2D Navier–Stokes). As an immediate
consequence of theorem 3.8, we conclude that if S†

t : L2
x → L2

x is the solution operator
of the incompressible Navier–Stokes equations (2.8) in two-dimensions, then the corre-
sponding filtering problem is well-posed for any viscosity ν > 0, and the mapping y �→ ν y

t

from measurements to the solution is locally Lipschitz stable, with a constant that is inde-
pendent of the viscosity ν. Indeed, it follows from theorem 2.9 that the Navier–Stokes
equations satisfy the bound ‖S†

t (ū)‖L2
x
� ‖ū‖L2

x
(with BS = 1), and hence the constant C =

C(R, ρ, N, BS , ‖ū‖L1(μprior)
, T) of theorem 3.8 is independent of ν. In contrast, we emphasize

that the Lipschitz constant for the corresponding forward problem depends exponentially on
1/ν (cp theorem 2.9).

Example 3.10 (filtering well-posedness for 3D Navier–Stokes). Similarly, for the
three-dimensional Navier–Stokes equations we obtain a short-time well-posedness
result if the prior μprior is supported on sufficiently smooth initial data: e.g. if
μprior({ū ∈ Hs

x | ‖ū‖Hs
x � M}) = 1 for some s > 3/2, and if the time-interval is suffi-

ciently short T < T∗(s, M), then the corresponding filtering problem t �→ ν y
t is well-posed on

t ∈ [0, T]. Here, Hs
x = Hs(T3;R3) denotes the well-known Sobolev space consisting of vector

fields with square-integrable derivatives of order s.

Example 3.11 (uniform well-posedness for numerical discretizations in 2D and
3D). Finally, we note that theorem 3.8 (with S†

t replaced by SΔ
t ) also implies the well-

posedness of the filtering problem for numerical approximations, such as the spectral method
introduced in section 2.3.2, for any fixed ν,Δ > 0 and in both two and three dimensions.
Furthermore, the stability constant C > 0 in (3.15) can be chosen uniformly, for all values
of ν,Δ > 0.

3.2.2. Consistency. Next, we discuss the consistency of approximate filtering based on a dis-
cretized solution operator SΔ

t , and the limiting filtering problem with solution operator S†
t .

More precisely, we show that if SΔ
t (ū) →S†

t (ū) converges in a suitable sense, then νΔ,y
t → ν y

t

in L1
t (P) also converges:

Theorem 3.12 (filtering consistency). Let μprior ∈ P1(X) be a prior with finite sec-
ond moments, ‖ū‖L2(μprior)

< ∞. Assume that SΔ
t ,S†

t : X → X satisfy (Δ.1)–(Δ.3) and (S.1)
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and (S.2), respectively. Then there exists a constant C = C(R, T, N, ρ, ‖ū‖L2(μprior)
,G) > 0,

independent of Δ, such that∫ T

0
W1

(
νΔ,y

t , ν y
t

)
dt � C

∫ T

0
‖SΔ

t (ū) − S†
t (ū)‖L2(μprior)

dt. (3.16)

In particular, if SΔ
t (ū) →S†

t (ū) in L1([0, T]; L2(μprior)) at a certain convergence rate, then

νΔ,y
t → ν y

t in L1
t (P) converges at the same rate.

The proof of theorem 3.12 is provided in section 4.4 below, on page 26.

Example 3.13. Based on the analysis of [3], the solutions computed by the numeri-
cal scheme in section 2.3.2 are expected to converge spectrally for the two-dimensional
Navier–Stokes equations: if μprior({ū ∈ Hs | ‖ū‖Hs � M}) = 1 for some M > 0, then
‖SΔ

t (ū) − S†
t (ū)‖L2

x
� CΔs. In particular, by theorem 3.12, this implies a similar convergence

rate also for the Bayesian filtering problem, i.e.∫ T

0
W1(νΔ,y

t , ν y
t )dt � CΔs.

Remark 3.14 (surrogate models). Recently, surrogate models based on novel neural net-
work architectures have been proposed to speed up many-query problems such as Bayesian DA
(see e.g. [30] for first results in this direction). These neural network-based methods provide
an approximation SΔ

t ≈ S†
t of the underlying solution operator based on the minimization of

an empirical loss function, which is chosen as a Monte-Carlo approximation of

L̂loss =

∫ T

0
‖SΔ

t (ū) − S†
t (ū)‖2

L2(μprior)
dt.

Theorem 3.12 provides a first step towards a more detailed estimate on the approximation
error of the underlying filtering problem νΔ,y

t ≈ ν y
t , in terms of the loss L̂loss. Indeed, the

upper bound (3.16) implies the estimate dT(νΔ,y
t , ν y

t ) � C
√

TL̂loss, on the time-integrated

Wasserstein-distance between νΔ,y
t and ν y

t !

3.2.3. Compactness and uniform stability. We finally turn our attention to the approximate
filtering problem for the particular case of the Navier–Stokes equations in 3D, in the absence
of a priori well-posedness for the forward problem. In contrast, the approximate solutions
obtained from numerical discretizations, such as the spectral scheme outlined in section 2.3.2
are well-defined for any given grid sizeΔ > 0; hence we focus our attention on the behaviour of
these numerical discretizationsSΔ

t : X → X, with X = L2
x the space of square-integrable vector

fields ū : T3 → R
3 on the three-dimensional, 2π-periodic torus T3, satisfying div(ū) = 0. As

pointed out in section 2.3.1, in this case, the uniqueness and stability of the forward problem
for the Navier–Stokes equations is not known for general input data ū ∈ L2

x . Nevertheless, the
corresponding numerical approximations computed by the scheme (2.9) are well-defined for
any Δ > 0. Such approximations allow us to compute approximate filtering distributions νΔ,y

t

for a given discretization parameterΔ > 0. Even though stability of the corresponding forward
problem is not known, and we could have Lip(SΔ

t ) →∞ as Δ→ 0, the results of the present
work nevertheless allow us to prove uniform stability and compactness for the corresponding
approximate filtering distributions.
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Before stating the next theorem, we recall that a probability measure μprior ∈ P1(L2
x) is said

to have bounded support, if there exists M > 0, such that

μprior

({
ū ∈ L2

x | ‖ū‖L2
x
� M

})
= 1. (3.17)

We can now state the following compactness result:

Theorem 3.15 (filtering compactness for Navier–Stokes). Assume that the prior
μprior ∈ P1(L2

x) has bounded support (3.17) for some M > 0, where L2
x :=L2(Td;Rd) denotes

the space of square integrable, periodic vector fields. Assume that μprior is concentrated on
divergence-free vector fields. Let 0 = t0 < t1 < · · · < tN = T be a strictly increasing sequence
for fixed N ∈ N. Let y= (y1, y2, . . . , yN) ∈ R

d×N be a sequence of measurements. Let SΔ
t :

L2
x → L2

x for Δ > 0 be approximate solution operators satisfying (Δ.1)–(Δ.3) of proposition
2.10, and let νΔ,y

t be the solution of the associated filtering problem. Then the sequence νΔ,y
t

is pre-compact in Cloc(Rd×N; L1
t (P)), as Δ→ 0. In fact, for any R > 0, there exists a constant

C = C(R, ρ, N, M) > 0, such that

sup
|y|Γ ,|y′|Γ�R

W1(νΔ,y
t , νΔ,y′

t ) � C|y− y′|Γ, ∀ t ∈ [0, T], (3.18)

and there exists a subsequence Δk → 0, and ν∗,y
t such that for any R > 0,

sup
|y|Γ�R

∫ T

0
W1

(
ν
Δk ,y
t , ν∗,y

t

)
dt → 0,

converges locally uniformly in y. Any such limit satisfies the stability estimate (3.18) in y.

For the details of the proof of theorem 3.15, we refer to section 4.5, page 31.

Remark 3.16 (stability of expectations). The stability estimate (3.18) in theorem 3.15
is a consequence of the continuity properties of the noise distribution ρ, and is independent of
any continuity properties of the observable LΔ(u). One implication of (3.18) is that for any
Lipschitz continuous Φ ∈ Lip(X) and t ∈ [0, T], the mapping

y �→ E
Δ,y
t [Φ] :=

∫
X
Φ(u)dνΔ,y

t (u),

is locally Lipschitz continuous under the assumptions of theorem 3.15: by Kantorovich duality,
we have

W1

(
νΔ,y

t , νΔ,y′
t

)
= sup

‖Φ‖Lip=1

∫
X
Φ(u)

[
νΔ,y

t (du) − νΔ,y′
t (du)

]
.

Thus, by (3.18) for any R > 0, there exists C(R, ρ, N, M) > 0, such that∣∣∣EΔ,y[Φ] − E
Δ,y′[Φ]

∣∣∣ = ‖Φ‖Lip

∣∣∣∣∫
X

Φ(u)
‖Φ(u)‖Lip

[
νΔ,y

t (du) − νΔ,y′
t (du)

]∣∣∣∣
� ‖Φ‖LipW1

(
νΔ,y

t , νΔ,y′
t

)
� C‖Φ‖Lip|y− y′|Γ. (3.19)
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Remark 3.17 (real-analyticity of expectations). Under the assumptions of theorem
3.15 and assuming additionally that the noise μnoise = ρ(y)dy is Gaussian noise, then the Lip-
schitz continuity (3.19) of remark 3.16 can be considerably strengthened to show that, for any
φ ∈ L∞(μprior) and t ∈ [0, T], the mapping

R
d×N → R, y �→ E

Δ,y
t [φ],

is real analytic: indeed, for the corresponding BIP (estimating the initial data) it follows from
[17, lemma 4.5] that the mapping

R
d×N → R, y= (y1, . . . , yN) �→

∫
X
ψ(ū)dμΔ,y1:k (ū), (3.20)

is real-analytic for any ψ ∈ L1(μprior) and k ∈ {1, . . . , N}. By (3.8), we have

νΔ,y
t =

N∑
k=0

1[tk ,tk+1)(t) SΔ
t,#μ

Δ,y1:k ,

where we formally set tN+1 = ∞, and hence for fixed t ∈ [0, T], there exists k such that
νΔ,y

t = SΔ
t,#μΔ,y1:k . Thus, for any φ ∈ L∞(μprior), we see that

E
Δ,y
t [φ] =

∫
X
φ(u)νΔ,y

t (du) =
∫

X
φ(u)

[
SΔ

t,#μ
Δ,y1:k

]
(du)

=

∫
X
φ
(
SΔ

t (ū)
)
μΔ,y1:k (dū),

is of the form (3.20) with ψ(ū) :=φ
(
SΔ

t (ū)
)
∈ L∞(μprior) ⊂ L1(μprior). Hence y �→ E

Δ,y
t [φ] is

real-analytic by the results of [17]. In particular, this conclusion is independent of any regularity
properties of ū �→ SΔ

t (ū).

Remark 3.18. Theorem 3.15 shows that even though the forward problem for the three-
dimensional Navier–Stokes equations may be ill-posed, we can nevertheless assign a set of
candidate solutions for the Bayesian DA problem to a family of approximate posteriors νΔ,y

t

at resolution Δ > 0. This set of candidate solutions in the limit Δ→ 0 is given by

M =

{
ν∗,y

t ∈ L1
t (P)

∣∣∣∣∃Δk → 0, s.t. ν∗,y
t = lim

k→∞
ν
Δk ,y
t

}
,

or equivalently, we can write

M =
⋂
Δ>0

cl
({

(t, y) �→ νΔ,y
t |Δ � Δ

})
,

where cl denotes the closure in Cloc(Rd; L1
t (P)). We note that the set M is non-empty: this

follows from the fact that any finite intersections are clearly non-empty and that each of the
sets is a compact subset of Cloc(Rd; L1

t (P)). It then follows from the finite intersection property
of compact sets that also their intersectionM �= ∅, i.e. there always exists at least one candidate
solution.
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The last remark can be interpreted as an existence result for solutions of the Bayesian DA
problem. This is an analogue of corresponding existence results for the forward problem of
the Navier–Stokes equations [28]. However, in contrast to the existence result of the forward
problem, which implies the existence of suitable limits SΔk

t (ū) →S†
t (ū) for fixed ū and which

may exhibit no stability in ū, limits obtained for the filtering problem do not only exist, but are
also uniformly stable with respect to y, giving rise to limits ν∗,y

t with continuous dependence
on y. This remarkable stability of the DA problem is in stark contrast with the corresponding
forward problem, even though both problems involve the prediction of a future state.

We also note that, following the connection between BIPs and Bayesian DA pointed out in
remark 3.7, we can readily obtain a corresponding existence result for BIPs, which we state in
passing:

Theorem 3.19 (compactness and stability for BIP). Let μprior ∈ P1(X). Let LΔ :
X → R

d be a sequence of approximate numerical functionals, and let μΔ,y be the solution
of the associated BIP. If there exists M > 0, such that supΔ‖LΔ(ū)‖L2(μprior)

� M, then the

sequence μΔ,y is pre-compact in Cloc(Rd;P1(X)), as Δ→ 0: in fact, for any R > 0, there exists
C = C(R, M, ρ) > 0, such that

W1(μΔ,y,μΔ,y′ ) � C|y − y′|Γ, ∀ |y|Γ, |y′|Γ � R.

Furthermore, there exists a subsequence Δk → 0, such that for any R > 0,

sup
|y|Γ�R

W1
(
μΔk ,y,μ∗,y

)
→ 0,

converges locally uniformly in y. Any such limit μ∗,y is locally Lipschitz continuous with
respect to y, and can be represented in the form dμ∗,y = 1

Z∗(y) exp(−Φ∗(ū))dμprior for a suitable
functional Φ∗ : X → R.

We emphasize that in this case, the mere uniform boundedness of the mappings
LΔ : X → R

d is sufficient to obtain uniform stability and compactness.

4. Derivation of the main results

In this section, we provide the detailed mathematical derivation of the main results stated in
the previous section.

4.1. Recursive filtering

We begin by providing a proof of the equivalence between the recursive filtering scheme of
remark 3.5 and (2.4).

Proof of proposition 3.6. We proceed by induction on j. The case j = 0 is trivial, since

ν̃∅t0 = S†
t0,#μprior = S†

t0,#μ
∅.

For j � 1, we integrate against an arbitrary, integrable (cylindrical) test function Ψ(u) to find,
with δt j = t j − t j−1:∫

L2
x

Ψ(u)ν̃
y1: j
t j (du) =

∫
L2

x

Ψ(u)
[
S†
δt j,#

ν̃
y1: j
t j−1

]
(du) =

∫
L2

x

Ψ
(
S†
δt j

(u)
)
ν̃

y1: j
t j−1

(du).
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Substitution of the correction step (3.11), yields∫
L2

x

Ψ(u) ν̃
y1: j
t j−1

(du) =
∫

L2
x

Ψ
(
S†
δt j

(u)
)

q†
j(u) ν̃

y1:( j−1)
t j−1

(du),

where

q†
j(u) =

1

Z†
j (y j)

exp
(
−Φ̃

†,y j
j (u)

)
.

By the induction hypothesis, the measure ν̃
y1:( j−1)
t j−1

can be written as a push-forward:

ν̃
y1:( j−1)
t j−1

= S†
t j−1,#μ

y1:( j−1) .

Thus, substituting above, we find∫
L2

x

Ψ(u) ν̃
y1: j
t j (du) =

∫
L2

x

Ψ(S†
δt j

(u)) q†
j(u)

[
S†

t j−1,#μ
y1:( j−1) (u)

]
(du)

=

∫
L2

x

Ψ(S†
t j

(ū))q†
j(S

†
t j−1

(ū))μy1:( j−1) (dū),

where we have used that S†
t j−1

◦ S†
δt j

= S†
t j

to simplify the argument of Ψ in the last step. We

now note that, by our definition of q†
j and μy1:( j−1) , we have

q†
j(S

†
t j−1

(ū))μy1:( j−1) (dū) ∝ exp
(
−Φ̃

†,y j
j

(
S†

t j−1
(ū)
))

× exp

(
−

j−1∑
k=1

Φ
†,yk
k (ū)

)
μprior(dū)

= exp

(
−

j∑
k=1

Φ
†,yk
k (ū)

)
μprior(dū),

where we have taken into account the identity Φ̃
†,y j
j

(
S†

t j−1
(ū)
)
= Φ

†,y j
j (ū) in the last step (cp

equation (3.13)). The proportionality constant can be determined by normalization. The last
expression is equal to μy1: j , and hence∫

L2
x

Ψ(u)ν̃
y1: j
t j (du) =

∫
L2

x

Ψ(S†
t j(u))μy1: j(du) =

∫
L2

x

Ψ(u)
[
S†

t j,#
μy1: j

]
(du).

Since Ψ was an arbitrary (cylindrical) test function, the claimed identity follows. �

4.2. Stability results for the BIP

The goal of the present section is to derive general stability results for the BIP. Combined
with the push-forward representation of the Bayesian filtering and smoothing distributions of
proposition 3.2, these estimates form the basis of our analysis of the well-posedness of the
Bayesian DA problem.

While the temporal nature of the measurement data is important for the filtering dis-
tribution ν y

t , the solutions to the BIP of interest take the form μy1:k of (3.3) for some
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given k, corresponding to a combined observable L̃† : X → R
˜d , d̃ = d × k, of the form

L̃†(ū) = (L†
1(ū), . . . ,L†

k(ū)), and with combined measurement ỹ = (y1, . . . , yk) of the form
ỹ = L̃†(ū) + η̃ with η̃ = (η1, . . . , ηk). Hence, resulting in a standard BIP. Dropping the tildes in
the following, we will thus study the general properties of posteriors for the BIP for measurable
observables

L† : X → R
d , ū �→ L†(ū), (4.1)

and with R
d-valued noise η ∼ ρ(y)dy satisfying the assumptions (N.1)–(N.3). The solution of

the BIP for measurement operator (4.1) is then given [25] by the posterior

μy(dū) =
1

Z†(y)
exp

(
−Φ†,y(ū)

)
μprior(dū), (4.2)

where

Φ†,y(ū) := − log ρ
(
y − L†(ū)

)
(4.3)

denotes the log-likelihood function, and

Z†(y) =
∫

X
exp

(
−Φ†,y(ū)

)
μprior(dū), (4.4)

is the required normalization constant. As is customary, we will denote the Radon–Nikodym
derivative of μy with respect to μ by dμy/dμprior, i.e.

dμy

dμprior
(ū) =

1
Z†(y)

exp
(
−Φ†,y(ū)

)
. (4.5)

Given an approximation LΔ ≈ L†, we similarly define μΔ,y, ΦΔ,y(ū) and ZΔ(y), with LΔ(ū)
replacing L†(ū), in equations (4.2)–(4.4).

While the existence of a solution to the BIP is ensured by the non-negativity of the noise
distribution ρ(y), the stability and compactness results of the present work will be based
on assumptions (N.1)–(N.3) on the noise. We begin our discussion by noting the following
immediate observations from these assumptions:

Lemma 4.1. Let L† : X → R
d be any map. If the noise η ∼ ρ(y)dy satisfies assumptions

(N.1)–(N.3), then we have for all y, y′ ∈ R
d∣∣∣e−Φ†,y(ū) − e−Φ†,y′ (ū)

∣∣∣ � Lρ|y − y′|Γ. (4.6)

The log-likelihood ΦΔ,y is bounded from below, uniformly in Δ > 0 and y ∈ R
d: there exists

a constant Cρ � 0 depending only on supy∈Rd ρ(y) < ∞, such that

ess inf
ū∈X

Φ†,y(ū) � −Cρ, ∀ y ∈ R
d. (4.7)

There exists a constant Bρ � 0, such that

Φ†,y(ū) � Bρ +
1
2
|y − L†(ū)|2Γ. (4.8)

23



Inverse Problems 38 (2022) 085012 S Lanthaler et al

In particular, we have

Φ†,y(ū) � Bρ + |y|2Γ + |L†(ū)|2Γ. (4.9)

Furthermore, if LΔ is an approximation of L†, then for the same constant Lρ as above:∣∣∣e−Φ†,y(ū) − e−ΦΔ,y(ū)
∣∣∣ � Lρ|L†(ū) − LΔ(ū)|Γ. (4.10)

We now discuss the stability of the posterior μy for the BIP with respect to the measurement
y. We note that our discussion of stability for the BIP overlaps in part with a similar discus-
sion contained in [25, 35]. In particular, [35] contains a general discussion of the stability of
posteriors with respect to both the log-likelihood and priors, and with respect to a number
of distance metrics between probability measures. Since some necessary estimates have not
appeared in [25, 35], at least in the precise form needed for our purposes, we have decided to
include detailed proofs in this manuscript.

We begin our discussion of the stability properties of the BIP with the following lemma,
proving that the sequence of densities dμΔ,y/dμprior is uniformly bounded in L∞(μprior).

Recalling that ‖L†‖L2(μprior)
:=
(∫

X‖L†(ū)‖2
Xμprior(dū)

)1/2
, we now state the following

Lemma 4.2. Let dμy/dμprior be given by (4.5), and Z†(y) be defined as in (4.4). Then

Z†(y) � exp

(
−
∫

X
Φ†,y(ū)μprior(dū)

)
, (4.11)

and

dμy

dμprior
(ū) � exp

(∫
X
Φ†,y(ū)μprior(dū) − ess inf

u∈X
Φ†,y(ū)

)
, ∀ ū ∈ X, (4.12)

In particular, if the noise η ∼ ρ(y)dy satisfies (N.1)–(N.3), then there exists a constant C > 0
depending only on the noise distribution ρ(y), such that

Z†(y) � 1
C

exp
(
−|y|2Γ − ‖L†‖2

L2(μprior)

)
, (4.13)

and

dμ†,y

dμprior
(u) � C exp

(
|y|2Γ + ‖L†‖2

L2(μprior)

)
, ∀ u ∈ X. (4.14)

Proof. Since the exponential (Gaussian-like) factor in the definition of dμ†,y/dμprior,
equation (4.5), is bounded from above by exp(−ess infu∈X Φ

†,y(u)), it suffices to prove the lower
bound on Z†(y). From the convexity of z �→ exp(−z) and Jensen’s inequality, we obtain

exp

(
−
∫

X
Φ†,y(ū)μprior(dū)

)
�
∫

X
exp(−Φ†,y(ū))μprior(dū) = Z†(y).

This implies the first two estimates (4.11) and (4.12) of this lemma.
Under the noise assumptions (N.1)–(N.3), and by (4.9), there exists Bρ > 0 depending only

on the noise distribution ρ(y), such the last term can be bounded from below, yielding
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Z†(y) � exp

(
−Bρ − |y|2Γ −

∫
X
|L†(ū)|2Γμprior(dū)

)
,

and thus the claimed inequality (4.13) for Z†(y) with C = exp(Bρ). Furthermore, by (4.7), there
exists Cρ, such that

ess inf
ū∈X

Φ†,y(ū) � −Cρ.

Thus the claimed inequality (4.14) holds with C = exp(Bρ + Cρ). �
We next discuss the stability of dμ†,y/dμprior with respect to y. The following lemma shows

that the map y �→ dμ†,y/dμprior is locally Lipschitz continuous with respect to the L∞-norm.

Lemma 4.3. Assume that the noise η ∼ ρ(y)dy satisfies (N.1)–(N.3). Let L†(ū) ∈ L2(μprior).
There exists a constant C > 0, depending only on the noise distribution ρ(y), such that∥∥∥∥∥ dμ†,y

dμprior
− dμ†,y′

dμprior

∥∥∥∥∥
L∞(μprior)

� C|y − y′|Γ exp
(
|y|2Γ + |y′|2Γ + 2‖L†‖2

L2(μprior)

)
. (4.15)

Proof. Fix ū ∈ X for the moment. Denote e(y) := e(y; ū) = exp(−Φ†,y(ū)), so that

dμ†,y

dμprior
− dμ†,y′

dμprior
=

e(y)
Z†(y)

− e(y′)
Z†(y′)

=
e(y) − e(y′)

Z†(y)
+

e(y′)
Z†(y′)

(Z†(y′) − Z†(y))
Z†(y)

.

By (4.6), we can estimate |e(y) − e(y′)| � C|y − y′|Γ. Next, we note that this bound for e(y)
also implies that

|Z†(y) − Z†(y′)| �
∫

X
|e(y; ū) − e(y′; ū)|μprior(dū)

� C|y − y′|Γ
∫

X
1μprior(dū)︸ ︷︷ ︸

=1

.

Hence, ∣∣∣∣∣ dμy

dμprior
− dμy′

dμprior

∣∣∣∣∣ � C|y − y′|Γ
Z†(y)

+
e(y′)

Z†(y′)
C|y − y′|Γ

Z†(y)
.

We proceed to estimate the factors multiplying |y − y′| in the last two terms: from lemma 4.2,
we can estimate

1
Z†(y)

� C e
|y|2Γ+‖L†‖2

L2(μprior) � C e
|y|2Γ+|y′ |2Γ+2‖L†‖2

L2(μprior) ,

and

e(y′)
Z†(y′)

1
Z†(y)

� C e
|y|2Γ+|y′|2Γ+2‖L†‖2

L2(μprior) .

25



Inverse Problems 38 (2022) 085012 S Lanthaler et al

Combining these estimates, we conclude that∣∣∣∣∣ dμy

dμprior
− dμy′

dμprior

∣∣∣∣∣ � 2C|y − y′|Γ exp
(
|y|2Γ + |y′|2Γ + 2‖L†‖2

L2(μprior)

)
.

Since ū ∈ X was arbitrary, the claimed inequality follows by taking the supremum over ū ∈ X
on the left. �

Let us also remark in passing the following lemma, whose proof is analogous to the proof
of lemma 4.3.

Lemma 4.4. Assume that the noise η ∼ ρ(y)dy satisfies (N.1)–(N.3). Let L†(ū),LΔ(ū) ∈
L2(μprior), and y ∈ R

d, and denote the resulting (approximate) solution of the BIP by μy, μΔ,y,
respectively. There exists a constant C > 0, depending only on the noise distribution ρ(y), such
that for any p ∈ [1,∞], we have∥∥∥∥ dμΔ,y

dμprior
− dμy

dμprior

∥∥∥∥
Lp(μprior)

� C
∥∥LΔ(ū) − L†(ū)

∥∥
Lp(μprior)

exp

(
2|y|2Γ

+ ‖LΔ‖2
L2(μprior)

+ ‖L†‖2
L2(μprior)

)
.

Proof. The proof is an almost verbatim repetition of the proof of lemma 4.3, with the roles
of y, y′ and LΔ(ū),L†(ū) interchanged. �

4.3. Stability results for Bayesian DA

In this section, we investigate the stability properties of the solution of the filtering problem
with respect to the measurements y1, . . . , yN. Our analysis will be based on the push-forward
representation (3.7) of the previous section and the stability results for the BIP in section 4.2.
We recall that the space L1

t (P) = L1([0, T];P(X)) defined in section 2.2, consists of all
weak-∗ measurable mappings [0, T] →P(X), t �→ ν t, such that

∫ T
0 ‖u‖L2

x
dνt(u)dt < ∞, with

metric dT(νt, ν ′t ) :=
∫ T

0 W1(νt, ν ′t )dt.
We can now state the following lemma

Lemma 4.5. Let T > 0. Let μprior ∈ P1(X) be a prior with finite first moments. Assume that
the solution operator S†

t : X → X satisfies (S.1) and (S.2), and let ν
y1: j
t be given by (2.4) for

t ∈ [0, T]. Then for any R > 0, there exists C = C(R, ρ, N, BS , ‖ū‖L1(μprior)
) > 0, such that for

all t, δt � 0, with t + δt ∈ [0, T], we have

W1

(
ν

y1: j
τ , ν

y′1: j
τ

)
� C

(
j∑

k=1

|yk − y′k|
2
Γ

)1/2

(4.16)

and ∫ t+δt

t
W1

(
ν

y1: j
τ , ν

y′1: j
τ

)
dτ � Cδt

(
j∑

k=1

|yk − y′k|
2
Γ

)1/2

, (4.17)
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for all y1: j = (y1, . . . , y j), y′1: j = (y′1, . . . , y′j) such that(
j∑

k=1

|yk|2Γk

)1/2

� R,

(
j∑

k=1

|y′k|
2
Γk

)1/2

� R.

Proof. To simplify the notation in the following, we set

|y1: j|Γ :=

(
j∑

k=1

|yk|2Γ

)1/2

.

By proposition 3.2, (3.7), we have ν
y1: j
t = S†

t,#μ
y1: j , where μy1: j solves a BIP and is given by

(3.3). In fact, μy1: j is the solution of a standard BIP with noise η̃ = (η1, . . . , η j). The noise
distribution of η̃ satisfies assumption (N.1)–(N.3) with the distribution ρ : Rd → R replaced
by ρ̃ : Rd× j → R, where ρ̃(y1, . . . , y j) :=

∏ j
k=1ρ(yk), and with altered constants in (N.1)–(N.3)

depending now also on j � N in addition to ρ. Thus, by lemma 4.3, there exists a constant
C = C(ρ, N, R) > 0, depending only on the noise distribution, the total number of measure-
ments N and on R > 0, such that we obtain∥∥∥∥∥ dμy1: j

dμprior
− dμy′1: j

dμprior

∥∥∥∥∥
L∞(μprior)

� C|y1: j − y′1: j|Γ. (4.18)

Let Φ(u) ∈ Lip(X) be a function with Lipschitz constant �1. Then there exists g(u) such
that

Φ(u) − Φ(0) = g(u)‖u‖X, |g(u)| � 1.

Now note that ∫
X
Φ(u)

[
ν

y1: j
t (du) − ν

y′1: j
t (du)

]
=

∫
X

[Φ(u) − Φ(0)]

[
ν
Δ,y1: j
t (du) − ν

Δ,y′1: j
t (du)

]
=

∫
X

g(u)‖u‖XS†
t,#

[
μy1: j − μy′1: j

]
(du)

=

∫
X

g(S†
t (ū))‖S†

t (ū)‖X

[
dμy1: j

dμprior
− dμy′1: j

dμprior

]
μprior(dū)

�
∫

X

∣∣∣g(S†
t (ū))

∣∣∣‖S†
t (ū)‖X

∣∣∣∣∣ dμy1: j

dμprior
− dμy′1: j

dμprior

∣∣∣∣∣μprior(dū)

|g(u)|�1,

‖S†
t (ū)‖X�BS‖ū‖X

↓
� BS

∫
X
‖ū‖X

∣∣∣∣∣ dμy1: j

dμprior
− dμy′1: j

dμprior

∣∣∣∣∣μprior(dū)

� BS

(∫
X
‖ū‖Xμprior(dū)

)∥∥∥∥∥ dμy1: j

dμprior
− dμy′1: j

dμprior

∥∥∥∥∥
L∞(μprior)

.
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Taking the supremum over all Φ(u) such that ‖Φ‖Lip � 1 on the left, and noting the upper
bound (4.18) on the last term, we find

W1

(
ν

y1: j
t , ν

y′1: j
t

)
� C|y1: j − y′1: j|Γ,

where the constant C = C(R, ρ, N, BS , ‖ū‖L1(μprior)
) > 0 depends on R, the noise distribution ρ,

the number of measurements N, the first moment of the prior μprior and on the boundedness

constant BS of the forward operator S†
t (cp (S.2)). In particular, C is independent of y1: j, y′1: j.

This shows the upper bound (4.16). Integrating in time, we obtain the claimed inequality (4.17)∫ t+δt

t
W1

(
ν

y1: j
t , ν

y′1: j
t

)
dt � Cδt|y1: j − y′1: j|Γ.

�

While the above estimate is applicable to the smoothing problem, i.e. with a fixed set of
measurements for all t ∈ [0, T], we will next prove a corresponding stability theorem for the
solution of the filtering problem; more precisely, we prove that if ν y

t denotes the solution
of the filtering problem with prior μprior ∈ P1(X), for a solution operator S†

t : X → X satis-
fying (S.1) and (S.2), and measurements y= (y1, . . . , yN), then for any R > 0, there exists
C = C(R, ρ, N, BS , ‖ū‖L1(μprior)

) > 0, such that

W1

(
ν y

t , ν y′
t

)
� C|y− y′|Γ, ∀ t ∈ [0, T], (4.19)

and ∫ T

0
W1

(
ν y

t , ν y′
t

)
dt � CT|y− y′|Γ, (4.20)

for all y, y′ such that |y|Γ, |y′|Γ � R.

Proof of theorem 3.8. The claimed stability estimate follows readily from lemma 4.5:
indeed, ν y

t is defined piece-wise in time, for t � 0, as

ν y
t =

N∑
k=0

1[tk ,tk+1)(t) ν
y1:k
t ,

where we formally define tN+1 :=∞. By lemma 4.5, equation (4.16), this implies that for any
|y|Γ, |y′|Γ � R, we have

sup
t∈[0,T]

W1

(
ν y

t , ν y′
t

)
= max

k=0,...,N
W1

(
ν

y1:k
t , ν

y′1:k
t

)
� C max

k=0,...,N
|y1:k − y′1:k|Γ

� C|y− y′|Γ,
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where we recall that the constant C > 0 in lemma 4.5 depends on R, ρ, N, BS and ‖ū‖L1(μprior)
.

This last estimate immediately implies

∫ T

0
W1

(
ν y

t , ν y′
t

)
dt � CT|y− y′|Γ.

�
4.4. Consistency results for Bayesian DA

In the present subsection, we discuss the consistency of the approximate filtering problems
based on the discretized solution operator SΔ

t , and the limiting filtering problem with solu-
tion operator S†

t (cp theorem 3.12). More precisely, we show that if μprior ∈ P1(X) has finite
second moments, if the noise distribution ρ(y)dy satisfies (N.1)–(N.3) and if the observables
G j : L1([0, T]; X) → R

d are Lipschitz continuous, then for any (approximate) solution operators
S†

t ,SΔ
t : X → X satisfying a uniform estimate

‖S†
t (ū)‖X, ‖SΔ

t (ū)‖X � BS‖ū‖X, (4.21)

we have

∫ T

0
W1

(
νΔ,y

t , ν y
t

)
dt � C

∫ T

0
‖SΔ

t (ū) − S†
t (ū)‖L2(μprior)

dt. (4.22)

Before coming to the proof of this claim, we note that, under assumption (S.2) and for
Lipschitz continuous observables G j : L1([0, T]; X) → R

d (cp equation (2.2)), we have for
LΔ

j (ū) = G j(SΔ(ū)), L†
j(ū) = G j(S†(ū)):

‖LΔ
j (ū)‖L2(μprior)

, ‖L†
j(ū)‖L2(μprior)

� C
(

1 + ‖ū‖L2(μprior)

)
,

‖LΔ
j (ū) − L†

j(ū)‖L2(μprior)
� C

∫ t j

t j−1

‖SΔ
t (ū) − S†

t (ū)‖L2(μprior)
dt,

(4.23)

for all j = 1, . . . , N, where C = C(G, BS , T) > 0 depends only on T, the (Lipschitz continuous)
observables G = (G1, . . . ,GN), and the boundedness constant BS in (4.21).

Proof of theorem 3.12. By proposition 3.2 and (3.8), we have

ν y
t = S†

t,#μy1: j ,

νΔ,y
t = SΔ

t,#μΔ,y1: j ,

⎫⎬⎭ ∀ t ∈ [t j, t j+1).
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Given Φ ∈ Lip, with ‖Φ‖Lip � 1 and Φ(0) = 0, we find∫
X
Φ(u)

[
νΔ,y

t (du) − ν y
t (du)

]
=

∫
X
Φ(u)

[
SΔ

t,#μ
Δ,y1: j (du) − S†

t,#μy1: j(du)
]

=

∫
X
Φ(u)

[
SΔ

t,#μ
Δ,y1: j(du) − SΔ

t,#μ
y1: j(du)

]
+

∫
X
Φ(u)

[
SΔ

t,#μ
y1: j(du) − S†

t,#μ
y1: j(du)

]
=: (I) + (II).

We can estimate the two last terms individually as follows: for the first term, we obtain

(I) =
∫

X
Φ(u)

[
SΔ

t,#μ
Δ,y1: j(du) − SΔ

t,#μ
y1: j(du)

]
=

∫
X
Φ(SΔ

t (ū))

[
dμΔ,y1: j

dμprior
− dμy1: j

dμprior

]
μprior(dū)

� C
∫

X
‖ū‖X

∣∣∣∣dμΔ,y1: j

dμprior
− dμy1: j

dμprior

∣∣∣∣μprior(dū)

� C‖ū‖L2(μprior)

∥∥∥∥dμΔ,y1: j

dμprior
− dμy1: j

dμprior

∥∥∥∥
L2(μprior)

.

The last term can be estimated using lemma 4.4, recalling that μΔ,y1: j is defined as the posterior
with prior μprior and given the measurements LΔ

1: j = (LΔ
1 , . . . ,LΔ

j ), with y1: j = LΔ
1: j + η1: j and

η1: j = (η1, . . . , η j) ∼ ρ(y1)dy1 ⊗ · · · ⊗ ρ(y j)dy j. Lemma 4.4 therefore yields∥∥∥∥dμΔ,y1: j

dμprior
− dμy1: j

dμprior

∥∥∥∥
L2(μprior)

� C‖LΔ
1: j(ū) − L†

1: j(ū)‖L2(μprior)

= C

(
j∑

�=1

‖LΔ
� (ū) − L†

�(ū)‖2
L2(μprior)

)1/2

,

for some constant C = C(R, T, N, ρ, ‖ū‖L2(μprior)
,G, T) > 0 depending on R, T, the noise distri-

bution ρ(y), the prior μprior and on the observables G = (G1, . . . ,GN); here, we have used the

fact that y1: j is fixed, and that ‖LΔ
� (ū)‖L2(μprior)

, ‖L†
�(ū)‖L2(μprior)

� C(1 + ‖ū‖L2(μprior)
) < ∞ are

bounded independently of Δ > 0 for a constant C = C(G, T) > 0 (cp equation (4.23)). The
latter observation allows us to bound the additional exponential factor in lemma 4.4 uniformly
in Δ. Continuing, we note that the observables are Lipschitz continuous by assumption (4.23);
we have

‖LΔ
� (ū) − L†

�(ū)‖L2(μprior)
� C

∫ t�

t�−1

‖SΔ
t (ū) − S†

t (ū)‖L2(μprior)
dt,

30



Inverse Problems 38 (2022) 085012 S Lanthaler et al

where C = C(G) > 0. It follows that

(I) � C

⎛⎝ j∑
�=1

[∫ t�

t�−1

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

L2(μprior)
dt

]2
⎞⎠1/2

.

Denoting F(t, �) := 1[t�−1,t�)(t)‖SΔ
t (ū) − S†

t (ū)‖L2(μprior)
, we can estimate the last term as follows,

using Minkowski’s integral inequality:

C

(
j∑

�=1

[∫ T

0
F(t, �) dt

]2
)1/2

� C
∫ T

0

(
j∑

�=1

|F(t, �)|2
)1/2

dt.

Finally, recalling that all F(t, �), � = 1, . . . , j, have disjoint supports in t, we conclude that

(I) � C
∫ T

0

(
j∑

�=1

|F(t, �)|2
)1/2

dt = C
j∑

�=1

∫ t�

t�−1

|F(t, �)| dt

� C
∫ T

0
‖SΔ

t (ū) − S†
t (ū)‖L2(μprior)

dt.

To estimate the second term, we note that∫
X
Φ(u)

[
SΔ

t,#μ
y1: j(du) − S†

t,#μ
y1: j(du)

]
=

∫
X

[
Φ(SΔ

t (ū)) − Φ(S†
t (ū))

]
μy1: j(dū)

�
∫

X

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

X
μy1: j(dū)

� C
∫

X

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

X
μprior(dū)

� C
∥∥∥SΔ

t (ū) − S†
t (ū)

∥∥∥
L2(μprior)

.

Thus, employing the above estimates for (I) and (II), we conclude that for any Φ ∈ Lip,
‖Φ‖Lip � 1, and for any t ∈ [0, T], we have∫

X
Φ(u)

[
νΔ,y

t (du) − ν y
t (du)

]
� C

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

L2(μprior)

+ C
∫ T

0

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

L2(μprior)
dt.

Taking the supremum over all such Φ on the left, and integrating over t ∈ [0, T], it follows that∫ T

0
W1

(
νΔ,y

t , ν y
t

)
dt � C

∫ T

0

∥∥∥SΔ
t (ū) − S†

t (ū)
∥∥∥

L2(μprior)
dt,

where C = C(R, T, N, ρ, ‖ū‖L2(μprior)
,G) > 0 is independent of Δ. �
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4.5. Compactness results for Bayesian DA

In the present section, we will prove a compactness result, which applies in particular to the
numerical approximations of the Navier–Stokes equations introduced in section 2.3.2. We
recall that, by proposition 2.10, numerical solutions computed e.g. by suitable spectral schemes
satisfy the following properties:

(Δ.1′) Energy bound: there exists C > 0, independent of Δ > 0, such that ‖SΔ
t (ū)‖L2

x
�

B̄S‖ū‖L2
x
,

(Δ.2) Coercivity:
∫ T

0 ‖∇uΔ(t)‖2
L2

x
dt � ν−1‖ū‖2

L2
x
,

(Δ.3) Weak time-regularity: there exists C = C(‖ū‖), L > 0, such that ‖uΔ(t) −
uΔ(s)‖H−L

x
� C|t − s|. In particular, we have uΔ ∈ Lip([0, T]; H−L

x ) uniformly
in Δ > 0.

When re-stating the first property, we have slightly relaxed (Δ.1), allowing for a uniformly
bounded constant C > 0 in (Δ.1′).

Our compactness result is motivated by the study of statistical solutions of the compressible
and incompressible Euler equations in [10, 23, 24]. There, it is shown that under a suitable
average regularity condition, the sequence of discretized approximate solutions μΔ

t :=SΔ
t,#μ

(push-forward by the discretized solution operator) is compact in P1(L2
x), provided that the

following measure of average two-point correlations

S T
2 (μΔ

t ; r) :=

(∫ T

0

∫
L2

x

S 2(u; r)2 μΔ
t (du) dt

)1/2

, (4.24)

are uniformly bounded as Δ→ 0, where

S 2(u; r) :=

(∫
D
−
∫

Br(0)
|u(x + h) − u(x)|2 dh dx

)1/2

, (4.25)

measures the average of two-point correlations of u. The quantity r �→ S T
2 (μΔ

t ; r) is referred
to as the (time-integrated) structure function of μΔ

t . For simplicity, we will state the following
results in the periodic setting with domain D = T

n � [0, 2π]n the 2π-periodic torus, and with
L2

x :=L2(Tn;Rn) the space of square-integrable vector fields on T
n. More precisely, we state

the following proposition, which follows from [24, theorem 2.2]:

Proposition 4.6. Let μΔ
t be of the form μΔ

t = SΔ
t,#μprior, where SΔ

t : L2
x → L2

x satisfies
assumptions (Δ.1′), (Δ.3), and where μprior ∈ P1(L2

x) has bounded support, i.e. there exists

M > 0, such that μprior

({
ū ∈ L2

x | ‖ū‖L2
x
� M

})
= 1. If there exists a modulus of continuity

φ(r), such that

sup
Δ

S T
2 (μΔ

t ; r) � φ(r), ∀ r � 0,

then μΔ
t is compact in L1

t (P).

Numerical evidence for the uniform boundedness of these structure functions S T
2 (μΔ

t ; r)
has been presented for a variety of initial probability measures μprior ∈ P1(L2

x) for the incom-
pressible Euler equations (i.e. in the zero-viscosity limit of the Navier–Stokes equations) in
[23, 24], and in the context of hyperbolic conservation laws in [10]. While these results of [10,
23, 24] were mostly based on empirical observations, in the present case of the Navier–Stokes
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equations, we will rigorously prove that the structure functions (4.24) are uniformly bounded as
Δ→ 0 (cp lemma 4.8, below). We will furthermore extend the compactness result summarized
in proposition 4.6 to the Bayesian filtering context, when the underlying model is combined
with additional measurements.

We formulate the numerically observed [10, 23, 24] bounds on S T
2 (μΔ

t ; r) � φ(r) abstractly
as the following assumption:

Assumption 4.7. The prior μprior ∈ P1(L2
x) has bounded support, i.e. there exists M > 0,

such that

μprior

({
ū ∈ L2

x | ‖ū‖L2
x
� M

})
= 1,

and there exists a modulus of continuity φ(r), such that

S T
2 (SΔ

t,#μprior; r) � φ(r), ∀ r > 0, t ∈ [0, T], (4.26)

uniformly for all Δ > 0. Here SΔ
t,#μprior denotes the push-forward measure of the prior μprior

by the discretized solution operator SΔ
t .

The next proposition shows that the structure function bound (4.26) is automatically
satisfied for numerical schemes satisfying (Δ.2):

Lemma 4.8. Let μprior ∈ P1(L2
x) be a prior for the incompressible Navier–Stokes

equations (2.8), such that
∫

L2
x
‖ū‖2

L2
x
μprior(dū) < ∞. Let SΔ

t : L2
x → L2

x denote the approximate
solution operator obtained from the spectral scheme (2.9). Then we have the following a priori
structure function bound:

S T
2 (SΔ

t,#μprior; r) � r√
2ν

(∫
L2

x

‖ū‖2
L2

x
μprior(dū)

)1/2

.

In particular, S T
2 (SΔ

t,#μprior; r) � Cr is uniformly bounded by a modulus of continuity
as Δ→ 0.

Proof. By definition, we have

S T
2 (SΔ

t,#μprior; r)2 =

∫
L2

x

(∫ T

0
S 2(SΔ

t (ū); r)2 dt

)
μprior(dū),

where, setting uΔ = SΔ
t (ū),

S 2(uΔ; r)2 =

∫
Td

−
∫

Br(0)
|uΔ(x + h) − uΔ(x)|2 dh dx

= −
∫

Br(0)
‖uΔ( · + h) − uΔ( · )‖2

L2
x

dh

� −
∫

Br(0)
‖∇uΔ‖2

L2
x
|h|2 dh

� ‖∇uΔ‖2
L2

x
r2.
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By (Δ.2), with uΔ(t) = SΔ
t (ū), we have∫ T

0
‖∇uΔ‖2

L2
x

dt � 1
2ν

‖ū‖2
L2

x
.

Thus, from the above estimates, we conclude that∫ T

0
S 2(SΔ

t (ū); r)2 dt =
∫ T

0
S 2(uΔ; r)2 dt � r2

∫ T

0
‖∇uΔ‖2

L2
x

dt � r2

2ν
‖ū‖2

L2
x
.

Integration against μprior(dū) yields

S T
2 (SΔ

t,#μprior; r)2 � r2

2ν

∫
L2

x

‖ū‖2
L2

x
μprior(dū),

as claimed. �

Conditional on assumption 4.7, we can now prove a compactness result for the filtering
problem.

Lemma 4.9. Let SΔ
t : L2

x → L2
x be a sequence of approximate solution operators satisfying

(Δ.1′)–(Δ.3). Let νΔ,y
t be the solution of the associated filtering problem with prior μprior ∈

P1(L2
x) having bounded support, and measurements y= (y1, . . . , yN). If assumption 4.7 holds,

then νΔ,y
t is a compact sequence in L1

t (P), as Δ→ 0.

Proof. We observe that the structure function can be written as

S T
2

(
νΔ,y

t ; r
)2

=

∫ T

0

∫
L2

x

S 2(u; r)2νΔ,y
t (du)dt

=

N∑
k=1

∫ tk

tk−1

∫
L2

x

S 2(u; r)2νΔ,y
t (du)dt

=

N∑
k=1

∫ tk

tk−1

∫
L2

x

S 2(u; r)2
[
SΔ

t,#μ
Δ,y1:(k−1)

]
(du)dt

=

N∑
k=1

∫ tk

tk−1

∫
L2

x

S 2(SΔ
t (ū); r)2μΔ,y1:(k−1) (dū)dt.

We recall that on the last line, μΔ,y1:(k−1) is the solution of the BIP (3.3). Using the uniform
boundedness result for such BIP, lemma 4.2, we conclude that

dμΔ,y1:(k−1)

dμprior
� C exp

⎛⎝ k−1∑
j=1

|y j|2Γ +

k−1∑
j=1

‖LΔ
j (ū)‖2

L2(μprior)

⎞⎠
� C exp

⎛⎝|y|2Γ +

N∑
j=1

‖LΔ
j (ū)‖2

L2(μprior)

⎞⎠.
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By our boundedness assumption (Δ.1′), and the upper bound on observables (cp
equation (4.23)), it follows that there exists a constant C = C(Lip(G j), B) > 0, such that

‖LΔ
j (ū)‖L2(μprior)

= C
(

1 + ‖ū‖L2(μprior)

)
< ∞,

is uniformly bounded. Since y is fixed, we conclude that there exists a constant C > 0, such
that

dμΔ,y1:(k−1)

dμprior
� C,

and hence

S T
2

(
νΔ,y

t ; r
)2

=
N∑

k=1

∫ tk

tk−1

∫
L2

x

S 2(SΔ
t (ū); r)2μΔ,y1:(k−1) (dū) dt

�
N∑

k=1

∫ tk

tk−1

∫
L2

x

S 2(SΔ
t (ū); r)2Cμprior(dū)dt

= C
N∑

k=1

∫ tk

tk−1

∫
L2

x

S 2(u; r)2
[
SΔ

t,#μprior
]
(du) dt

= C
∫ T

0

∫
L2

x

S 2(u; r)2
[
SΔ

t,#μprior

]
(du)dt

= CS T
2

(
SΔ

t,#μprior; r
)2

� Cφ(r)2.

The last estimate follows from assumption 4.7. Thus, S T
2 (νΔ,y

t ; r) �
√

Cφ(r) is uniformly
bounded by a modulus of continuity, implying compactness in L1

t (P), by proposition 4.6. �
Combining the uniform stability result of theorem 3.8 (applied to the numerical approxima-

tions SΔ
t ) with lemma 4.9 and the a priori structure function estimate of lemma 4.8, we can

now prove theorem 3.15 on the compactness of the approximate filtering distributions for the
Navier–Stokes equations.

Proof of theorem 3.15. We first note that by (Δ.1′), there exists a constant B̄S > 0, such
that uniformly in Δ > 0, we have ‖SΔ

t (ū)‖L2
x
� B̄S‖ū‖L2

x
, for all ū ∈ L2

x . By theorem 3.8,
applied to the forward operator SΔ

t , the mapping

R
d×N � y �→ νΔ,y

t ∈ L1
t (P),

is uniformly bounded on any compact subsets K ⊂ R
d×N and uniformly equicontinuous on

K; indeed, there exists R > 0, such that any y∈ K satisfies |y|Γ � R. By theorem 3.8, there
exists a constant C = C(R, ρ, N, B̄S , ‖ū‖L1(μprior)

) > 0, independent of Δ > 0, such that for any
t ∈ [0, T], we have

W1(νΔ,y
t , νΔ,y′

t ) � C|y− y′|Γ, ∀ |y|Γ, |y′|Γ � R. (4.27)
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We note that in the present case, under the assumptions of theorem 3.15, we actually have
B̄S = 1, and ‖ū‖L1(μprior)

� M. Hence the constant C = C(R, ρ, N, M) depends only on R, the
noise distribution ρ, the number of measurements N and on the upper bound on the support M.
An immediate consequence of (4.27) is that∫ T

0
W1(νΔ,y

t , νΔ,y′
t )dt � CT|y− y′|Γ, ∀ |y|Γ, |y′|Γ � R.

Furthermore, by lemma 4.9, the sets{
νΔ,y

t |Δ > 0
}
⊂ L1

t (P),

are pre-compact for any fixed y∈ R
d×N (pointwise compactness). By the Arzelá–Ascoli

theorem A.1, the claimed compactness result follows. �

We finally would like to emphasize that while we have chosen the incompressible
Navier–Stokes equations as our main prototypical example of ill-posed problems arising in
fluid mechanics, the results of the present section apply to more general models, as will be
briefly indicated next.

4.6. Comment on related models: hyperbolic systems of conservation laws

The results of this work apply, for example, to the numerical approximation of BIPs for hyper-
bolic systems of conservation laws. Again, we take as our domain D = T

n = [0, 2π]n with
periodic boundary conditions. We recall that a system of conservation laws is a PDE of the
form

∂tu
i +

n∑
j=1

∂ j

(
Fi j(u)

)
= 0, (4.28)

describing the temporal evolution of m conserved quantities u1, . . . , um : D × [0, T] → R, and
Fi j : Rm → R are the fluxes. It is convenient to write the system (4.28) in the succinct form

∂tu + div(F(u)) = 0,

where u = (u1, . . . , um) : D × [0, T] → R
m and F = (Fi j) : Rm → R

m×n. The system of conser-
vation laws (4.28) is called hyperbolic, provided that the Jacobian Du(F · n) possesses real
eigenvalues for all unit vectors n ∈ R

n with |n| = 1. A great variety of systems in contin-
uum mechanics can be formulated as hyperbolic systems of conservation laws, including the
compressible Euler equations of gas dynamics, the shallow water equations of oceanogra-
phy, the magneto-hydro-dynamics equations of plasma physics, and the equations of nonlinear
elastodynamics [7].

As it is well-known, even in the special case of a scalar conservation law (m = 1), weak
solutions to (4.28) are not necessarily unique. It is therefore necessary to augment hyperbolic
conservation laws (4.28) with additional entropy, or admissibility conditions. These entropy
conditions are based on the existence of an entropy/entropy-flux pair (η, q) consisting of a
convex function η : Rm → R and a flux q : Rm → R

n, such that

Duq = Duη · DuF.
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Here, Duq, Duη denote the Jacobian matrices of q(u) and η(u). A weak solution u of (4.28) is
called an entropy weak solution, provided that, in addition to (4.28), also

∂tη(u) + div(q(u)) � 0, (4.29)

holds in the sense of distributions.
In the following we will restrict our attention to hyperbolic systems of conservation laws

for which

‖D2F‖L∞ < ∞,

and which admit a coercive, smooth flux function η(u) ∈ C2(Rm), in the sense that there exist
constants c, C > 0, such that

c �
(
D2η(u)v, v

)
� C, ∀ u, v ∈ R

m, with |v| = 1.

Note that in this case, the entropy admissibility condition (4.29) implies, upon integration over
D, an a priori bound of the form

‖u(t)‖L2 � BS‖u‖L2 ,

for any admissible weak solution u with initial data u(t = 0) = u.

4.6.1. Numerical methods. In the context of systems of conservation laws, a popular method
of choice are finite volume and finite difference methods, as e.g. employed in the numerical
experiments for statistical solutions of [10]. We briefly review the form of these numerical
schemes, following [10, section 4.1]. For a more complete review, we refer to e.g. [15, 29].

The computational spatial domain is discretized by a collection of cells

{(x1
i1−1/2, x1

i1+1/2) × · · · × (xn
in−1/2, xn

in+1/2)}(i1,...,in),

with corresponding cell midpoints

xi1,...,in =

(
x1

i1+1/2
+ x1

i1−1/2

2
, . . . ,

xn
in+1/2 + xn

in−1/2

2
,

)
.

We assume that the mesh is equidistant, i.e. for some Δ > 0 we have

xk
ik+1/2 − xk

ik−1/2 ≡ Δ, ∀ k = 1, . . . , n.

For i = (i1, . . . , in), we denote the averaged value in the cell at time t � 0 by uΔ
i (t) = uΔ

(i1,...,in)
(t).

We consider the following semi-discrete scheme

d
dt

uΔ
i1,...,in(t) +

n∑
k=1

1
Δ

(
Fk,Δ(uΔ

i−(q−1)ek
(t), . . . , uΔ

i+qek
(t)) (4.30)

− Fk,Δ(uΔ
i−qek

(t), . . . , uΔ
i+(q−1)ek

(t))
)
= 0, (4.31)

and uΔ
i1,...,in

(0) = u(xi1,...,in). Here, e1, . . . , en are the canonical unit vectors in R
n. Fk,Δ denotes

the numerical flux function in direction k = 1, . . . , n, and ui = ⨏Ci
u0(x)dx is the average of the

initial data over the ith cell.
As in [10], we make the following assumptions on the discretization (4.31):
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Assumption 4.10. We assume that the finite volume scheme (4.31) is consistent in the
sense that there exists a constant C > 0 such that for k = 1, . . . , d,

|Fk,Δ(uΔ
i−(q−1)ek

, . . . , uΔ
i+qek

) − f k(uΔ
i )| � C

q∑
j=−q+1

|uΔ
i (t) − uΔ

i+ jek
(t)|

and the discretized solutions satisfy

(a) L2 bound: there exists C > 0 such that

Δd
∑
i

|uΔ
i (t)|2 � CΔd

∑
i

|ui|2,

(b) weak BV bound: there exists s � 2, such that

Δd

∫ T

0

d∑
k=1

∑
i

|uΔ
i+ek

(t) − uΔ
i (t)|s dt � CΔ,

with the constant C = C(‖u‖L2
x
) depending only on the L2-norm of the initial data.

Remark 4.11. It is not difficult to see that, under assumption 4.10, the discrete solution
operator SΔ

t : L2
x → L2

x , which is obtained by locally constant reconstruction (or suitable higher-
order variants),

SΔ
t (u) :=

∑
i

uΔ
i (t)1Ci

,

satisfies the assumptions (Δ.1′) and (Δ.3) of section 4.5. Furthermore, as pointed out in
[10, remark 4.2], many examples of finite volume/difference schemes can be shown to sat-
isfy assumption 4.10. Examples include the so-called entropy stable Lax–Wendroff schemes
and the TeCNO schemes of [11].

Based on the results of sections 4.2 and 4.5, we immediately obtain:

Result 4.12. Assume that the FV scheme (4.31) satisfies assumption 4.10. Ifμprior ∈ P1(L2
x),

then the posteriors μΔ,y of the BIP (4.2) for the hyperbolic conservation law are uniformly
stable in y, for any Δ > 0; i.e., for any R > 0 there exists a constant C > 0, independent of Δ,
such that

W1(μΔ,y,μΔ,y′ ) � C|y − y′|Γ, ∀ |y|Γ, |y′|Γ � R.

Furthermore, the posteriors μΔ,y form a compact sequence in P1(L2
x).

This result complements recent work in [31], where (unconditional) convergencewas shown
for the case of scalar conservation laws (m = 1). For the filtering problem, we have:

Result 4.13. Assume that the FV scheme (4.31) satisfies assumption 4.10. Then the approx-
imate solutions νΔ,y

t of the filtering problem computed by the FV scheme are uniformly stable
with respect to the measurements y, in the sense of (3.15), for any Δ > 0. In addition, if
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the prior μprior ∈ P1(L2
x) satisfies assumption 4.7, then the posteriors νΔ,y

t form a compact
sequence in L1

t (P).

Remark 4.14. The validity of assumption 4.7 has been investigated for a diverse set of initial
priors in [10]. The numerical evidence, presented in [10] strongly suggest that it is fulfilled for
the cases considered there, and we conjecture that the structure functions (4.26) are uniformly
bounded for a wide range of priors of practical relevance.

Remark 4.15. The current section has been formulated for hyperbolic systems of conver-
gence laws with a strictly convex entropy. The main reason for this restriction is that the results
of section 4.5, and the compactness proof of [24] are based on the L2-framework that is natural
in the context of the incompressible Euler equations. However, there should be no essential
difficulty in extending these results to Lp-based spaces for p �= 2.

5. Discussion

The Bayesian framework has been well-established as a suitable formulation of inverse prob-
lems arising in the context of PDEs (1.1) [36]. The well-posedness of the BIP has been demon-
strated under very mild assumptions on the well-posedness of the forward problem for the
underlying PDE, requiring essentially only the existence and uniqueness of solutions defined
on an infinite-dimensional Banach space [25, 35]. Corresponding well-posedness results for
DA have focused mostly on finite-dimensional problems with Gaussian noise and when the
solution operator is continuous [26].

However, for a large numbers of PDEs, such as the fundamental equations of fluid dynamics,
the forward problem may not be well-posed. Existence, uniqueness or stability of solutions
are either not true or can not be established rigorously. This issue is further exacerbated by
the fact that for many of these PDEs, numerical approximations either may not converge on
mesh refinement or converge too slowly to be useful. This is often a result of the sensitivity of
solutions to small perturbations and the appearances of structures at smaller and smaller scales,
as the grid is refined [9, 10, 14].

Our main aim in this paper was to investigate Bayesian DA (filtering) for such PDEs with
a very unstable or even ill-posed forward problem. Our main results, summarized in section 3,
concern the properties of the time-dependent filtering distribution ν y

t (exact posterior based
on the underlying ‘ground truth’ map S†

t ) and numerical approximations νΔ,y
t based on a

approximate solution operator SΔ
t , with Δ > 0 a discretization parameter (grid size) and

y= (y1, . . . , yN) being finite-dimensional (noisy) measurements acquired over time t ∈ [0, T].
We were able to show:

• (Well-posedness). We prove that Bayesian filtering is well-posed under very general
assumptions on the forward solution operator S†

t : X → X; in particular, we show that the
measurement-to-posterior mapping y �→ ν y

t is locally Lipschitz continuous, even if the
forward mapping ū �→ S†

t (ū) is discontinuous (cp theorem 3.8).
• (Consistency). We prove that approximations νΔ,y

t ≈ ν y
t of the filtering distribution, e.g.,

arising from numerical discretization of the underlying PDE at mesh size Δ > 0, converge
to the exact posterior as Δ→ 0, provided that the approximate solution operators SΔ

t →
S†

t converge only in a mean-square sense relative to the prior, (cp theorem 3.12).
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• (Compactness and stability). We demonstrate that even in the absence of any
convergence-guarantees of the approximate solution operators SΔ

t : X → X, the cor-
responding approximate Bayesian filtering distributions {μΔ,y}Δ>0 form a compact
sequence under mild conditions (satisfied e.g. by the Navier–Stokes equations), and hence
possess limit points, (cp theorem 3.15).

The well-posedness results in the context of Bayesian DA presented in this work, even
for models for which the forward problem may be ill-posed, have been derived under mild
assumptions and are applicable to a wide range of models encountered in practice. The stability
results should be of particular significance to practitioners, as they demonstrate that under
readily verifiable conditions on the numerical scheme, the approximate solutions of the DA
problem are stable with respect to perturbations of the measurements, independently of the
numerical resolution and physical parameters such as the viscosity.

Our consistency results do not only imply the convergence of the filtering distributions
νΔ,y

t → ν y
t given convergent approximations of the forward problem SΔ

t →S†
t , but they also

provide quantitative error bounds on the (Wasserstein-) distance between the exact and approx-
imate filtering distributions. These upper bounds are obtained in terms of the mean-square
distance between the exact and approximate solution operators with respect to the prior. Such
quantitative estimates are not only of importance in studying the convergenceof Bayesian filter-
ing based on traditional numerical discretizations, but also open up the possibility of deriving
similar quantitative bounds for Bayesian DA based on novel neural network-based operator
learning frameworks such as [30], extending the work [20] to the Bayesian filtering context
(cp remark 3.14).

Finally, the general compactness properties uncovered in the present work allow us to define
a set of candidate solutions to the filtering problem, generated by suitable numerical schemes.
As this set can be shown to be non-empty a priori, this potentially opens up the possibility
of identifying the correct solution among these candidates by a suitable selection criterion to
single out a ‘canonical’ posterior amongst the set of candidate solutions. We propose to further
investigate these questions in forthcoming work.

Acknowledgment

The research of SM and SL is partially supported by the European Research Council Con-
solidator Grant ERC-COG 770880 COMANFLO. FW is partially supported by NSF DMS
2042454 and NSF OIA-DMR 2021019.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Mathematical complements

A.1. Lpnorms

Let X be a separable Banach space, and letμprior ∈ P(X) be a probability measure. We introduce
the Lp(μprior)-norm (p ∈ [1,∞]) of a Borel measurable mapping F : X → Y, ū �→ F (ū), with
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X, Y Banach space, as follows:

‖F‖Lp(μprior) :=

⎧⎪⎪⎨⎪⎪⎩
(∫

X
‖F (ū)‖p

Yμprior(dū)

)1/p

, (p < ∞),

ess sup
ū∼μprior

‖F (ū)‖Y , (p = ∞),
(A.1)

where we recall that for p = ∞, the essential supremum is defined by

ess sup
ū∼μprior

‖F (ū)‖Y := sup{M > 0 |μprior({ū|‖F (ū)‖X > M}) > 0}.

In particular, if Y = X and if X → X, ū �→ F (ū) = ū is given by the identity mapping, then we
have (for p < ∞):

‖ū‖Lp(μprior) =

(∫
X
‖ū‖p

Xμprior(dū)

)1/p

.

A.2. Wasserstein distance

In this section, we introduce the notation for the rest of the paper and recall some preliminaries
that are necessary to define the BIP in a mathematically precise manner.

Given a separable Hilbert space X, we denote by P(X) the space of Borel probability
measures on X. The term ‘measurable’ will always refer to Borel measurability. A sequence
μΔ ∈ P(X) is said to converge weakly to a limit μ, denoted μΔ ⇀ μ, if∫

X
φ(u)μΔ(du) →

∫
X
φ(u)μ(du), ∀ φ ∈ Cb(X),

where Cb(X) denotes the space of bounded, continuous functions on X. We denote by
Pp(X) the space of Borel probability measures μ ∈ P(X), possessing finite pth moments,∫

X‖u‖p
Xμ(du) < ∞, metrized by the p-Wasserstein distance Wp:

Wp(μ, ν) := inf
π∈Γ(μ,ν)

(∫
X×X

‖u − v‖p
Xπ(du, dv)

)1/p

. (A.2)

Here, Γ(μ, ν) is the set of couplings between μ and ν, i.e. probability measures π on X ×
X, with projections (Proj1)#π = μ, (Proj2)#π = ν. Given a map F : X → Y, we denote by
F#μ ∈ P(Y) the push-forward of a probability measure μ ∈ P(X) by F; the push-forward
measure satisfies the relation∫

Y
φ(v)

(
F#μ

)
(dv) =

∫
X

(φ ◦ F)(u)μ(du),

for all measurable functions φ : Y → R such that φ ◦ F ∈ L1(μ). We recall that the one-
Wasserstein distance W1(μ, ν) between measures μ, ν ∈ P1(X) can also be determined via the
Kantorovich duality:

W1(μ, ν) = sup
Φ

∫
X
Φ(u)[μ(du) − ν(du)], (A.3)
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where the supremum is taken over all Lipschitz continuous Φ ∈ Lip(X), with ‖Φ‖Lip � 1, and
we define the semi-norm ‖ · ‖Lip by

‖Φ‖Lip := sup
u �=v

|Φ(u) − Φ(v)|
‖u − v‖X

. (A.4)

We also recall that for a sequence of measures μΔ ∈ P1(X), Δ→ 0, and μ ∈ P1(X), we have

lim
Δ→0

W1(μΔ,μ) = 0 ⇔

⎧⎪⎨⎪⎩
μΔ ⇀ μ convergesweakly and∫
X
‖u‖Xμ

Δ(du) →
∫

X
‖u‖Xμ(du).

⎫⎪⎬⎪⎭ (A.5)

We finally prove that if F : X → X is a Lipschitz continuous map and F# : P1(X) →P1(X)
denotes the push-forward under F , then Lip(F : X → X) = Lip(F# : P1(X) →P1(X)), which
implies the claim of proposition 3.4, for F = S†

t .

Proof of proposition 3.4. Let F : X → X be any Lipschitz continuous map (in particular,
the following applies to F = S†

t : X → X). By definition, we have

W1(F#μ,F#μ
′) = inf

π∈Γ(F#μ,F#μ′)

∫
X×X

‖u − u′‖X π(du, du′)

� inf
π∈Γ(μ,μ′)

∫
X×X

‖u − u′‖X (F × F )#π(du, du′)

= inf
π∈Γ(μ,μ′)

∫
X×X

‖F (u) −F (u′)‖X π(du, du′)

� Lip(F ) inf
π∈Γ(μ,μ′)

∫
X×X

‖u − u′‖X π(du, du′)

= Lip(F )W1(μ,μ′).

To see the optimality of Lip(F ), we note that for any L̃ > 0, such that W1(F#μ,F#μ
′) �

L̃W1(μ,μ′) holds for all μ, μ′, we have

L̃ � sup
μ �=μ′∈P1(X)

W1(F#μ,F#μ
′)

W1(μ,μ′)
� sup

u �=u′∈X

W1(F#δu,F#δu′)
W1(δu, δu′)

= sup
u �=u′∈X

‖F (u) −F (u′)‖X

‖u − u′‖X
= Lip(F ).

�

A.3. Compactness

We recall the Arzela–Ascoli theorem, characterizing compactness in Cloc(X, Y):

Theorem A.1 (Arzela–Ascoli). Let X be a locally compact Hausdorff space. Let Y be a
complete metric space. A subset F ⊂ Cloc(X, Y) is relatively compact iff it is equi-continuous
and for all x ∈ X, the set { f (x) | f ∈ F} is relatively compact in Y.
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