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ABSTRACT. In this paper, we study an analytic curve ¢ : I = [a,b] — M(m X
n,R) in the space of m by n real matrices, and show that if ¢ satisfies certain
geometric condition, then for almost every point on the curve, the Diophantine
approximation given by Dirichlet’s Theorem can not be improved. To do this,
we embed the curve into a homogeneous space G/T", and prove that under the
action of some expanding diagonal subgroup A = {a(t) : ¢ € R}, the translates
of the curve tend to be equidistributed in G/T", as t — +oco. The proof relies
on the linearization technique and representation theory.

1. INTRODUCTION.

1.1. Diophantine approximation for matrices. In 1842, Dirichlet proved the
following result on simultaneous approximation of a matrix of real numbers by
integral vectors: Given two positive integers m and n, a matrizc ® € M(m x n,R),
and any N > 0, there exist integral vectors p € Z" \ {0} and q € Z™ such that

Ipll < N™ and [|®p—q| <N7", (1.1)

where ||| denotes the supremum norm; that is, ||x| = maxi<;<g|z;| for x =
(1, 29,...,2) € RE,

Now we consider the following finer question: for a particular m by n matrix @,
could we improve Dirichlet’s Theorem? By improving Dirichlet’s Theorem, we mean
that there exists a constant 0 < p < 1, such that for all large N > 0, there exists
nonzero integer vector p € Z" with ||p|| < pN™, and integer vector q € Z™ such
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that || ®p—q|| < pN~". If such constant p exists, then we say ® is DT),-improvable.
If ® is DT),-improvable for some 0 < < 1, then we say ® is DT-improvable (here
DT stands for Dirichlet’s Theorem).

This problem was first studied by Davenport and Schmidt in [7], in which they
proved that almost every matrix ® € M(m x n,R) is not DT-improvable. In [7],
they also proved the following result. For m = 1 and n = 2, M(1 x 2,R) = R?, one
considers the curve ¢(s) = (s,s?) in R?. Then for almost every s € R with respect
to the Lebesgue measure on R, ¢(s) is not DT;,4 improvable. This result was
generalized by Baker in [3]: for any smooth curve in R? satisfying some curvature
condition, almost every point on the curve is not D7), improvable for some 0 <
p# < 1 depending on the curve. Bugeaud [4] generalized the result of Davenport
and Schmidt in the following sense: for m = 1, and general n, almost every point
on the curve ¢(s) = (s,s2,...,s") is not DT),-improvable for some small constant
0 < p < 1. Their proofs are based on the technique of regular systems introduced
in [7].

Recently, based on an observation of Dani [5], as well as Kleinbock and Margulis
[11], Kleinbock and Weiss [10] studied this Diophantine approximation problem in
the language of homogeneous dynamics, and proved the following result: for m =1
and arbitrary n, if an analytic curve in M(1 x n,R) = R™ is not contained in any
proper affine subspace, then almost every point on the curve is not DT),-improvable
for some small constant 0 < p < 1 depending on the curve. Based on the same
correspondence, Nimish Shah [18] proved the following stronger result: for m =1
and general n, if an analytic curve ¢ : I = [a,b] — R™ is not contained in a proper
affine subspace, then almost every point on the curve is not DT-improvable. For
m = n, Lei Yang [20] provided a geometric condition and proved that if an analytic
curve ¢ : I = [a,b] = M(n x n,R) satisfies the condition, then almost every point
on ¢ is not DT-improvable. The geometric condition given there provides some
hint on solving the problem for general (m,n), and will be discussed in detail later.

The purpose of this paper is to give a geometric condition for each (m,n), and
show that if an analytic curve

p:I=]la,b] - M(m x n,R)

satisfies the condition, then almost every point on ¢ is not DT-improvable.
The geometric conditions called generic condition and supergeneric condition are
defined as follows:

Definition 1.1. For any m and n, let
p:I=][a,b] - M(m x n,R)

denote an analytic curve.

For m = n, we say ¢ is generic at sop € I if there exists a subinterval J,, C I
such that for any s € Js, \ {so}, ¢(s) — ¢(so) is invertible.

In order to define supergeneric condition, we need additional notation.

We consider the following two embeddings from M(m x m,R) to the Lie algebra
5[(2m,R) of SL(2m, R):

X

n+:X€M(mxm,R)l—>[0 0

] € sl(2m,R),

and
0

n X € M(mxm,R) — {X

0] € sl(2m, R).
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Let
£ i= {Im L } e sl(2m, R). (1.2)

If X € M(m x m,R) is invertible, then the triple {n*(X), &y, n"(X~1)} forms a
standard basis of a copy of s[(2,R).

A Lie subgroup L of H = SL(2m,R) is called observable if there exists a finite
dimensional linear representation V' of H and a nonzero vector v € V such that the
subgroup of H stabilizing v is equal to L. A Lie subalgebra [ is called an observable
Lie subalgebra of sl(2m,R), if it is the Lie algebra of some observable Lie subgroup
LCH.

Further we are interested in an observable subalgebra [ containing &,,. Let

LE={X € M(m xm,R):nt(X)el}.

If X € £* is invertible, then n*(X)v = 0 and &,,v = 0. Therefore by the basic
property of sly-triples, we get nT (X ~1)v = 0. Therefore X! € £F. In particular,
if L7 = M(m x m,R), then [ = sl(2m, R).

For the case of m = n, the curve y is called supergeneric at sq € I if it is generic
at so (with subinterval Js, C I), and for any proper observable subalgebra [ of
5[(2m, R) containing &,,, we have

{(p(s1) = @(s0)) ™" = (p(s2) = @(s0)) ") s 51,82 € Ty \ {s0}} £ L7 (L.3)

When m # n, we will define what it means to say that ¢ is generic (supergeneric)
at sg € I by induction on m + n as follows:

For m < n, we express ©(s) = [p1(s); p2(s)], where ¢1(s) is the first m by m
block, and ¢2(s) is the rest m by n —m block. We say ¢ is generic (supergeneric)
at so € I, if there exists a subinterval J,, C I such that for any s € Jg, \ {so},
©1(8) —p1(80) is invertible; and if we define 9 : J;, \ {so} = M(m x (n—m),R), by

¥(s) = (1(s) — 01(50)) " (p2(s) — @2(s0))

then 1 is generic (supergeneric) at some s1 € Jg, \ {0}
For m > n, ¢ is called generic (supergeneric) at sg € I if its transpose

o7 T =a,b] — M(n x m,R)

is generic (supergeneric) at so.

We say that ¢ is generic (supergeneric) or satisfies generic (supergeneric) con-
dition, if ¢ is generic (supergeneric) at some sy € I. Since ¢ is analytic, if it is
generic (supergeneric) at one point of I then it will be generic (supergeneric) at all
but finitely many points of I.

Remark 1.2. We will discuss the generic condition and the supergeneric condition
in detail in Appendix A. Here we list several important statements.

1. If m and n are coprime, then the generic condition is the same as the super-
generic condition (see Proposition A.1).

2. If m = 1 or n = 1, the generic condition (which is the same as the supergeneric
condition) is equivalent to the condition that the curve is not contained in any
proper affine subspace (see Proposition A.2).
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3. In [20], it is proved that for m = n, if there exists so € I and a subinterval
Jso C I such that the derivative ¢’(sg) is invertible, ¢(s) — ¢(sg) is invertible
for any s € Js, \ {so}, and

{(p(s) —¢(s0)) 7" 15 € Ty \ {s0}}

is not contained in any proper affine subspace of M(m x m,R), then almost
every point on the curve is not DT-improvable. Clearly this condition implies
the supergeneric condition.

4. For any m and n, the set of supergeneric curves in M(m x n,R) is open and
dense in the set of analytic curves in M(m x n,R) (see Proposition A.6).

In this paper we will prove the following result:

Theorem 1.3. For any m and n, if an analytic curve
p: I =Ja,b] - M(m x n,R)

is supergeneric, then almost every point on ¢ is not DT-improvable. If (m,n) =1,
then the same result holds for generic analytic curves.

1.2. Dirichlet’s approximation and homogeneous dynamics. Let G = SL(m+
n,R), and let I' = SL(m + n,Z). The homogeneous space G/I' can be identified
with the space of unimodular lattices of R™*". Every point [g] = gI" corresponds
to the unimodular lattice gZ™*". Let 0 < u < 1, let B, denote the open sup-norm
ball of radius u, and

K,={AeG/T:ANnB, ={0}}.
Then K, contains an open neighborhood of Z™*™ in G/T and by Mahler’s criterion
K, is compact. So ug(K,) > 0, where pg is the G-invariant probability measure
on G/T.

Define the diagonal subgroup A = {a(t) : ¢t € R} and the embedding u : M(m x
n,R) — G by

a(t) = [emlm emqn] and @ s u(®) = Pm I‘IZ ] . (1.4)

Suppose ® € M(m x n,R) is DT),-improvable. Then by (1.1), for each large
N > 0, there exist p € Z™\ {0} and q € Z™ such that ||p|| < uN™ and ||®p —q|| <
uN~". Then

o V(—q 1 Bp)

aftog Mu@)-ap) = |7 € 5

and hence a(log N)u(®)Z™" ¢ K,,. Thus
E :={seI:y(s)is DT,-improvable} = {s € I : a(log N)u(¢(s))[e] ¢ K,, for all large N}.
Fix Ny € N, and let
En, ={s €1 :a(logN)u(p(s))e] & K, for all N > No}.

Suppose that |En,| > 0, where |-| denotes the Lebesgue measure. By Lebesgue
density theorem, we can pick an interval J of I such that

|Eny V1T 21 = pa(Ky) /2. (1.5)

Suppose we can proved the following:
4



1.2.1. Claim. The expanding curve a(t)u(p(J))[e] gets equidistributed in G/T as
t — +oo. In particular, for all large N,

1
7]

Then by the definition of Ey, we conclude that
|Eng OV JI/1T] <1 = na(Ky)/2,

which contradicts the choice of J as in (1.5). This proves that |En,| = 0 for all
Ny € N. Hence |E| = 0; that is, ¢(s) is not DT),-improvable for almost every s € I.

[{s € J : allog N)u(e(s))[e] € Ky} > pa(K,)/2.

1.3. Equidistribution of expanding curves in homogeneous spaces. It turns
out that the equidistribution result described in the previous section holds in a much
more general setting. In fact, we will prove the following result:

Theorem 1.4. Let G be a Lie group containing H = SL(m + n,R), and T < G
be a lattice of G. Let pug denote the unique G-invariant probability measure on the
homogeneous space G/T'. Take x = gI" € G/T" such that its H-orbit Hzx is dense in
G/T. Let us fix the diagonal group

A= {a(t) = {entlm emtln} ‘te R}.

Let ¢ : I = [a,b] = M(m x n,R) be an analytic curve. We embed the curve into H
by

u:XEM(mxn,R)»—)u(X):[Im Iﬂ

Fort > 0, let uy denote the normalized parameteric measure on the curve a(t)u(o(I))z C
G/T; that is, for a compactly supported continuous function f € C.(G/T'),

1
[ o = m / _ Hattyu(p(s))e)ds.

If ¢ is generic, then every weak-x limit measure poo of {ps : t > 0} is still a
probability measure. If the curve @ is supergeneric, then p; — pg ast — 400 in
weak-+ topology; that is, for any function f € C.(G/T),

Jim o | Saoup)mas= [ s

Moreover, if (m,n) = 1, then generic property will imply that puy — pg as t — +0o0.

Remark 1.5.

1. As we explained in §1.2, Theorem 1.3 follows from Claim 1.2.1, which in turn
follows from Theorem 1.4 with G = H = SL(m + n,R), I' = SL(m + n,Z),
z=le]=Z™" € G/T, I =J, and a choice of f € C.(G/T) supported on K,
such that 0 < f <1 and [ fdug > pa(K)/2.

2. Even in the case G = H = SL(m + n,R), Theorem 1.4 is much stronger than
Theorem 1.3, since it applies to an arbitrary lattice I' < G.

3. It is also interesting to consider the following question: Given any nontrivial
analytic curve

¢ : I — M(m xn,R),
is it true that for almost every X € M(m x n,R), the equidistribution result
as in Theorem 1.4 holds for ¢ + X? We conjecture that the statement is true.
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The study of limit distributions of evolution of curves translated by diagonalizable
subgroups in homogeneous spaces has its own interest and has a lot of interesting
connections to geometry and Diophantine approximation. One can summarize this
type of problems as follows:

Problem 1.6. Let H be a semisimple Lie group, generated by its unipotent sub-
groups. Fix a diagonalizable one parameter subgroup A = {a(t) : t € R} C H, and
let UT(A) denote the expanding horospherical subgroup of A in H. Let G be a Lie
group containing H, and let I" be a lattice of G.
Let
¢:1=1ab > H

be a piece of analytic curve in H with nonzero projection on UT(A) (this will
make sure that the translates of ¢(I) by {a(t) : ¢ > 0} expand). Given a point
x = gI' € G/T', Ratner’s topological theorem (cf. [14]) tells that the closure of
Hz is a finite volume homogeneous subspace F'x, where F' is a Lie subgroup of G
containing H. Let pur denote the unique probability F-invariant measure supported
on Fz. One can ask whether the expanding curves {a(t)¢(I)x : t > 0} tend to
be equidistributed in Fx, i.e., as t — +oo, the normalized parametric measure
supported on a(t)¢(I)x approaches pp in weak-* topology.

Remark 1.7. Without loss of generality, in this paper, we always assume that Hx
is dense in G/T. If Hx is not dense, suppose its closure is F'z;, then we may replace
G by F,T by FNnalTz~! (which is a lattice of F by the closeness of Fx).

Nimish Shah [17] and [19] studied the case H = SO(n,1) and G = SO(m,1)
where m > n. In this case the diagonalizable subgroup {a(t) : ¢ € R} is a fixed
maximal R-split Cartan subgroup of H. In [19] it is proved that given an analytic
curve

¢:I=]la,b = H,
and a point z = gI" € G/I', unless the natural visual map
Vis : SO(n,1)/SO(n — 1) = T (H") — oH" = §"~!

sends the curve ¢(I) to a proper subsphere of S"~1, the translates {a(t)¢(I)x : t >
0} of ¢(I)x tend to be equidistributed as t — +o0. In [17], the same result is proved
when ¢ is only C" differentiable. In [17] and [19], the obstruction of equidistribution
is discussed and the limit measure is given when the equidistribution fails. This
result is generalized by Yang [21] in the following sense: for H = SO(n,1) and
arbitrary Lie group G containing H, if the same condition on the curve holds, then
the expanding curve a(t)¢(I)z tends to be equidistributed as ¢ — +oco. Shah [18§]
studied the case m = 1 of the problem we consider in this paper, and proved that
if the analytic curve ¢ : I — M(1 x n,R) = R™ is not contained in a proper affine
subspace of R™, then the equidistribution holds. It turns out that this condition is
the same as generic condition for m = 1. Later Yang [20] studied the case m = n.

When the generic condition holds but supergeneric condition does not, we want
to understand the obstruction of equidistribution and describe the limit measures
of {g; : t > 0} to some extent. This requires more subtle argument. In [17] and
[19], obstruction of equiditribution and description of limit measures are clearly
given unconditionally for the case H = SO(n, 1) and G = SO(m, 1) in the set up
of Problem 1.6. In our case, the problem becomes much more complicated. In
this paper, we only discuss the case n = km, and we conjecture that similar result
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remains true for general (m, n) such that (m,n) > 1 (for the case (m,n) = 1, generic
is the same as supergeneric, so there is nothing in between).

1.4. Relation to extremality of submanifolds in homogeneous spaces. An-
other direction to study Diophantine properties of a real matrix ® € M(m X n,R)
is to determine whether ® is very well approximable. We say ® € M(m x n,R) is
very well approximable if there exists some constant § > 0 such that there exist
infinitely many nonzero integer vectors p € Z" and integer vectors q € Z" such
that

|—n/m—5.

[®p —q| < |Ip]

A submanifold U C M(m x n,R) is called extremal if with respect to the Lebesgue
measure on U, almost every point is not very well approximable. Based on the
same correspondence due to Dani [5] and Kleinbock and Margulis [11], this problem
can also be studied through homogenous dynamics. Kleinbock and Margulis [11]
proved that if a submanifold & C M(1 x n,R) is nondegenerate, then U is extremal.
Kleinbock, Margulis and Wang [9] later gave a necessary and sufficient condition
of a submanifold of M(m x n,R) being extremal. The condition is stated in terms
of a particular representation of H = SL(m + n,R) and can not be translated to a
geometric condition. Recently, Aka, Breuillard, Rosenzweig and de Saxcé [2] gave a
family of subvarieties of M(m X n, R) called constraining pencils, and proved that if
a submanifold & C M(m x n,R) is not contained in a constraining pencil, then U is
extremal. The result was previously annouced in [1]. It turns out that the generic
condition implies the condition given in [2]. We will discuss it in detail in Appendix
A (see Proposition A.9).

1.5. Organization of the paper. The paper is organized as follows: In §2, as-
suming the generic condition on ¢, we will relate a unipotent invariance to limit
measures of {y; : ¢ > 0}, and show that every limit measure is still a probability
measure. This allows us to apply Ratner’s theorem. In §3, we will apply Ratner’s
theorem and the linearization technique to study the limit measure via a particular
linear representation of H. Finally we will get a linear algebraic condition on ¢.
Assuming some technical lemmas proved in §4, we prove Theorem 1.4. In §4, we will
recall and prove some basic lemmas on linear representations, which are essential
in our proof. In §5, assuming the generic condition, we will study the obstruction
of equidistribution and limit measures of {u; : ¢t > 0}. We will only discuss the case
n = km, and give a conjecture for general case. In the appendix, we will discuss
the generic condition and the supergeneric condition in detail.

Notation 1.8. In this paper, we will use the following notation.

For € > 0 small, and quantities 1 and @3, Q1 ~ Q2 means that |Q1 — Q2] <e.
Fix a right G-invariant metric d(-, -) on G, then for 21,25 € G/T', and € > 0, ~ 1o
means xy = gz such that d(g,e) < e.

For two related variable quantanties ()1 and @2, Q1 < (2 means there exists
a constant C' > 0 such that @1 < CQa, and Q1 > Q2 means Q2 < Q1. O(Q1)
denotes some quantity < ) or some vector whose norm is < Q5.

2. NON-DIVERGENCE OF THE LIMIT MEASURES AND UNIPO-
TENT INVARIANCE.



2.1. Preliminaries on Lie group structures. We first recall some basic facts
on the group

H = SL(m + n,R).

Without loss of generality, throughout this paper we always assume m < n.
The centralizer of the diagonal subgroup A, Zg(A), has the following form:

Zu(A) = { [B C’} : B € GL(m,R),C € GL(n,R), and det BdetC = 1}.
The expanding horospherical subgroup of A, U*(A) has the following form:

Ut (A) = {u(X) — {Im fﬂ L X € M(m x n,R)}.

Similarly, the contracting horospherical subgroup U~ (A) has the following form:
U™ (A):= {u_(X) = [X I } :XeM(nxm,]R)}. (2.1)

For any z € Zy(A) and u(X) € UT(A), 2u(X)z~! = u(z- X) where z- X is defined
as follows:

if z = [B C} € Zy(A) and X € M(m x n,R) then z- X := BXC™'.  (2.2)

This defines an action of Zx(A) on M(m x n,R).

Similarly we can define the action of Zgy(A4) on M(n x m,R) induced by the
conjugate action of Zy(A) on U~ (A).

Let P~ (A) := Zg(A)U~ (A) denote the maximal parabolic subgroup of H asso-
ciated with A.

Definition 2.1. For any X € GL(m,R), we consider the following three elements
in the Lie algebra b of H:

0 X 0 0 00 I, 0 0
nf(X):=[0 0 o0f, n (X H:=[X"1 0o of, a:=|0 -I, O
0 0 O 0 00 0 0 o0

Then {n™(X),n"(X~1),a} makes a s[(2,R)- triple; that is, they satisfy the follow-
ing relations

[a,nT (X)) =20"(X) [a,n (X H=-2n" (X", h(X),n (XY =a

Therefore, there is an embedding of SL(2, R) into H that sends [(1) ﬂ to exp(n™ (X)),

Mot
E ﬂ to exp(n= (X 1)), and 60 eot} to exp(ta). We denote the image of this

SL(2,R) embedding by SL(2, X) C H. Let us denote

0 X 0
o(X):=|-X"1 0 0| eSL(2X).
0 0 o0
. 0 1
It is easy to see that o(X) corresponds to {_1 O} € SL(2,R).
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2.2. Unipotent invariance. Throughout this paper, we always assume that
p: I =Ja,b] > M(m x n,R)

is analytic.

Recall that for ¢ > 0, u; denotes the normalized parametric measure on the curve
a(t)u(e(I))z, and pe denotes the unique G invariant probability measure on G/T.
Our aim is to prove that u; — pg as t — +oo. We first modify the measures p
to another measure \; and show that if \; — ug, then py — pg as well. Then we
can study {A; : ¢ > 0} instead. The motivation for this modification is that any
accumulation point of {\; : ¢ > 0} is invariant under a unipotent subgroup.

The measure )\; is defined as follows:

Definition 2.2 (cf. [15, (5.2)]). Without loss of generality, we may assume that
¢©'(s) # 0 for all s € I. Since ¢ is analytic, there exists some integer 1 < b < m,
such that the derivative ¢’'(s) has rank b for all s € I but finitely many points. Let
Ey(m) be the m by m matrix defined as follows:

I, O .
[0 0} if b <m,

Ep(m) :=
I, if b=m.

Given a closed subinterval J C I such that ¢'(s) has rank b for all s € J, we define
an analytic curve z : J — Zp(A) such that

2(s) - ¢'(s) = [Ep(m); 0], Vs € J. (2.3)

For t > 0, we define A/ to be the normalized parametric measure on {z(s)a(t)u(p(s))z :
s € J}; that is, for f € C.(G/T),

/fd/\{ = ‘—(1” /GJ Fz(s)at)u(p(s))x)ds. (2.4)

Remark 2.3. For any subinterval J C I, we can similarly define uf to be the
normalized parameter measure on a(t)u(¢(J))x.

Proposition 2.4. Suppose that for any closed subinterval J C I such that \] is
defined, we have \] — ug ast — +oo. Then u; — g ast — +oo.

Proof. Let s1,82,...,8 € I be all the points where ¢'(s) does not have rank b. For
any fixed f € C.(G/T') and € > 0, we want to show that for ¢ > 0 large enough,

4e
/fdut ~ fduc.
G/T

For each i € {1,2,...,1}, one can choose a small open subinterval B; C I containing
s; such that

< €lll, (2.5)

l
15 /G | Fne

and for any t > 0,

< 1. (2.6)

/ Fla(tyulp(s))x)ds
U B;

L
=1
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5
Since f is uniformly continuous, there exists a constant > 0, such that if 1 = x4

then f(z1) ~ f(xz). We cut I\ Ul_,B; into several small closed subintervals
J1,J2, ..., J, such that for every J,,

z_l(sl)z(sz) ’gﬂ e for any s, s9 € J,.
Now for a fixed J,., we choose sg € J, and define fo(z) = f(27!(sg)x). Then for
any s € J,., because 271 (sg)z(s)a(t)u(p(s))w 2 a(t)u(p(s))x, we have

fo(z(s)a(tyu(i(s))a) = £(=~"(s0)z(s)alt)u(p(s)z) = fla(t)u(p(s))z).

Therefore
[ ot % [ gapi

Because [ fod\/" — fG/F fo(z)dug(x) as t — +o0, and

o Fo(@)dn(@)
Jar f(z7 (s0)7)dpc (@)

= e it (z)dug (because pg is G-invariant),

we have that there exists a constant 7). > 0, such that for ¢t > T,.,
€
/fod)\gr ~ fdug.
G/T

Therefore, for ¢t > T,

ie.,

I
Then for t > maxi<,<p 1y, we can sum up the above approximations for r =
1,2,...,p and get

2¢l1]
/I\U Flalu(p(s)a)ds T (11 - Z|B| / Fdug.

1= 1

Combined with (2.5) and (2.6), the above approximation implies that

| fautetmas L / fdue,

which is equivalent to
4e
/fdut ~ / fdpe.
G/T

Because € > 0 can be arbitrarily small, we complete the proof. O

By this proposition, if we could prove the equidistribution of {\; := A\ : ¢ > 0}
as t — +oo assuming that ¢’(s) has rank b for all s € I, then the equidistribution
of {us : t > 0} as t — 400 will follow. Therefore, later in this paper, we will assume
that ¢'(s) has rank b for all s € I and define A; to be the normalised parametric
measure on the curve {z(s)a(t)u(p(s))z : s € I}.

We will show that any limit measure of {\; : ¢ > 0} is invariant under the

unipotent subgroup
W = {u(r[Ep(m);0]) : r € R}. (2.7)
10



Proposition 2.5 (See [19]). Let t; — +oo be a sequence such that Ay, — pioo 0
weak-* topology, then (s is invariant under W -action.

Proof. Given any f € C.(G/T"), and r € R, we want to show that

[ #utrlBam; 0 = [ Fa)dn

Since z(s) and ¢(s) are analytic and defined on the closed interval I = [a, b], there
exists a constant 77 > 0 such that for ¢t > T, z(s) and ¢(s) can be extended to
analytic curves defined on [a — |r|e~ "+t b4 |r|e=("+™)!] Throughout the proof,
we always assume that t; > T). Then z(s + re~("+™t) and ¢(s + re~(m+M4) are
both well defined for all s € I.

We define f1 € C.(G/T) as follows:

fi(y) := f(u(r[Ey(m); 0])y) for any y € G/T.

From the definition of ., we have

/ﬂwﬂwmﬂm@®m=/ﬁ@M%3
1

= dim [ AC(a)ue()as
nygﬂﬂ/gf By (1m); 0))2(s)a(t:)u(p(s))2)ds

We want to show that
u(r[Ey(m); 0))z(s)a(ti)u(p(s)) = z(s+re” " )a(t;)u(p(s +re” ") (2.8)
Since z(s + re~(M*T™M) & 2(s) for t; large enough, it suffices to show that
u(r[Ey(m); 0])z(s)a(ti)u(p(s)) ~ z(s)alt;)u(p(s +re” mH0)).
Note that t € R and L, M € M(m x n,R),
w(L + M) = u(L)u(M) and a(t)u(M)a(—t) = u(e™ ™M),
and by Taylor’s theorem
pla -+ e (M) = (5) 4 re~(mEII G (5) 4 0o 20,
Then we have

2(s)alti)u(p(s +re” ")
s)a(ti)u(p(s) +re” (MW (5) 4 Oe~2m )
2 Z)U(O( —2(m+n)t; ) +re” (m4n)t; 1 3))u(@(8))
) t

t
= z(s)a(t
(s)alt ¢'(

2(s)a(ti)u(O(e 20 4 re” (ML (s))a(~t)a(ti)u(p(s))
(s)u( )
(s)u(
(

s)a

s)u(O(e= M%) 4 ¢! (s))altiJu(ip(s)

s)u(O(e™"™Hh) 41! (5))2(s) " 2(s)altiJu(e(s))
O(e=U™Hmh) - r2(s) - ' (s))2(s)alts)ulp(s), by (2.2),
u(O(e” ") u(r[Ey(m); 0])z(s)alts)u(p(s)), by (2.3).

When t; is large enough, u(O(e~("*+™%)) can be ignored. Therefore, for any § > 0,
there exists T' > 0, such that for ¢; > T,

u(r[By(m); 0])2(s)a(t:)u(p(s)) & 2(s + re” ™ a(t;yu(p(s + re (")),

Il
w

Il
w

u

(
(



o €
Now fix € > 0. We choose 6 > 0 such that whenever z1 & x2, we have f(x1) = f(x2).
Then from the above argument, we have for t; > T,

F(u(r[By(m); 0))2(s)a(t:)u(p(s))z) = f(2(stre” T )a(tu(p(s+re” M) )2).
Therefore,

1 e Ey(m); 0])z(s)a(ti)u(e(s))z)ds

~ %f (s +re” M a(tu(p(s + rem(MTME))z)ds
1 b+re ("L+'L>t

[P fa(s)alte u(p())ds.

Since | f| is bounded, when ¢; > 0 is large enough,

—(m+4n)t;
1 b+re

e 1 P
il f(z(s)a(ti)u(p(s))z)ds ~ m/a f(z(s)a(ti)u(p(s))z)ds.

at+re—(m+n)t;

Therefore, for t; large enough,

[ HutEsmyo)z)an, % [ ..

Letting t; — +00, we have

/ F(u(r By (m); 0))2)djros 2 / £ (@) dpios.

Since the above approximation is true for arbitrary € > 0, we have that pe, is
W -invariant. O

2.3. Non-divergence of limit measures. We also need to show that any limit
measure oo of {A; : t > 0} is still a probability measure of G/T', i.e., no mass escapes
to infinity as t — 4o00. To do this, it suffices to show the following proposition:

Proposition 2.6. Suppose ¢ : I — M(m x n,R) is generic. For any ¢ > 0, there
exists a compact subset K. C G/T" such that

M(Ke) > 1—€ forallt > 0.

This proposition will be proved via linearization technique combined with a
lemma in linear dynamics as in [18].

Definition 2.7. Let g denote the Lie algebra of G, and denote d = dimG. We

define
d ,
7
V=D
i=1
and let G act on V via @?:1 A" Ad(G). This defines a linear representation of G:
G — GL(V).
Remark 2.8. In this paper, we will treat V' as a representation of H.

The following theorem is the basic tool to prove that there is no mass-escape
when we pass to a limit measure:

Theorem 2.9 (see [18, Proposition 3.4]). Fiz a norm ||-|| on V. There exist finitely
many vectors
V1,02, ..., 0 €V
12



such that for each i = 1,2,...,r, the orbit T'v; is discrete, and moreover, the fol-
lowing holds: for any € > 0 and R > 0, there exists a compact set K C G/T" such
that for any t > 0 and any subinterval J C I, one of the following holds:

S.1 There existy €T and j € {1,...,7} such that
sup fla(t)ule(s))grv;ll < B,

5.2
{s € J: a(t)u(p(s))r € K} = (1 —€)|J].

Remark 2.10. The above theorem follows from the argument as in [16, Theorem
2.2] (see [18, Proposition 3.4] for the proof). It relies on the work of Dani and
Margulis [6] and its extension due to Kleinbock and Margulis [11]. To get such a
result, it is crucial to find constants C' > 0 and « > 0 such that in this particular
representation, all the coordinate functions of a(t)u(y(-)) are (C, «)-good. Here a
function f : I — R is called (C, a)-good if for any subinterval J C I and any € > 0,
the following holds:

{seJ:[f(s) <e}|<C (Sllpej|f(8)|) Il

Notation 2.11. Let V be a finite dimensional linear representation of a Lie group
F. Then for a one-parameter diagonal subgroup D = {d(t) : t € R} of F, we can
decompose V as the direct sum of eigenspaces of D; that is,

V=V,

A€R
where VMN(D) = {v € V : d(t)v = e*v}.
We define
V(D) =EPVID), v (D)=EPV D), VF(D)=VD)+ V(D).
A>0 A<0

For a vector v € V, we denote by vt (D) (v*(D), v~ (D), v°(D), vt°(D) and v=°(D)
respectively) the projection of v to V(D) (V}(D), V=(D), V°(D), V+°(D) and
V=9(D) respectively) with respect to the above direct sums.

The proof of Proposition 2.6 depends on the following property of finite dimen-
sional representations of SL(m + n,R):

Lemma 2.12 (Basic Lemma). Let V' be a finite dimensional representation of
SL(m 4+ n,R), and let A = {a(t) : t € R} C SL(m + n,R) denote the diagonal
subgroup as in (1.4). If an analytic curve

¢:I=1la,b - M(m xn,R)
is generic, then for any nonzero vector v € V., there exists some s € I such that

u(p(s))v € V7 (A).

A proof of this linear dynamical lemma is one of the most important technical
contributions of this paper, and we will postpone its proof to §4.

Proof of Proposition 2.6 assuming Lemma 2.12. Let V be as in Definition 2.7. Since
A C H is a diagonal subgroup, we have the following decomposition:
V=4

A€ER
13



where V*(A) is defined as in Notation 2.11. Choose the norm ||-|| on V to be the
maximum norm associated to some choices of norms on V*(A)’s.

For contradiction we assume that there exists a constant € > 0 such that for any
compact subset K C G/T, there exist some ¢ > 0 such that A\;(K) < 1 —e. Now we
fix a sequence {R; > 0 : ¢ € N} tending to zero. By Theorem 2.9, for any R;, there
exists a compact subset K; C G/I, such that for any ¢ > 0, one of the following
holds:

S1. There exist v € I" and j € {1,...,r} such that
sup fla(t)ule(s))gyoll < Ri,

S2.
{s € I a()u(e(s))z € Ki}| > (1= )|I].
From our hypothesis, for each K;, there exists some ¢; > 0 such that S2. does
not hold. So there exist v; € I' and vj(;) such that

sup fla(tsJule(s)gyivsem | < Ri- (2.9)

By passing to a subsequence of {i € N}, we may assume that v;;) = v; remains the
same for all 7.
Since I'v; is discrete in V', we have t; — oo as @ — 0o and there are the following
two cases:
Case 1. By passing to a subsequence of {i € N}, v,u; = yv; remains the same for all
i.
Case 2. ||v;vj]| = oo along some subsequence.
For Case 1.: We have a(t;)u(p(s))gyv; — 0 as ¢ — oo for all s € I. This implies
that
{ule(s))gvvjtser € V7 (4),
which contradicts Lemma 2.12.
For Case 2.: After passing to a subsequence, we have

vi= lim gvyv;/llgvivsll, vl =1, and lim [|gviv;|| = oo. (2.10)
17— 00 1—>00

By Lemma 2.12, let s € I be such that u(¢(s))v € V~(A). Then by (2.10) there
exists dg > 0 and 79 € N such that

I(u(e())g7iv) Il = dollgrivsll, Vi = do.
Then
la(ti)ule(s))gvivill = dollgrivsll = o0, as i — oo,
which contradicts (2.9). Thus Cases 1 and 2 both lead to contradictions. O

Remark 2.13. The same proof also shows that any limit measure of {u; : ¢ > 0} is
still a probability measure, which is the non-divergence part of Theorem 1.4.

3. RATNER’S THEOREM AND THE LINEARIZATION TECHNIQUE.
In this section, let us assume that ¢ is supergeneric. Take any convergent subse-
quence A\, — [oo. By Proposition 2.5 and Proposition 2.6, pi is a W-invariant
probability measure on G/T", where W is a unipotent one-parameter subgroup given
by (2.7). We will apply Ratner’s theorem and the linearization technique to under-
stand the measure fiso.

14



Definition 3.1. Let £ be the collection of proper analytic subgroups L < G such
that L NT is a lattice of L. Then L is a countable set ([13]).
For L € L, define

N(L,W)={g€G:g'WgcC L}, and (3.1)
sSLwy=|J ~Nw,w).
L'el,L'CL

We formulate Ratner’s measure classification theorem as follows (cf. [12]):

Theorem 3.2 ([13]). Let 7 : G — X = G/T" denote the natural projection sending
g € G togl € X. Given the W-invariant probability measure pn on GJT, if pu is not
G-invariant then there exists L € L such that

p(r(N(L,W)) >0  and  p((S(L,W))) = 0. (3.2)

Moreover, almost every W -ergodic component of u on w(N(L,W)) is a measure of
the form gy where g € N(L,W)\S(L,W), ur, is a finite L-invariant measure on
7(L), and gur(E) = pr(g L E) for all Borel sets E C G/T. In particular, if L<G,
then the restriction of p on w(N(L,W)) is L-invariant.

We want to show that p. = pug. For contradiction, let us assume that peo # -
Then by Ratner’s Theorem, there exists L € £ such that

froo (T(N (L, W))) > 0 and poo (m(S(L, W))) = 0. (3-3)

Now we want to apply the linearization technique to obtain algebraic conse-
quences of this statement.

Definition 3.3. Let V be the finite dimensional representation of G defined as in
Definition 2.7, for L € L, we choose a basis ¢, ¢s,...,¢; of the Lie algebra [ of L,
and define

pr=N_e; €V.
Note that the stabilizer of py, is NL(L) where
NG(L) :={g € G:gLg~" = L and det(Ad(g)|;) = 1}. (3.4)
Define
Ip:={yel:ypr==pr}.

From the action of G on py,, we get a map:

n:G—=V,

g+ gpL.
Let A denote the Zariski closure of (N (L, W)) in V. Then N(L, W) = GNn~1(A).

Using the fact that ¢ is analytic, we obtain the following consequence of the
linearization technique (cf. [19, 18, 15]).

Proposition 3.4 ([18, Proposition 5.5]). Let © = gI" be as in Theorem 1.4 and C
be a compact subset of N(H, W)\ S(H,W). Given € > 0, there ezists a compact set
D C A such that, given a relatively compact neighborhood ® of D in V, there exists
a neighborhood O of CT in G /T such that for any t € R and subinterval J C I, one
of the following statements holds:
SS1. {s € J :a(t)u(p(s))gl € O} < €| J|.
SS52. There exists v € I such that a(t)z(s)u(p(s))gypL € ® for all s € J.

15



The following proposition provides the obstruction to the limiting measure not
being G-invariant in terms of linear actions of groups, and it is a key result for
further investigations.

Proposition 3.5. Let x = gI" be as in Theorem 1.4. There exists a v € ' such
that
{u(p(s))grpL : s € I} C VO(A). (3.5)

Proof (assuming Lemma 2.12). By (3.3), there exists a compact subset C C N (L, W))\
S(L,W) and € > 0 such that p.(CT') > € > 0. Apply Proposition 3.4 to obtain
D, and choose any ®, and obtain a O so that either SS1. or SS2. holds. Since
At; = Jhoo, We conclude that SS1. does not hold for ¢t = ¢; for all i > ig. Therefore
for every i > ig, 552. holds and there exists ; € I' such that

{a(ti)z(s)u(e(s))gripL : s € I} C @. (3.6)

Since I'py, is discrete in V', by passing to a subsequence, there are two cases:

Case 1. v;pr, = ypr for some v € I for all i large enough; or
Case 2. ||[vipL|| — o0 as i — oo.

In Case 1, since ® is bounded in (3.6), we deduce that z(s)u(p(s))gypL C V=°(A)
for all s € I. Since V=(A) is Zy (A)-invartiant, (3.5) holds.

In Case 2, by arguing as in the Case 2. of the Proof of Proposition 2.6, using
genericity of ¢ and Lemma 2.12, we obtain that ||a(t;)u(p(s))gvipL|| — oo. This
contradicts (3.6), because z(s) C Zy(A) and ® is bounded. Thus Case 2 does not
occur. O

We will need the following analogue of the Basic lemma 2.12.
Lemma 3.6. Let V' be an irreducible representation of H = SL(m + n,R). Let
¢:I=1la,b - M(m xn,R)
be a supergeneric analytic curve. Then if there is a nonzero vector v € V' such that
{ulp(s)v: s € I} € Vo(A),
then V is a trivial representation.
We will postpone its proof to §4.

Proof of Theorem 1.} assuming Lemma 3.6. Suppose ¢ : I — M(m x n,R) is su-
pergeneric, and the normalized parametric measures {\; : ¢ > 0} do not tend to
the Haar measure pc along some subsequence ¢; — +o0o. By Proposition 3.5, there
exists some L € £ and v € I' such that

u(p(s))gypr € V7O(A)

for all s € I. Then by Lemma 3.6, we have that v := gypy, is fixed by the whole
group H. Hence py, is fixed by the action of y~'¢~!Hgy. Thus

I'p, = Tpy,since I'py, is discrete
= Il Hgpr
= lg~'Hgypr
= Gygvypr, since Hgl' =G
= Gpr.

This implies Gopr, = pr where Gy is the connected component of e. In particular,
v lg7'Hgy C Gy and Gy C NL(L). By [17, Theorem 2.3], there exists a closed
16



subgroup i C N}(L) containing all Ad-unipotent one-parameter subgroups of
G contained in Ncl,(L) such that F; N T is a lattice in F; and FiI' is closed. If

we put F' = gyFyy 'g~!, then H C F since H is generated by its unipotent

one-parameter subgroups. Moreover, Fx = gvFiI' is closed and admits a finite
F-invariant measure. Then since Hz = G /T, we have F' = . This implies F} = G
and thus L <1G. Therefore hLh~! = L for all h € G. Therefore, since N(L, W) # 0,
by (3.1) we have W C L and N(L, W) = G. Therefore, LN H is a normal subgroup
of H containing W. Since H is a simple group, we have H C L. Since L is a normal
subgroup of G and LI is a closed orbit with finite L-invariant measure, every orbit
of L on G/T is also closed and admits a finite L-invariant measure, in particular, Lz
is closed. But since Hz is dense in G/T", Lz is also dense. This shows that L = G,
which contradicts our hypothesis that the limit measure is not pug. This completes
the proof. O

4. SOME LINEAR DYNAMICAL RESULTS. We shall start with a dynam-
ical lemma about finite dimensional representations of SL(2, R) which sharpens the
earlier results due to Shah [19, Lemma 2.3] and Yang [21, Lemma 5.1].

Lemma 4.1. Let V be a finite dimensional linear representation of SL(2,R). Let

A= {a(t) = [et et} :teR},
U:{u(s)::[(l) ﬂ:seR},andU_:{u_(s)::[i ﬂ:seR}.

Express V' as the direct sum of eigenspaces with respect to the action of A:

V= @V)‘(A), where VM(A) := {v € V : a(t)v = eMv : Vt € R}.
AER

For any v € V \ {0} and X € R, let v* = v*(A) denote the V*(A)-component of v,
AmEX (1)) = max{\ : v* # 0},
and v = v " (v). Then for any r # 0,
AT (u(r)v) > = A" (v). (4.1)
In particular,
AT (v) < 0 then A™* (u(r)v) > 0, Vr # 0. (4.2)
Moreover, if the equality holds in (4.1) then

Proof. Observe that u(1)u™(—1)u(l) = o(1), u(—1)u~ (1)u(—1) = o(—1) and for
r # 0, conjugating all terms of these equalities by a(log(|r|/2)) we get u(r)u=(—r~—Hu(r) =
o(r), and hence

o= = o)=L 1]
)

u(r) = o(ryu(—r)yu=(r~1), ¥r # 0. (4.4)
Since o(r)a(t)o(r)~! = a(—t) for all r # 0, we have that
a(r\VMA) = VA (A), for all \.
Hence for any v € V' \ {0},

AP (g (r)v) = =A™ (v), and (o(r)v)™™ = o(r)v™". (4.5)
17



For any r € R, since u(r) is unipotent and a(t)u(r)a(—t) = u(e*r), we have that

AT (4 () p) = NI (p), (4.6)
Similarly, for any s € R, we have a(t)u™(s)a(—t) = u~ (e 2's), and hence
AT (g (s)v) = AT (v). (4.7
Using the above relations (4.4), (4.5), (4.6) and (4.7), we get
AT (u(r)v) = )\max(o(r)u(—r)u_(r_l)v)
I (u(—r)u (1)
/\mm( “(rho)
> =N (u” (1)
= —X“a‘x(v).
Further if there are all equalities in the above relation, then
AT (4, (7 D) = AR (4 (77 H)y) = A (p),
Therefore,
u” (r e = (u” (r o)™ = ™ that is, v = u (—r1)e™,
and
(u(r)o)™™> = o (r)(u(—r)u” (r~ o)™ = o(r)(u” (r~ o)™

o(r)(u™ (r~ o)™ = g(r)u™,

Lemma 4.1 immediately implies the following statement:

Corollary 4.2. Let the notation be as in Lemma 4.1. If v,u(r)v € V=9(A) for
some r # 0, then

AP () =0 and v = u~ (=)o (A).

4.1. Linear dynamical lemmas for SL(m + n,R) representations. First we
give the proof of the basic lemma (Lemma 2.12) that we have used more than once
in previous sections. The new techniques developed in this section form the core of
this paper, and we expect these techniques to be valuable for other problems.

In order to clearly explain the main idea in the proof, we first prove Lemma 2.12
for the following baby case: (m,n) = (1,2).

Proof of Lemma 2.12 for (m,n) = (1,2). Here ¢(s) = (p1(s), p2(s)), where p1(s), pa(s) €
R.
For a contradiction, let us assume that

u(p(s))v € V7 (A) for all s € I. (4.8)
In view of Notation 2.11, for s € I, let
po(s) = max{\ : (u(e(s))v)*(A) # 0} and po = max{uo(s) : s € I}.

Since ¢ is analytic, we have pg(s) = po for all but finitely many s € I. By our
assumption, pg < 0.
18



Let us fix s9 € I with po(sg) = po, and denote A(s) = (A1(s),Aq(s)) =
w(s) —p(s0). Since @ is generic, there exists a subinterval J,, C I such that for any

S € JSO \ {80},
Aa(s)
A 0 d
1(s) #0, and 5
Let us denote ¥(s) := 2?%? € R. By choosing smaller J,,, we get uo(s) = po for
all s € Jg,.
Let us fix s € Js, \ {so}. Let us denote vy := u(p(so))v and vs := u(p(s))v.
Then vs = u(A(s))vp.
Let us write a(t) = ay(2t)as(t), where

is not constant.

ai(t) == et , and as(t) := et . (4.9)
1 et
Let us denote Ay := {ai(t) : t € R} and Ay := {az(t) : t € R}. Then we can
decompose V as the direct sum of common eigenspaces of A; and As:
V= @ Vo102 where Vo102 := {v € V : a1 (t)v = e'tw, and as(t)v = e®'v}.
01,62
Then

VMA) = Z Voroz,
201 +02=X\
Since Aq(s) € R\ {0} = GL,,(R) for m = 1, by Definition 2.1 we have

SL(2, Ay (s)) = {[g ﬂ oy SL(2,R)}.

Let us decompose V' as the direct sum of irreducible sub-representations of A x
SL(2,A1(s)). For any such sub-representation W C V, let pw : V. — W denote
the A-equivariant projection. By basic facts on SL(2,R)-representations (see [8,
Claim 11.4], for example), we have that every irreducible sub-representation W C V
admits a standard basis: {wg, w1, ..., w,}, such that

a1 (t)w; = =20y, for 0<i <.
We claim that each w; is also an eigenvector for A. In fact,

ot/2
a(t) = a1(3t/2)b(t), where b(t) = et/?

Note that b(t) commutes SL(2,A;(s)), so b(t) acts on W as a scalar e for some
0 € R. Therefore,

a(t)w; = eBr=20/240)ty,  for 1 <4 <. (4.10)

For k < i, the A-weight of wy, is strictly greater than the A-weight of w;.
Let us denote

It is straightforward to verify that
u(A(s)) = ' (=1p(s))u(A1(s), 0)u' (¥ (s)).
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Therefore,
vs = u(A(s))vo = u' (= (s))u(A1(s), 0)u (1(s))vo.
Note that u'(r) commutes with a(t), and thus preserves every eigenspace of A.
Therefore, since the highest A weight of vs = u(p(s))v is pg, we have that the
highest A-weight of u’(¢(s))vs is po and
(u'(¥(s))vs)"(A) = u'(1)(5)) - (vs)" (A).
Since
u'(P(s))vs = u(Ai(s), 0)u' (¥ (s))vo,
we have that the highest A-weight of u(A1(s), 0)u'(¥(s))vp is po. Applying the same
argument to vy and u’(1(s))vg, we have that the highest A-weight of u/(1(s))vg is
Lo and

(' (¥ (s))vo) " (A) = u'((5)) - (v0)"** (A)-
For any irreducible A x SL(2, A;(s))-sub-representation W C V such that
pw (U (¢(s)) - (v0)"*(A)) # 0.
Then
pw (U (P(s)) - (v9)"°(A)) = a;w;, for some 0 <i <7, 0+#a; €R.

By (4.10) we have po = 3(r — 2i)/2+ 9, and that for k < i, A-weight of wy, is larger
than the A-weight of w;, which is pg. We know that the maximum A-weight any
A-eigen-component of py (u'(¢(s))vg) is po. Therefore

pw (U (Y(s))vg) = Z arwy, for some real ag’s.
k>i

Note that W is also an irreducible SL(2, A1 (s))-sub-representation of V. We have
pw (u(A1(s), 0)u' (¥ (s))vo) = u(Ai(s), 0)pw (u'(1h(s))vo)-

We know that the A-weight of any eigen component of u(Aq(s),0)u (1(s))vg is at

most po. Hence the same holds for pw (u(A1(s),0)u’(¢(s))vg). Combined with the

fact that for k < 4, the A-weight of wy, is greater than the A-weight of w;, and that
the A-weight of w; is ug, we conclude that

uw(A1(s),0)pw (v (¥(s))vg) = u(Aq(s), 0)(2 apwy) = Z brwg, for some real by’s.
k>i k>i
We claim that the A;-weight of pyw (u'(¥(s))vg), which is r — 2i, is nonnegative. In
fact, if r — 27 < 0,
pw (' (¢(s))vo) € V™ (A1) and u(Ai(s), 0)pw (' (1h(s))vo) € V™ (A1)

This contradicts Corollary 4.2 for SL(2, Aq(s)) representation W, py (v’ (1(s))vg)
playing the role of v and {u(A;(s),0)} being the corresponding unipotent one-
parameter subgroup and A; = {a1(t) : t € R} the corresponding expanding diagonal
subgroup. This proves the claim that r — 2i > 0.

Therefore, by (4.9), the As-weight of w;, which is pg — 2(r — 24), is negative,
because po < 0. In other words,

pw (' (1(5))v0)** (A)) € V™ (A).

Since this holds for every irreducible A x SL(2, A (s))-sub-representation W of V,
we have

(' (1h(5))v0)"*(A) € V™ (Az).
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Note that u'(1(s)) preserves every eigenspace of A, we have
(u'(1(s))vo)"* (A) = v/ (1)(s)) - (v0)"*(A).
Therefore,
u (P(s)) - (v9)"°(A) € V7 (Ag), for any s € Js, \ {so}-

Since v is not constant, we can choose $1,s2 € Jg, \ {So} such that ¥(s1) # ¥(s2).
Note that w/(r), as(t) are both contained in Hy = SL(2,R), where

Hy = {{1 hQ] s € SL(Q,R)}.

Therefore,
W' (1(s1))(v0)" (A) € V7 (A2) and u'(¥(51))(v0)"*(A) € V™ (Az).

This contradicts Corollary 4.2 for the Hy = SL(2,R) action on V with v/ () (s1))(vo)* 0 (A)
playing the role of v, and u/(r) playing the role of u for r = ¥ (s3) — ¥(s1) # 0, and
the v’ expanding diagonal subgroup As. Therefore our assumption that pg < 0, or
equivalently (4.8), is false. This completes the proof. O

Now let us prove the general case of Lemma 2.12.

Proof of Lemma 2.12. We use induction to complete the proof. For the case m = n,
the lemma is due to Yang [20]. We provide a proof here.

When m = n, we take a point sy and a subinterval J;, C I such that for all
s € Jso \ {50},

w(s) —(sp) € GL(m,R).

Then we consider the subgroup SL(2, ¢(s)—¢(so)) = SL(2,R) C SL(2m, R) for some
fixed s € Js,\{so} (see Definition 2.1), and apply Corollary 4.2 for SL(2, R) replaced
by SL(2, (s) —p(s0)), v replaced by u(¢(so))v and u(r) replaced by u(¢(s)—¢(so))-
Then by (4.2),

u(p(s0))v & V7 (A) or X™((ip(s))v) & V71 (A).

This completes the proof of the Lemma for the case of m = n.

If m > n, then by applying a suitable inner automorphism of SL(m + n,R)
given by a coordinate permutation o, ,, we can convert this problem to the case
of m < n. Therefore we will assume that m < n.

As inductive hypothesis, we assume that for all (m’,n’) such that

m <m,n <nand m' +n <m+n,
the conclusion of the Lemma holds. We want to prove that the conclusion holds for

(m,n).
For contradiction, we assume that for some nonzero vector v € V|

u(p(s))v € V7 (A)

for all s € I. For s € I, let uo(s) = max{\ : (u(p(s))v)*(A) # 0} and py =
max{uo(s) : s € I}. Since ¢ is analytic, we have ug(s) = uo for all but finitely
many s € I. By our assumption
10 < 0. (4.11)
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Fix so € I and a subinterval J,, C I such that ug(s) = po(so) = po for all
s € Jg, and if we write p(s) = [p1(s); v2(s)], then @1(s) — ¢1(s0) € GL(m,R) for
s € Jsy \ {50} Let

U o \{s0} = M(mx(n—m),R), be defined by ¥(s) := (¢1(s)=¢1(50)) ™" (p2(s) —¢2(s0))-
Then ¢ is generic by the of genericity of ¢ (see Definition 1.1). Replacing v by
u(p(sp))v and @(s) by ¢(s) — v(so), we may assume that ¢(sg) = 0.

For any fixed s € Jy, \ {so}, it is straightforward to verify that

u(e(s)) = v (=¥ (s))u(lpr(s); 0)u'(¢(s)), where (4.12)
I
w'(Y):= L, Y | e€Zy(A) forY €e M(m x (n—m),R). (4.13)
Lim

Therefore u(¢(s))v € V~(A) implies that

u([p1(s); 0w (¥(s))v € V7 (A).
Let us denote

and

efmtIn,m

We express V' as the direct sum of common eigenspaces of A; and As:

V= @ Vo102 where Vo102 = {fveV:ia(th= ey, ag(t)v = ety for all t € R}.
1,02
(4.14)
Then because a(t) = a1 (nt)as(t), we have

VA= G v (4.15)
nd1+do=XA

For any vector v € V, let v%7% denote the projection of v onto the eigenspace
Vo2,

We also decompose V' as the direct sum of irreducible sub-representations of
A x SL(2,¢1(s)). For any such sub-representation W C V, let pw : V. — W
denote the A-equivariant projection. By the theory of finite dimensional irreducible
representations of SL(2, R) (see [8, Claim 11.4]), there exists a basis {wq, w1, ..., w,}
of W such that

ay (t)w; = T2y, for 0 < <. (4.16)

We claim that each w; is also an eigenvector for A. In fact,

a(t) = a1 ((m—+n)t/2)b(t), where b(t) = e 7 o ——— € Zu(SL(2,p1(s)),

and hence b(t) acts on W as a scalar et for some § € R. Therefore,
a(t)w; = e T2 MEn) /2400, - for 1 <4 <7 (4.17)

Since (m 4+ n)/2 > 0, if k < i then the A-weight of wy is strictly greater than the
A-weight of w;.
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Since u/(¢(s)) € Zu(A), po is the highest A-weight for v, we have that pg is also
the highest A-weight for u'(¢(s))v and
(' (1(s))v)" (A) = u'(b(s))v" (A).
Now suppose that W as above is such that py (u'(¢(s))v#°(A)) # 0. Then
pw (W' (¥(s))v* (A)) = a;w;, for some 0 <i<r, 0+#a; €R;

by (4.17) po = (r — 2i)(m +n)/2 + §. For k < i, the weight of wy, for A; is greater
than that of w;, so the A-weight of wy is greater than the A-weight of w; which
equals pg. Since the projection pyy is A-equivariant and g is the highest A-weight,
we have

PW(U/(T/J(S))U) = Zakw;ﬁ where a; € R.
k>i

We claim that r — 2i > 0. In fact, if » — 2¢ < 0, then by (4.16), pw (u/(¥(s))v) €
V~(4;). By Corollary 4.2,
V=0(A1) Z ulea(s); 0)pw (' (¥(5))v) = pw (u([a(s); O])u ((s))0).

So pw (u([p1(s); 0])u' (¥ (s))v) must have nonzero projection on Ruwy, for some k < i.
Hence

u([p1(s); 0])u' (1 (s))v

has nonzero projection V#(A) for some p > p19. Now since u/(—1(s)) € Zg(A), the
projection of u(p(s))v = v/ (—(s))u([p1(s); 0])u'(¥(s))v on V#(A) is nonzero for
1 > po. This contradicts our choice of py and proves the claim that r — 2i > 0.

This claim implies that for any (81,d2), if (u’(¢(s))v"0(A))%% # 0 then §; > 0.
Since pg = ndy + d2 < 0, we have J < 0. In other words,

{u/(()v"(A) : s € Jg, \ {s0}} C V7 (A2).
Now u/(#)(s)) and As are both contained in

{Im SL(n, R)] = SL(m + (n —m),R).

Our inductive hypothesis for (m,n — m) tells that this is impossible because 9 is
generic.
This finishes the proof. O

Let us prove Lemma 3.6.
We first prove the following statement.

Lemma 4.3. Let V be a finite dimensional representation of SL(m + n,R) and let
entIm
A= {a(t) = [ emtln} 1t e ]R} .

p: I =]a,b] = M(m x n,R)

be an analytic curve. Suppose there exists a nonzero vector v € V such that
{u(p(s))v:s eI} CV(A).

Then for all s € I, (u(p(s))v)°(A) is invariant under the unipotent subgroup

{u(h¢'(s)) : h € R}.
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Proof of Lemma 4.3. For any h € R, on the one hand,
a(tyu(p(s + e~ " h))o = (u(p(s + e T R))) O (A) + O(e M),
for some A(m,n) > 0 depending on m and n. As t — +oo,
(u((s + e~ M R))0)0(A) = (u(p(s))v)°(A), and O(e~ ™™t - 0.
Thus, as t — +o0,
a(tyu(p(s + e~ " h))o = (u(p(s))v)°(A).
On the other hand,
a(tyu(p(s +e=mHm)th))
a(tyu(he™ (MM (5))u(O(e2m ) ju (@(8))0
a(tyu(he ("M (s)a(—t)a(t)u(O(e > 1) )a(~t)a(t)u(p(s))v
= u(h¢/(s))u(O(e™ " ™h)a(t)u(p(s))v.
As t — 400, u(O(e= (MM — id, a(t)u(p(s))v — (u(w(s))v)?(A). Therefore, as
t — +o0,

a(tyu(p(s + e~ h))o = u(he'(s)) (ulp(s))0)  (A).
This shows that (u(¢(s))v)°(A) is invariant under {u(hy’(s)) : h € R}. O

Proof of Lemma 3.6. The strategy of the proof is similar to that of Lemma 2.12.

We begin with the case m = n. This case is studied in [20] but the statement
proved there is weaker than the statement here.

Fix a point sg € I and a subinterval J;, C I such that ¢(s) — ¢(so) is invertible
for all s € Jy, \ {so} and moreover, {n=((¢(s1) — ¢©(s0))~! — (p(s2) — p(s0)) 1) :
$1, 82 € Jso \{s0}} is not contained in any proper observable subalgebra of s[(2m,R).
By replacing ¢(s) by ¢(s) — ¢(s0), we may assume that ¢(sg) = 0.

In the isomorphism SL(2,R) = SL(2,¢(s)) (see Definition 2.1), [é ﬂ corre-

sponds to u(p(s)), E g] corresponds to u~ (¢~ 1(s)), and {_01 (1)} corresponds to
a(p(s)). By Corollary 4.2, we have that v, u(p(s))v € V=°(A) implies that

v=u" (=7 ()" (A).
In particular, v°(A) # 0.
Taking any s1,s2 € Js, \ {so}, we have
u” (=7 (51))0°(A) = v = u” (=7 (52)0°(A).
This shows that v9(A) is fixed by u= (¢~ 1(s1) — ¢~ 1(s2)) for all 1,82 € J5, \ {50}
By definition, v%(A) is also fixed by A. Let L denote the subgroup of H stabilizing

v9(A), and [ denote its Lie algebra. Then from the above argument we have [ is
observable and contains £ € Lie(A) (see (1.2)) and

{n7(((s1) = @(50) " = (p(52) = @(50)) ") = 51,82 € o \ {s0}}3
recall that earlier we had replaced ¢(s) by ¢(s) —¢(sp) and assumed that p(sg) =0
for notational simplicity. Because ¢ is supergeneric, in view of (1.3) we have that
L = H. Since V is an irreducible representation of H, V is trivial.

This finishes the proof for m = n.

For the general case we give the proof by an inductive argument. Suppose the
statement holds for all (m/,n) such that m’ <m, n’ <nand m’+n’ <m+n. We
want to prove the statement for (m,n).
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We choose a point sg and a subinterval J,, C I such that the following statements
hold:

1. If we write ©(s) = [p1(s); p2(s)] where ¢1(s) is the first m by m block, and
©2(s) is the rest m by n —m block, then for any s € Js, \ {so}, ¥1(s) — ¢1(s0)
is invertible.

2. The curve ¥(s) = (¢1(s)—©1(50)) "L (w2(5) —p2(s0)) is supergeneric as a curve
from Jg, \ {so} to M(m x (n —m),R).

Without loss of generality we may assume that ¢(sg) = 0 and v € V~°(A). The
notations such that v'(-), As and v*°(A) have the same meaning as in the proof of
Lemma 2.12. Using the same argument as the proof of Lemma 2.12; we can deduce
that

{/((s))v" (A) 1 s € Jo, \ {s0}} € V7(Aa).
By inductive hypothesis, we conclude that v#°(A) is fixed by the whole

I

H = { ~ SL(n,R).

SL(n, R)]
In particular, v#°(A) is fixed by As. Let the direct sum

1/ +o (A) — @ 1/ 91:02

nd1+d2=po

be as in the proof of Lemma 2.12. From the proof of Lemma 2.12 we know that any
nonzero projection (vH0(A))%%2 of vHo(A) with respect to this direct sum satisfies
01 (the eigenvalue for A;) is non-negative. Because we have 6o = 0 and nd; +3d5 < 0,
we conclude that §; = d2 = 0. This implies that po = 0. By Lemma 4.3, we have
v9(A) is invariant under {u(h¢'(so)) : h € R}. By our assumption, ¢’(so) has rank
b. By conjugating it with elements in H’, we have that u(X) fixes v°(A) for any
X with rank b. Note that the space spanned by all rank b matrices is the whole
space M(m x n,R). This shows that v°(A) is invariant under the whole U™ (A).
Since v°(A) is also invariant under A, v°(A) is invariant under the whole group H.
Since we assume that V' is an irreducible representation of H, we conclude that V'
is trivial.

This completes the proof. O

Lemma 3.6 is sufficient to prove the equidistribution result under the supergeneric

condition.
Now we consider the case n = km and the curve

p:I=]la,b] > M(m xn,R)

is generic, and possibly not supergeneric. In this case, we will prove the following

result which can be thought of as a generalization of Corollary 4.2. It will be applied

to describe the obstruction to equidistribution for generic curves as done in §5.
Let us denote

P~ (A)={heH: tlg(r)lo a(t)ha(t)™" exists in H}
= { [gé 92] € H:g; € GL(m,R), g2 € GL(n,R), X € M(n x m,R)}
=U"(A)Zy(A). (4.18)

Note that P~(A) is a maximal parabolic subgroup of H.
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Lemma 4.4. Let n = km and

w:I=][a,b] = M(m x n,R)
be an analytic generic curve. Let V be an irreducible representation of H = SL(m+
n,R) and v € V be a nonzero vector of V.. Let A denote the diagonal subgroup as
before. Suppose

{u(p(s))v:s eI} CV(A).
Then for all so € T satisfying the generic condition, there exists £(so) € P~ (A) such
that

(u((50))v)° (A) = &(s0)ulp(s0))v.

Definition 4.5. Assume n = km, then we can write ® € M(mxn,R) as [P1; Po; . . .; D]
where ®; denotes the i-th m by m block of ®. An analytic curve ¢ : I = [a,b] —
M(m x n,R) is called standard at sqg € I if there exist k points s1,...,s; € I such
that for i = 1,...,k, we have

@(si) —(s0) = [05...59i(si) — pi(s0); - .3 0],
where ©;(s;) — p;i(so) is invertible, it appears in the i-th m x m block and all other
blocks are 0.

In order to prove Lemma 4.4, we will need the following lemma.

Lemma 4.6. Assume n = km. For any analytic curve
p: I =Ja,b] - M(m x n,R)

which is generic at sg € I, there exists an element 2/ = 2'(sg) € Zy(A) depending
analytically on sg, such that the conjugated curve

¢:=2"¢:I=]lab — M(m xn,R)
is standard at so; where the action of Zy(A) on M(m x n,R) is given by (2.2).

Proof. Replacing ¢(s) by ¢(s) — ¢(so), we may assume that ¢(sg) = 0.

We will prove the statement by induction on k.

When k = 1, the statement follows from the definition of gemeric property.

Suppose the statement holds for all ¥/ < k. Then we will prove the statement
for n = km.

We write

@(s) = [p1(5); p2(8); - - - s r(8)], (4.19)

where ¢;(s) is the i-th m by m block of ¢(s). From the definition of generic property
(Definition 1.1), there exist a subinterval Js, C I such that for s € Jg, \ {so}, ©1(s)
is invertible, and the curve v : Jg, \ {0} — M(m x (n —m),R) defined by

P(s) = [P1(s);2(s); .- s r—1(s)],

where 1;(s) = 7 ' (s)@i(s) is generic.
As before, let us denote

u'((s) = I W(s) | € Zu(A)
Lim
for s € J,,. Now we fix a point s; € Js, and a subinterval Jg;, C J,, such that v
satisfies the generic condition for s; and J;,. Replacing ¢ by u/(1(s1)) - ¢, recall
(2.2), we get
©(s1) = [p1(81);0;...;0] and ¥(s1) = 0.
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Let
I
A=Sd(t) = eln=mty teR
e—mtln_m
and

H = {[Im X] X e SL(n,R)} C Zu(A).

By inductive hypothesis, there exists 2" € Zy/(A") C Zyx(A), such that 2" -9 is
standard at s1. Since 1(s1) = 0, there exist sz, 83, ..., € Js, such that
2 ah(s;) = [05. . 5hi_1(84);...50], fori=2,...,k,
where the (i — 1)-th m x m block 1;_1(s;) is invertible. Now we replace ¢ by 2 - .
Note that by definition, ¢;(s) = ¢1(s)i—1(s) for i = 2,...,k, and s € J,z,. Thus,
we have for i = 2,...,k,
@(s:) = [p1(8i); 05 . .5 0501 (i) 1i—1(s4); 055 0.

Let z; denote the following element:

L
L,
-1
21 = by (s2) I € Zu(A).
By direct calculation, we have that z1 - ¢ is standard at sg with given s1, o, ..., Sk.

This completes the proof.
O

Now we are ready to prove Lemma 4.4.

Proof of Lemma /.4. By Lemma 4.6, we may conjugate the curve by some z’'(sg) €
Zy(A), such that the conjugated curve, which we still denote by ¢, satisfies the
following: there exist
$1,82,...,8% €1,
such that, in view of the notation in (4.19),
©(8:) — @(s0) =[05...;0i(8:) — ¢i(80);0;...;0] for i = 1,2,... k.

Replacing v by u(p(so))v and ¢(s) by ¢(s) — ¢(s9), we may assume that ¢(sg) =0
and v € V~9(A). Then it suffices to show that

v = &v°(A), for some £ € P~ (A). (4.20)

For each i =1,2,...,k, let

e'l,,

A=< ai(t) = e, teER

where eI, appears in the (i + 1)-th m x m diagonal block, and the dotted entries
are all equal to 1. We denote its Lie algebra by
a; := {tA; : t € R},
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where A; :=loga;(1). Let SL(2,¢(s;)) denote the SL(2,R) copy in H containing A;
as the diagonal subgroup and {u(ry(s;)) : 7 € R} as the upper triangular unipotent
subgroup, and a;(t)u(ro(s;))a;(—t) = u(re?p(s;)).

We express the representation V' as the direct sum of common eigenspaces of
Al,AQ, .. .,Aki

V= b V(8), (4.21)
5:(61,..‘,51‘,)621C
where
V(8):={veV ath =ty foralli=1,2,...,k and t € R}.
Let w € V(§)\{0}. We claim that foralli =1,2,...,kande; = (-1,...,—-2,...,—1),

with 2 in the i-th coordinate,
n(p(s;))w € V(6 —e;), (4.22)
recall that n(p(s;)) = logu(v(s;)).
It is straight forward to check that
[Ai,n((si))] = 20(p(s:)) and [Aj,n(@(s:))] = nle(si)) for j # i.
Therefore,
0; +Dw ifj#i
Agn(p(si))w = n(o(s)) Ay + [Agn(pls)w = { 07 F 1w BT
(0; +2w if j=1.
This proves (4.22).
Let A :=loga(l), it is easy to see that A = A; + - - - + Ag. Therefore,
Vi) = P V..., ).
61+ +p=0
Fix any i = 1,..., k. Because Ay, ..., Ay normalize SL(2, ¢(s;)), we can decom-

pose V into the direct sum of irreducible representations V,, of SL(2, ¢(s;)) which
are invariant under A, ..., Ag:

V=V, (4.23)

As a standard fact on SL(2,R) representations (see [8, Claim 11.4], for example),
every V, admits a standard basis {wg, w1, ..., w;}, such that for each 1 <r <, w,
is contained in some weight space V (81, d2, - - , %), and we index the basis elements
such that a;(t)w, = e!=2"tw,; that is,

if w, € V((Sh 0o, -+ ,(5k) then §; =1 — 2r. (424)

Moreover since n(p(s;))ws is a nonzero multiple of wy_ for all 1 < s <, by (4.22)
we have

wr—; € V(6 —je;), forr—1<j<r. (4.25)
Let
TV =V,
denote the canonical projection from V' to V, with respect to (4.23), and let
q(8) : V = V(3)
denote the canonical projection from V to V(8) with respect to (4.21). Then
mp 0 q(0) = q(d) o mp. (4.26)

We call a vector & = (01, ...,0;) € Z* admissible if 6; > 0 for all i.
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Claim 4.7. For any & = (01, ...,0%) € Z*, if ¢(8)(v) # 0, then § is admissible.
Proof of Claim 4.7. For § = (61,...,0k), define

g(0) =01+ + 0 € Z.
Since v € V=(A), we have o(8) < 0. We now begin by assuming that the statement
of this claim is valid for any §" such that o(8") > o(d); note that the statement is

vacuously true if o(d) = 0 (in fact, in this case we have that § = 0).
Let 1 < ¢ < k be such that §; = min(d1,...,dx). Then

0; <o(d)/k <0, and if §; = 0 then § = 0. (4.27)

For this choice of 4, consider the decomposition (4.23) of V as V = PV, with
respect to the action of SL(2, ¢(s;)). There exists some V}, such that m,(g(d)v) # 0.
If {wo, w1, ..., w;} denotes the standard basis of V,,, then by (4.24), m,(g(d)v) is a
nonzero multiple of w, for some 0 < r <[ such that §; =1 — 2r.

If 7, (v) has a non-zero coefficient on w,_; for some 1 < j <r, then by (4.25), we
have w,_; € V(d—je;). But then ¢(6—je;)(v) # 0 and 0(d—je;) = 0(8)+j(k+1) >
o(8). By our inductive hypothesis, § — je; is admissible, and hence § is admissible.

Now we can suppose that m,(v) is contained in the span of w,,...,w;. Then

a;(t)wyy; = e(‘;i*%)twrﬂ and 0; —25<¢;, Vji=0,...,01—nr (4.28)
Therefore by (4.1) in Lemma 4.1 applied to V,, and the action of SL(2, ¢;(s;)), we
have that

AT (mp (ulepi(si))v)) = =A™ (mp(v)). (4.29)
Now mp,(u(pi(si))v) = u(pi(s;))mp(v) has a nonzero coefficient on w,_; for some
j €40,...,r} such that
ai(t)w,_j = e(5i+2j)twrij
and by (4.28) and (4.29),

0; + 27 > —0;, and hence j > —d;. (4.30)
By (4.25), wy—; € V(8 — je;). Therefore,
(6 — jei)(mp(u(wi(si))v) # 0. (4.31)

By (4.30) and (4.27),

o(d—je;)=0(0)+jk+1)>0(0)—(k+1)d; >0(6)(1—(k+1)/k) > 0. (4.32)
By our assumption, u(p;(s;))v € V=°(A4). So by (4.31), V(8 — je;) C V7°(A).
Hence o(d — je;) < 0. Therefore all terms in (4.32) are zero. Therefore o(d) = 0

and §; = 0. Therefore by (4.27), we have that § = 0, which is admissible. This
completes the proof of Claim 4.7. O

Now we get back to the proof of (4.20). For i = 0,1,...,k, let us denote
Ey = {0} and F; := {6161 +--tce;ic,...,C € 220}7
and define for any v’ € V,

v =Y q(8)(). (4.33)
d€EE;
By Claim 4.7, v = v3, and v° = ¢(0)(v) = vg. Therefore, in order to prove (4.20),
it is sufficient to show the following:

v, €U (A)vi—y, foralll <i<k. (4.34)
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To prove this, fix any 1 < ¢ < k and consider the decomposition
V=@
p

as in (4.23) into SL(2, ¢(s;))-irreducible and Ay, . .., Ag-invariant subspaces V,,. Let
mp : V. = V, denote the canonical projection with respect to this decomposition.
By (4.26) and (4.33),

mp(v'); = mp(vj), forallv’ € Vandj=0,1,... k.
Hence
Tp(vi-1) = mp((vi)i-1) = 7p(vi)i-1.
Therefore
if mp(v;) = 0 then mp(v;—1) = 0. (4.35)

Now suppose that m,(v;) # 0. Let {wo,...,w;} denote a standard basis of V,;
that is, (4.24) holds. Let 0 < r <1 be such that

7p(v;) C Span{wy, ..., wi} \ Span{w,41,...,w;}. (4.36)
In particular, m,(v;) has a nonzero projection on w,. Hence by Claim 4.7,
wy € V(cier + -+ +cje;) for some cy,...,¢; € Z>o. (4.37)
By (4.25) we have that
Wy € V(cier +---+ci1e-1 + (¢; +j)e;), forall —r <j<l—r. (4.38)
Therefore 7,(v) € Y 5cp V(8). Hence
mp(vi) = mp(v)i = 7p(v). (4.39)
By (4.38) we have

a;(t)wyq; = e*()‘”j)twrﬂ- for —r <j<Il—r,where \=cy + -+ +¢_1 + 2¢;.
(4.40)
We apply Lemma 4.1 to the SLa(¢(s;))-action on V,, and the vector m,(v;). Let
—r < j <1 —r be such that

u(p(si))mp(v;) C Span{wyyj, ..., wi} \ Span{w,yjt1,...,w}. (4.41)
Then by (4.1), (4.36) and (4.40) we get
— (A +2j) > A\ (4.42)
On the other hand by (4.39) and our basic assumption we have
ulip(5:)mp(v5) = ulip(5:))my (0) = my ulip(si))0) € VO(A).
Hence by (4.38) and (4.41) we have
0>oc(cier+--+ci1ei_1+(ci+j5)e)=A—ci+5)(—=(k+1)). (4.43)
Now combining (4.42) and (4.43), and we get
G <A+j<0.

On the other hand, by (4.37), ¢; > 0. Therefore ¢; = 0 and j = —\. Since ¢; = 0,
by (4.38) we have that the projection of m,(v;) on the line Rw, equals

Tp(vi)i—1 = mp((vi)i—1) = mp(vi-1).
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And since j = —\, we have equality in (4.42), which corresponds to equality in (4.1)
of Lemma 4.1. Therefore (4.3) holds and in view of Definition 2.1, we get

ﬂp(vi) = u’(O, ey 7§01‘(Si)71, ey O)Wp(’l)i_l) = ﬂp(uf((), ceey 7§0i(5i)71, PN ,O)’Ui_l),
(4.44)
where
oI -
0 I,
U 07'~'7_i8i_17"~70 = : _ h ESLZ, s$i)NU™(A).
(O mp(s) ™ e 0= | 5 (2. pls)NU~(4)
i 0 I, |
Therefore, due to (4.35), (4.44) holds for all p, and hence (4.34) holds.
This completes the proof. O
Remark 4.8.

1. Though our proof works for the special case n = km, we conjecture that the
conclusion of Lemma 4.4 should hold for general (m,n).

2. From the proof we can see, if we assume ¢(sg) = 0 and v € V~(A), then
2/ (s0) - v9(A) is fixed by

etI,,
et21,,
B := b(tl,tg,...,tk):: . titto+ -+t =0

et*I,,

5. OBSTRUCTION TO EQUIDISTRIBUTION. We will study the obstruc-
tion of equidistribution of the expanding curves {a(t)u(o(I))x : t > 0} as t — o0
and describe limit measures if equidistribution fails.

Our present technique is insufficient to handle non-generic curves. In this paper,
we focus on generic curves.

If m and n are co-prime, the generic condition is the same as the supergeneric
condition, so there is nothing to discuss in this case.

Therefore we consider the case (m,n) > 1 and the analytic curve

w:I=][a,b] = M(m x n,R)

is generic but not supergeneric. However, for now, we could only handle the case
n = km where k > 1 is some positive integer (see Example A.8 for an example of
generic curve which is not supergeneric). To handle general (m,n), we need some
general version of Lemma 4.4. With these assumptions, we want to describe the
obstruction of equidistribution of {a(t)u(o(I))x : t > 0} as t — oo.

In this section, we always assume that n = km and the analytic curve

¢:I=1la,b - M(m xn,R)
is generic.

Theorem 5.1 (See [19, Proposition 4.9]). Let x = gI' be as in Theorem 1.4.
Suppose the expanding curves {a(t)u(p(s))z : t > 0} do not tend to be equidistributed
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along some subsequence t; — +0o. By Proposition 3.5, there exist L € L and v € T
such that

u(p(s)gypr € V7O(A),

for all s € I. Then there exist h € H and some Lie subgroup F of G containing A
such that Fhgl is closed in G /T, h='Fh fizes v = gypr, and

{u(p(s)) : s €I} C P~(A)Fh.

Recall that P~ (A) = Zy(A)U~(A) denotes the mazimal parabolic subgroup of H
associated with A.

Proof. Let so € I such that every point in a neighborhood J of s satisfies the
generic condition. By Lemma 4.4, for every s € I, we have that

Jim a(t)u(p(s)o = (u(p(s))0)*(4) = E(s)ulp(s)v.

for some £(s) € P(A). Let pg = (u(¢(s0))v)°(A). Then py = &(so)u(p(sg))v. This
implies that

lim a(t)u(p(s) — ¢(50))€(s0) " po = &(s)ulp(s) — (50))€(s0)  po.

t—+oo

Let Fy := N4 (L), then F; is the stabilizer of

pr = (97) v = (97) " tu(—¢(s0))€(s0) " po.
Since the orbit I'py, is discrete, we have that I'F is closed in G. Let h := &(so)u(@(so)) €
H and
F = (hgy)Fi(hgy)~".

It is easy to see that F' is the stabilizer of pg. Since pq is invariant under A, we have
that A C F. Secondly, Fhgl' = hgyE1T is closed. Finally, it is easy to check that
h~'Fh is the stabilizer of v = gypr.

Since Gpy is open in its closure, the map gF — gpg : G/F — Gpy is a homeo-
morphism. Thus we have that in G/F,

Jlim_a(t)u(p(s) = @(s0))(s0) " F = E(s)uliols) — pls0))é(s0) TF. (5.1)

Since the Lie algebra of F is {Ad(a(t)) : ¢ € R}-invariant, there exists an
{Ad(a(t)) : t € R}-invariant subspace W of the Lie algebra of H complemen-
tary to the Lie algebra of F. We decompose W = S° @ W~ @ W into the fixed
point space, the contracting subspace and the expanding subspace for the action of
Ad(a(t)) as t — 4o00. Then for all s € J near sy we have,

E(s)u((s) — ¢(s0))§(s0) "' F = exp(w’(s)) exp(w™(s)) exp(w™ (s))F,  (5.2)
for all s € J near sq, where w’ € W°, and w* € W*. Combining (5.1) and (5.2), we
get that w(s) = 0 for all s near s9. Thus we get &(s)u(p(s) — ¢(s0))&(s0) LF =
exp(w®(s)) exp(w™(s))F. Let n(s) := exp(w’(s))exp(w(s)). It is easy to see
that n(s) € P~(A). Hence for all s € J near sg, we have u(e(s) — ¢(so)) €
£(s)In(s)F&(sg). Thus, we have

u(p(s)) € €(s)"n(s)Fh for all s € J near so.
Therefore by the analyticity of ¢, we get that
{u(p(s)):s €I} C P (A)FhNUT(A) =P (A)(FNH)hNUT(A).

This completes the proof. O
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Remark 5.2. By the above theorem, there exist analytic curves

E:T1-U (A
and

T — Zy(A)
such that u(¢(s))gl C £ (s)¢°(s)Fhgl for all s € I. Then as t — 0o, the distance
between a(t)u(p(s))gl and £°(s) Fhgl tends to zero, since Fhgl is a proper closed
{a(t)}-invariant subset of G/T". Thus every limit measure of the sequence {p; : t >
0} as t — +oo is a probability measure whose support is contained in £°(I)Fhgl .

Replacing F' by a smaller subgroup containing A, we can actually ensure that Fhgl’
admits a finite F-invariant measure.

We conjecture that in the general case of (m,n) > 1, if ¢ is generic, then
Lemma 4.4, Theorem 5.1, and Remark 5.2 should hold.

Appendix A. More discussion and examples on the generic and super-
generic condtions. Let us discuss the generic condition and the supergeneric
condition in detail so that we can understand them better.

Proposition A.1. If m and n are coprime, then the generic condition is the same
as the supergeneric condition in M(m x n,R).

Proof. Let us prove it by induction on m + n.

When m = n = 1, it is easy to see that the generic condition and the supergeneric
condition are both equivalent to the condition that ¢ : I — M(1 x 1,R) = R is not
constant.

Suppose that the statement holds for any coprime (m’,n’) with m’+n’ < m-+n.
We will prove the statement for (m,n). Without loss of generality, let us assume
that m < n.

Given an analytic curve ¢ : I — M(m x n,R), let us check if ¢ is generic or
supergeneric. We first reduce the curve to another curve ¢ : Js;, — M(m x (n —
m), R). In this process, there is no difference between genericity and supergenericity;
that is, if we can not construct such 1, then we claim that ¢ is neither generic
nor supergeneric, otherwise, we may continue. If we get 1, then by our inductive
hypothesis, i is generic if and only if it is supergeneric. By the inductive definition
of generic condition and supergeneric condition, we conclude that ¢ is generic if
and only if it is supergeneric.

This completes the proof. O

Let us consider the case where m =1 or n = 1.

Proposition A.2. If m =1 or n = 1, the generic condition (which is the same
as the supergeneric condition) is equivalent to the condition that the curve is not
contained in any proper affine subspace.

Proof. We will only prove the statement for m = 1. The proof for n = 1 is the
same.

We will prove the statement by induction on n.

For n = 1, the statement is obvious.

Suppose that the statement holds for n — 1. Let us prove it for n. Given an
analytic curve

¢: I —M(1xn,R)=R",
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let us check if it is generic. Let us write

©(s) = (p1(8), p2(8);s - - -, n(8)).

Without loss of generality, let us assume that ¢(sg) = 0 for some sg € I. Then if
p1(s) = 0 for every s € I, we claim that ¢ is not generic. In this case we have that
 is contained in the subspace 21 = 0. If not, then there exists a subinterval J;, C I
such that ¢1(s) — 1(s0) = @1(s) # 0 for any s € Jg,. Let us define v : J;, — R"7!
as follows:

U(s) = (91 ()p2(5), -, 01 (8)n(s))-

By our inductive hypothesis, ¥(s) is not generic if and only if it is contained in
some proper affine subspace

a1+ asx1+ -+ apnrn_1 =0.
This is equivalent to
a1+ azpy H(s)pa(s) + - + anpy ' (s)pn(s) = 0 for any s € Ji,,
which is equivalent to that {¢(s) : s € Js, } is contained in the proper affine subspace
a1T1 + a2 + - - - + apxTy = 0.

Since ¢ is analytic, this is equivalent to that {((s) : s € I} is contained in a proper
affine subspace.
This completes the proof. O

Remark A.3. In [18], the case m = 1 is studied. It is proved that the obstruction to
equidistribution is that the curve is contained in a proper affine subspace of R". The
above proposition shows that the main result in [18] is a special case of Theorem
1.4.

First we construct supergeneric curves for m = n.
It is easy to see that for any analytic curve

¢ : I — M(mxn,R)
and any X € M(mxn,R), ¢(s) is supergeneric if and only if ¢(s)+X is supergeneric.
Therefore, we will only consider analytic curves passing through 0 € M(m x n,R).
Example A.4.
1. For m = n = 2, the analytic curve ¢ : I = [—1,1] — M(2 x 2,R) defined by

is supergeneric.
2. For m = n = 3, the analytic curve ¢ : I = [-1,1] — M(3 x 3,R) defined by
st6 — 17 0 —s8 4+
o(s) = 0 —slt 4512 57— 68
g3 gl g0 _ 1 0
is supergeneric.

Proof.
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. Let s9 = 0, then ¢(sg) = 0. It is easy to check that

det(p(s) = ¢(s0)) = det p(s)

is not always zero and

U(s) = (p(s) = (0)) ™ = 07 (s)

is the following:

—S S

w(s) = Cerote) ™ | * .

It is not contained in any proper affine subspace of M(2 x 2, R). This proves
that ¢(s) is supergeneric.

. It is straightforward to check that det p(s) is not always zero and ¥(s) =

(p(s) — (0))~1 = p~1(s) is the following:

S S S

U(s) = (detp(s)) ™" |s* s° s
& gl0 gl

It is not contained in any proper affine subspace of M(3 x 3,R). This shows
that ¢(s) is supergeneric.

O

For m # n, it is also easy to construct supergeneric curves.

Example A.5. For m =2 and n = 3, the curve ¢ : [—1,1] — M(2 x 3,R) defined

by

is supergeneric.

Proof. Let us write ¢(s) = [p1(8); v2(s)] where

and

Let so = 0, then ¢(sg) = 0. The curve

¥(s) = (p1(s) — @1(50)) " (p2(s) — @2(50))

is the following;:

s6 —s5 |s

Y(s) = S [82} .

It is easy to see that v(s) is not contained in any proper affine subspace of RZ.
Therefore, ¥(s) is supergeneric and hence ¢(s) is supergeneric. O

For supergeneric curves, we have the following statement.
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Proposition A.6. For anym > 1 andn > 1, let us equip the set of analytic curves
in M(m xn,R) with the uniform norm ||+ || ; namely, for 1,92 : I — M(mxn,R),

1 — p2lloo = Hslgf{lwl(S) —p2(s)|}-

Then the set of supergeneric curves in M(m x n,R) is dense and open in the set of
analytic curves in M(m x n,R).

Proof. Let us prove the statement by induction on m + n.

We first prove the statement for m = n. We will show the following stronger
statement: the set of analytic curves satisfying the condition given in [20], denoted
by G, is open and dense.

We first claim that G is open. In fact, given an analytic curve ¢ : I — M(m X
m,R) in G, we have a point so € I and a subinterval Js, C I, such that ¢(s) —¢(so)
is invertible for any s € J,,, and the curve

P(s) = ((s) — @(s0) " 1 s € Jg,

is not contained in any proper affine subspace of M(m x m,R). The invertibility is
apparently an open condition. To see that the condition t(s) not contained in any
proper affine subspace is also open, we note that this condition is equivalent to the
condition that the derivatives of 1(s) at some s; € J,, span the whole space. This
condition is stable under perturbation. This shows that G is open.

Now let us prove that G is dense. Suppose not, then there exists an open subset
N of the collection of analytic curves in M(m X m,R) such that every ¢ € A is
not in G. We first claim that there exists ¢ € A which is generic. In fact, ¢ is not
generic if and only if for any sg € I, p(s) — ¢(sp) is contained in the subvariety of
M(m x m,R) defined by det(X) = 0. Therefore, if ¢ € N is not generic, we can
easily perturb it to make it generic. This proves the claim. By replacing N with a
smaller open set, we may assume that every ¢ € N is generic. For ¢ € N, let us fix
a point so € I and a subinterval Js, C I such that ¢(s) — ¢(sp) is invertible for any
s € Js,. By our assumption, we have that 1(s) := (p(s) — ¢(sg)) ! is contained
in a proper affine subspace of M(m x m,R). Then we have that for any s € J,,
the derivatives of ¢ at s € J,, do not span the whole space. Let V(¢, s) denote the
linear span of the derivatives of ¢ at s € Js,. Let us fix s; € Js,. We may choose
¢ € N with maximal V(p,s1). Our plan is to find ¢ : T — M(m x m,R) close
to ¢ such that V(, s1) is larger than V(@, s1), which leads to a contradiction. By
our assumption, V (i, s1) is not the whole space, then there exists i < m? such that
V(p, s1) is spanned by

{1/1,(81),’1/1(2)(81), s 7¢(i71) (Sl)}

Let us write @(s) = ¢(s) + en(s) where n : I — M(m x m,R) is an analytic map
and € > 0 is a small parameter. We may choose € > 0 small enough to make sure
that ¢ € N. Without loss of generality, we may assume that ¢(sg) = n(so) = 0.
Let us consider

Then we have that

B(s) = ¢\(s)
= (p(s) +en(s)) "
= (L +en(s)p='(s)) 1(8 )

= o 1s)I, +en(s)pt(s)) L
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Because
(L + en(s)e™(5)) ! =L — en(s)p ™' (s) + O(?),
we have that

e7l(s) —ep ™ (s)n(s)p ™ (s) + O(e?)

U(s) —epH(s)n(s)p™ " (s) + O(e?).

By ignoring the error term O(e?), we can see that V(, s1) is larger than V(ip, s1)
if the subspace spanned by derivatives of

F(s) = 0(s) —ep™ (s)n(s)¢ ™ (s)
at s1 is larger than V(yp, s1). Let n(s) = ¢(s)€(s)¢(s) where
&: 1 — M(m xm,R)

¥(s)

is an analytic map satisfying that €@ (s;) & V(y,s1) and €9 (s;) = 0 for any j # i.
It is easy to find such £(s). In fact, a polynomial map with appropriate coefficients
will work. Then we have that

f(s) = (s) = e€(s)-
For1<j<i-1,
FO(s1) = 9 (s1) — e€9) (s1) = 19 (7).
For j = i, we have that

FO(s1) =99 (s1) — €W (1) & Vg, 1).
This implies that the space spanned by {fU)(s1) : 1 < j < i} is larger than V(gp, s1).
By our previous discussion, this proves that G is a dense set, and hence finishes the
proof for m = n.
Suppose the statement holds for any (m’,n’) with m’+n’ < m+n. We will prove
the statement for (m,n). Without loss of generality, let us assume that m < n.
Given an analytic curve ¢ : I — M(m X n,R), let us write

p(s) = [p1(s); pa(s)]
where ¢1(s) denotes the first m by m block and ¢s(s) denotes the rest m by n —m
block.
Let us first prove that the set of supergeneric curves is open.
Given a supergeneric curve ¢ = [p1;92] : I — M(m X n,R), we have a point
so € I and a subinterval J;, C I such that ¢1(s) — ¢1(sp) is invertible for any
s € Js, and

¥(s) = (p1(s) = ¥1(50)) " (pa(s) — w2(s0)), 58 € T,
is supergeneric. By our argument in the proof of the case m = n, we have that for
any
Qb = [@1;@2] I — M(m X n,R)

close enough to ¢, @1(s) — @1(so) is invertible for any s € Js,. Let us denote

P(s) = (P1(5) — @1(50)) " (P2(5) — P2(50)) : 5 € S
It is easy to see that 1; is close to ¢ if ¢ is close to . By our inductive hypothesis,
we have that 1 is supergeneric if 1 is close to ¥. This shows that ¢ is supergeneric
for any ¢ close enough to ¢.
Let us prove that the set of supergeneric curves is dense. Suppose not, then there
exists an open subset N of the set of analytic curves such that any ¢ = [p1;pa] € N
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is not supergeneric. By the same reason as in the proof of the case m = n, we may
assume that there exists a point so € I and a subinterval Js, C I such that for any
© = [p1502] € N and any s € Js,, v1(s) — ¢1(S0) is invertible. By our inductive
hypothesis, for any open neighborhood N7 of ¥(s) := (¢1(s) — p1(s0)) " (p2(s) —
©a(s0)), there exists a supergeneric curve of the form v (s) + en(s) € N’. Let us
choose N’ small enough such that

P(s) = [p1(s); p2(s) + €(p1(s) — pr(s0))n(s)] € N.
It is easy to check that

$(s) == ($1(s) — P1(s0)) " (@2(s) — Pa(s0))
is equal to ¥ (s) + en(s). This shows that @ is supergeneric.
This completes the proof. O

Remark A.7. In the argument above, by replacing “analytic” with “polynomial”,
we can also show that for any polynomial curve

w: I — M(mxm,R),
there are polynomial supergeneric curves arbitrarily close to .

In the next example, we will see that the generic condition is not the same as
the supergeneric condition.

Example A.8. Let m = n = 2. The analytic curve ¢ : [-1,1] — M(2 x 2,R)
defined by

is generic but not supergeneric.

Proof. Tt is easy to see that ¢ is generic because ¢(s) = ¢(s) — ¢(0) is invertible
for any s € [1/4,1/2].
Let us prove that ¢ is not supergeneric. In fact, for any so € [—1,1], we have

that
2

2
s—8) S°—s
¢(s) = ¢(s0) = Lz — 82 s— 800:| ‘

Then (s) := (¢(s) — ¢(s0)) ! is given as follows:

_ 1 s—sy s§—s*
W) = (s —s0)2 — (s2 — s3)2 L% —-s2 s—5p

It it easy to see that v is well defined in some subinterval Js, of I. Moreover,
for any s1,$2 € Js,, we have that ¥(s1) — ¢(s2) is contained in the subspace S of
M(2 x 2,R) defined as follows:

T1,1 T1,2 .
S = S M(2 X Q,R) 1T = X22,T1,2 = T21 (-
2,1 T22

Recall that
(92 = |:12 I :| S 5[(4,R)
—la

is defined in (1.2). Let us define the Lie subalgebra § of sl(4,R) as follows. Let

11
By o= [1 1}
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and

For i = 1,2, let us define

X; = [0 0} € sl(4,R),

Y, = {0' 0} € sl(4,R),
and

H;:=[X,Y;] = [E } € sl(4,R).

_E,
It is easy to check that for ¢ = 1,2, {X;,Y;, H;} generate a Lie subalgebra, denoted
by b;, isomorphic to sl(2,R). Moreover, for any L; € {X;,Y;,H;} and Lo €
{Xs,Ys, Ho}, we have that [Lq,Ls] = 0. This implies that h; and bho generate
a Lie subalgebra isomorphic to s[(2,R) x sl(2,R). Let us define h to be this Lie
subalgebra. § is an observable Lie subalgebra since it is semisimple.

It is easy to see that & and n™(S) are contained in h. This shows that ¢(s) is
not supergeneric. O

It is worth explaining the condition given in [2] and its relation to our generic
condition.

Let us denote M(s) := [In;0(s)] € M(m x (m + n),R). Given a subspace
W C R™™ and 0 < r < m, we define the pencil Py, to be

Pwr ={M € M(m x (m+n),R) : dim MW = r}.

fo<r< %, then we call Py, a constraining pencil. In [2], the following
theorem is proved: if a submanifold is not contained in any constraining pencil, then
the submanifold is extremal. In our case, it says that if the curve {M(s) : s € I}
is not contained in any constraining pencil Py, then the curve is extremal. It is
easy to see that if W is a rational subspace, then the constraining pencil Py, is

not extremal. So this condition is considered almost optimal.

Proposition A.9. Suppose that the analytic curve ¢ : I = [a,b] = M(m x n,R)
is generic, then the curve {M(s) = [Ln;¢(s)] : s € I} is not contained in any
constraining pencil Py,.

Proof. Without loss of generality, we may assume that every point in I satisfies the
generic condition.

We will prove the statement by induction on (m,n). Without loss of generality,
we may assume that m < n.

We first prove the statement holds for (n,n). For contradiction, suppose that
there exists some subspace W and 0 < r < w such that

M(S) = [In; 90(8)] € PW,T fOI‘ all S &€ I.

This implies that KerM(s) N W > W for all s € I. Then for any s1,s9 € I,
the dimension of KerM (s;) N KerM (sg) N W is greater than 0, since the sum of
dim(KerM (s1) N W) and dim(KerM (s2) N W) is greater than dim W. It is easy to
see that
KerM(s) = {(—¢(s)w,w) : w € R"}.
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Therefore, there exist wy, ws € R™\{0} such that (—p(s1)wy, w1) = (—p(s2)ws, ws).
This implies w1 = wo and ¢(s1)w; = p(s2)wi. Therefore (p(s1) — p(s2))w; = 0.
But this is impossible since wy # 0 and ¢(s1) — ¢(s2) is invertible. This contradic-
tion shows the statement for (n,n).

Suppose the statement holds for all (m/,n’) such that

m <m,n <nandm' +n' <m+n,

we want to prove the statement for (m,n). Suppose not, then the curve {M(s) =
[Ln;@(s)] = s € I} is contained in some pencil Py, where r < % Let us fix
some sy € I and denote
Wo = KerM (so) N W.
Then from our assumption we have that dim Wy = dim W —r. For any s € I, since
dim(KerM(s) "N W) = dim W —r,
we have that
dim(KerM(s) N Wp) = dim(KerM (s) NKerM(so) N W)

> 2(dimW —r) —dimW = dim W — 2r = dim Wy — r.
Therefore, dim M (s)Wy < r for all s € I.

We write any w € W C R™™™ as (wq,ws) where w; € R™ and wy € R™. Since

Wy = KerM (so) N W,

every (wi,ws) € Wy satisfies that w; = —¢(sg)ws. By identifying (—¢(sg)ws, ws)
with wy € R™, we may consider Wy as a subspace of R”. By direct calculation, we
have that under this identification, M(s) : Wy — R™ is defined as follows:

M(s):w e Wy (¢(s) — p(so))w € R™.

Following our previous notation, we may write p(s) = [p1(s); 2(s)] where ¢1(s)
denotes the first m by m block of ¢(s) and @a(s) denotes the rest m by n —m
block. By our assumption, ¢1(s) — ¢1(sg) is invertible for s inside some subinterval
Jso C I. Accordingly we may write w € Wy C R™ as (w3, wy) where ws € R™ and
wy € R"™™_ For s € Jg,, let us denote

S0

U(s) = (1(s) = 1(s0)) " (2(s) = pa(s0)) € M(m x (n —m),R)
and N(s) := [In;9(s)] € M(m x n,R). By our assumption, ¢ : J;, — M(m x (n —
m),R) is generic. Then for w = (w3, w4) € Wy C R™,
M(s)w = M(s)(ws,wy)

(1(s) — p1(s0))ws + (w2(s) — pa(s0))wa

= (p1(s) = 1(s0))(ws + ¢p(s)wa)

= (p1(s) = 91(s0))N(s) (w3, wa).
Since ¢1(s) —1(so) is invertible, we have that dim M (s)Wy = dim N(s)Wy. There-
fore,

dim N(s)Wp < r, for all s € J,.
This implies that there exists some ' < r and some subinterval J/ » C Js, such that
dim N (s)Wo = 1" for all s € J,,

ie.,
N(s) € Pw,,~ forall s € J, .
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But this contradicts our inductive assumption for case (m,n —m). In fact, Wy C
Rm+(n—m)

N(s) = [Lm;1(s)]
where the curve ¥(s) € M(m x (n —m),R) is generic. Thus to apply the inductive
assumption for (m,n —m), it suffices to check that ' < %. Since r’ < r, we

m dim Wy
n

only need to show that r < . The inequality is equivalent to

nr < mdim Wy = m(dim W —r).
It is straightforward to check that it is the same as
mdim W
m+mn
which is our assumption. This allows us to apply the inductive assumption and

conclude the contradiction.
This completes the proof. O

r <

Therefore the generic condition implies the pencil condition given in [2].
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