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Abstract. In this paper, we study an analytic curve ϕ : I = [a, b]→ M(m×
n,R) in the space of m by n real matrices, and show that if ϕ satisfies certain

geometric condition, then for almost every point on the curve, the Diophantine

approximation given by Dirichlet’s Theorem can not be improved. To do this,
we embed the curve into a homogeneous space G/Γ, and prove that under the

action of some expanding diagonal subgroup A = {a(t) : t ∈ R}, the translates

of the curve tend to be equidistributed in G/Γ, as t → +∞. The proof relies
on the linearization technique and representation theory.

1. INTRODUCTION.

1.1. Diophantine approximation for matrices. In 1842, Dirichlet proved the
following result on simultaneous approximation of a matrix of real numbers by
integral vectors: Given two positive integers m and n, a matrix Φ ∈ M(m × n,R),
and any N > 0, there exist integral vectors p ∈ Zn \ {0} and q ∈ Zm such that

‖p‖ ≤ Nm and ‖Φp− q‖ ≤ N−n, (1.1)

where ‖·‖ denotes the supremum norm; that is, ‖x‖ := max1≤i≤k|xi| for x =
(x1, x2, . . . , xk) ∈ Rk.

Now we consider the following finer question: for a particular m by n matrix Φ,
could we improve Dirichlet’s Theorem? By improving Dirichlet’s Theorem, we mean
that there exists a constant 0 < µ < 1, such that for all large N > 0, there exists
nonzero integer vector p ∈ Zn with ‖p‖ ≤ µNm, and integer vector q ∈ Zm such
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that ‖Φp−q‖ ≤ µN−n. If such constant µ exists, then we say Φ is DTµ-improvable.
If Φ is DTµ-improvable for some 0 < µ < 1, then we say Φ is DT -improvable (here
DT stands for Dirichlet’s Theorem).

This problem was first studied by Davenport and Schmidt in [7], in which they
proved that almost every matrix Φ ∈ M(m × n,R) is not DT -improvable. In [7],
they also proved the following result. For m = 1 and n = 2, M(1× 2,R) = R2, one
considers the curve φ(s) = (s, s2) in R2. Then for almost every s ∈ R with respect
to the Lebesgue measure on R, φ(s) is not DT1/4 improvable. This result was

generalized by Baker in [3]: for any smooth curve in R2 satisfying some curvature
condition, almost every point on the curve is not DTµ improvable for some 0 <
µ < 1 depending on the curve. Bugeaud [4] generalized the result of Davenport
and Schmidt in the following sense: for m = 1, and general n, almost every point
on the curve ϕ(s) = (s, s2, . . . , sn) is not DTµ-improvable for some small constant
0 < µ < 1. Their proofs are based on the technique of regular systems introduced
in [7].

Recently, based on an observation of Dani [5], as well as Kleinbock and Margulis
[11], Kleinbock and Weiss [10] studied this Diophantine approximation problem in
the language of homogeneous dynamics, and proved the following result: for m = 1
and arbitrary n, if an analytic curve in M(1 × n,R) ∼= Rn is not contained in any
proper affine subspace, then almost every point on the curve is not DTµ-improvable
for some small constant 0 < µ < 1 depending on the curve. Based on the same
correspondence, Nimish Shah [18] proved the following stronger result: for m = 1
and general n, if an analytic curve ϕ : I = [a, b]→ Rn is not contained in a proper
affine subspace, then almost every point on the curve is not DT -improvable. For
m = n, Lei Yang [20] provided a geometric condition and proved that if an analytic
curve ϕ : I = [a, b] → M(n × n,R) satisfies the condition, then almost every point
on ϕ is not DT -improvable. The geometric condition given there provides some
hint on solving the problem for general (m,n), and will be discussed in detail later.

The purpose of this paper is to give a geometric condition for each (m,n), and
show that if an analytic curve

ϕ : I = [a, b]→ M(m× n,R)

satisfies the condition, then almost every point on ϕ is not DT -improvable.
The geometric conditions called generic condition and supergeneric condition are

defined as follows:

Definition 1.1. For any m and n, let

ϕ : I = [a, b]→ M(m× n,R)

denote an analytic curve.
For m = n, we say ϕ is generic at s0 ∈ I if there exists a subinterval Js0 ⊂ I

such that for any s ∈ Js0 \ {s0}, ϕ(s)− ϕ(s0) is invertible.
In order to define supergeneric condition, we need additional notation.
We consider the following two embeddings from M(m×m,R) to the Lie algebra

sl(2m,R) of SL(2m,R):

n+ : X ∈ M(m×m,R) 7→
[
0 X

0

]
∈ sl(2m,R),

and

n− : X ∈ M(m×m,R) 7→
[

0
X 0

]
∈ sl(2m,R).
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Let

Em :=

[
Im

−Im

]
∈ sl(2m,R). (1.2)

If X ∈ M(m ×m,R) is invertible, then the triple {n+(X), Em, n−(X−1)} forms a
standard basis of a copy of sl(2,R).

A Lie subgroup L of H = SL(2m,R) is called observable if there exists a finite
dimensional linear representation V of H and a nonzero vector v ∈ V such that the
subgroup of H stabilizing v is equal to L. A Lie subalgebra l is called an observable
Lie subalgebra of sl(2m,R), if it is the Lie algebra of some observable Lie subgroup
L ⊂ H.

Further we are interested in an observable subalgebra l containing Em. Let

L± = {X ∈M(m×m,R) : n±(X) ∈ l}.

If X ∈ L± is invertible, then n±(X)v = 0 and Emv = 0. Therefore by the basic
property of sl2-triples, we get n∓(X−1)v = 0. Therefore X−1 ∈ L∓. In particular,
if L− = M(m×m,R), then l = sl(2m,R).

For the case of m = n, the curve ϕ is called supergeneric at s0 ∈ I if it is generic
at s0 (with subinterval Js0 ⊂ I), and for any proper observable subalgebra l of
sl(2m,R) containing Em, we have

{(ϕ(s1)− ϕ(s0))−1 − (ϕ(s2)− ϕ(s0))−1) : s1, s2 ∈ Js0 \ {s0}} 6⊂ L−. (1.3)

When m 6= n, we will define what it means to say that ϕ is generic (supergeneric)
at s0 ∈ I by induction on m+ n as follows:

For m < n, we express ϕ(s) = [ϕ1(s);ϕ2(s)], where ϕ1(s) is the first m by m
block, and ϕ2(s) is the rest m by n−m block. We say ϕ is generic (supergeneric)
at s0 ∈ I, if there exists a subinterval Js0 ⊂ I such that for any s ∈ Js0 \ {s0},
ϕ1(s)−ϕ1(s0) is invertible; and if we define ψ : Js0 \{s0} → M(m× (n−m),R), by

ψ(s) := (ϕ1(s)− ϕ1(s0))−1(ϕ2(s)− ϕ2(s0))

then ψ is generic (supergeneric) at some s1 ∈ Js0 \ {s0}.
For m > n, ϕ is called generic (supergeneric) at s0 ∈ I if its transpose

ϕT : I = [a, b]→ M(n×m,R)

is generic (supergeneric) at s0.
We say that ϕ is generic (supergeneric) or satisfies generic (supergeneric) con-

dition, if ϕ is generic (supergeneric) at some s0 ∈ I. Since ϕ is analytic, if it is
generic (supergeneric) at one point of I then it will be generic (supergeneric) at all
but finitely many points of I.

Remark 1.2. We will discuss the generic condition and the supergeneric condition
in detail in Appendix A. Here we list several important statements.

1. If m and n are coprime, then the generic condition is the same as the super-
generic condition (see Proposition A.1).

2. If m = 1 or n = 1, the generic condition (which is the same as the supergeneric
condition) is equivalent to the condition that the curve is not contained in any
proper affine subspace (see Proposition A.2).

3



3. In [20], it is proved that for m = n, if there exists s0 ∈ I and a subinterval
Js0 ⊂ I such that the derivative ϕ′(s0) is invertible, ϕ(s)−ϕ(s0) is invertible
for any s ∈ Js0 \ {s0}, and

{(ϕ(s)− ϕ(s0))−1 : s ∈ Js0 \ {s0}}

is not contained in any proper affine subspace of M(m ×m,R), then almost
every point on the curve is not DT -improvable. Clearly this condition implies
the supergeneric condition.

4. For any m and n, the set of supergeneric curves in M(m × n,R) is open and
dense in the set of analytic curves in M(m× n,R) (see Proposition A.6).

In this paper we will prove the following result:

Theorem 1.3. For any m and n, if an analytic curve

ϕ : I = [a, b]→ M(m× n,R)

is supergeneric, then almost every point on ϕ is not DT -improvable. If (m,n) = 1,
then the same result holds for generic analytic curves.

1.2. Dirichlet’s approximation and homogeneous dynamics. LetG = SL(m+
n,R), and let Γ = SL(m + n,Z). The homogeneous space G/Γ can be identified
with the space of unimodular lattices of Rm+n. Every point [g] = gΓ corresponds
to the unimodular lattice gZm+n. Let 0 < µ < 1, let Bµ denote the open sup-norm
ball of radius µ, and

Kµ = {Λ ∈ G/Γ : Λ ∩Bµ = {0}}.

Then Kµ contains an open neighborhood of Zm+n in G/Γ and by Mahler’s criterion
Kµ is compact. So µG(Kµ) > 0, where µG is the G-invariant probability measure
on G/Γ.

Define the diagonal subgroup A = {a(t) : t ∈ R} and the embedding u : M(m×
n,R)→ G by

a(t) :=

[
entIm

e−mtIn

]
and Φ 7→ u(Φ) =

[
Im Φ

In

]
. (1.4)

Suppose Φ ∈ M(m × n,R) is DTµ-improvable. Then by (1.1), for each large
N > 0, there exist p ∈ Zn \{0} and q ∈ Zm such that ‖p‖ ≤ µNm and ‖Φp−q‖ ≤
µN−n. Then

a(logN)u(Φ)(−q,p) =

[
en logN (−q + Φp)

e−m logNp

]
∈ Bµ,

and hence a(logN)u(Φ)Zm+n 6∈ Kµ. Thus

E := {s ∈ I : ϕ(s) is DTµ-improvable} = {s ∈ I : a(logN)u(ϕ(s))[e] 6∈ Kµ for all large N}.

Fix N0 ∈ N, and let

EN0 = {s ∈ I : a(logN)u(ϕ(s))[e] 6∈ Kµ for all N ≥ N0}.

Suppose that |EN0
| > 0, where |·| denotes the Lebesgue measure. By Lebesgue

density theorem, we can pick an interval J of I such that

|EN0
∩ J |/|J | ≥ 1− µG(Kµ)/2. (1.5)

Suppose we can proved the following:
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1.2.1. Claim. The expanding curve a(t)u(ϕ(J))[e] gets equidistributed in G/Γ as
t→ +∞. In particular, for all large N ,

1

|J |
|{s ∈ J : a(logN)u(ϕ(s))[e] ∈ Kµ}| > µG(Kµ)/2.

Then by the definition of EN0 we conclude that

|EN0
∩ J |/|J | < 1− µG(Kµ)/2,

which contradicts the choice of J as in (1.5). This proves that |EN0
| = 0 for all

N0 ∈ N. Hence |E| = 0; that is, ϕ(s) is not DTµ-improvable for almost every s ∈ I.

1.3. Equidistribution of expanding curves in homogeneous spaces. It turns
out that the equidistribution result described in the previous section holds in a much
more general setting. In fact, we will prove the following result:

Theorem 1.4. Let G be a Lie group containing H = SL(m + n,R), and Γ < G
be a lattice of G. Let µG denote the unique G-invariant probability measure on the
homogeneous space G/Γ. Take x = gΓ ∈ G/Γ such that its H-orbit Hx is dense in
G/Γ. Let us fix the diagonal group

A =

{
a(t) =

[
entIm

e−mtIn

]
: t ∈ R

}
.

Let ϕ : I = [a, b]→ M(m× n,R) be an analytic curve. We embed the curve into H
by

u : X ∈ M(m× n,R) 7→ u(X) =

[
Im X

In

]
.

For t > 0, let µt denote the normalized parameteric measure on the curve a(t)u(ϕ(I))x ⊂
G/Γ; that is, for a compactly supported continuous function f ∈ Cc(G/Γ),∫

fdµt :=
1

|I|

∫
s∈I

f(a(t)u(ϕ(s))x)ds.

If ϕ is generic, then every weak-∗ limit measure µ∞ of {µt : t > 0} is still a
probability measure. If the curve ϕ is supergeneric, then µt → µG as t → +∞ in
weak-∗ topology; that is, for any function f ∈ Cc(G/Γ),

lim
t→+∞

1

|I|

∫
s∈I

f(a(t)u(ϕ(s))x)ds =

∫
G/Γ

fdµG.

Moreover, if (m,n) = 1, then generic property will imply that µt → µG as t→ +∞.

Remark 1.5.

1. As we explained in §1.2, Theorem 1.3 follows from Claim 1.2.1, which in turn
follows from Theorem 1.4 with G = H = SL(m + n,R), Γ = SL(m + n,Z),
x = [e] = Zm+n ∈ G/Γ, I = J , and a choice of f ∈ Cc(G/Γ) supported on Kµ

such that 0 ≤ f ≤ 1 and
∫
f dµG > µG(K)/2.

2. Even in the case G = H = SL(m+ n,R), Theorem 1.4 is much stronger than
Theorem 1.3, since it applies to an arbitrary lattice Γ < G.

3. It is also interesting to consider the following question: Given any nontrivial
analytic curve

ϕ : I → M(m× n,R),

is it true that for almost every X ∈ M(m× n,R), the equidistribution result
as in Theorem 1.4 holds for ϕ+X? We conjecture that the statement is true.
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The study of limit distributions of evolution of curves translated by diagonalizable
subgroups in homogeneous spaces has its own interest and has a lot of interesting
connections to geometry and Diophantine approximation. One can summarize this
type of problems as follows:

Problem 1.6. Let H be a semisimple Lie group, generated by its unipotent sub-
groups. Fix a diagonalizable one parameter subgroup A = {a(t) : t ∈ R} ⊂ H, and
let U+(A) denote the expanding horospherical subgroup of A in H. Let G be a Lie
group containing H, and let Γ be a lattice of G.

Let

φ : I = [a, b]→ H

be a piece of analytic curve in H with nonzero projection on U+(A) (this will
make sure that the translates of φ(I) by {a(t) : t > 0} expand). Given a point
x = gΓ ∈ G/Γ, Ratner’s topological theorem (cf. [14]) tells that the closure of
Hx is a finite volume homogeneous subspace Fx, where F is a Lie subgroup of G
containing H. Let µF denote the unique probability F -invariant measure supported
on Fx. One can ask whether the expanding curves {a(t)φ(I)x : t > 0} tend to
be equidistributed in Fx, i.e., as t → +∞, the normalized parametric measure
supported on a(t)φ(I)x approaches µF in weak-∗ topology.

Remark 1.7. Without loss of generality, in this paper, we always assume that Hx
is dense in G/Γ. If Hx is not dense, suppose its closure is Fx, then we may replace
G by F , Γ by F ∩ xΓx−1 (which is a lattice of F by the closeness of Fx).

Nimish Shah [17] and [19] studied the case H = SO(n, 1) and G = SO(m, 1)
where m ≥ n. In this case the diagonalizable subgroup {a(t) : t ∈ R} is a fixed
maximal R-split Cartan subgroup of H. In [19] it is proved that given an analytic
curve

φ : I = [a, b]→ H,

and a point x = gΓ ∈ G/Γ, unless the natural visual map

Vis : SO(n, 1)/SO(n− 1) ∼= T1(Hn)→ ∂Hn ∼= Sn−1

sends the curve φ(I) to a proper subsphere of Sn−1, the translates {a(t)φ(I)x : t >
0} of φ(I)x tend to be equidistributed as t→ +∞. In [17], the same result is proved
when φ is only Cn differentiable. In [17] and [19], the obstruction of equidistribution
is discussed and the limit measure is given when the equidistribution fails. This
result is generalized by Yang [21] in the following sense: for H = SO(n, 1) and
arbitrary Lie group G containing H, if the same condition on the curve holds, then
the expanding curve a(t)φ(I)x tends to be equidistributed as t → +∞. Shah [18]
studied the case m = 1 of the problem we consider in this paper, and proved that
if the analytic curve ϕ : I → M(1 × n,R) = Rn is not contained in a proper affine
subspace of Rn, then the equidistribution holds. It turns out that this condition is
the same as generic condition for m = 1. Later Yang [20] studied the case m = n.

When the generic condition holds but supergeneric condition does not, we want
to understand the obstruction of equidistribution and describe the limit measures
of {µt : t > 0} to some extent. This requires more subtle argument. In [17] and
[19], obstruction of equiditribution and description of limit measures are clearly
given unconditionally for the case H = SO(n, 1) and G = SO(m, 1) in the set up
of Problem 1.6. In our case, the problem becomes much more complicated. In
this paper, we only discuss the case n = km, and we conjecture that similar result
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remains true for general (m,n) such that (m,n) > 1 (for the case (m,n) = 1, generic
is the same as supergeneric, so there is nothing in between).

1.4. Relation to extremality of submanifolds in homogeneous spaces. An-
other direction to study Diophantine properties of a real matrix Φ ∈ M(m × n,R)
is to determine whether Φ is very well approximable. We say Φ ∈ M(m × n,R) is
very well approximable if there exists some constant δ > 0 such that there exist
infinitely many nonzero integer vectors p ∈ Zn and integer vectors q ∈ Zm such
that

‖Φp− q‖ ≤ ‖p‖−n/m−δ.

A submanifold U ⊂ M(m× n,R) is called extremal if with respect to the Lebesgue
measure on U , almost every point is not very well approximable. Based on the
same correspondence due to Dani [5] and Kleinbock and Margulis [11], this problem
can also be studied through homogenous dynamics. Kleinbock and Margulis [11]
proved that if a submanifold U ⊂ M(1×n,R) is nondegenerate, then U is extremal.
Kleinbock, Margulis and Wang [9] later gave a necessary and sufficient condition
of a submanifold of M(m× n,R) being extremal. The condition is stated in terms
of a particular representation of H = SL(m+ n,R) and can not be translated to a
geometric condition. Recently, Aka, Breuillard, Rosenzweig and de Saxcé [2] gave a
family of subvarieties of M(m×n,R) called constraining pencils, and proved that if
a submanifold U ⊂ M(m×n,R) is not contained in a constraining pencil, then U is
extremal. The result was previously annouced in [1]. It turns out that the generic
condition implies the condition given in [2]. We will discuss it in detail in Appendix
A (see Proposition A.9).

1.5. Organization of the paper. The paper is organized as follows: In §2, as-
suming the generic condition on ϕ, we will relate a unipotent invariance to limit
measures of {µt : t > 0}, and show that every limit measure is still a probability
measure. This allows us to apply Ratner’s theorem. In §3, we will apply Ratner’s
theorem and the linearization technique to study the limit measure via a particular
linear representation of H. Finally we will get a linear algebraic condition on ϕ.
Assuming some technical lemmas proved in §4, we prove Theorem 1.4. In §4, we will
recall and prove some basic lemmas on linear representations, which are essential
in our proof. In §5, assuming the generic condition, we will study the obstruction
of equidistribution and limit measures of {µt : t > 0}. We will only discuss the case
n = km, and give a conjecture for general case. In the appendix, we will discuss
the generic condition and the supergeneric condition in detail.

Notation 1.8. In this paper, we will use the following notation.

For ε > 0 small, and quantities Q1 and Q2, Q1
ε
≈ Q2 means that |Q1 −Q2| ≤ ε.

Fix a right G-invariant metric d(·, ·) on G, then for x1, x2 ∈ G/Γ, and ε > 0, x1
ε
≈ x2

means x2 = gx1 such that d(g, e) < ε.
For two related variable quantanties Q1 and Q2, Q1 � Q2 means there exists

a constant C > 0 such that Q1 ≤ CQ2, and Q1 � Q2 means Q2 � Q1. O(Q1)
denotes some quantity � Q1 or some vector whose norm is � Q1.

2. NON-DIVERGENCE OF THE LIMIT MEASURES AND UNIPO-
TENT INVARIANCE.
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2.1. Preliminaries on Lie group structures. We first recall some basic facts
on the group

H = SL(m+ n,R).

Without loss of generality, throughout this paper we always assume m ≤ n.
The centralizer of the diagonal subgroup A, ZH(A), has the following form:

ZH(A) =

{[
B

C

]
: B ∈ GL(m,R), C ∈ GL(n,R), and detB detC = 1

}
.

The expanding horospherical subgroup of A, U+(A) has the following form:

U+(A) :=

{
u(X) :=

[
Im X

In

]
: X ∈ M(m× n,R)

}
.

Similarly, the contracting horospherical subgroup U−(A) has the following form:

U−(A) :=

{
u−(X) :=

[
Im
X In

]
: X ∈ M(n×m,R)

}
. (2.1)

For any z ∈ ZH(A) and u(X) ∈ U+(A), zu(X)z−1 = u(z ·X) where z ·X is defined
as follows:

if z =

[
B

C

]
∈ ZH(A) and X ∈ M(m× n,R) then z ·X := BXC−1. (2.2)

This defines an action of ZH(A) on M(m× n,R).
Similarly we can define the action of ZH(A) on M(n × m,R) induced by the

conjugate action of ZH(A) on U−(A).
Let P−(A) := ZH(A)U−(A) denote the maximal parabolic subgroup of H asso-

ciated with A.

Definition 2.1. For any X ∈ GL(m,R), we consider the following three elements
in the Lie algebra h of H:

n+(X) :=

0 X 0
0 0 0
0 0 0

 , n−(X−1) :=

 0 0 0
X−1 0 0

0 0 0

 , a :=

Im 0 0
0 −Im 0
0 0 0

 .
Then {n+(X), n−(X−1), a} makes a sl(2,R)- triple; that is, they satisfy the follow-
ing relations

[a, n+(X)] = 2n+(X) [a, n−(X−1)] = −2n−(X−1), [n+(X), n−(X−1)] = a.

Therefore, there is an embedding of SL(2,R) intoH that sends

[
1 1
0 1

]
to exp(n+(X)),[

1 0
1 1

]
to exp(n−(X−1)), and

[
et 0
0 e−t

]
to exp(ta). We denote the image of this

SL(2,R) embedding by SL(2, X) ⊂ H. Let us denote

σ(X) :=

 0 X 0
−X−1 0 0

0 0 0

 ∈ SL(2, X).

It is easy to see that σ(X) corresponds to

[
0 1
−1 0

]
∈ SL(2,R).
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2.2. Unipotent invariance. Throughout this paper, we always assume that

ϕ : I = [a, b]→ M(m× n,R)

is analytic.
Recall that for t > 0, µt denotes the normalized parametric measure on the curve

a(t)u(ϕ(I))x, and µG denotes the unique G invariant probability measure on G/Γ.
Our aim is to prove that µt → µG as t → +∞. We first modify the measures µt
to another measure λt and show that if λt → µG, then µt → µG as well. Then we
can study {λt : t > 0} instead. The motivation for this modification is that any
accumulation point of {λt : t > 0} is invariant under a unipotent subgroup.

The measure λt is defined as follows:

Definition 2.2 (cf. [15, (5.2)]). Without loss of generality, we may assume that
ϕ′(s) 6= 0 for all s ∈ I. Since ϕ is analytic, there exists some integer 1 ≤ b ≤ m,
such that the derivative ϕ′(s) has rank b for all s ∈ I but finitely many points. Let
Eb(m) be the m by m matrix defined as follows:

Eb(m) :=


[
Ib 0
0 0

]
if b < m,

Im if b = m.

Given a closed subinterval J ⊂ I such that ϕ′(s) has rank b for all s ∈ J , we define
an analytic curve z : J → ZH(A) such that

z(s) · ϕ′(s) = [Eb(m); 0], ∀s ∈ J. (2.3)

For t > 0, we define λJt to be the normalized parametric measure on {z(s)a(t)u(ϕ(s))x :
s ∈ J}; that is, for f ∈ Cc(G/Γ),∫

fdλJt :=
1

|J |

∫
s∈J

f(z(s)a(t)u(ϕ(s))x)ds. (2.4)

Remark 2.3. For any subinterval J ⊂ I, we can similarly define µJt to be the
normalized parameter measure on a(t)u(ϕ(J))x.

Proposition 2.4. Suppose that for any closed subinterval J ⊂ I such that λJt is
defined, we have λJt → µG as t→ +∞. Then µt → µG as t→ +∞.

Proof. Let s1, s2, . . . , sl ∈ I be all the points where ϕ′(s) does not have rank b. For
any fixed f ∈ Cc(G/Γ) and ε > 0, we want to show that for t > 0 large enough,∫

fdµt
4ε
≈
∫
G/Γ

fdµG.

For each i ∈ {1, 2, . . . , l}, one can choose a small open subinterval Bi ⊂ I containing
si such that ∣∣∣∣∣(

l∑
i=1

|Bi|)
∫
G/Γ

fdµG

∣∣∣∣∣ ≤ ε|I|, (2.5)

and for any t > 0, ∣∣∣∣∣
∫
∪l

i=1Bi

f(a(t)u(ϕ(s))x)ds

∣∣∣∣∣ ≤ ε|I|. (2.6)
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Since f is uniformly continuous, there exists a constant δ > 0, such that if x1
δ
≈ x2

then f(x1)
ε
≈ f(x2). We cut I \ ∪li=1Bi into several small closed subintervals

J1, J2, . . . , Jp such that for every Jr,

z−1(s1)z(s2)
δ
≈ e for any s1, s2 ∈ Jr.

Now for a fixed Jr, we choose s0 ∈ Jr and define f0(x) = f(z−1(s0)x). Then for

any s ∈ Jr, because z−1(s0)z(s)a(t)u(ϕ(s))x
δ
≈ a(t)u(ϕ(s))x, we have

f0(z(s)a(t)u(ϕ(s))x) = f(z−1(s0)z(s)a(t)u(ϕ(s))x)
ε
≈ f(a(t)u(ϕ(s))x).

Therefore ∫
f0dλJrt

ε
≈
∫
fdµJrt .

Because
∫
f0dλJrt →

∫
G/Γ

f0(x)dµG(x) as t→ +∞, and∫
G/Γ

f0(x)dµG(x)

=
∫
G/Γ

f(z−1(s0)x)dµG(x)

=
∫
G/Γ

f(x)dµG (because µG is G-invariant),

we have that there exists a constant Tr > 0, such that for t > Tr,∫
f0dλJrt

ε
≈
∫
G/Γ

fdµG.

Therefore, for t > Tr, ∫
fdµJrt

2ε
≈
∫
G/Γ

fdµG,

i.e., ∫
Jr

f(a(t)u(ϕ(s))x)ds
2ε|Jr|≈ |Jr|

∫
G/Γ

fdµG.

Then for t > max1≤r≤p Tr, we can sum up the above approximations for r =
1, 2, . . . , p and get∫

I\∪l
i=1Bi

f(a(t)u(ϕ(s))x)ds
2ε|I|
≈ (|I| −

l∑
i=1

|Bi|)
∫
G/Γ

fdµG.

Combined with (2.5) and (2.6), the above approximation implies that∫
I

f(a(t)u(ϕ(s))x)ds
4ε|I|
≈ |I|

∫
G/Γ

fdµG,

which is equivalent to ∫
fdµt

4ε
≈
∫
G/Γ

fdµG.

Because ε > 0 can be arbitrarily small, we complete the proof.

By this proposition, if we could prove the equidistribution of {λt := λIt : t > 0}
as t → +∞ assuming that ϕ′(s) has rank b for all s ∈ I, then the equidistribution
of {µt : t > 0} as t→ +∞ will follow. Therefore, later in this paper, we will assume
that ϕ′(s) has rank b for all s ∈ I and define λt to be the normalised parametric
measure on the curve {z(s)a(t)u(ϕ(s))x : s ∈ I}.

We will show that any limit measure of {λt : t > 0} is invariant under the
unipotent subgroup

W := {u(r[Eb(m); 0]) : r ∈ R}. (2.7)
10



Proposition 2.5 (See [19]). Let ti → +∞ be a sequence such that λti → µ∞ in
weak-∗ topology, then µ∞ is invariant under W -action.

Proof. Given any f ∈ Cc(G/Γ), and r ∈ R, we want to show that∫
f(u(r[Eb(m); 0])x)dµ∞ =

∫
f(x)dµ∞.

Since z(s) and ϕ(s) are analytic and defined on the closed interval I = [a, b], there
exists a constant T1 > 0 such that for t ≥ T1, z(s) and ϕ(s) can be extended to
analytic curves defined on [a− |r|e−(m+n)t, b+ |r|e−(m+n)t]. Throughout the proof,
we always assume that ti ≥ T1. Then z(s+ re−(m+n)ti) and ϕ(s+ re−(m+n)ti) are
both well defined for all s ∈ I.

We define f1 ∈ Cc(G/Γ) as follows:

f1(y) := f(u(r[Eb(m); 0])y) for any y ∈ G/Γ.
From the definition of µ∞, we have∫

f(u(r[Eb(m); 0])x)dµ∞ =

∫
f1(x)dµ∞

= lim
ti→+∞

1

|I|

∫
s∈I

f1(z(s)a(ti)u(ϕ(s))x)ds

= lim
ti→+∞

1

|I|

∫
s∈I

f(u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s))x)ds.

We want to show that

u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s)) ≈ z(s+re−(m+n)ti)a(ti)u(ϕ(s+re−(m+n)ti)). (2.8)

Since z(s+ re−(m+n)ti) ≈ z(s) for ti large enough, it suffices to show that

u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s)) ≈ z(s)a(ti)u(ϕ(s+ re−(m+n)ti)).

Note that t ∈ R and L,M ∈ M(m× n,R),

u(L+M) = u(L)u(M) and a(t)u(M)a(−t) = u(e(m+n)tM),

and by Taylor’s theorem

ϕ(s+ re−(m+n)ti) = ϕ(s) + re−(m+n)tiϕ′(s) +O(e−2(m+n)ti).

Then we have

z(s)a(ti)u(ϕ(s+ re−(m+n)ti))

= z(s)a(ti)u(ϕ(s) + re−(m+n)tiϕ′(s) +O(e−2(m+n)ti))

= z(s)a(ti)u(O(e−2(m+n)ti) + re−(m+n)tiϕ′(s))u(ϕ(s))

= z(s)a(ti)u(O(e−2(m+n)ti) + re−(m+n)tiϕ′(s))a(−ti)a(ti)u(ϕ(s))

= z(s)u(O(e−(m+n)ti) + rϕ′(s))a(ti)u(ϕ(s))

= z(s)u(O(e−(m+n)ti) + rϕ′(s))z(s)−1z(s)a(ti)u(ϕ(s))

= u(O(e−(m+n)ti) + rz(s) · ϕ′(s))z(s)a(ti)u(ϕ(s)), by (2.2),

= u(O(e−(m+n)ti))u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s)), by (2.3).

When ti is large enough, u(O(e−(m+n)ti)) can be ignored. Therefore, for any δ > 0,
there exists T > 0, such that for ti > T ,

u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s))
δ
≈ z(s+ re−(m+n)ti)a(ti)u(ϕ(s+ re−(m+n)ti)).

11



Now fix ε > 0. We choose δ > 0 such that whenever x1
δ
≈ x2, we have f(x1)

ε
≈ f(x2).

Then from the above argument, we have for ti > T ,

f(u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s))x)
ε
≈ f(z(s+re−(m+n)ti)a(ti)u(ϕ(s+re−(m+n)ti))x).

Therefore,

1
|I|
∫
s∈I f(u(r[Eb(m); 0])z(s)a(ti)u(ϕ(s))x)ds

ε
≈ 1

|I|
∫
s∈I f(z(s+ re−(m+n)ti)a(ti)u(ϕ(s+ re−(m+n)ti))x)ds

= 1
|I|
∫ b+re−(m+n)ti

a+re−(m+n)ti
f(z(s)a(ti)u(ϕ(s))x)ds.

Since |f | is bounded, when ti > 0 is large enough,

1

|I|

∫ b+re−(m+n)ti

a+re−(m+n)ti

f(z(s)a(ti)u(ϕ(s))x)ds
ε
≈ 1

|I|

∫ b

a

f(z(s)a(ti)u(ϕ(s))x)ds.

Therefore, for ti large enough,∫
f(u(r[Eb(m); 0])x)dλti

2ε
≈
∫
f(x)dλti .

Letting ti → +∞, we have∫
f(u(r[Eb(m); 0])x)dµ∞

2ε
≈
∫
f(x)dµ∞.

Since the above approximation is true for arbitrary ε > 0, we have that µ∞ is
W -invariant.

2.3. Non-divergence of limit measures. We also need to show that any limit
measure µ∞ of {λt : t > 0} is still a probability measure of G/Γ, i.e., no mass escapes
to infinity as t→ +∞. To do this, it suffices to show the following proposition:

Proposition 2.6. Suppose ϕ : I → M(m × n,R) is generic. For any ε > 0, there
exists a compact subset Kε ⊂ G/Γ such that

λt(Kε) ≥ 1− ε for all t > 0.

This proposition will be proved via linearization technique combined with a
lemma in linear dynamics as in [18].

Definition 2.7. Let g denote the Lie algebra of G, and denote d = dimG. We
define

V =
d⊕
i=1

∧i
g,

and let G act on V via
⊕d

i=1

∧i
Ad(G). This defines a linear representation of G:

G→ GL(V ).

Remark 2.8. In this paper, we will treat V as a representation of H.

The following theorem is the basic tool to prove that there is no mass-escape
when we pass to a limit measure:

Theorem 2.9 (see [18, Proposition 3.4]). Fix a norm ‖·‖ on V . There exist finitely
many vectors

v1, v2, . . . , vr ∈ V
12



such that for each i = 1, 2, . . . , r, the orbit Γvi is discrete, and moreover, the fol-
lowing holds: for any ε > 0 and R > 0, there exists a compact set K ⊂ G/Γ such
that for any t > 0 and any subinterval J ⊂ I, one of the following holds:

S.1 There exist γ ∈ Γ and j ∈ {1, . . . , r} such that

sup
s∈J
‖a(t)u(ϕ(s))gγvj‖ < R,

S.2
|{s ∈ J : a(t)u(ϕ(s))x ∈ K}| ≥ (1− ε)|J |.

Remark 2.10. The above theorem follows from the argument as in [16, Theorem
2.2] (see [18, Proposition 3.4] for the proof). It relies on the work of Dani and
Margulis [6] and its extension due to Kleinbock and Margulis [11]. To get such a
result, it is crucial to find constants C > 0 and α > 0 such that in this particular
representation, all the coordinate functions of a(t)u(ϕ(·)) are (C,α)-good. Here a
function f : I → R is called (C,α)-good if for any subinterval J ⊂ I and any ε > 0,
the following holds:

|{s ∈ J : |f(s)| < ε}| ≤ C
(

ε

sups∈J |f(s)|

)α
|J |.

Notation 2.11. Let V be a finite dimensional linear representation of a Lie group
F . Then for a one-parameter diagonal subgroup D = {d(t) : t ∈ R} of F , we can
decompose V as the direct sum of eigenspaces of D; that is,

V =
⊕
λ∈R
Vλ(D),

where Vλ(D) = {v ∈ V : d(t)v = eλtv}.
We define

V+(D) =
⊕
λ>0

Vλ(D), V−(D) =
⊕
λ<0

Vλ(D), V±0(D) = V±(D) + V0(D).

For a vector v ∈ V , we denote by v+(D) (vλ(D), v−(D), v0(D), v+0(D) and v−0(D)
respectively) the projection of v to V+(D) (Vλ(D), V−(D), V0(D), V+0(D) and
V−0(D) respectively) with respect to the above direct sums.

The proof of Proposition 2.6 depends on the following property of finite dimen-
sional representations of SL(m+ n,R):

Lemma 2.12 (Basic Lemma). Let V be a finite dimensional representation of
SL(m + n,R), and let A = {a(t) : t ∈ R} ⊂ SL(m + n,R) denote the diagonal
subgroup as in (1.4). If an analytic curve

ϕ : I = [a, b]→ M(m× n,R)

is generic, then for any nonzero vector v ∈ V , there exists some s ∈ I such that

u(ϕ(s))v 6∈ V −(A).

A proof of this linear dynamical lemma is one of the most important technical
contributions of this paper, and we will postpone its proof to §4.

Proof of Proposition 2.6 assuming Lemma 2.12. Let V be as in Definition 2.7. Since
A ⊂ H is a diagonal subgroup, we have the following decomposition:

V =
⊕
λ∈R

V λ(A)

13



where V λ(A) is defined as in Notation 2.11. Choose the norm ‖·‖ on V to be the
maximum norm associated to some choices of norms on V λ(A)’s.

For contradiction we assume that there exists a constant ε > 0 such that for any
compact subset K ⊂ G/Γ, there exist some t > 0 such that λt(K) < 1− ε. Now we
fix a sequence {Ri > 0 : i ∈ N} tending to zero. By Theorem 2.9, for any Ri, there
exists a compact subset Ki ⊂ G/Γ, such that for any t > 0, one of the following
holds:

S1. There exist γ ∈ Γ and j ∈ {1, . . . , r} such that

sup
s∈I
‖a(t)u(ϕ(s))gγvj‖ < Ri,

S2.

|{s ∈ I : a(t)u(ϕ(s))x ∈ Ki}| ≥ (1− ε)|I|.
From our hypothesis, for each Ki, there exists some ti > 0 such that S2. does

not hold. So there exist γi ∈ Γ and vj(i) such that

sup
s∈I
‖a(ti)u(ϕ(s))gγivj(i)‖ < Ri. (2.9)

By passing to a subsequence of {i ∈ N}, we may assume that vj(i) = vj remains the
same for all i.

Since Γvj is discrete in V , we have ti →∞ as i→∞ and there are the following
two cases:

Case 1. By passing to a subsequence of {i ∈ N}, γivj = γvj remains the same for all
i.

Case 2. ‖γivj‖ → ∞ along some subsequence.

For Case 1.: We have a(ti)u(ϕ(s))gγvj → 0 as i→∞ for all s ∈ I. This implies
that

{u(ϕ(s))gγvj}s∈I ⊂ V −(A),

which contradicts Lemma 2.12.
For Case 2.: After passing to a subsequence, we have

v := lim
i→∞

gγivj/‖gγivj‖, ‖v‖ = 1, and lim
i→∞
‖gγivj‖ =∞. (2.10)

By Lemma 2.12, let s ∈ I be such that u(ϕ(s))v 6∈ V −(A). Then by (2.10) there
exists δ0 > 0 and i0 ∈ N such that

‖(u(ϕ(s))gγivj)
0+‖ ≥ δ0‖gγivj‖, ∀i ≥ i0.

Then

‖a(ti)u(ϕ(s))gγivj‖ ≥ δ0‖gγivj‖ → ∞, as i→∞,
which contradicts (2.9). Thus Cases 1 and 2 both lead to contradictions.

Remark 2.13. The same proof also shows that any limit measure of {µt : t > 0} is
still a probability measure, which is the non-divergence part of Theorem 1.4.

3. RATNER’S THEOREM AND THE LINEARIZATION TECHNIQUE.
In this section, let us assume that ϕ is supergeneric. Take any convergent subse-
quence λti → µ∞. By Proposition 2.5 and Proposition 2.6, µ∞ is a W -invariant
probability measure on G/Γ, where W is a unipotent one-parameter subgroup given
by (2.7). We will apply Ratner’s theorem and the linearization technique to under-
stand the measure µ∞.
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Definition 3.1. Let L be the collection of proper analytic subgroups L < G such
that L ∩ Γ is a lattice of L. Then L is a countable set ([13]).

For L ∈ L, define

N(L,W ) = {g ∈ G : g−1Wg ⊂ L}, and (3.1)

S(L,W ) =
⋃

L′∈L,L′(L
N(L′,W ).

We formulate Ratner’s measure classification theorem as follows (cf. [12]):

Theorem 3.2 ([13]). Let π : G→ X = G/Γ denote the natural projection sending
g ∈ G to gΓ ∈ X. Given the W -invariant probability measure µ on G/Γ, if µ is not
G-invariant then there exists L ∈ L such that

µ(π(N(L,W ))) > 0 and µ(π(S(L,W ))) = 0. (3.2)

Moreover, almost every W -ergodic component of µ on π(N(L,W )) is a measure of
the form gµL where g ∈ N(L,W )\S(L,W ), µL is a finite L-invariant measure on
π(L), and gµL(E) = µL(g−1E) for all Borel sets E ⊂ G/Γ. In particular, if LCG,
then the restriction of µ on π(N(L,W )) is L-invariant.

We want to show that µ∞ = µG. For contradiction, let us assume that µ∞ 6= µG.
Then by Ratner’s Theorem, there exists L ∈ L such that

µ∞(π(N(L,W ))) > 0 and µ∞(π(S(L,W ))) = 0. (3.3)

Now we want to apply the linearization technique to obtain algebraic conse-
quences of this statement.

Definition 3.3. Let V be the finite dimensional representation of G defined as in
Definition 2.7, for L ∈ L, we choose a basis e1, e2, . . . , el of the Lie algebra l of L,
and define

pL = ∧li=1ei ∈ V.
Note that the stabilizer of pL is N1

G(L) where

N1
G(L) := {g ∈ G : gLg−1 = L and det(Ad(g)|l) = 1}. (3.4)

Define

ΓL := {γ ∈ Γ : γpL = ±pL} .
From the action of G on pL, we get a map:

η : G→ V,
g 7→ gpL.

Let A denote the Zariski closure of η(N(L,W )) in V . Then N(L,W ) = G∩η−1(A).

Using the fact that ϕ is analytic, we obtain the following consequence of the
linearization technique (cf. [19, 18, 15]).

Proposition 3.4 ([18, Proposition 5.5]). Let x = gΓ be as in Theorem 1.4 and C
be a compact subset of N(H,W )\S(H,W ). Given ε > 0, there exists a compact set
D ⊂ A such that, given a relatively compact neighborhood Φ of D in V , there exists
a neighborhood O of CΓ in G/Γ such that for any t ∈ R and subinterval J ⊂ I, one
of the following statements holds:

SS1. |{s ∈ J : a(t)u(ϕ(s))gΓ ∈ O}| ≤ ε|J |.
SS2. There exists γ ∈ Γ such that a(t)z(s)u(ϕ(s))gγpL ∈ Φ for all s ∈ J .
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The following proposition provides the obstruction to the limiting measure not
being G-invariant in terms of linear actions of groups, and it is a key result for
further investigations.

Proposition 3.5. Let x = gΓ be as in Theorem 1.4. There exists a γ ∈ Γ such
that

{u(ϕ(s))gγpL : s ∈ I} ⊂ V −0(A). (3.5)

Proof (assuming Lemma 2.12). By (3.3), there exists a compact subset C ⊂ N(L,W ))\
S(L,W ) and ε > 0 such that µ∞(CΓ) > ε > 0. Apply Proposition 3.4 to obtain
D, and choose any Φ, and obtain a O so that either SS1. or SS2. holds. Since
λti → µ∞, we conclude that SS1. does not hold for t = ti for all i ≥ i0. Therefore
for every i ≥ i0, SS2. holds and there exists γi ∈ Γ such that

{a(ti)z(s)u(ϕ(s))gγipL : s ∈ I} ⊂ Φ. (3.6)

Since ΓpL is discrete in V , by passing to a subsequence, there are two cases:

Case 1. γipL = γpL for some γ ∈ Γ for all i large enough; or
Case 2. ‖γipL‖ → ∞ as i→∞.

In Case 1, since Φ is bounded in (3.6), we deduce that z(s)u(ϕ(s))gγpL ⊂ V −0(A)
for all s ∈ I. Since V −0(A) is ZH(A)-invartiant, (3.5) holds.

In Case 2, by arguing as in the Case 2. of the Proof of Proposition 2.6, using
genericity of ϕ and Lemma 2.12, we obtain that ‖a(ti)u(ϕ(s))gγipL‖ → ∞. This
contradicts (3.6), because z(s) ⊂ ZH(A) and Φ is bounded. Thus Case 2 does not
occur.

We will need the following analogue of the Basic lemma 2.12.

Lemma 3.6. Let V be an irreducible representation of H = SL(m+ n,R). Let

ϕ : I = [a, b]→ M(m× n,R)

be a supergeneric analytic curve. Then if there is a nonzero vector v ∈ V such that

{u(ϕ(s))v : s ∈ I} ⊂ V −0(A),

then V is a trivial representation.

We will postpone its proof to §4.

Proof of Theorem 1.4 assuming Lemma 3.6. Suppose ϕ : I → M(m × n,R) is su-
pergeneric, and the normalized parametric measures {λt : t > 0} do not tend to
the Haar measure µG along some subsequence ti → +∞. By Proposition 3.5, there
exists some L ∈ L and γ ∈ Γ such that

u(ϕ(s))gγpL ∈ V −0(A)

for all s ∈ I. Then by Lemma 3.6, we have that v := gγpL is fixed by the whole
group H. Hence pL is fixed by the action of γ−1g−1Hgγ. Thus

ΓpL = ΓpL, since ΓpL is discrete

= Γγ−1g−1HgγpL
= Γg−1HgγpL
= GgγpL, since HgΓ = G
= GpL.

This implies G0pL = pL where G0 is the connected component of e. In particular,
γ−1g−1Hgγ ⊂ G0 and G0 ⊂ N1

G(L). By [17, Theorem 2.3], there exists a closed
16



subgroup F1 ⊂ N1
G(L) containing all Ad-unipotent one-parameter subgroups of

G contained in N1
G(L) such that F1 ∩ Γ is a lattice in F1 and F1Γ is closed. If

we put F = gγF1γ
−1g−1, then H ⊂ F since H is generated by its unipotent

one-parameter subgroups. Moreover, Fx = gγF1Γ is closed and admits a finite
F -invariant measure. Then since Hx = G/Γ, we have F = G. This implies F1 = G
and thus LCG. Therefore hLh−1 = L for all h ∈ G. Therefore, since N(L,W ) 6= ∅,
by (3.1) we have W ⊂ L and N(L,W ) = G. Therefore, L∩H is a normal subgroup
of H containing W . Since H is a simple group, we have H ⊂ L. Since L is a normal
subgroup of G and LΓ is a closed orbit with finite L-invariant measure, every orbit
of L on G/Γ is also closed and admits a finite L-invariant measure, in particular, Lx
is closed. But since Hx is dense in G/Γ, Lx is also dense. This shows that L = G,
which contradicts our hypothesis that the limit measure is not µG. This completes
the proof.

4. SOME LINEAR DYNAMICAL RESULTS. We shall start with a dynam-
ical lemma about finite dimensional representations of SL(2,R) which sharpens the
earlier results due to Shah [19, Lemma 2.3] and Yang [21, Lemma 5.1].

Lemma 4.1. Let V be a finite dimensional linear representation of SL(2,R). Let

A =

{
a(t) :=

[
et

e−t

]
: t ∈ R

}
,

U =

{
u(s) :=

[
1 s
0 1

]
: s ∈ R

}
, and U− =

{
u−(s) :=

[
1 0
s 1

]
: s ∈ R

}
.

Express V as the direct sum of eigenspaces with respect to the action of A:

V =
⊕
λ∈R

V λ(A), where V λ(A) := {v ∈ V : a(t)v = eλtv : ∀t ∈ R}.

For any v ∈ V \ {0} and λ ∈ R, let vλ = vλ(A) denote the V λ(A)-component of v,

λmax(v) = max{λ : vλ 6= 0},

and vmax = vλ
max

(v). Then for any r 6= 0,

λmax(u(r)v) ≥ −λmax(v). (4.1)

In particular,

λmax(v) < 0 then λmax(u(r)v) > 0, ∀r 6= 0. (4.2)

Moreover, if the equality holds in (4.1) then

v = u−(−r−1)vmax and (u(r)v)max = σ(r)vmax, where σ(r) =

[
0 r
−r−1 0

]
. (4.3)

Proof. Observe that u(1)u−(−1)u(1) = σ(1), u(−1)u−(1)u(−1) = σ(−1) and for
r 6= 0, conjugating all terms of these equalities by a(log(|r|/2)) we get u(r)u−(−r−1)u(r) =
σ(r), and hence

u(r) = σ(r)u(−r)u−(r−1), ∀r 6= 0. (4.4)

Since σ(r)a(t)σ(r)−1 = a(−t) for all r 6= 0, we have that

σ(r)V λ(A) = V −λ(A), for all λ.

Hence for any v ∈ V \ {0},

λmax(σ(r)v) = −λmin(v), and (σ(r)v)max = σ(r)vmin. (4.5)
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For any r ∈ R, since u(r) is unipotent and a(t)u(r)a(−t) = u(e2tr), we have that

λmin(u(r)v) = λmin(v). (4.6)

Similarly, for any s ∈ R, we have a(t)u−(s)a(−t) = u−(e−2ts), and hence

λmax(u−(s)v) = λmax(v). (4.7)

Using the above relations (4.4), (4.5), (4.6) and (4.7), we get

λmax(u(r)v) = λmax(σ(r)u(−r)u−(r−1)v)

= −λmin(u(−r)u−(r−1)v)

= −λmin(u−(r−1)v)

≥ −λmax(u−(r−1)v)

= −λmax(v).

Further if there are all equalities in the above relation, then

λmin(u−(r−1)v) = λmax(u−(r−1)v) = λmax(v).

Therefore,

u−(r−1)v = (u−(r−1)v)max = vmax; that is, v = u−(−r−1)vmax,

and

(u(r)v)max = σ(r)(u(−r)u−(r−1)v)min = σ(r)(u−(r−1)v)min

= σ(r)(u−(r−1)v)max = σ(r)vmax.

Lemma 4.1 immediately implies the following statement:

Corollary 4.2. Let the notation be as in Lemma 4.1. If v, u(r)v ∈ V −0(A) for
some r 6= 0, then

λmax(v) = 0 and v = u−(−r−1)v0(A).

4.1. Linear dynamical lemmas for SL(m + n,R) representations. First we
give the proof of the basic lemma (Lemma 2.12) that we have used more than once
in previous sections. The new techniques developed in this section form the core of
this paper, and we expect these techniques to be valuable for other problems.

In order to clearly explain the main idea in the proof, we first prove Lemma 2.12
for the following baby case: (m,n) = (1, 2).

Proof of Lemma 2.12 for (m,n) = (1, 2). Here ϕ(s) = (ϕ1(s), ϕ2(s)), where ϕ1(s), ϕ2(s) ∈
R.

For a contradiction, let us assume that

u(ϕ(s))v ∈ V −(A) for all s ∈ I. (4.8)

In view of Notation 2.11, for s ∈ I, let

µ0(s) = max{λ : (u(ϕ(s))v)λ(A) 6= 0} and µ0 = max{µ0(s) : s ∈ I}.

Since ϕ is analytic, we have µ0(s) = µ0 for all but finitely many s ∈ I. By our
assumption, µ0 < 0.

18



Let us fix s0 ∈ I with µ0(s0) = µ0, and denote ∆(s) = (∆1(s),∆2(s)) :=
ϕ(s)−ϕ(s0). Since ϕ is generic, there exists a subinterval Js0 ⊂ I such that for any
s ∈ Js0 \ {s0},

∆1(s) 6= 0, and
∆2(s)

∆1(s)
is not constant.

Let us denote ψ(s) := ∆2(s)
∆1(s) ∈ R. By choosing smaller Js0 , we get µ0(s) = µ0 for

all s ∈ Js0 .
Let us fix s ∈ Js0 \ {s0}. Let us denote v0 := u(ϕ(s0))v and vs := u(ϕ(s))v.

Then vs = u(∆(s))v0.
Let us write a(t) = a1(2t)a2(t), where

a1(t) :=

et e−t

1

 , and a2(t) :=

1
et

e−t

 . (4.9)

Let us denote A1 := {a1(t) : t ∈ R} and A2 := {a2(t) : t ∈ R}. Then we can
decompose V as the direct sum of common eigenspaces of A1 and A2:

V =
⊕
δ1,δ2

V δ1,δ2 , where V δ1,δ2 := {v ∈ V : a1(t)v = eδ1tv, and a2(t)v = eδ2tv}.

Then

V λ(A) =
∑

2δ1+δ2=λ

V δ1,δ2 .

Since ∆1(s) ∈ R \ {0} = GLm(R) for m = 1, by Definition 2.1 we have

SL(2,∆1(s)) =

{[
g 0
0 1

]
: g ∈ SL(2,R)

}
.

Let us decompose V as the direct sum of irreducible sub-representations of A n
SL(2,∆1(s)). For any such sub-representation W ⊂ V , let pW : V → W denote
the A-equivariant projection. By basic facts on SL(2,R)-representations (see [8,
Claim 11.4], for example), we have that every irreducible sub-representation W ⊂ V
admits a standard basis: {w0, w1, . . . , wr}, such that

a1(t)wi = e(r−2i)twi, for 0 ≤ i ≤ r.

We claim that each wi is also an eigenvector for A. In fact,

a(t) = a1(3t/2)b(t), where b(t) =

et/2 et/2

e−t

 .
Note that b(t) commutes SL(2,∆1(s)), so b(t) acts on W as a scalar eδt for some
δ ∈ R. Therefore,

a(t)wi = e(3(r−2i)/2+δ)twi, for 1 ≤ i ≤ r. (4.10)

For k < i, the A-weight of wk is strictly greater than the A-weight of wi.
Let us denote

u′(r) :=

1
1 r

1

 .
It is straightforward to verify that

u(∆(s)) = u′(−ψ(s))u(∆1(s), 0)u′(ψ(s)).
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Therefore,

vs = u(∆(s))v0 = u′(−ψ(s))u(∆1(s), 0)u′(ψ(s))v0.

Note that u′(r) commutes with a(t), and thus preserves every eigenspace of A.
Therefore, since the highest A weight of vs = u(ϕ(s))v is µ0, we have that the
highest A-weight of u′(ψ(s))vs is µ0 and

(u′(ψ(s))vs)
µ0(A) = u′(ψ(s)) · (vs)µ0(A).

Since

u′(ψ(s))vs = u(∆1(s), 0)u′(ψ(s))v0,

we have that the highest A-weight of u(∆1(s), 0)u′(ψ(s))v0 is µ0. Applying the same
argument to v0 and u′(ψ(s))v0, we have that the highest A-weight of u′(ψ(s))v0 is
µ0 and

(u′(ψ(s))v0)µ0(A) = u′(ψ(s)) · (v0)µ0(A).

For any irreducible An SL(2,∆1(s))-sub-representation W ⊂ V such that

pW (u′(ψ(s)) · (v0)µ0(A)) 6= 0.

Then

pW (u′(ψ(s)) · (v0)µ0(A)) = aiwi, for some 0 ≤ i ≤ r, 0 6= ai ∈ R.

By (4.10) we have µ0 = 3(r− 2i)/2 + δ, and that for k < i, A-weight of wk is larger
than the A-weight of wi, which is µ0. We know that the maximum A-weight any
A-eigen-component of pW (u′(ψ(s))v0) is µ0. Therefore

pW (u′(ψ(s))v0) =
∑
k≥i

akwk, for some real ak’s.

Note that W is also an irreducible SL(2,∆1(s))-sub-representation of V . We have

pW (u(∆1(s), 0)u′(ψ(s))v0) = u(∆1(s), 0)pW (u′(ψ(s))v0).

We know that the A-weight of any eigen component of u(∆1(s), 0)u′(ψ(s))v0 is at
most µ0. Hence the same holds for pW (u(∆1(s), 0)u′(ψ(s))v0). Combined with the
fact that for k < i, the A-weight of wk is greater than the A-weight of wi, and that
the A-weight of wi is µ0, we conclude that

u(∆1(s), 0)pW (u′(ψ(s))v0) = u(∆1(s), 0)(
∑
k≥i

akwk) =
∑
k≥i

bkwk, for some real bk’s.

We claim that the A1-weight of pW (u′(ψ(s))v0), which is r− 2i, is nonnegative. In
fact, if r − 2i < 0,

pW (u′(ψ(s))v0) ∈ V −(A1) and u(∆1(s), 0)pW (u′(ψ(s))v0) ∈ V −(A1).

This contradicts Corollary 4.2 for SL(2,∆1(s)) representationW , pW (u′(ψ(s))v0)
playing the role of v and {u(∆1(s), 0)} being the corresponding unipotent one-
parameter subgroup and A1 = {a1(t) : t ∈ R} the corresponding expanding diagonal
subgroup. This proves the claim that r − 2i ≥ 0.

Therefore, by (4.9), the A2-weight of wi, which is µ0 − 2(r − 2i), is negative,
because µ0 < 0. In other words,

pW ((u′(ψ(s))v0)µ0(A)) ∈ V −(A2).

Since this holds for every irreducible An SL(2,∆1(s))-sub-representation W of V ,
we have

(u′(ψ(s))v0)µ0(A) ∈ V −(A2).
20



Note that u′(ψ(s)) preserves every eigenspace of A, we have

(u′(ψ(s))v0)µ0(A) = u′(ψ(s)) · (v0)µ0(A).

Therefore,

u′(ψ(s)) · (v0)µ0(A) ∈ V −(A2), for any s ∈ Js0 \ {s0}.

Since ψ is not constant, we can choose s1, s2 ∈ Js0 \ {s0} such that ψ(s1) 6= ψ(s2).
Note that u′(r), a2(t) are both contained in H2

∼= SL(2,R), where

H2 :=

{[
1

h2

]
: h2 ∈ SL(2,R)

}
.

Therefore,

u′(ψ(s1))(v0)µ0(A) ∈ V −(A2) and u′(ψ(s1))(v0)µ0(A) ∈ V −(A2).

This contradicts Corollary 4.2 for the H2
∼= SL(2,R) action on V with u′(ψ(s1))(v0)µ0(A)

playing the role of v, and u′(r) playing the role of u for r = ψ(s2)−ψ(s1) 6= 0, and
the u′ expanding diagonal subgroup A2. Therefore our assumption that µ0 < 0, or
equivalently (4.8), is false. This completes the proof.

Now let us prove the general case of Lemma 2.12.

Proof of Lemma 2.12. We use induction to complete the proof. For the case m = n,
the lemma is due to Yang [20]. We provide a proof here.

When m = n, we take a point s0 and a subinterval Js0 ⊂ I such that for all
s ∈ Js0 \ {s0},

ϕ(s)− ϕ(s0) ∈ GL(m,R).

Then we consider the subgroup SL(2, ϕ(s)−ϕ(s0)) ∼= SL(2,R) ⊂ SL(2m,R) for some
fixed s ∈ Js0\{s0} (see Definition 2.1), and apply Corollary 4.2 for SL(2,R) replaced
by SL(2, ϕ(s)−ϕ(s0)), v replaced by u(ϕ(s0))v and u(r) replaced by u(ϕ(s)−ϕ(s0)).
Then by (4.2),

u(ϕ(s0))v 6∈ V −(A) or λmax((ϕ(s))v) 6∈ V −1(A).

This completes the proof of the Lemma for the case of m = n.
If m > n, then by applying a suitable inner automorphism of SL(m + n,R)

given by a coordinate permutation σm,n, we can convert this problem to the case
of m < n. Therefore we will assume that m < n.

As inductive hypothesis, we assume that for all (m′, n′) such that

m′ ≤ m,n′ ≤ n and m′ + n′ < m+ n,

the conclusion of the Lemma holds. We want to prove that the conclusion holds for
(m,n).

For contradiction, we assume that for some nonzero vector v ∈ V ,

u(ϕ(s))v ∈ V −(A)

for all s ∈ I. For s ∈ I, let µ0(s) = max{λ : (u(ϕ(s))v)λ(A) 6= 0} and µ0 =
max{µ0(s) : s ∈ I}. Since ϕ is analytic, we have µ0(s) = µ0 for all but finitely
many s ∈ I. By our assumption

µ0 < 0. (4.11)
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Fix s0 ∈ I and a subinterval Js0 ⊂ I such that µ0(s) = µ0(s0) = µ0 for all
s ∈ Js0 and if we write ϕ(s) = [ϕ1(s);ϕ2(s)], then ϕ1(s) − ϕ1(s0) ∈ GL(m,R) for
s ∈ Js0 \ {s0}. Let

ψ : Js0\{s0} → M(m×(n−m),R), be defined by ψ(s) := (ϕ1(s)−ϕ1(s0))−1(ϕ2(s)−ϕ2(s0)).

Then ψ is generic by the of genericity of ϕ (see Definition 1.1). Replacing v by
u(ϕ(s0))v and ϕ(s) by ϕ(s)− ϕ(s0), we may assume that ϕ(s0) = 0.

For any fixed s ∈ Js0 \ {s0}, it is straightforward to verify that

u(ϕ(s)) = u′(−ψ(s))u([ϕ1(s); 0])u′(ψ(s)), where (4.12)

u′(Y ) :=

Im
Im Y

In−m

 ∈ ZH(A) for Y ∈M(m× (n−m),R). (4.13)

Therefore u(ϕ(s))v ∈ V −(A) implies that

u([ϕ1(s); 0])u′(ψ(s))v ∈ V −(A).

Let us denote

A1 :=

a1(t) :=

etIm e−tIm
In−m

 : t ∈ R

 ,

and

A2 :=

a2(t) :=

Im
e(n−m)tIm

e−mtIn−m

 : t ∈ R

 .

We express V as the direct sum of common eigenspaces of A1 and A2:

V =
⊕
δ1,δ2

V δ1,δ2 , where V δ1,δ2 :=
{
v ∈ V : a1(t)v = eδ1tv, a2(t)v = eδ2tv for all t ∈ R

}
.

(4.14)
Then because a(t) = a1(nt)a2(t), we have

V λ(A) =
⊕

nδ1+δ2=λ

V δ1,δ2 . (4.15)

For any vector v ∈ V , let vδ1,δ2 denote the projection of v onto the eigenspace
V δ1,δ2 .

We also decompose V as the direct sum of irreducible sub-representations of
A n SL(2, ϕ1(s)). For any such sub-representation W ⊂ V , let pW : V → W
denote the A-equivariant projection. By the theory of finite dimensional irreducible
representations of SL(2,R) (see [8, Claim 11.4]), there exists a basis {w0, w1, . . . , wr}
of W such that

a1(t)wi = e(r−2i)twi, for 0 ≤ i ≤ r. (4.16)

We claim that each wi is also an eigenvector for A. In fact,

a(t) = a1((m+n)t/2)b(t), where b(t) =

[
e

n−m
2 tI2m

e−mtIn−m

]
∈ ZH(SL(2, ϕ1(s)),

and hence b(t) acts on W as a scalar eδt for some δ ∈ R. Therefore,

a(t)wi = e((r−2i)(m+n)/2+δ)twi, for 1 ≤ i ≤ r. (4.17)

Since (m + n)/2 > 0, if k < i then the A-weight of wk is strictly greater than the
A-weight of wi.
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Since u′(ψ(s)) ∈ ZH(A), µ0 is the highest A-weight for v, we have that µ0 is also
the highest A-weight for u′(ψ(s))v and

(u′(ψ(s))v)µ0(A) = u′(ψ(s))vµ0(A).

Now suppose that W as above is such that pW (u′(ψ(s))vµ0(A)) 6= 0. Then

pW (u′(ψ(s))vµ0(A)) = aiwi, for some 0 ≤ i ≤ r, 0 6= ai ∈ R;

by (4.17) µ0 = (r − 2i)(m+ n)/2 + δ. For k < i, the weight of wk for A1 is greater
than that of wi, so the A-weight of wk is greater than the A-weight of wi which
equals µ0. Since the projection pW is A-equivariant and µ0 is the highest A-weight,
we have

pW (u′(ψ(s))v) =
∑
k≥i

akwk, where ak ∈ R.

We claim that r− 2i ≥ 0. In fact, if r− 2i < 0, then by (4.16), pW (u′(ψ(s))v) ∈
V −(A1). By Corollary 4.2,

V −0(A1) 63 u([ϕ1(s); 0])pW (u′(ψ(s))v) = pW (u([ϕ1(s); 0])u′(ψ(s))v).

So pW (u([ϕ1(s); 0])u′(ψ(s))v) must have nonzero projection on Rwk for some k < i.
Hence

u([ϕ1(s); 0])u′(ψ(s))v

has nonzero projection V µ(A) for some µ > µ0. Now since u′(−ψ(s)) ∈ ZH(A), the
projection of u(ϕ(s))v = u′(−ψ(s))u([ϕ1(s); 0])u′(ψ(s))v on V µ(A) is nonzero for
µ > µ0. This contradicts our choice of µ0 and proves the claim that r − 2i ≥ 0.

This claim implies that for any (δ1, δ2), if (u′(ψ(s))vµ0(A))δ1,δ2 6= 0 then δ1 ≥ 0.
Since µ0 = nδ1 + δ2 < 0, we have δ2 < 0. In other words,

{u′(ψ(s))vµ0(A) : s ∈ Js0 \ {s0}} ⊂ V −(A2).

Now u′(ψ(s)) and A2 are both contained in[
Im

SL(n,R)

]
∼= SL(m+ (n−m),R).

Our inductive hypothesis for (m,n −m) tells that this is impossible because ψ is
generic.

This finishes the proof.

Let us prove Lemma 3.6.
We first prove the following statement.

Lemma 4.3. Let V be a finite dimensional representation of SL(m+ n,R) and let

A :=

{
a(t) :=

[
entIm

e−mtIn

]
: t ∈ R

}
.

Let

ϕ : I = [a, b]→ M(m× n,R)

be an analytic curve. Suppose there exists a nonzero vector v ∈ V such that

{u(ϕ(s))v : s ∈ I} ⊂ V −0(A).

Then for all s ∈ I, (u(ϕ(s))v)0(A) is invariant under the unipotent subgroup

{u(hϕ′(s)) : h ∈ R}.
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Proof of Lemma 4.3. For any h ∈ R, on the one hand,

a(t)u(ϕ(s+ e−(m+n)th))v = (u(ϕ(s+ e−(m+n)th))v)0(A) +O(e−λ(m,n)t),

for some λ(m,n) > 0 depending on m and n. As t→ +∞,

(u(ϕ(s+ e−(m+n)th))v)0(A)→ (u(ϕ(s))v)0(A), and O(e−λ(m,n)t)→ 0.

Thus, as t→ +∞,

a(t)u(ϕ(s+ e−(m+n)th))v → (u(ϕ(s))v)0(A).

On the other hand,

a(t)u(ϕ(s+ e−(m+n)th))v
= a(t)u(he−(m+n)tϕ′(s))u(O(e−2(m+n)t))u(ϕ(s))v
= a(t)u(he−(m+n)tϕ′(s))a(−t)a(t)u(O(e−2(m+n)t))a(−t)a(t)u(ϕ(s))v
= u(hϕ′(s))u(O(e−(m+n)t))a(t)u(ϕ(s))v.

As t → +∞, u(O(e−(m+n)t)) → id, a(t)u(ϕ(s))v → (u(ϕ(s))v)0(A). Therefore, as
t→ +∞,

a(t)u(ϕ(s+ e−(m+n)th))v → u(hϕ′(s))(u(ϕ(s))v)0(A).

This shows that (u(ϕ(s))v)0(A) is invariant under {u(hϕ′(s)) : h ∈ R}.

Proof of Lemma 3.6. The strategy of the proof is similar to that of Lemma 2.12.
We begin with the case m = n. This case is studied in [20] but the statement

proved there is weaker than the statement here.
Fix a point s0 ∈ I and a subinterval Js0 ⊂ I such that ϕ(s)− ϕ(s0) is invertible

for all s ∈ Js0 \ {s0} and moreover, {n−((ϕ(s1) − ϕ(s0))−1 − (ϕ(s2) − ϕ(s0))−1) :
s1, s2 ∈ Js0\{s0}} is not contained in any proper observable subalgebra of sl(2m,R).
By replacing ϕ(s) by ϕ(s)− ϕ(s0), we may assume that ϕ(s0) = 0.

In the isomorphism SL(2,R) ∼= SL(2, ϕ(s)) (see Definition 2.1),

[
1 1
0 1

]
corre-

sponds to u(ϕ(s)),

[
1 0
1 1

]
corresponds to u−(ϕ−1(s)), and

[
0 1
−1 0

]
corresponds to

σ(ϕ(s)). By Corollary 4.2, we have that v, u(ϕ(s))v ∈ V −0(A) implies that

v = u−(−ϕ−1(s))v0(A).

In particular, v0(A) 6= 0.
Taking any s1, s2 ∈ Js0 \ {s0}, we have

u−(−ϕ−1(s1))v0(A) = v = u−(−ϕ−1(s2))v0(A).

This shows that v0(A) is fixed by u−(ϕ−1(s1)− ϕ−1(s2)) for all s1, s2 ∈ Js0 \ {s0}.
By definition, v0(A) is also fixed by A. Let L denote the subgroup of H stabilizing
v0(A), and l denote its Lie algebra. Then from the above argument we have l is
observable and contains E ∈ Lie(A) (see (1.2)) and

{n−((ϕ(s1)− ϕ(s0))−1 − (ϕ(s2)− ϕ(s0))−1) : s1, s2 ∈ Js0 \ {s0}};
recall that earlier we had replaced ϕ(s) by ϕ(s)−ϕ(s0) and assumed that ϕ(s0) = 0
for notational simplicity. Because ϕ is supergeneric, in view of (1.3) we have that
L = H. Since V is an irreducible representation of H, V is trivial.

This finishes the proof for m = n.
For the general case we give the proof by an inductive argument. Suppose the

statement holds for all (m′, n′) such that m′ ≤ m, n′ ≤ n and m′+n′ < m+n. We
want to prove the statement for (m,n).
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We choose a point s0 and a subinterval Js0 ⊂ I such that the following statements
hold:

1. If we write ϕ(s) = [ϕ1(s);ϕ2(s)] where ϕ1(s) is the first m by m block, and
ϕ2(s) is the rest m by n−m block, then for any s ∈ Js0 \{s0}, ϕ1(s)−ϕ1(s0)
is invertible.

2. The curve ψ(s) = (ϕ1(s)−ϕ1(s0))−1(ϕ2(s)−ϕ2(s0)) is supergeneric as a curve
from Js0 \ {s0} to M(m× (n−m),R).

Without loss of generality we may assume that ϕ(s0) = 0 and v ∈ V −0(A). The
notations such that u′(·), A2 and vµ0(A) have the same meaning as in the proof of
Lemma 2.12. Using the same argument as the proof of Lemma 2.12, we can deduce
that

{u′(ψ(s))vµ0(A) : s ∈ Js0 \ {s0}} ⊂ V −0(A2).

By inductive hypothesis, we conclude that vµ0(A) is fixed by the whole

H ′ =

[
Im

SL(n,R)

]
∼= SL(n,R).

In particular, vµ0(A) is fixed by A2. Let the direct sum

V µ0(A) =
⊕

nδ1+δ2=µ0

V δ1,δ2

be as in the proof of Lemma 2.12. From the proof of Lemma 2.12 we know that any
nonzero projection (vµ0(A))δ1,δ2 of vµ0(A) with respect to this direct sum satisfies
δ1 (the eigenvalue for A1) is non-negative. Because we have δ2 = 0 and nδ1 +δ2 ≤ 0,
we conclude that δ1 = δ2 = 0. This implies that µ0 = 0. By Lemma 4.3, we have
v0(A) is invariant under {u(hϕ′(s0)) : h ∈ R}. By our assumption, ϕ′(s0) has rank
b. By conjugating it with elements in H ′, we have that u(X) fixes v0(A) for any
X with rank b. Note that the space spanned by all rank b matrices is the whole
space M(m × n,R). This shows that v0(A) is invariant under the whole U+(A).
Since v0(A) is also invariant under A, v0(A) is invariant under the whole group H.
Since we assume that V is an irreducible representation of H, we conclude that V
is trivial.

This completes the proof.

Lemma 3.6 is sufficient to prove the equidistribution result under the supergeneric
condition.

Now we consider the case n = km and the curve

ϕ : I = [a, b]→ M(m× n,R)

is generic, and possibly not supergeneric. In this case, we will prove the following
result which can be thought of as a generalization of Corollary 4.2. It will be applied
to describe the obstruction to equidistribution for generic curves as done in §5.

Let us denote

P−(A) = {h ∈ H : lim
t→∞

a(t)ha(t)−1 exists in H}

=

{[
g1

X g2

]
∈ H : g1 ∈ GL(m,R), g2 ∈ GL(n,R), X ∈ M(n×m,R)

}
= U−(A)ZH(A). (4.18)

Note that P−(A) is a maximal parabolic subgroup of H.
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Lemma 4.4. Let n = km and

ϕ : I = [a, b]→ M(m× n,R)

be an analytic generic curve. Let V be an irreducible representation of H = SL(m+
n,R) and v ∈ V be a nonzero vector of V . Let A denote the diagonal subgroup as
before. Suppose

{u(ϕ(s))v : s ∈ I} ⊂ V −0(A).

Then for all s0 ∈ I satisfying the generic condition, there exists ξ(s0) ∈ P−(A) such
that

(u(ϕ(s0))v)0(A) = ξ(s0)u(ϕ(s0))v.

Definition 4.5. Assume n = km, then we can write Φ ∈ M(m×n,R) as [Φ1; Φ2; . . . ; Φk]
where Φi denotes the i-th m by m block of Φ. An analytic curve ϕ : I = [a, b] →
M(m× n,R) is called standard at s0 ∈ I if there exist k points s1, . . . , sk ∈ I such
that for i = 1, . . . , k, we have

ϕ(si)− ϕ(s0) = [0; . . . ;ϕi(si)− ϕi(s0); . . . ; 0],

where ϕi(si)−ϕi(s0) is invertible, it appears in the i-th m×m block and all other
blocks are 0.

In order to prove Lemma 4.4, we will need the following lemma.

Lemma 4.6. Assume n = km. For any analytic curve

ϕ : I = [a, b]→ M(m× n,R)

which is generic at s0 ∈ I, there exists an element z′ = z′(s0) ∈ ZH(A) depending
analytically on s0, such that the conjugated curve

φ := z′ · ϕ : I = [a, b]→ M(m× n,R)

is standard at s0; where the action of ZH(A) on M(m× n,R) is given by (2.2).

Proof. Replacing ϕ(s) by ϕ(s)− ϕ(s0), we may assume that ϕ(s0) = 0.
We will prove the statement by induction on k.
When k = 1, the statement follows from the definition of generic property.
Suppose the statement holds for all k′ < k. Then we will prove the statement

for n = km.
We write

ϕ(s) = [ϕ1(s);ϕ2(s); . . . ;ϕk(s)], (4.19)

where ϕi(s) is the i-th m by m block of ϕ(s). From the definition of generic property
(Definition 1.1), there exist a subinterval Js0 ⊂ I such that for s ∈ Js0 \ {s0}, ϕ1(s)
is invertible, and the curve ψ : Js0 \ {0} → M(m× (n−m),R) defined by

ψ(s) = [ψ1(s);ψ2(s); . . . ;ψk−1(s)],

where ψi(s) = ϕ−1
1 (s)ϕi(s) is generic.

As before, let us denote

u′(ψ(s)) =

Im
Im ψ(s)

In−m

 ∈ ZH(A)

for s ∈ Js0 . Now we fix a point s1 ∈ Js0 and a subinterval Js1 ⊂ Js0 such that ψ
satisfies the generic condition for s1 and Js1 . Replacing ϕ by u′(ψ(s1)) · ϕ, recall
(2.2), we get

ϕ(s1) = [ϕ1(s1); 0; . . . ; 0] and ψ(s1) = 0.
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Let

A′ :=

a′(t) :=

Im
e(n−m)tIm

e−mtIn−m

 : t ∈ R


and

H ′ :=

{[
Im

X

]
: X ∈ SL(n,R)

}
⊂ ZH(A).

By inductive hypothesis, there exists z′′ ∈ ZH′(A′) ⊂ ZH(A), such that z′′ · ψ is
standard at s1. Since ψ(s1) = 0, there exist s2, s3, . . . , sk ∈ Js1 such that

z′′ · ψ(si) = [0; . . . ;ψi−1(si); . . . ; 0], for i = 2, . . . , k,

where the (i− 1)-th m×m block ψi−1(si) is invertible. Now we replace ϕ by z′′ ·ϕ.
Note that by definition, ϕi(s) = ϕ1(s)ψi−1(s) for i = 2, . . . , k, and s ∈ Js0 . Thus,
we have for i = 2, . . . , k,

ϕ(si) = [ϕ1(si); 0; . . . ; 0;ϕ1(si)ψi−1(si); 0; . . . ; 0].

Let z1 denote the following element:

z1 :=


Im

Im
ψ−1

1 (s2) Im
...

. . .

ψ−1
k−1(sk) 0 · · · Im

 ∈ ZH(A).

By direct calculation, we have that z1 ·ϕ is standard at s0 with given s1, s2, . . . , sk.
This completes the proof.

Now we are ready to prove Lemma 4.4.

Proof of Lemma 4.4. By Lemma 4.6, we may conjugate the curve by some z′(s0) ∈
ZH(A), such that the conjugated curve, which we still denote by ϕ, satisfies the
following: there exist

s1, s2, . . . , sk ∈ I,
such that, in view of the notation in (4.19),

ϕ(si)− ϕ(s0) = [0; . . . ;ϕi(si)− ϕi(s0); 0; . . . ; 0] for i = 1, 2, . . . , k.

Replacing v by u(ϕ(s0))v and ϕ(s) by ϕ(s)−ϕ(s0), we may assume that ϕ(s0) = 0
and v ∈ V −0(A). Then it suffices to show that

v = ξv0(A), for some ξ ∈ P−(A). (4.20)

For each i = 1, 2, . . . , k, let

Ai :=


ai(t) :=



etIm
. . .

e−tIm
. . .

 : t ∈ R


,

where e−tIm appears in the (i+ 1)-th m×m diagonal block, and the dotted entries
are all equal to 1. We denote its Lie algebra by

ai := {tAi : t ∈ R},
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where Ai := log ai(1). Let SL(2, ϕ(si)) denote the SL(2,R) copy in H containing Ai
as the diagonal subgroup and {u(rϕ(si)) : r ∈ R} as the upper triangular unipotent
subgroup, and ai(t)u(rϕ(si))ai(−t) = u(re2tϕ(si)).

We express the representation V as the direct sum of common eigenspaces of
A1, A2, . . . , Ak:

V =
⊕

δ=(δ1,...,δk)∈Zk

V (δ), (4.21)

where

V (δ) :=
{
v ∈ V : ai(t)v = eδitv for all i = 1, 2, . . . , k and t ∈ R

}
.

Let w ∈ V (δ)\{0}. We claim that for all i = 1, 2, . . . , k and ei = (−1, . . . ,−2, . . . ,−1),
with 2 in the i-th coordinate,

n(ϕ(si))w ∈ V (δ − ei), (4.22)

recall that n(ϕ(si)) = log u(ϕ(si)).
It is straight forward to check that

[Ai, n(ϕ(si))] = 2n(ϕ(si)) and [Aj , n(ϕ(si))] = n(ϕ(si)) for j 6= i.

Therefore,

Ajn(ϕ(si))w = n(ϕ(si))Ajw + [Aj , n(ϕ(si))]w =

{
(δj + 1)w if j 6= i

(δi + 2)w if j = i.

This proves (4.22).
Let A := log a(1), it is easy to see that A = A1 + · · ·+Ak. Therefore,

V σ(A) =
⊕

δ1+···+δk=σ

V (δ1, . . . , δk).

Fix any i = 1, . . . , k. Because A1, . . . , Ak normalize SL(2, ϕ(si)), we can decom-
pose V into the direct sum of irreducible representations Vp of SL(2, ϕ(si)) which
are invariant under A1, . . . , Ak:

V =
⊕
p

Vp. (4.23)

As a standard fact on SL(2,R) representations (see [8, Claim 11.4], for example),
every Vp admits a standard basis {w0, w1, . . . , wl}, such that for each 1 ≤ r ≤ l, wr
is contained in some weight space V (δ1, δ2, · · · , δk), and we index the basis elements
such that ai(t)wr = e(l−2r)twr; that is,

if wr ∈ V (δ1, δ2, · · · , δk) then δi = l − 2r. (4.24)

Moreover since n(ϕ(si))ws is a nonzero multiple of ws−1 for all 1 ≤ s ≤ l, by (4.22)
we have

wr−j ∈ V (δ − jei), for r − l ≤ j ≤ r. (4.25)

Let
πp : V → Vp

denote the canonical projection from V to Vp with respect to (4.23), and let

q(δ) : V → V (δ)

denote the canonical projection from V to V (δ) with respect to (4.21). Then

πp ◦ q(δ) = q(δ) ◦ πp. (4.26)

We call a vector δ = (δ1, . . . , δk) ∈ Zk admissible if δi ≥ 0 for all i.
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Claim 4.7. For any δ = (δ1, . . . , δk) ∈ Zk, if q(δ)(v) 6= 0, then δ is admissible.

Proof of Claim 4.7. For δ = (δ1, . . . , δk), define

σ(δ) := δ1 + · · ·+ δk ∈ Z.
Since v ∈ V −0(A), we have σ(δ) ≤ 0. We now begin by assuming that the statement
of this claim is valid for any δ′ such that σ(δ′) > σ(δ); note that the statement is
vacuously true if σ(δ) = 0 (in fact, in this case we have that δ = 0).

Let 1 ≤ i ≤ k be such that δi = min(δ1, . . . , δk). Then

δi ≤ σ(δ)/k ≤ 0, and if δi = 0 then δ = 0. (4.27)

For this choice of i, consider the decomposition (4.23) of V as V =
⊕

p Vp with

respect to the action of SL(2, ϕ(si)). There exists some Vp such that πp(q(δ)v) 6= 0.
If {w0, w1, . . . , wl} denotes the standard basis of Vp, then by (4.24), πp(q(δ)v) is a
nonzero multiple of wr for some 0 ≤ r ≤ l such that δi = l − 2r.

If πp(v) has a non-zero coefficient on wr−j for some 1 ≤ j ≤ r, then by (4.25), we
have wr−j ∈ V (δ−jei). But then q(δ−jei)(v) 6= 0 and σ(δ−jei) = σ(δ)+j(k+1) >
σ(δ). By our inductive hypothesis, δ− jei is admissible, and hence δ is admissible.

Now we can suppose that πp(v) is contained in the span of wr, . . . , wl. Then

ai(t)wr+j = e(δi−2j)twr+j and δi − 2j ≤ δi, ∀ j = 0, . . . , l − r. (4.28)

Therefore by (4.1) in Lemma 4.1 applied to Vp and the action of SL(2, ϕi(si)), we
have that

λmax(πp(u(ϕi(si))v)) ≥ −λmax(πp(v)). (4.29)

Now πp(u(ϕi(si))v) = u(ϕi(si))πp(v) has a nonzero coefficient on wr−j for some
j ∈ {0, . . . , r} such that

ai(t)wr−j = e(δi+2j)twr−j

and by (4.28) and (4.29),

δi + 2j ≥ −δi, and hence j ≥ −δi. (4.30)

By (4.25), wr−j ∈ V (δ − jei). Therefore,

q(δ − jei)(πp(u(ϕi(si))v) 6= 0. (4.31)

By (4.30) and (4.27),

σ(δ − jei) = σ(δ) + j(k + 1) ≥ σ(δ)− (k + 1)δi ≥ σ(δ)(1− (k + 1)/k) ≥ 0. (4.32)

By our assumption, u(ϕi(si))v ∈ V −0(A). So by (4.31), V (δ − jei) ⊂ V −0(A).
Hence σ(δ − jei) ≤ 0. Therefore all terms in (4.32) are zero. Therefore σ(δ) = 0
and δi = 0. Therefore by (4.27), we have that δ = 0, which is admissible. This
completes the proof of Claim 4.7.

Now we get back to the proof of (4.20). For i = 0, 1, . . . , k, let us denote

E0 = {0} and Ei := {c1e1 + · · ·+ ciei : c1, . . . , ci ∈ Z≥0},
and define for any v′ ∈ V ,

v′i :=
∑
δ∈Ei

q(δ)(v′). (4.33)

By Claim 4.7, v = vk and v0 = q(0)(v) = v0. Therefore, in order to prove (4.20),
it is sufficient to show the following:

vi ∈ U−(A)vi−1, for all 1 ≤ i ≤ k. (4.34)
29



To prove this, fix any 1 ≤ i ≤ k and consider the decomposition

V =
⊕
p

Vp

as in (4.23) into SL(2, ϕ(si))-irreducible and A1, . . . , Ak-invariant subspaces Vp. Let
πp : V → Vp denote the canonical projection with respect to this decomposition.
By (4.26) and (4.33),

πp(v
′)j = πp(v

′
j), for all v′ ∈ V and j = 0, 1, . . . , k.

Hence

πp(vi−1) = πp((vi)i−1) = πp(vi)i−1.

Therefore

if πp(vi) = 0 then πp(vi−1) = 0. (4.35)

Now suppose that πp(vi) 6= 0. Let {w0, . . . , wl} denote a standard basis of Vp;
that is, (4.24) holds. Let 0 ≤ r ≤ l be such that

πp(vi) ⊂ Span{wr, . . . , wl} \ Span{wr+1, . . . , wl}. (4.36)

In particular, πp(vi) has a nonzero projection on wr. Hence by Claim 4.7,

wr ∈ V (c1e1 + · · ·+ ciei) for some c1, . . . , ci ∈ Z≥0. (4.37)

By (4.25) we have that

wr+j ∈ V (c1e1 + · · ·+ ci−1ei−1 + (ci + j)ei), for all − r ≤ j ≤ l − r. (4.38)

Therefore πp(v) ∈
∑

δ∈Ei
V (δ). Hence

πp(vi) = πp(v)i = πp(v). (4.39)

By (4.38) we have

ai(t)wr+j = e−(λ+2j)twr+j for −r ≤ j ≤ l − r, where λ = c1 + · · ·+ ci−1 + 2ci.
(4.40)

We apply Lemma 4.1 to the SL2(ϕ(si))-action on Vp and the vector πp(vi). Let
−r ≤ j ≤ l − r be such that

u(ϕ(si))πp(vi) ⊂ Span{wr+j , . . . , wl} \ Span{wr+j+1, . . . , wl}. (4.41)

Then by (4.1), (4.36) and (4.40) we get

− (λ+ 2j) ≥ λ. (4.42)

On the other hand by (4.39) and our basic assumption we have

u(ϕ(si))πp(vi) = u(ϕ(si))πp(v) = πp(u(ϕ(si))v) ∈ V −0(A).

Hence by (4.38) and (4.41) we have

0 ≥ σ(c1e1 + · · ·+ ci−1ei−1 + (ci + j)ei) = (λ− ci + j)(−(k + 1)). (4.43)

Now combining (4.42) and (4.43), and we get

ci ≤ λ+ j ≤ 0.

On the other hand, by (4.37), ci ≥ 0. Therefore ci = 0 and j = −λ. Since ci = 0,
by (4.38) we have that the projection of πp(vi) on the line Rwr equals

πp(vi)i−1 = πp((vi)i−1) = πp(vi−1).
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And since j = −λ, we have equality in (4.42), which corresponds to equality in (4.1)
of Lemma 4.1. Therefore (4.3) holds and in view of Definition 2.1, we get

πp(vi) = u−(0, . . . ,−ϕi(si)−1, . . . ,0)πp(vi−1) = πp(u
−(0, . . . ,−ϕi(si)−1, . . . , 0)vi−1),

(4.44)
where

u−(0, . . . ,−ϕi(si)−1, . . . ,0) :=



Im
0 Im
...

. . .

−ϕi(si)−1 Im
...

. . .

0 Im


∈ SL(2, ϕ(si))∩U−(A).

Therefore, due to (4.35), (4.44) holds for all p, and hence (4.34) holds.
This completes the proof.

Remark 4.8.

1. Though our proof works for the special case n = km, we conjecture that the
conclusion of Lemma 4.4 should hold for general (m,n).

2. From the proof we can see, if we assume ϕ(s0) = 0 and v ∈ V −0(A), then
z′(s0) · v0(A) is fixed by

B :=

b(t1, t2, . . . , tk) :=


et1Im

et2Im
. . .

etkIm

 : t1 + t2 + · · ·+ tk = 0

 .

5. OBSTRUCTION TO EQUIDISTRIBUTION. We will study the obstruc-
tion of equidistribution of the expanding curves {a(t)u(ϕ(I))x : t > 0} as t→ +∞
and describe limit measures if equidistribution fails.

Our present technique is insufficient to handle non-generic curves. In this paper,
we focus on generic curves.

If m and n are co-prime, the generic condition is the same as the supergeneric
condition, so there is nothing to discuss in this case.

Therefore we consider the case (m,n) > 1 and the analytic curve

ϕ : I = [a, b]→ M(m× n,R)

is generic but not supergeneric. However, for now, we could only handle the case
n = km where k > 1 is some positive integer (see Example A.8 for an example of
generic curve which is not supergeneric). To handle general (m,n), we need some
general version of Lemma 4.4. With these assumptions, we want to describe the
obstruction of equidistribution of {a(t)u(ϕ(I))x : t > 0} as t→∞.

In this section, we always assume that n = km and the analytic curve

ϕ : I = [a, b]→ M(m× n,R)

is generic.

Theorem 5.1 (See [19, Proposition 4.9]). Let x = gΓ be as in Theorem 1.4.
Suppose the expanding curves {a(t)u(ϕ(s))x : t > 0} do not tend to be equidistributed
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along some subsequence ti → +∞. By Proposition 3.5, there exist L ∈ L and γ ∈ Γ
such that

u(ϕ(s))gγpL ∈ V −0(A),

for all s ∈ I. Then there exist h ∈ H and some Lie subgroup F of G containing A
such that FhgΓ is closed in G/Γ, h−1Fh fixes v = gγpL, and

{u(ϕ(s)) : s ∈ I} ⊂ P−(A)Fh.

Recall that P−(A) = ZH(A)U−(A) denotes the maximal parabolic subgroup of H
associated with A.

Proof. Let s0 ∈ I such that every point in a neighborhood J of s0 satisfies the
generic condition. By Lemma 4.4, for every s ∈ I, we have that

lim
t→∞

a(t)u(ϕ(s))v = (u(ϕ(s))v)0(A) = ξ(s)u(ϕ(s))v,

for some ξ(s) ∈ P−(A). Let p0 = (u(ϕ(s0))v)0(A). Then p0 = ξ(s0)u(ϕ(s0))v. This
implies that

lim
t→+∞

a(t)u(ϕ(s)− ϕ(s0))ξ(s0)−1p0 = ξ(s)u(ϕ(s)− ϕ(s0))ξ(s0)−1p0.

Let F1 := N1
G(L), then F1 is the stabilizer of

pL = (gγ)−1v = (gγ)−1u(−ϕ(s0))ξ(s0)−1p0.

Since the orbit ΓpL is discrete, we have that ΓF1 is closed inG. Let h := ξ(s0)u(ϕ(s0)) ∈
H and

F := (hgγ)F1(hgγ)−1.

It is easy to see that F is the stabilizer of p0. Since p0 is invariant under A, we have
that A ⊂ F . Secondly, FhgΓ = hgγF1Γ is closed. Finally, it is easy to check that
h−1Fh is the stabilizer of v = gγpL.

Since Gp0 is open in its closure, the map gF 7→ gp0 : G/F → Gp0 is a homeo-
morphism. Thus we have that in G/F ,

lim
t→+∞

a(t)u(ϕ(s)− ϕ(s0))ξ(s0)−1F = ξ(s)u(ϕ(s)− ϕ(s0))ξ(s0)−1F. (5.1)

Since the Lie algebra of F is {Ad(a(t)) : t ∈ R}-invariant, there exists an
{Ad(a(t)) : t ∈ R}-invariant subspace W of the Lie algebra of H complemen-
tary to the Lie algebra of F . We decompose W = S0 ⊕W− ⊕W+ into the fixed
point space, the contracting subspace and the expanding subspace for the action of
Ad(a(t)) as t→ +∞. Then for all s ∈ J near s0 we have,

ξ(s)u(ϕ(s)− ϕ(s0))ξ(s0)−1F = exp(w0(s)) exp(w−(s)) exp(w+(s))F, (5.2)

for all s ∈ J near s0, where w0 ∈W 0, and w± ∈W±. Combining (5.1) and (5.2), we
get that w+(s) = 0 for all s near s0. Thus we get ξ(s)u(ϕ(s) − ϕ(s0))ξ(s0)−1F =
exp(w0(s)) exp(w−(s))F . Let η(s) := exp(w0(s)) exp(w−(s)). It is easy to see
that η(s) ∈ P−(A). Hence for all s ∈ J near s0, we have u(ϕ(s) − ϕ(s0)) ∈
ξ(s)−1η(s)Fξ(s0). Thus, we have

u(ϕ(s)) ∈ ξ(s)−1η(s)Fh for all s ∈ J near s0.

Therefore by the analyticity of ϕ, we get that

{u(ϕ(s)) : s ∈ I} ⊂ P−(A)Fh ∩ U+(A) = P−(A)(F ∩H)h ∩ U+(A).

This completes the proof.
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Remark 5.2. By the above theorem, there exist analytic curves

ξ− : I → U−(A)

and

ξ0 : I → ZH(A)

such that u(ϕ(s))gΓ ⊂ ξ−(s)ξ0(s)FhgΓ for all s ∈ I. Then as t→∞, the distance
between a(t)u(ϕ(s))gΓ and ξ0(s)FhgΓ tends to zero, since FhgΓ is a proper closed
{a(t)}-invariant subset of G/Γ. Thus every limit measure of the sequence {µt : t >
0} as t → +∞ is a probability measure whose support is contained in ξ0(I)FhgΓ.
Replacing F by a smaller subgroup containing A, we can actually ensure that FhgΓ
admits a finite F -invariant measure.

We conjecture that in the general case of (m,n) > 1, if ϕ is generic, then
Lemma 4.4, Theorem 5.1, and Remark 5.2 should hold.

Appendix A. More discussion and examples on the generic and super-
generic condtions. Let us discuss the generic condition and the supergeneric
condition in detail so that we can understand them better.

Proposition A.1. If m and n are coprime, then the generic condition is the same
as the supergeneric condition in M(m× n,R).

Proof. Let us prove it by induction on m+ n.
When m = n = 1, it is easy to see that the generic condition and the supergeneric

condition are both equivalent to the condition that ϕ : I → M(1× 1,R) = R is not
constant.

Suppose that the statement holds for any coprime (m′, n′) with m′+n′ < m+n.
We will prove the statement for (m,n). Without loss of generality, let us assume
that m < n.

Given an analytic curve ϕ : I → M(m × n,R), let us check if ϕ is generic or
supergeneric. We first reduce the curve to another curve ψ : Js0 → M(m × (n −
m),R). In this process, there is no difference between genericity and supergenericity;
that is, if we can not construct such ψ, then we claim that ϕ is neither generic
nor supergeneric, otherwise, we may continue. If we get ψ, then by our inductive
hypothesis, ψ is generic if and only if it is supergeneric. By the inductive definition
of generic condition and supergeneric condition, we conclude that ϕ is generic if
and only if it is supergeneric.

This completes the proof.

Let us consider the case where m = 1 or n = 1.

Proposition A.2. If m = 1 or n = 1, the generic condition (which is the same
as the supergeneric condition) is equivalent to the condition that the curve is not
contained in any proper affine subspace.

Proof. We will only prove the statement for m = 1. The proof for n = 1 is the
same.

We will prove the statement by induction on n.
For n = 1, the statement is obvious.
Suppose that the statement holds for n − 1. Let us prove it for n. Given an

analytic curve

ϕ : I → M(1× n,R) = Rn,
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let us check if it is generic. Let us write

ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s)).

Without loss of generality, let us assume that ϕ(s0) = 0 for some s0 ∈ I. Then if
ϕ1(s) = 0 for every s ∈ I, we claim that ϕ is not generic. In this case we have that
ϕ is contained in the subspace x1 = 0. If not, then there exists a subinterval Js0 ⊂ I
such that ϕ1(s)−ϕ1(s0) = ϕ1(s) 6= 0 for any s ∈ Js0 . Let us define ψ : Js0 → Rn−1

as follows:

ψ(s) := (ϕ−1
1 (s)ϕ2(s), . . . , ϕ−1

1 (s)ϕn(s)).

By our inductive hypothesis, ψ(s) is not generic if and only if it is contained in
some proper affine subspace

a1 + a2x1 + · · ·+ anxn−1 = 0.

This is equivalent to

a1 + a2ϕ
−1
1 (s)ϕ2(s) + · · ·+ anϕ

−1
1 (s)ϕn(s) = 0 for any s ∈ Js0 ,

which is equivalent to that {ϕ(s) : s ∈ Js0} is contained in the proper affine subspace

a1x1 + a2x2 + · · ·+ anxn = 0.

Since ϕ is analytic, this is equivalent to that {ϕ(s) : s ∈ I} is contained in a proper
affine subspace.

This completes the proof.

Remark A.3. In [18], the case m = 1 is studied. It is proved that the obstruction to
equidistribution is that the curve is contained in a proper affine subspace of Rn. The
above proposition shows that the main result in [18] is a special case of Theorem
1.4.

First we construct supergeneric curves for m = n.
It is easy to see that for any analytic curve

ϕ : I → M(m× n,R)

and any X ∈ M(m×n,R), ϕ(s) is supergeneric if and only if ϕ(s)+X is supergeneric.
Therefore, we will only consider analytic curves passing through 0 ∈ M(m× n,R).

Example A.4.

1. For m = n = 2, the analytic curve ϕ : I = [−1, 1]→ M(2× 2,R) defined by

ϕ(s) :=

[
s s4

s2 s3

]
is supergeneric.

2. For m = n = 3, the analytic curve ϕ : I = [−1, 1]→ M(3× 3,R) defined by

ϕ(s) :=

 s16 − s17 0 −s8 + s9

0 −s11 + s12 s7 − s8

−s13 + s14 s10 − s11 0


is supergeneric.

Proof.
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1. Let s0 = 0, then ϕ(s0) = 0. It is easy to check that

det(ϕ(s)− ϕ(s0)) = detϕ(s)

is not always zero and

ψ(s) := (ϕ(s)− ϕ(0))−1 = ϕ−1(s)

is the following:

ψ(s) = (detϕ(s))−1

[
s3 −s4

−s2 s

]
.

It is not contained in any proper affine subspace of M(2×2,R). This proves
that ϕ(s) is supergeneric.

2. It is straightforward to check that detϕ(s) is not always zero and ψ(s) =
(ϕ(s)− ϕ(0))−1 = ϕ−1(s) is the following:

ψ(s) = (detϕ(s))−1

 s s2 s3

s4 s5 s7

s8 s10 s11

 .
It is not contained in any proper affine subspace of M(3 × 3,R). This shows
that ϕ(s) is supergeneric.

For m 6= n, it is also easy to construct supergeneric curves.

Example A.5. For m = 2 and n = 3, the curve ϕ : [−1, 1]→ M(2× 3,R) defined
by

ϕ(s) :=

[
s5 −s3 1
−s2 s 0

]
is supergeneric.

Proof. Let us write ϕ(s) = [ϕ1(s);ϕ2(s)] where

ϕ1(s) =

[
s5 −s3

−s2 s

]
and

ϕ2(s) =

[
1
0

]
.

Let s0 = 0, then ϕ(s0) = 0. The curve

ψ(s) = (ϕ1(s)− ϕ1(s0))−1(ϕ2(s)− ϕ2(s0))

is the following:

ψ(s) =
1

s6 − s5

[
s
s2

]
.

It is easy to see that ψ(s) is not contained in any proper affine subspace of R2.
Therefore, ψ(s) is supergeneric and hence ϕ(s) is supergeneric.

For supergeneric curves, we have the following statement.
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Proposition A.6. For any m ≥ 1 and n ≥ 1, let us equip the set of analytic curves
in M(m×n,R) with the uniform norm ‖·‖∞; namely, for ϕ1, ϕ2 : I → M(m×n,R),

‖ϕ1 − ϕ2‖∞ := max
s∈I
{|ϕ1(s)− ϕ2(s)|}.

Then the set of supergeneric curves in M(m× n,R) is dense and open in the set of
analytic curves in M(m× n,R).

Proof. Let us prove the statement by induction on m+ n.
We first prove the statement for m = n. We will show the following stronger

statement: the set of analytic curves satisfying the condition given in [20], denoted
by G, is open and dense.

We first claim that G is open. In fact, given an analytic curve ϕ : I → M(m ×
m,R) in G, we have a point s0 ∈ I and a subinterval Js0 ⊂ I, such that ϕ(s)−ϕ(s0)
is invertible for any s ∈ Js0 , and the curve

ψ(s) = (ϕ(s)− ϕ(s0))−1 : s ∈ Js0
is not contained in any proper affine subspace of M(m×m,R). The invertibility is
apparently an open condition. To see that the condition ψ(s) not contained in any
proper affine subspace is also open, we note that this condition is equivalent to the
condition that the derivatives of ψ(s) at some s1 ∈ Js0 span the whole space. This
condition is stable under perturbation. This shows that G is open.

Now let us prove that G is dense. Suppose not, then there exists an open subset
N of the collection of analytic curves in M(m × m,R) such that every ϕ ∈ N is
not in G. We first claim that there exists ϕ ∈ N which is generic. In fact, ϕ is not
generic if and only if for any s0 ∈ I, ϕ(s)− ϕ(s0) is contained in the subvariety of
M(m ×m,R) defined by det(X) = 0. Therefore, if ϕ ∈ N is not generic, we can
easily perturb it to make it generic. This proves the claim. By replacing N with a
smaller open set, we may assume that every ϕ ∈ N is generic. For ϕ ∈ N , let us fix
a point s0 ∈ I and a subinterval Js0 ⊂ I such that ϕ(s)−ϕ(s0) is invertible for any
s ∈ Js0 . By our assumption, we have that ψ(s) := (ϕ(s) − ϕ(s0))−1 is contained
in a proper affine subspace of M(m ×m,R). Then we have that for any s ∈ Js0 ,
the derivatives of ψ at s ∈ Js0 do not span the whole space. Let V(ϕ, s) denote the
linear span of the derivatives of ψ at s ∈ Js0 . Let us fix s1 ∈ Js0 . We may choose
ϕ ∈ N with maximal V(ϕ, s1). Our plan is to find ϕ̃ : I → M(m × m,R) close
to ϕ such that V(ϕ̃, s1) is larger than V(ϕ̃, s1), which leads to a contradiction. By
our assumption, V(ϕ, s1) is not the whole space, then there exists i ≤ m2 such that
V(ϕ, s1) is spanned by

{ψ′(s1), ψ(2)(s1), . . . , ψ(i−1)(s1)}.

Let us write ϕ̃(s) = ϕ(s) + εη(s) where η : I → M(m ×m,R) is an analytic map
and ε > 0 is a small parameter. We may choose ε > 0 small enough to make sure
that ϕ̃ ∈ N . Without loss of generality, we may assume that ϕ(s0) = η(s0) = 0.
Let us consider

ψ̃(s) := (ϕ̃(s)− ϕ̃(s0))−1 = ϕ̃−1(s).

Then we have that

ψ̃(s) = ϕ̃−1(s)
= (ϕ(s) + εη(s))−1

= ((Im + εη(s)ϕ−1(s))ϕ(s))−1

= ϕ−1(s)(Im + εη(s)ϕ−1(s))−1.
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Because
(Im + εη(s)ϕ−1(s))−1 = Im − εη(s)ϕ−1(s) +O(ε2),

we have that

ψ̃(s) = ϕ−1(s)− εϕ−1(s)η(s)ϕ−1(s) +O(ε2)
= ψ(s)− εϕ−1(s)η(s)ϕ−1(s) +O(ε2).

By ignoring the error term O(ε2), we can see that V(ϕ̃, s1) is larger than V(ϕ, s1)
if the subspace spanned by derivatives of

f(s) := ψ(s)− εϕ−1(s)η(s)ϕ−1(s)

at s1 is larger than V(ϕ, s1). Let η(s) = ϕ(s)ξ(s)ϕ(s) where

ξ : I → M(m×m,R)

is an analytic map satisfying that ξ(i)(s1) 6∈ V(ϕ, s1) and ξ(j)(s1) = 0 for any j 6= i.
It is easy to find such ξ(s). In fact, a polynomial map with appropriate coefficients
will work. Then we have that

f(s) = ψ(s)− εξ(s).
For 1 ≤ j ≤ i− 1,

f (j)(s1) = ψ(j)(s1)− εξ(j)(s1) = ψ(j)(s1).

For j = i, we have that

f (i)(s1) = ψ(i)(s1)− εξ(i)(s1) 6∈ V(ϕ, s1).

This implies that the space spanned by {f (j)(s1) : 1 ≤ j ≤ i} is larger than V(ϕ, s1).
By our previous discussion, this proves that G is a dense set, and hence finishes the
proof for m = n.

Suppose the statement holds for any (m′, n′) with m′+n′ < m+n. We will prove
the statement for (m,n). Without loss of generality, let us assume that m < n.

Given an analytic curve ϕ : I → M(m× n,R), let us write

ϕ(s) = [ϕ1(s);ϕ2(s)]

where ϕ1(s) denotes the first m by m block and ϕ2(s) denotes the rest m by n−m
block.

Let us first prove that the set of supergeneric curves is open.
Given a supergeneric curve ϕ = [ϕ1;ϕ2] : I → M(m × n,R), we have a point

s0 ∈ I and a subinterval Js0 ⊂ I such that ϕ1(s) − ϕ1(s0) is invertible for any
s ∈ Js0 and

ψ(s) := (ϕ1(s)− ϕ1(s0))−1(ϕ2(s)− ϕ2(s0)), s ∈ Js0
is supergeneric. By our argument in the proof of the case m = n, we have that for
any

ϕ̃ = [ϕ̃1; ϕ̃2] : I → M(m× n,R)

close enough to ϕ, ϕ̃1(s)− ϕ̃1(s0) is invertible for any s ∈ Js0 . Let us denote

ψ̃(s) := (ϕ̃1(s)− ϕ̃1(s0))−1(ϕ̃2(s)− ϕ̃2(s0)) : s ∈ Js0 .

It is easy to see that ψ̃ is close to ψ if ϕ̃ is close to ϕ. By our inductive hypothesis,
we have that ψ̃ is supergeneric if ψ̃ is close to ψ. This shows that ϕ̃ is supergeneric
for any ϕ̃ close enough to ϕ.

Let us prove that the set of supergeneric curves is dense. Suppose not, then there
exists an open subset N of the set of analytic curves such that any ϕ = [ϕ1;ϕ2] ∈ N
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is not supergeneric. By the same reason as in the proof of the case m = n, we may
assume that there exists a point s0 ∈ I and a subinterval Js0 ⊂ I such that for any
ϕ = [ϕ1;ϕ2] ∈ N and any s ∈ Js0 , ϕ1(s) − ϕ1(s0) is invertible. By our inductive
hypothesis, for any open neighborhood N ′ of ψ(s) := (ϕ1(s) − ϕ1(s0))−1(ϕ2(s) −
ϕ2(s0)), there exists a supergeneric curve of the form ψ(s) + εη(s) ∈ N ′. Let us
choose N ′ small enough such that

ϕ̃(s) = [ϕ1(s);ϕ2(s) + ε(ϕ1(s)− ϕ1(s0))η(s)] ∈ N .

It is easy to check that

ψ̃(s) := (ϕ̃1(s)− ϕ̃1(s0))−1(ϕ̃2(s)− ϕ̃2(s0))

is equal to ψ(s) + εη(s). This shows that ϕ̃ is supergeneric.
This completes the proof.

Remark A.7. In the argument above, by replacing “analytic” with “polynomial”,
we can also show that for any polynomial curve

ϕ : I → M(m×m,R),

there are polynomial supergeneric curves arbitrarily close to ϕ.

In the next example, we will see that the generic condition is not the same as
the supergeneric condition.

Example A.8. Let m = n = 2. The analytic curve ϕ : [−1, 1] → M(2 × 2,R)
defined by

ϕ(s) :=

[
s s2

s2 s

]
is generic but not supergeneric.

Proof. It is easy to see that ϕ is generic because ϕ(s) = ϕ(s) − ϕ(0) is invertible
for any s ∈ [1/4, 1/2].

Let us prove that ϕ is not supergeneric. In fact, for any s0 ∈ [−1, 1], we have
that

ϕ(s)− ϕ(s0) =

[
s− s0 s2 − s2

0

s2 − s2
0 s− s0

]
.

Then ψ(s) := (ϕ(s)− ϕ(s0))−1 is given as follows:

ψ(s) =
1

(s− s0)2 − (s2 − s2
0)2

[
s− s0 s2

0 − s2

s2
0 − s2 s− s0

]
.

It it easy to see that ψ is well defined in some subinterval Js0 of I. Moreover,
for any s1, s2 ∈ Js0 , we have that ψ(s1) − ψ(s2) is contained in the subspace S of
M(2× 2,R) defined as follows:

S :=

{[
x1,1 x1,2

x2,1 x2,2

]
∈ M(2× 2,R) : x1,1 = x2,2, x1,2 = x2,1

}
.

Recall that

E2 =

[
I2

−I2

]
∈ sl(4,R)

is defined in (1.2). Let us define the Lie subalgebra h of sl(4,R) as follows. Let

E1 :=

[
1 1
1 1

]
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and

E2 :=

[
1 −1
−1 1

]
.

For i = 1, 2, let us define

Xi :=

[
0 Ei
0 0

]
∈ sl(4,R),

Yi :=

[
0 0
Ei 0

]
∈ sl(4,R),

and

Hi := [Xi, Yi] =

[
Ei

−Ei

]
∈ sl(4,R).

It is easy to check that for i = 1, 2, {Xi, Yi, Hi} generate a Lie subalgebra, denoted
by hi, isomorphic to sl(2,R). Moreover, for any L1 ∈ {X1, Y1, H1} and L2 ∈
{X2, Y2, H2}, we have that [L1, L2] = 0. This implies that h1 and h2 generate
a Lie subalgebra isomorphic to sl(2,R) × sl(2,R). Let us define h to be this Lie
subalgebra. h is an observable Lie subalgebra since it is semisimple.

It is easy to see that E2 and n−(S) are contained in h. This shows that ϕ(s) is
not supergeneric.

It is worth explaining the condition given in [2] and its relation to our generic
condition.

Let us denote M(s) := [Im;ϕ(s)] ∈ M(m × (m + n),R). Given a subspace
W ⊂ Rm+n and 0 < r ≤ m, we define the pencil PW,r to be

PW,r := {M ∈ M(m× (m+ n),R) : dimMW = r}.

If 0 < r < m dimW
m+n , then we call PW,r a constraining pencil. In [2], the following

theorem is proved: if a submanifold is not contained in any constraining pencil, then
the submanifold is extremal. In our case, it says that if the curve {M(s) : s ∈ I}
is not contained in any constraining pencil PW,r, then the curve is extremal. It is
easy to see that if W is a rational subspace, then the constraining pencil PW,r is
not extremal. So this condition is considered almost optimal.

Proposition A.9. Suppose that the analytic curve ϕ : I = [a, b] → M(m × n,R)
is generic, then the curve {M(s) = [Im;ϕ(s)] : s ∈ I} is not contained in any
constraining pencil PW,r.

Proof. Without loss of generality, we may assume that every point in I satisfies the
generic condition.

We will prove the statement by induction on (m,n). Without loss of generality,
we may assume that m ≤ n.

We first prove the statement holds for (n, n). For contradiction, suppose that
there exists some subspace W and 0 < r < dimW

2 such that

M(s) = [In;ϕ(s)] ∈ PW,r for all s ∈ I.

This implies that KerM(s) ∩W > dimW
2 for all s ∈ I. Then for any s1, s2 ∈ I,

the dimension of KerM(s1) ∩ KerM(s2) ∩W is greater than 0, since the sum of
dim(KerM(s1) ∩W ) and dim(KerM(s2) ∩W ) is greater than dimW . It is easy to
see that

KerM(s) = {(−ϕ(s)w,w) : w ∈ Rn}.
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Therefore, there exist w1, w2 ∈ Rn\{0} such that (−ϕ(s1)w1, w1) = (−ϕ(s2)w2, w2).
This implies w1 = w2 and ϕ(s1)w1 = ϕ(s2)w1. Therefore (ϕ(s1) − ϕ(s2))w1 = 0.
But this is impossible since w1 6= 0 and ϕ(s1)−ϕ(s2) is invertible. This contradic-
tion shows the statement for (n, n).

Suppose the statement holds for all (m′, n′) such that

m′ ≤ m,n′ ≤ n and m′ + n′ < m+ n,

we want to prove the statement for (m,n). Suppose not, then the curve {M(s) =
[Im;ϕ(s)] : s ∈ I} is contained in some pencil PW,r where r < m dimW

m+n . Let us fix
some s0 ∈ I and denote

W0 := KerM(s0) ∩W.
Then from our assumption we have that dimW0 = dimW − r. For any s ∈ I, since

dim(KerM(s) ∩W ) = dimW − r,

we have that

dim(KerM(s) ∩W0) = dim(KerM(s) ∩KerM(s0) ∩W )
≥ 2(dimW − r)− dimW = dimW − 2r = dimW0 − r.

Therefore, dimM(s)W0 ≤ r for all s ∈ I.
We write any w ∈W ⊂ Rm+n as (w1, w2) where w1 ∈ Rm and w2 ∈ Rn. Since

W0 = KerM(s0) ∩W,

every (w1, w2) ∈ W0 satisfies that w1 = −ϕ(s0)w2. By identifying (−ϕ(s0)w2, w2)
with w2 ∈ Rn, we may consider W0 as a subspace of Rn. By direct calculation, we
have that under this identification, M(s) : W0 → Rm is defined as follows:

M(s) : w ∈W0 7→ (ϕ(s)− ϕ(s0))w ∈ Rm.

Following our previous notation, we may write ϕ(s) = [ϕ1(s);ϕ2(s)] where ϕ1(s)
denotes the first m by m block of ϕ(s) and ϕ2(s) denotes the rest m by n − m
block. By our assumption, ϕ1(s)−ϕ1(s0) is invertible for s inside some subinterval
Js0 ⊂ I. Accordingly we may write w ∈ W0 ⊂ Rn as (w3, w4) where w3 ∈ Rm and
w4 ∈ Rn−m. For s ∈ Js0 , let us denote

ψ(s) := (ϕ1(s)− ϕ1(s0))−1(ϕ2(s)− ϕ2(s0)) ∈ M(m× (n−m),R)

and N(s) := [Im;ψ(s)] ∈ M(m× n,R). By our assumption, ψ : Js0 → M(m× (n−
m),R) is generic. Then for w = (w3, w4) ∈W0 ⊂ Rn,

M(s)w = M(s)(w3, w4)
= (ϕ1(s)− ϕ1(s0))w3 + (ϕ2(s)− ϕ2(s0))w4

= (ϕ1(s)− ϕ1(s0))(w3 + ψ(s)w4)
= (ϕ1(s)− ϕ1(s0))N(s)(w3, w4).

Since ϕ1(s)−ϕ1(s0) is invertible, we have that dimM(s)W0 = dimN(s)W0. There-
fore,

dimN(s)W0 ≤ r, for all s ∈ Js0 .
This implies that there exists some r′ ≤ r and some subinterval J ′s0 ⊂ Js0 such that

dimN(s)W0 = r′ for all s ∈ J ′s0 ,

i.e.,

N(s) ∈ PW0,r′ for all s ∈ J ′s0 .
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But this contradicts our inductive assumption for case (m,n −m). In fact, W0 ⊂
Rm+(n−m),

N(s) = [Im;ψ(s)]

where the curve ψ(s) ∈ M(m× (n−m),R) is generic. Thus to apply the inductive
assumption for (m,n−m), it suffices to check that r′ < m dimW0

n . Since r′ ≤ r, we

only need to show that r < m dimW0

n . The inequality is equivalent to

nr < m dimW0 = m(dimW − r).
It is straightforward to check that it is the same as

r <
m dimW

m+ n
,

which is our assumption. This allows us to apply the inductive assumption and
conclude the contradiction.

This completes the proof.

Therefore the generic condition implies the pencil condition given in [2].

Acknowledgements. The second author thanks The Ohio State University for
hospitality during his visit when the project was initiated. Both authors thank
MSRI where they collaborated on this work in Spring 2015. We thank Dmitry
Kleinbock for helpful discussions on the generic condition and for drawing our at-
tention to the work of Aka, Breuillard, Rosenzweig and de Saxcé [1] and [2]. Thanks
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