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Abstract 

Modern neural networks are often quite wide, causing large memory and com- 
putation costs. It is thus of great interest to train a narrower network. However, 
training narrow neural nets remains a challenging task. We ask two theoretical 
questions: Can narrow networks have as strong expressivity as wide ones? If so, 
does the loss function exhibit a benign optimization landscape? In this work, we 
provide partially affirmative answers to both questions for 1-hidden-layer networks 
with fewer than n (sample size) neurons when the activation is smooth. First, we 
prove that as long as the width m 2n/d (where d is the input dimension), its 
expressivity is strong, i.e., there exists at least one global minimizer with zero 
training loss. Second, we identify a nice local region with no local-min or saddle 
points. Nevertheless, it is not clear whether gradient descent can stay in this nice re- 
gion. Third, we consider a constrained optimization formulation where the feasible 
region is the nice local region, and prove that every KKT point is a nearly global 
minimizer. It is expected that projected gradient methods converge to KKT points 
under mild technical conditions, but we leave the rigorous convergence analysis 
to future work. Thorough numerical results show that projected gradient methods 
on this constrained formulation significantly outperform SGD for training narrow 
neural nets. 

 
1 Introduction 
Modern neural networks are huge (e.g. [8, 74]). Reducing the size of neural nets is appealing for 
many reasons: first, small networks are more suitable for embedded systems and portable devices; 
second, using smaller networks can reduce power consumption, contributing to “green computing”. 
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There are many ways to reduce network size, such as quantization, sparcification and reducing the 
width (e.g. [20, 77]). In this work, we focus on reducing the width (training narrow nets). 
Reducing the network width often leads to significantly worse performance 3. What is the possible 
cause? From the theoretical perspective, there are three possible causes: worse generalization power, 
worse trainability (how effective a network can be optimized), and weaker expressivity (how complex 
the function a network can represent; see Definition 1). Our simulation shows that the training error 
deteriorates significantly as the width shrinks, which implies that the trainability and/or expressivity 
are important causes of the worse performance (see Section 5.1 for more evidence ). We do not 
discuss generalization power for now, and leave it to future work. 
So how is the training error related to expressivity and trainability? The training error is the sum of 
two parts (see, e.g., [64]): the expressive error (which is the best a given network can do; also the 
global minimal error) and the optimization error (which is the gap between training error and the 
global minimal error; occurs because the algorithm may not find global-min). The two errors are of 
different nature, and thus need to be discussed separately. 
It is understandable that narrower networks might have weaker expressive power. What about 
optimization? There is also evidence that smaller width causes optimization difficulty. A number of 
recent works show that increasing the width of neural networks helps create a benign empirical loss 
landscape ([19, 35, 59]), while narrow networks (width m < sample size n) suffer from bad landscape 
([2, 60, 66, 72, 79]). Therefore, if we want to improve the performance of narrow networks, it is 
likely that both expressiveness and trainability need to be improved. 
The above discussion leads to the following two questions: 

(Q1) Can a narrow network have as strong expressivity as a wide one? 
(Q2) If so, can a local search method find a (near) globally optimal solution? 

The key challenges in answering these questions are listed below: 

• It is not clear whether a narrow network has strong expressivity or not. Many existing works 
focus on verifying the relationship between zero-training-error solutions and stationary 
points, but they neglect the (non)existence of such solutions (e.g. [71], [63]). For narrow 
networks, the (non)-existence of zero-training-error-solution is not clear. 

• Even if zero-training-error solutions do exist, it is still not clear how to reach those solutions 
because the landscape of a narrow neural network can be highly non-convex. 

• Even assuming that we can identify a region that contains zero-training-error solutions and 
has a good landscape, it is potentially difficult to keep the iterates inside such a good region. 
One may think of imposing an explicit constraint, but this approach might introduce bad 
local minimizers on the boundary [6]. 

In this work, we (partially) answer (Q1) and (Q2) for a 1-hidden-layer nets with fewer than n neurons. 
Our main contributions are as follows: 

• Expressiveness and nice local landscape. We prove that, as long as the width m is larger 
than 2n/d (where n is the sample size and d is the input dimension), then the expressivity 
of the 1-hidden-layer net is strong, i.e., w.p.1. there exists at least one global-min with zero 
empirical loss. In addition, such a solution is surrounded by a good local landscape with 
no local-min or saddles. Note that our results do not exclude the possibility that there are 
sub-optimal local minimizers on the global landscape. 

• Every KKT point is an approximated global minimizer. For the original unconstrained 
optimization problem, the nice local landscape does not guarantee the global statement 
of “every stationary point is a global minimizer”. We propose a constrained optimization 
problem that restricts the hidden weights to be close to the identified nice region. We show 

 
3This can be verified on our empirical studies in Section 5. Another evidence is that structure pruning 

(reducing the number of channels in convolutional neural nets (CNN)) is known to achieve worse performance 
than unstructured pruning; this is an undesirable situation since many practitioners prefer structure pruning (due 
to hardware reasons). 
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that every Karush–Kuhn–Tucker (KKT) point is an approximated global minimizer of the 
unconstrained training problem 4. 

• In real-data experiments, our proposed training regime can significantly outperforms SGD 
for training narrow networks. We also perform ablation studies to show that the new elements 
proposed in our method are useful. 

 
2 Background and Related Works 
The expressivity of neural networks has been a popular topic in machine learning for decades. There 
are two lines of works: One focuses on the infinite-sample expressivity, showing what functions of 
the entire domain can and cannot be represented by certain classes of neural networks (e.g. [4, 45]). 
Another line of works characterize the finite-sample expressivity, i.e. how many parameters are 
required to memorize finite samples (e.g. [5, 13, 21, 25, 26, 42, 75]). The term “expressivity” in this 
work means the finite-sample expressivity; see Definition 1 in Section 4.1. A major research question 
regarding expressivity in the area is to show deep neural networks have much stronger expressivity 
than the shallow ones (e.g. [7, 17, 41, 48, 56, 57, 67, 70, 72]). However, all these works neglect the 
trainability. 
In the finite-sample case, wide networks (width poly(n)) have both strong representation power 
(i.e. the globally minimal training error is zero) and strong trainability (e.g. for wide enough nets, 
Gradient Descent (GD) converges to global minima [1, 16, 28, 80]). While these wide networks are 
often called “over-parameterized”, we notice that the number of parameters of a width-n network 
is actually at least nd, which is much larger than n. If comparing n with the number of parameters 
(instead of neurons), the transition from under-parameterization and over-parameterization for a 
one-hidden-layer fully-connected net (FCN) does not occur at width-n, but at width-n/d. In this 
work, we will analyze networks with width in the range [n/d, n), which we call “narrow networks” 
(though rigorously speaking, we shall call them “narrow but still overparameterized networks”). 
There are a few works on the trainability of narrow nets (one-hidden-layer networks with m  n/d 
neurons). Soudry and Carmon [63], Xie et al. [71] show that for such networks, stationary points 
with full-rank NTK (neural tangent kernel) are zero-loss global minima. However, it is not clear 
whether the NTK stays full rank during the training trajectory. In addition, these two works do not 
discuss whether a zero-loss global minimizer exists. 
There are two interesting related works [9, 12] pointed out by the reviewers. Bubeck et al. [9] study 
how many neurons are required for memorizing a finite dataset by 1-hidden-layer networks. They 
prove the following results. Their first result is an “existence” result: there exists a network with 
width m  4n which can memorize n input-label pairs (their Proposition 4). However, in this setting 
they did not provide an algorithm to find the zero-loss solution. Their second result is related to 
algorithms: they proposed a training algorithm that achieves accuracy up to error E for a neural net 
with width m ≥ O  n log(1/€) . This result requires width dependent on the precision E; for instance, 

when the desired accuracy E = 1/n, the required width is at least O  n
2  

. In contrast, in our work, 
the required number of neurons is just 2n/d, which is independent of E. 
Daniely [12] also studies the expressivity and trainability of 1-hidden-layer networks. To memorize 
n(1  E) random data points via SGD, their required width is Õ (n/d). They assumed n = dc where 
c > 0 is a fixed constant (appeared in Sec. 3.3 of [12]), in which case the hidden factor in Õ is 
O(log[d(log d)]c). In other words, if n, d with the scaling n = dc for a fixed constant c, then 
their bound is roughly O(n/d) up to a log-factor. Nevertheless, for more general scaling of n, d, the 
exponent c = (log n)/(log d) may not be a constant and the hidden factor may not be a log-factor 

is O (n/d) (log(d log n))log n/ log d , which can be larger than O 
c

n2/d
) 

(see detailed computation 
and explanation in Appendix C). In contrast, our required width is 2n/d for arbitrary n and d. Our 
bound is always smaller than n when d > 2. 

 

4This result describes the loss landscape of the constrained optimization problem, not directly related to 
algorithm convergence. Nevertheless, it is expected that first-order methods converge to KKT points and 
thus approximate global minimizers. A rigorous convergence analysis may require verifying extra technical 
conditions, which is left to future work. 
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Additionally, there is a major difference between Daniely [12] and our work: they analyze the original 
unconstrained problem and SGD; in contrast, we analyze a constrained problem. This may be the 
reason why we can get a stronger bound on width. In the experiments in Section 5, we observe that 
SGD performs badly when the width is small (see the 1st column in Figure 4 (b)). Therefore, we 
suspect an algorithmic change is needed to train narrow nets with such width (due to the training 
difficulty), and we indeed propose a new method to train narrow nets. 
Due to the space constraints, we defer more related works in Appendix B. 

3 Challenges For Analyzing Narrow Nets 
In this section, we discuss why it is challenging to achieve expressivity and trainability together for 
narrow nets. Consider a dataset {(xi, yi)}n ⊂ Rd × R and a 1-hidden-layer neural network: 

f (x; θ) = 
L 

vjσ 
c

wT x
) 

, (1) 
j=1 

where σ wT x is the output of the j-th hidden nodes with hidden weights wj , σ( ) is the activation 
function, and vj is the corresponding outer weight (bias terms are ignored for simplicity). To learn 
such a neural network, we search for the optimal parameter θ = (w, v) by minimizing the following 
empirical (training) loss: 

min f(θ) = 1 L 
(y ­ f (xi; θ)) , (2) 

θ 2 
i=1 

The gradient of the above problem w.r.t. hidden weights w = {wi}m  is given by: ∇wf(θ) = 
J (w; v)T (f (w; v) ­ y) ∈ Rmd×1, where J (w; v) ∈ Rn×md is the Jacobian matrix w.r.t w: 

� ∇wf (w; x1, v) � � 
v1σ1 (wT x1

) 
xT · · · vmσ1 (wT x1

) 
xT  � 

1 1 

J (w; v) := �� . 
�
� = �� . 

m 1 �
� ∈ Rn×md. (3) 

1 ( T ) 
xT 1 ( T ) 

xT 
∇wf (w; xn, v) v1σ  w xn · · ·  vmσ  w xn 

 
First order methods like GD converge to a stationary point θ∗ = (w∗, v∗) (i.e. with zero gradient) 
under mild conditions [6]. For problem (2), it is easy to show that if (i) (w∗, v∗) is a stationary point, 
(ii) J (w∗; v∗) Rn×md is full row rank and n md, then (w∗, v∗) is a global-min (this claim can 
be proved by setting the partial gradient of (2) over w to be zero). In other words, for training a 
network with width m ≥ n/d, an important tool is to ensure the full-rankness of the Jacobian. 
Recent works have shown that it is possible to guarantee the full rankness of the Jacobian matrix 
along the training trajectories, however, the required width is above Ω(poly(n)). Roughly speaking, 
the proof sketch is the following: (i) with high probability, J (w; v) is non-singular locally around 
the random initialization ([71], [63]), (ii) increasing the width can effectively bound the parameter 
movement from initialization, so the “nice” property of non-singualr J (w, v) holds throughout the 
training, leading to a linear convergence rate [16]. Under this general framework, a number of 
convergence results are developed for wide networks with width Ω(poly(n)) ([1, 11, 28, 34, 49, 53– 
55, 80, 81]). This idea is also illustrated in Figure 1 (a). 
We notice that there is a huge gap between the necessary condition m n/d and the common 
condition m  Ω(poly(n)). We suspect that it is possible to train a narrow net with width Θ(n/d) to 
small loss. To achieve this goal, we need to understand why existing arguments require a large width 
and cannot apply to a network with width Θ(n/d). 
The first reason is about trainability. The above arguments no longer hold when the width is not large 
enough to control the movement of hidden weights. In this case, the iterates may easily travel far 
away from the initial point and get stuck at some singular-Jacobian critical points with high training 
loss (see Figure 1 (b). Also see Figure 4 (b) & (d) for more empirical evidence). In other words, GD 
may get stuck at sub-optimal stationary points for narrow nets. 
The second reason, and also an easily ignored one, is the expressivity (a.k.a. the representation power, 
see Definition 1 for a formal statement). In above discussion, we implicitly assumed that there exists 
a zero-loss global minimizer, which is equivalent to “there exists a network configuration such that 
the network can memorize the data”. For networks with width at least n, this assumption can be 

n 

i 
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(a) Wide networks (b) Narrow networks   (c) Narrow networks (our regime) 

Figure 1: The parameter movement under different regimes. The shaded area indicates the region 
where J (w; v) is non-singular, the black circle denotes the region that GD iterates will explore, and 
the red circle is the constraint designed in our training regime, it will be discussed in Section 4.3. 

 
justified in the following way. The feature matrix � 

σ 
(
wT x1

) 
, . . . , σ 

(
wT x1

) �
 

1 m 
Φ(w) := �� . 

�
� ∈ Rn×m (4) 

σ 
(
wT xn

) 
, . . . , σ 

(
wT xn

)
 

can span the whole space Rn when it is full rank and m  n, thus the network can perfectly fit any 
label y  Rn even without training the hidden layer. It is important to note that when the width m is 
below the sample size n, full row-rankness does not ensure that the row space of the feature matrix is 
the whole space Rn. In other words, it is not clear whether a global-min with zero loss exists. 
In the next section, we will describe how we obtain strong expressive power with Θ(n/d) neurons, 
and how to avoid sub-optimal stationary points. 

4 Main Results 
4.1 Problem Settings and Preliminaries 
We denote {(xi, yi)}n ⊂ Rd × R as the training samples, where xi ∈ Rd, yi ∈ R. For theoretical 

i=1 

analysis, we focus on 1-hidden-layer neural networks f (x; θ) = 
  m  vjσ cwT x

) 
∈ R, where σ(·) 

is the activation function, wj ∈ Rd and vj ∈ R are the parameters to be trained. Note that we only 
consider the case where f (x; θ) ∈ R has 1-dimensional output for notation simplicity. 
To learn such a neural network, we search for the optimal parameter θ = (w, v) by mini- 
mizing the empirical loss (2), and sometimes we also use f(w; v) or f (w; x, v) to emphasize 
the role of w.  We use the following shorthanded notations: x := (xT ; . . . ; xT ) ∈ Rn×d, 

y := (y1, . . . , yn)T ∈ Rn, w := (w1, . . . , wm)m 
1 n 

∈ Rd×m, v := (v1, . . . , vm)m ∈ Rm, and 
f (w; v) := (f (x1; w, v), f (x2; w, v), . . . , f (xn; w, v))T Rn. We denote the Jacobian matrix of 
f (w; v) w.r.t w as J (w; v), which can be seen in (3). We define the feature matrix Φ(w) as in (4). 
We denote the operator w as “taking the gradient w.r.t. w”, and the same goes for v. Throughout 
the paper, ‘w.p.1’ is the abbreviation for ‘with probability one’; when we say ‘in the neighborhood of 
initialization’, it means ‘w is in the neighborhood of the initialization w0’. 
Now, we formally define the term “expressivity”. As discussed in Section 2, we focus on the 
finite-sample (as opposed to infinite-sample) expressivity, which is relevant in practical training. 
Definition 1. (Expressivity) We say a neural net function class F = {f (x; θ); θ ∈ Θ} has strong 
(n-sample) expressivity if for any n input-output pairs D = {(xi, yi)}n ⊂ Rd × R where xi’s are 
distinct, there exists a θˆ(D) Θ such that f (xi; θˆ(D)) = yi, i = 1, , n. Or equivalently, the 
optimal value of empirical loss (2) equals 0 for any D. Sometimes we may drop the word “strong” 
for brevity. 

Next, let us describe the mirrored LeCun’s initialization 
in Algorithm 1. The idea is that through this initialization, 
the hidden outputs will cancel out with the outer weights, 
so that we get zero initial output for any input x; see Fig- 
ure 2 for a simple illustration. Note that similar symmetric 
initialization strategies are also proposed in some recent 
works such as [11] and [12]. However, our purpose is dif- 
ferent. More explanation can be seen in the final paragraph 
of Section 4.2. 

Figure 2: A simple example of the mir- 
rored LeCun’s initialization. 
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Algorithm 1 The mirrored LeCun’s initialization 
1: Initialize all the weights using LeCun’s initialization: w0

 ~ N (0, 1 ), v0 ~ N (0, ), for 
i = 1, . . . , m/2, j = 1, . . . , d. 

i,j d i m 

2: Set (w0
 , . . . , w0

 ) ← (w0, . . . , w0
 ), and set (v0 , . . . , v0

 ) ← (­v0, . . . , ­v0
 ) 

 
 

 
Throughout the paper, we will make the following assumptions. 

Assumption 1. For f (x; θ) in (1), we assume its width m is an even number, and m ≥ 2n . 
Assumption 2. We assume the activation function σ(·) : R → R is analytic and L-lipschitz continu- 
ous, its zero set only contains 0: {z|σ(z) = 0} = {0}. In addition, there are infinitely many non-zero 
coefficients in the Taylor expansion of σ(·). 
Assumption 3. x1, · · · , xn are independently sampled from a continuous distribution in Rd. 

When d > 2, Assumption 1 can be applied to narrow networks 5 with m < n. Assumption 2 covers 
many commonly used activation functions such as sigmoid, softplus, and Tanh, but it does not cover 
ReLU since it is nonsmooth. 

4.2 Expressivity Analysis 

In this section, we prove that narrow neural networks (which are still over-parameterized) have strong 
expressivity. Further, the zero-training-error solution is surrounded by a good landscape with no 
local-min or saddles, which motivates our trainability analysis in the following sections. 
Theorem 1. Suppose Assumption 1, 2, and 3 holds.  If the neural network f (x; θ)  = 

m 
j=1 

vjσ 
c

wT x
) 

is initialized at the mirrored LeCun’s initialization given in Algorithm 1, with 
θ0 = (w0, v0), then there exists E0 > 0 such that for any E ≤ E0, there exists a w ∈ B€(w0) = {w | 
lw ­ w0lF ≤ E} and a entry-wise non-zero v, such that with probabilty 1 of choosing {(xi, yi)}n 
and θ0, the output of f will be exactly the groundtruth label: 

f (xi; θ) = 
L 

vjσ(wT xi) = yi, i = 1, · · · , n. (5) 
j=1 

In addition, every stationary point θ∗ = (w∗, v∗) (i.e., the gradient is zero) is a global-min of (2) 
with zero loss if it satisfies w∗ ∈ B€(w0) and v∗ is entry-wise non-zero. 

Remark 1. Theorem 1 emphasizes the role of hidden weights of a neural network: it is a key 
ingredient for strong expressivity. When m < n, if we fix all the w = w0, the range space of the 
feature matrix Φ(w0) does not cover the whole Rn space, so there always exists a label y, such that 
no v∗ can be found that perfectly maps the input to y. However, a small tolerance of the movement of 
w will let f (x; θ) perfectly fit any input-label pair, so the movement of w is vitally important. The 
free perturbation of w serves as an effective remedy against the limited expressivity. 

 
Remark 2. We emphasize that Theorem 1 holds for “any small enough E” instead of “any E”. 
Therefore, Theorem 1 only states “there is no spurious local-min” locally. It is still possible that on 
the global landscape results there “exists bad local-min" (e.g. Ding et al. [14]). 
We comment a bit more on the maximum required size of E. In our proof in Appendix E.1, it should 
not exceed the the radius of the region where the Jacobian J (w; v) stays full-rank (the yellow-shaded 
area in Figure 1). To briefly summarize, the maximum radius is (linearly) proportional to the minimum 
singular value of the initial Jacobian J (w0; v0). Technical details on the size of this radius can be 
seen in [18, Remark 4.1]. 

 
Proof sketch. Theorem 1 consists of two arguments: (i) there exists a global-min with zero loss, 
(ii) in the neighborhood of initialization, every stationary point is a global-min. A detailed proof is 
relegated to Appendix E. We outline the main idea below. 

 

5When d = 1, 2, all our results still hold; nevertheless, the required width m ≥ n, 2n, thus it does not belong 
to the “narrow” setting we defined earlier in Section 2 (which requires m ∈ [n/d, n)). 
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To argue (i), the key idea is to use the Inverse Function Theorem (IFT), which is stated in Appendix E.1. 
According to IFT, as long as an n n submatrix of J (w0; v0) is invertible, then for any y Rn and 
any small enough E, there exists a w∗ B€(w0) whose prediction output f (w∗; v0)  y  f (w0; v0). 
Additionally, since f (w0; v0) = 0, we have f (w∗; v0)  y. Once this is shown, then we just need to 
scale all the outer weight vj uniformly and the output will be exactly y since f (w∗; v) is linear in v. 
To argue (ii), recall that all the stationary points θ∗ =  (w∗, v∗) satisfy  wf(θ∗)  = 
J (w∗; v∗)T (f (w∗; v∗) y) = 0. Therefore, if JT (w∗; v∗) Rmd×n is of full column rank, the 
stationary point θ∗ = (w∗, v∗) is a global minimizer with f(θ∗) = 0. The desired full-rankness 
condition is true because: (i) J (w0; v0) is full rank w.p.1 at initialization, (ii) w∗ will not leave the 
small neighborhood B€(w0), so the dynamics of w stays inside the manifold of full-rank Jacobian. 

 

 
 

The proof of Theorem 1 relies on the full-rankness of the Jacobian matrix. We note that such 
full-rankness holds for both the mirrored and the regular LeCun’s initialization (the case for the 
regular one can be proved using the same technique). So why do we insist on shifting the initial 
output to 0? Simply put, the “randomness of weights” contributes to the “full-rankness”, while 
the ‘shifting’ allows us to gain local representation power by applying IFT properly. To be more 
specific, f (w0, v0) = 0  Rn is important because it is surrounded by all possible directions pointed 
from 0  Rn, so for any y  Rn, IFT claims that there exists at least one w∗  B€(w0), s.t. 
f (w∗; v0) y f (w0; v0) = y, therefore, f (w∗; v∗) can perfectly match y by scaling v0 with some 
constant (Figure 3(a) illustrates this case when n = 2). 
In contrast, if we use IFT around regular LeCun’s initialization, the existence of f (w0; v0) on the 
right hand side resists us from scaling v0 like before (Figure 3(b) illustrates this case). As such, 
Theorem 1 does not hold for any small E around the regular initialization. This is also revealed in our 
experiments in Section 5.1: training fails if we only search around the regular LeCun’s initialization. 

 
 

(a) The mirrored LeCun’s initialization (b) Regular LeCun’s initialization 

Figure 3: Examples of using Inverse Function Theorem (IFT) under different initialization strategies. 
The illustration here is for n = 2. For (a), scaling v0 will directly lead to zero loss, while it is not true 
for (b) due to the non-zero f (w0; v0). 

The idea of zero initial output is also used in other recent works in Table 1. Despite the similar 
design, they use such an initialization for different purposes. In NTK regime, zero initial output helps 
eliminate the bias term and simplify the proof ([3, 11, 23, 24, 34] and [12]). Nguyen [49] also uses 
zero initial output, but their initialization is very different in that all the hidden layers will have high 
values while the last layer is assigned to 0. In this way, they manage to limit the movement of hidden 
layers without increasing the width. To our knowledge, this is the first time that the zero initial output 
has been linked to Inverse Function Theorem, by which the strong expressivity of a narrow neural 
network can be identified. 

Table 1: Comparison of recent works considering zero initial output. 
Work Width Motivation 

 

[3, 11, 23, 24, 34] mL­1 To avoid handling the bias term in the NTK regime 
[12] m = Õ (n/d) To avoid handling the bias term in the NTK regime 
[49] mL­1 = O(n) To ensure linear convergence via imbalanced weight 
Ours m = O  n To achieve strong expressivity via Inverse Function Theorem 
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4.3 Trainability Analysis 
Despite the expressivity and good local properties stated in Theorem 1, in practical training, the 
weights can easily escape the nice neighborhood, especially when the width is not sufficiently large. 
To keep the hidden weights inside this nice region, an intuitive idea is to impose an explicit constraint, 
but it may suffer from bad local-min on the boundary with a very large loss [6]. This is supported by 
our experiments in Section 5, Figure 4, (b): when we add the hidden-weight constraint directly to 
the regular training regime (i.e., let w w0 F E), it fails to find a low-cost solution when E and 
width become small. 
In this sense, we need to design a constrained problem, such that all the KKT points will have small 
training loss, including those on the boundary. Fortunately, Theorem 1 suggests one such formulation. 
Recall in the proof of Theorem 1, we construct a zero-loss global-min by scaling v0 , so v∗ still 
follows the pairwise-opposite pattern. Inspired by this, we consider the following neural network (we 
abuse the notation of f (x; θ), f (x; w, v) and v = (v1, . . . , vm ) here): 

L2 ( ) 
f (x; w, v) = vj 

j=1 
σ(wj x) ­ σ(wj+ m x) . (6) 

Note that the optimization variable for the outer layer is only v = (v1, . . . , vm ), and the rest of the 
outer weights are automatically set to be v. Despite the change of v, Theorem 1 still applies since it 
does not have any specific requirement on v. We then use (6) to formulate the following problem (7): n 

min f(θ) = 
1 L

(y ­ f (x ; θ)) , s.t. w ∈ B (w ), v ∈ B (v) (7) 

where f (xi; θ) is in the form of (6), 

B€(w0) := {w | lw ­ w0lF ≤ E}, 
Bζ,κ(v) := {v | v ≥ ζ1	and vj/vjt ≤ κ, ∀ (j, j ) ∈ {1, · · · , m}, where ζ > 0, κ < ∞.}. 

Here, ζ > 0 is a small constant that keeps the entries of v away from zero, which is an essential 
requirement of Theorem 1. The requirement of vj/vjt  κ < allows all entries of v to be uniformly 
large, but it rules out the case when some entries are much larger than others. Instead of regarding 
all these requirements of B(v) as prior assumptions, we formulate them into the constraints in the 
problem, so all the iterates in the practical training algorithm will strictly follow these requirements. 
In Theorem 2, we show that every KKT point of problem (7) implies the near-global optimality for 
the unconstrained training problem (2). 
Theorem 2. Suppose Assumption 1, 2, and 3 hold and assume θ0 = (w0, v0) as given in Algorithm 
1. Then every KKT point θ∗ = (w∗, v∗) of (7) is an approximate global-min w.p.1., that is: 

f(w∗, v∗) = O(E2). (8) 
The proof of Theorem 2 is based on the special structure of neural network f (x; θ), including the 
linear dependence of v and the mirrored pattern of parameters. To better illustrate our proof idea, we 
provide a user-friendly proof sketch in Appendix F.1. Detailed proof can be seen in Appendix F.2. 
Theorem 2 motivates a training method to reach small loss. We highlight three new ingredients that 
is not used in regular neural net training: the mirrored initialization, the pairwise structure of v in 
(7), and the constrained parameter movement. Combining these elements with Projected Gradient 
Descent (PGD), we propose a new training regime in Algorithm 2 in Appendix H.1. Thorough 
numerical results are provided in the following sections to demonstrate the efficacy of Algorithm 2. 
4.4 Discussion: Extension to Deep Networks 
In the previous sections, we analyze the trainability and expressivity of narrow 1-hidden-layer 
networks. We find it possible to extend the previous analysis to deep nets, and we already have some 
preliminary results. Due to space constraints, more relevant discussions are deferred to Appendix G. 

5 Experiments 
In this section, we provide empirical validation for our theory. Specifically, we compare the perfor- 
mance of two training regimes 6: 

 

6We call it “training regime” instead of “training method” since we use a different formulation as well a 
different algorithm compared to standard SGD. 

i=1 
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(1) Our training regime: we optimize a constrained problem (7) by using PGD (projected gradient 
descent), starting from the mirrored LeCun’s initialization. (See Algorithm 2 in Appendix H.1.) 
(2) Regular training regime: optimize an unconstrained problem (2) by using GD-based methods, 
starting from LeCun’s initialization. 
Main ingredients of our algorithm. As shown in Theorem 2, all KKT points in our training regime 
have small empirical loss. To reach such KKT points, we use Projected Gradient Descent (PGD) 
(see Bertsekas [6]). Even though we do not provide convergence analysis, PGD can, empirically, 
converge to a KKT point with proper choice of stepsize. We outline the proposed training regime in 
Algorithm 2 in Appendix H.1. To briefly summarize, there are three key ingredients in Algorithm 2: 
the mirrored initialization; the pairwise structure of v in (7); and the PGD algorithm. Each of these 
changes only involves a few lines of code changes based on the regular training. We demonstrate the 
PyTorch implementation of these changes in Appendix H.1. 
Better training and test error. To evaluate our theory in terms of training error, we conduct 
experiments on synthetic dataset (shown in Section 5.1) and random-labeled CIFAR-10 [31] (shown 
in appendix H.6). We further observe the strong generalization power of Algorithm 2, even though it 
is not yet revealed in our theory. Our training regime brings higher or competitive test accuracy on 
(Restricted) ImageNet [58] (shown in Section 5.2), MNIST [33], CIFAR-10, CIFAR-100 [31] (shown 
in Appendix H). Detailed experimental setup are explained in Appendix H.2. 
As a side note, for all the experiments in our training regime, we observe that v never touches the 
boundary of Bζ,κ(v) when κ = 1, ζ = 0.001. So we can regard problem (7) as an unconstrained 
problem for v, and PGD only projects the hidden weights w into B€(w0). When E = 1000, problem 
(7) degenerates into an unconstrained problem (but still different from the regular training due to the 
changes in the structure of v and initialization). 

5.1 Training Error on The Synthetic Dataset 
On the synthetic regression dataset, we train 1-hidden-layer networks under different widths and 
different training settings, the final training errors are shown in Figure 4. We explain as follows. 
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(c) λmin(J (w∗; v∗))in our training regime (d) λmin(J (w∗; v∗))in regular training regime 

Figure 4: Synthetic data: training losses and λmin(J (w∗; v∗)) in different width & hidden-weight 
constraint size E. 

As for our training regime, we try different hidden-weight constraint size E, these results can be seen 
in Figure 4, (a). Accordingly, the performance of the regular training regime can be seen in the 1st 
column in Figure 4, (b). As argued above, E = 1000 degenerates PGD into unconstrained GD, so this 
column shows the results for regular training regime. As for the rest of the columns in the Figure 4, 
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× 

(b) , we try to investigate an ablation study: “What will happen if we directly add constraint B€(w0) 
on w, and use PGD without any modification of the initialization & network structure?” In each 
block in Figure 4, a grid search of step-size is performed to ensure the convergence of algorithms. 
The key messages from this set of experiments are summarized as follows. 
First, our training regime performs well regardless of width, yet regular unconstrained training fails 
when the network is narrow (1st column in Figure 4 (b)). 
Second, it does not work when we directly impose the hidden-weight constraint of (7) on the regular 
training regime (and PGD is used accordingly), as it fails to find a low-cost solution when E and width 
become small. There are two possible causes: perhaps there is no global-min inside the ball, or it 
converges to bad local-min on the boundary. In contrast, our training regime always finds a low-cost 
solution with any choice of E. Therefore, we suggest not to directly add constraint and use PGD. 
Instead, when using PGD, it is better to utilize the mirrored initialization & the pairwise structure of 
v in (7) (see Figure 4 (a)). 

Furthermore, Figure 4, (c) & (d) depict λmin(J (w∗; v∗)), i.e. the minimum singular value of the 
Jacobian at the stationary (or KKT) points. As expected in Section 1, when the width is small, regular 
training regime (when E = 1, 000) has trouble controlling the parameter movement, and it is likely to 
get trapped at a stationary point with a singular Jacobian matrix, leading to a large loss despite the 
convergence. However, this is not an issue in our training regime. 

5.2 Test Accuracy on R-ImageNet 
We check the test accuracy (not just the train- 
ing accuracy) of the proposed method on 
R(Restricted)-ImageNet ([58]). R-ImageNet is 
a subset of ImageNet with resolution 224 224, 
and it is widely used in various papers (e.g. [68], 
[27]). Detailed description can be found in Ap- 
pendix H.2. In both training regimes, experi- 
ments are conducted on ResNet-18 [22], which 
contains 4 CNN blocks and 1 fully connected 
output layer. To compare the performance un- 
der different widths, we shrink the number of 
channels in the final CNN block gradually from 
512 to 64 (note that we will call “the number 
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of channels” as the “width” in CNN, this is a 
straightforward extension of the width in FCN). 
In our training regime, we apply all the con- 
straints in problem (7) to the final CNN block & 
the output layer. 

Figure 5: R-ImageNet: test accuracy under our 
training regime with different E vs regular training 
regime. In x-axis, width stands for the number 
of channels in the final CNN block of ResNet-18. 
These results are averaged over 5 seeds. 

There are two messages shown in Figure 5. First, our training regime outperforms regular training 
when using the standard ResNet-18 (i.e., width 512 in the final CNN block). Second, our training 
regime in the most narrow setting (width 64) performs quite close to the standard case (width 512). 
In comparison, regular SGD does not perform well in the narrow setting. More theoretical analysis 
on the generalization power will be considered as our future work. 

6 Conclusion 
In this work, we shed new light on both the expressivity and trainability of narrow networks. Despite 
the limited number of neurons, we prove that the network can memorize n samples, and it can be 
provably trained to approximately zero loss in our training regime. We notice some interesting 
questions by reviewers and colleagues. We provide further discussion on these questions in Appendix 
A, they may be intriguing for general readers. 
Finally, there are several important future directions. First, we empirically observe that our training 
regime brings strong generalization power, more theoretical analysis will be interesting. Second, our 
current analysis is still limited to 1-hidden-layer networks, we are trying to extend it to deep ones. 
Third, the algorithmic convergence analysis to reach the KKT point is imperative. 
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