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ABSTRACT: Most single-molecule transport experiments produce large and
stochastic data sets containing a wide range of behaviors, presenting both a
challenge to their analysis and an opportunity for discovering new physical
insights. Recently, several unsupervised clustering algorithms have been
developed to help extract and separate distinct features from single-molecule
transport data. However, these clustering approaches have been primarily
designed and used to extract major data set components and are consequently
likely to struggle with identifying very rare features and behaviors that may
nonetheless contain physically meaningful information. In this work, we thus
introduce a completely new analysis framework specifically designed for rare
event detection in single-molecule break junction data to help unlock such information and provide a new perspective with different
implicit assumptions than clustering. Our approach leverages the concept of correlations of breaking traces with their own history to
robustly identify paths through distance−conductance space that correspond to reproducible rare behaviors. As both a
demonstrative and important example, we focus on rare conductance plateaus for short molecules, which can be essentially invisible
when examining raw data. We show that our grid-based correlation tools successfully and reproducibly locate these rare plateaus in
real experimental data sets, including in situations that traditional clustering approaches find challenging. This result enables a
broader variety of molecules to be considered in the future and suggests that our new approach is a useful tool for detecting rare-yet-
meaningful behaviors in single-molecule transport data more generally.

1. INTRODUCTION
Single-molecule electronics have the potential to enable cheap
and efficient circuit fabrication at the ultimate size limit1 and
also provide an appealing test-bed for exploring intriguing
physical phenomena at the nanoscale such as quantum
interference,2−4 spin filtering,5,6 and interfacial coupling.7−9 A
significant and ongoing challenge in the investigation of
transport through single-molecule systems, however, is
extracting meaning from the large and stochastic data sets
typically produced by experimental techniques such as the
scanning tunneling microscope break junction (STM-BJ)10−16

and mechanically controlled break junction (MCBJ).17−24

Both of these methods involve forming and then breaking a
thin metal constriction to create a single-molecule junction in
the nanogap between two metal electrodes. The primary data
collected is the conductance (G = I/V) through the junction
during the breaking process as a function of how much the two
sides have been pulled apart, known as a “breaking trace”.
Because of the inherently stochastic nature of both the
breaking process and how/whether a molecule diffuses into
and binds in the nanogap, a wide range of breaking trace
behaviors are observed for each single-molecule system.25 The
process is thus repeated to collect thousands of breaking traces,
with the results commonly summarized in one-dimensional
(1D)10 and two-dimensional (2D)26,27 histograms. Conduc-
tance in these histograms is near-universally displayed on a

logarithmic scale due to the large dynamic range of
conductance values exhibited by most molecules.
These 1D and 2D breaking trace histograms are a powerful

tool to reveal the average and/or most common behaviors in a
data set, such as an exponentially decaying conductance in the
absence of molecules (“tunneling behavior”) or a relatively
constant conductance over the length of a bound molecule
(“molecular plateaus”). However, creating histograms inher-
ently excludes all “trace history” information, i.e., the specific
paths through distance/log(conductance) space followed by
different traces. This makes it difficult to distinguish
qualitatively different behaviors that may be present in the
same data set since histograms will effectively average these
behaviors together. A particular challenge is presented by
behaviors that occur in only a minority of traces, which can
become effectively invisible due to histogram averaging.
However, previous work has demonstrated that such rare
events may nonetheless correspond to physically important
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behaviors, such as switching between different spin states28 or
different sequences of binding behaviors.29 Critically, the
molecular signature itselfi.e., molecular plateauscan in
some circumstances become an easily lost rare event. Due to
the stochastic nature of molecular binding, such plateaus are
typically only observed in a fraction of all breaking traces, with
the remaining traces displaying tunneling behavior. The
magnitude of this so-called “molecular yield” varies depending
on the binding group strength,30−32 molecular concentration,33

and other unknown or uncontrolled variables.34,35 Figure 1
uses simulated traces to illustrate that, for short molecules
whose molecular plateaus mostly overlap with the tunneling
background, low molecular yield can make the molecular
signature functionally impossible to identify in both the 1D
and 2D histograms. Partially for this reason, most break
junction experiments focus on systems with molecular yields
>10%,8,11,27,32,35,36 and often approaching 100%,11,30,31 be-
cause this produces histograms with clear molecular features.
However, high molecular yields increase the risk of measuring
multi-molecule rather than the desired single-molecule
features.35 Moreover, requiring high molecular yields restricts
the binding modalities under consideration, which may end up
excluding optimal molecular structures for specific applications.
For example, a large fraction of all molecules studied in break
junctions employ thiol linker groups,37 in part, because the
strong sulfur−gold bond typically produces high molecular
yields. However, the gold−sulfur bond also has a tendency for
strong Fermi-level pinning,38−42 which can negatively impact
tunability of the quantum transport properties. A major benefit
of rare event detection in break junction data, therefore, is that
identifying infrequent molecular plateaus in the case of low
molecular yields could allow a broader variety of molecular
structures and metal−organic interfaces to be studied.
One strategy for separating qualitatively different behaviors

that may overlap in 1D and 2D histograms is to employ
clustering. Indeed, over the past 5 years, several clustering
approaches have been designed specifically for breaking
traces34,43−53 and related data,54,55 and these approaches
have had varied success in extracting known and potential
features, including “hidden” features, from real and simulated
data sets. However, during their design and demonstration,
these clustering algorithms have been primarily used to
investigate features occurring fairly frequently in their
respective data sets. Therefore, while such approaches can

detect rare behaviors in certain cases, they will in general
struggle with this task that falls on the edge of what they were
designed for. A few types of filtering or plateau detection
algorithms are able to extract weak molecular features from
background behavior,14,35,56−58 but these tend to be
specifically tuned to a single system and/or rely on arbitrary
cutoffs. There is therefore a need for a new type of robust
approach, which is specifically targeted to the challenge of rare
event detection, unlike current clustering approaches, and
which unlike filtering requires only minimal a priori knowledge
of the type of feature to be identified.
Here, we introduce such a new approach by focusing exactly

on the very information that is lost when making 1D and 2D
histograms: trace history and, in particular, any correlation
between the future trajectory of a trace and its past behavior.
While previous analysis tools for break junction data have
considered correlations between the number of points at each
conductance59 or between conductance cuts at different
distances,50 these approaches reduce the natural space of
breaking traces from two dimensions to one. In contrast, in our
approach, we calculate correlations between different locations
in the full two-dimensional distance/log(conductance) space,
which allows us to identify rare paths followed by a subset of
traces. For example, due to the 25 molecular traces contained
in the data set shown in Figure 1c, there will be a positive
correlation between the two areas indicated with pink arrows
because more traces pass through both areas than would be
expected if traces had no history and simply progressed like
random walks through the 2D histogram. This positive
correlation will then map out the shape of the rare event,
e.g., the molecular plateau. In this work, we therefore define a
new framework for rigorously defining two-dimensional spatial
correlations and also present tools based on this framework
that can identify rare events like the one contained in Figure
1c. We stress that our approach is designed to be applicable for
identifying many types of rare events in break junction data,
but here we focus on the particular challenge of recognizing
rare molecular plateaus both as a concrete example and
because of its importance.
In the remainder of this paper, we first present details of

both our collection of experimental breaking traces and our
generation of simulated breaking traces. We then use the
simulated data to introduce our new approach, which starts by
using coarse-gridding to define pairwise correlations between

Figure 1. Demonstration, using simulated data, of how a short and rare molecular plateau feature can be effectively invisible when looking at
histograms of raw data. (a) 2D histogram of 2000 simulated tunneling traces. (b) Twenty-five overlaid simulated molecular traces. (c) 2D
histogram for data set containing 1975 of the simulated tunneling traces from panel (a), combined with the 25 molecular traces from panel (b).
Despite looking identical to the 2D histogram in panel (a), the presence of the 25 molecular traces will produce a positive correlation between
different locations along the molecular plateau region (e.g., pink arrows); our new approach thus quantifies such spatial correlations to identify rare-
yet-meaningful trace behaviors. (d) Overlaid 1D conductance histograms for the data sets from panels (a−c), again showing that the plateau feature
in the mixed data set is invisible in the raw data.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c04794
J. Phys. Chem. C 2021, 125, 18297−18307

18298

https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04794?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04794?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04794?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04794?fig=fig1&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c04794?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


discrete locations in distance/log(conductance) space. Mar-
kov-Chain Monte Carlo simulations are then used to extract
particular types of rare features and identify interesting regions
for further analysis. We use simulated data for this purpose to
demonstrate how our approach works on data sets containing
known rare plateau features. Finally, in the last section, we
apply our new framework to experimental data sets, thereby
validating that we can successfully and reproducibly identify
rare plateau features in practice. This application also reveals
that molecular signatures may be more common than
previously thought, enabling research on systems with low
molecular yield and with potential implications for our
understanding of the nanoscopic environment of the junction.

2. METHODS

2.1. Generation of Simulated Breaking Traces. Due to
the atomic-scale complexity of single-molecule junctions,
creating physical models that faithfully reproduce all features
and properties of experimental breaking traces remains a
significant challenge. For this work, we therefore instead used
an empirical model to generate simulated breaking traces that
capture at least the most obvious properties of observed
breaking traces. Such traces are sufficient for our purposes,
despite obvious shortcomings in terms of capturing the full
richness of experimental breaking traces, because we only use
them to demonstrate how our grid-based correlation tools
operate, not as a means of training or validating these tools.
Two types of simulated breaking traces were created:

tunneling and molecular. All traces were generated on a
logarithmic conductance scale with 500 data points per nm of
inter-electrode distance. The tunneling traces consist of three
sections: a prerupture plateau near 1 G0, followed by a sharp
drop-off to represent snap-back,31,60 and finally a shallower
linear drop-off to represent tunneling. The parameters defining
each of these sections (e.g., the slope of the tunneling drop-off)
were fixed for each individual trace and normally distributed
across the set of all tunneling traces. Low-amplitude random
noise was then added on top of each trace to create a more
realistic shape. The molecular traces were generated in the
same way as the tunneling traces, except that they contained
two additional sectionsa very gradually sloped plateau and a
fairly sharp drop-off from the end of this plateauwhich occur
after the tunneling drop-off has decreased to the chosen
conductance value for the plateau. See Section S.2 for full
details of simulated trace generation.
Two thousand tunneling traces were generated to produce

the 2D histogram in Figure 1b, and then 25 simulated
molecular traces were combined with the first 1975 of those
tunneling traces to produce the data set shown in Figure 1c
and used throughout Section 3.
2.2. MCBJ Fabrication and Experimental Setup. MCBJ

samples were fabricated and run following the methods of
Bamberger et al.50 Each sample was fabricated on a substrate of
0.5 mm thick phosphor bronze coated with a few-micron
insulating layer of polyimide. The pattern of a thin metal wire
with an ∼100 nm constriction in the center was defined using
electron beam lithography. The wire itself was created by
thermally evaporating a 4 nm titanium adhesion layer followed
by 80 nm of gold. Finally, reactive ion etching with an O2/
CHF3 plasma was used to turn the central constriction into an
∼1 μm free-standing gold bridge by underetching the
polyimide.

MCBJ experiments were performed in air at room
temperature. Each sample was clamped into a custom-built
three-point bending apparatus in which a push rod was used to
bend the sample and thereby thin and break the gold bridge.
To collect each breaking trace, a stepper motor (ThorLabs
DRV50) was first used to adjust the push rod until the
conductance through the gold bridge was between 5 and 7 G0
(where G0 is the quantum of conductance, equal to 77.48
μS).61 When this set point was reached, the collection of a
single breaking trace was triggered by raising the push rod 40
μm at 60 μm/s using a linear piezo actuator (ThorLabs
PAS009) while simultaneously recording the conductance
through the bridge at 20 kHz using a custom high-bandwidth
Wheatstone bridge amplifier.62 The piezo was then retracted,
after which the process can be repeated to collect another
breaking trace. Custom LabVIEW software was used to
automatically collect thousands of consecutive breaking traces.
During trace collection, the bending apparatus was placed on a
vibrationally isolated table to reduce mechanical noise and
inside a copper Faraday cage to reduce electrical and acoustic
noise.

2.3. Collection of Experimental Data Sets. The
molecules studied in this work (OPV2-2SMe, OPV2-2BT,
and OPV2-2SAc; see below) were each synthesized on-site
(Section S.1.1) and characterized using NMR spectroscopy
(Section S.1.2) and mass spectrometry (Section S.1.3). Each
molecule was dissolved in HPLC-grade (>99.7%, Alfa Aesar)
dichloromethane (DCM) to form ∼1 μM and/or ∼10 μM
solutions. Note that the acetyl-protected binding groups in
OPV2-2SAc are known to spontaneously deprotect on the gold
surface for experiments performed in air, forming free thiol
binding groups.63

Data set collection also followed the method of Bamberger
et al.50 Each MCBJ sample was cleaned with O3/UV and
rinsed with ethanol shortly before use. For each sample, we
initially deposited ∼10 μL of pure DCM, using a clean glass
syringe, on the center of the junction with the aid of a Kalrez
gasket. We then collect an “empty” or “tunneling” data set of a
few thousand breaking traces, both as a negative control and to
calculate an attenuation ratio that was then applied to all
subsequent data sets collected on that same MCBJ sample.
Next, the LabVIEW program was paused with the gold bridge
fully broken, and 10−20 μL of molecular solution was
deposited on the center of the junction using a clean glass
syringe. The LabVIEW program was then allowed to continue
collecting breaking traces.
The experimental data in this work were collected using four

different MCBJ samples. Due to events such as multiple
depositions of molecular solution and/or a full relaxation of the
push rod, the set of traces from each sample was broken into
multiple chunks of 2000+ sequentially collected traces, and
each of these data sets was analyzed independently (see
Section S.3 for details).

3. RESULTS AND DISCUSSION
In this section, we begin by developing our new framework for
considering two-dimensional spatial correlations, which statisti-
cally identifies deviations from random-walk behavior in order
to define a quantity we call connection strength. Next, we use
connection strength as the basis for a “feature-finder” tool that
can extract, with minimal input parameters, different types of
rare features from a breaking trace data set. Finally, we use our
new framework and feature-finder tool to extract weak
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molecular plateau features from experimental data sets for
several short molecules and validate the results, demonstrating
the power and utility of this new approach.
3.1. Calculating Correlations and Defining Connec-

tion Strength. Before we can calculate correlations between
different locations in distance/log(conductance) space, we first
need to formally define such locations. To this end, we
superimpose each trace onto a coarse grid and then represent it
as a series of lattice points from the grid, which we call “nodes”.
As shown in Figure 2a, each successive node in a coarsened
trace increases by exactly one grid unit in x but can increase or
decrease by any amount in y. The advantage of using
coarsened traces is that nodes represent finite and discrete
locations in distance/log(conductance) space that each trace
unambiguously either does or does not pass through, making it
straightforward to consider spatial correlations (see Sections
S.4.1 and S.4.2 for details). It is important to note that the size
of the coarse grid can impact the correlations we are
subsequently able to find: if the grid is very coarse, then
subtle correlations can be drowned out by the great number of
uncorrelated traces passing through each node; whereas if the
grid is very fine, an ever-larger total number of traces is needed
to provide the statistical power to identify correlations in the
first place. In practice, however, there is a broad range of
gridding sizes over which our approach works well and yields
reasonable results. Throughout this work, we thus use a grid
with 25 nodes per nm and 10 nodes per conductance decade,
but our main conclusions are not overly sensitive to modest
changes in this grid size (Section S.7.1).
The main idea behind our strategy for identifying when trace

behavior is correlated with past trace history is the realization
that if no such correlations existed, then traces would simply
proceed as (weighted) random walks through distance/
log(conductance) space (i.e., whether each trace visits a
given node would depend only on the single node visited
immediately prior). Therefore, we can find such correlations
by looking for the “least-random-walk-like” trace behaviors.
This idea is illustrated on an extremely simplified case in
Figure 2b,c: suppose we have a set of 502 traces (Figure 2b)
with 100 traces each sloping downwards through five parallel
nodes (to represent tunneling traces) and two traces that
proceed horizontally (to represent molecular plateaus). Based
on all of the traces that pass through a given node, we can
calculate “exit probabilities” (Figure 2c) for each node to its
neighboring nodes (Section S.4.3). Using the exit probabilities
in Figure 2c, it is clear that if traces behaved like random walks,
then, on average, only (2%)4 = 0.000016% of the traces passing
through node X would also pass through node Y. However, for
the actual traces (Figure 2b), 2/102 = 2% of the traces from X
also pass through Y. Because 2% ≫ 0.000016%that is, more
traces go from X to Y than expected under random-walk
behaviorwe conclude that nodes X and Y are positively
correlated.
To quantify this measure of correlation while also rigorously

accounting for the contribution of random chance, we use a
pair of one-sided binomial hypothesis tests. As explained in
Section S.4.4, these tests allow us to calculate the probability,
under the null hypothesis of random-walk behavior, of more or
fewer traces than observed passing between two nodes. For
example, in Figure 2b,c, these tests compute the probability of
seeing two or more traces going from X to Y under random-
walk conditions as only 5.5 × 10−10% and the probability of
seeing two or fewer such traces under random-walk conditions

as ∼100%. We refer to these two types of probabilities as
pabove(X,Y) and pbelow(X,Y), respectively.
Positively correlated node pairs will have small pabove and

large pbelow values, while negatively correlated node pairsi.e.,
cases in which fewer traces pass between both nodes than
would be expected under random-walk conditionswill have
large pabove and small pbelow values, and node pairs with little-to-

Figure 2. (a) Example of coarse-gridding two traces by representing
each as a series of lattice points from the same grid. The original
traces are represented with solid lines, the coarsened traces are
represented with circles connected by dotted lines, and the grid is
represented with gray lines. To make the grid easily visible, a coarser
gridding is used for this plot than that used elsewhere in this work. (b)
Hypothetical example of a small set of nodes with 502 traces passing
through them. (c) Exit probabilities calculated based on the traces in
panel (b). Based solely on these exit probabilities, the probability of
going from node X to node Y is vanishingly small, but in fact two
traces followed this path, revealing their correlation with their own
history. (d) Connection strength distribution for all nodes vs the
circled green node for the data sets from Figure 1c. The most positive
connection strength nodes (red) clearly pick out the molecular
plateau feature that was invisible in the raw data.
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no correlation will have relatively large pabove and pbelow values.
We therefore combine both values into a single measure of
pairwise node correlation that we call “connection strength”, or
CS, using the definition (see Section S.4.5 for details)

= − +X Y p X Y p X YCS( , ) ln( ( , )) ln( ( , ))above below

Taking logarithms allows us to easily differentiate very small
probabilities from one another, and the sign choices ensure
that CS will be positive (negative) for positively (negatively)
correlated node pairs. Moreover, in information theory, log-
probabilities represent the self-information or “surprisal” of an
event,64 making this a well-motivated definition for our goal of
identifying correlations that are surprising relative to the
expectation of random-walk behavior. To make CS symmetric
with respect to nodes X and Y, X is always chosen as the node
farther left and Y as the node farther right, since traces are only
able to proceed from left to right. For nodes in the same
column, CS is set to zero, indicating no correlation (since it is
impossible by design for a single trace to pass through both
such nodes).
This concept of pairwise connection strength between nodes

is central to our ability to use spatial correlation to identify rare
events in breaking traces. To demonstrate this, Figure 2d
shows the connection strength distribution for the simulated
data set in Figure 1c for every node compared to the green-
circled node. The positive correlations clearly form a plateau
shape, indicating that more traces passing through the circled
node follow a plateau-like path than would be expected from
pure random-walk behavior. This shows that there must exist a
subset of traces that do not behave like random walks, but
rather follow this plateau path instead of the average behavior
of the data set; in other words, pairwise connection strength
has exactly picked out the rare event that was purposefully built
into this simulated data set! While “higher-order” correla-
tionse.g., if a trace passes through nodes X and Y, is it more
or less likely than a random-walk to also pass through node
Z?can be calculated in principle, the number of observations
for such events in a given data set, and hence our statistical
power, would drop exponentially. For this reason, we focus
exclusively on pairwise connection strength in this work.
3.2. Identifying Significant Features. Figure 2d

demonstrates that connection strength distributions are a
powerful way of visualizing spatial correlations and can reveal
rare events. However, for each data set, there will be as many
different distributions like the one in Figure 2d as there are
nodes, making it unrealistic to examine all of them. The
connection strength distribution with a specific node is thus
most useful as a tool for investigating locations in distance/
log(conductance) space that a researcher is already interested
in. To perform a less directed exploration, we developed a new
tool to identify such “interesting nodes” in the first place, with
what counts as an “interesting node” naturally depending on
what type of feature/rare event is under consideration.
The basis of this new tool is determining where in distance/

log(conductance) space the “least-random-walk-like” node
sequences meeting certain criteria can be found. To formalize
the concept of “least-random-walk-like”, we define the
“significance” of a sequence of nodes as the average connection
strength between all possible node pairs chosen from that
sequence (Section S.4.6). High-significance node sequences
intuitively represent paths through distance/log(conductance)
space that real traces followed significantly more often than
random-walk traces would have, and which may thus

correspond to physically meaningful rare events. To solve
the problem of identifying high-significance node sequences,
we make use of Markov-Chain Monte Carlo (MCMC)
simulation, which is a way to estimate the distribution of
multidimensional objects according to a predefined weighting.
In our case, the multidimensional objects are node sequences
meeting specifiable criteria and the weighting of each sequence
is exp(significance/T), where T is an “effective temperature”
controlling how flattened vs peaked the distribution will be.
This tool, which we refer to as the “MCMC feature-finder”,
thus produces a distribution of node sequences heavily
weighted toward high-significance paths, allowing us to find
those very paths and locate the “interesting nodes” introduced
above (see Section S.5 for all MCMC details).
As a first illustration of the MCMC feature-finder, we will

consider eight-node sequences for the simulated data set from
Figure 1c, with no additional restrictions placed on the
sequences’ shape, slope, etc. Because a distribution of node
sequences is difficult to represent visually, we instead examine
the feature-finder results by plotting the frequency with which
each individual node was included in the sequences produced
by the MCMC (Figure 3a). Instead of following the rare

Figure 3. (a) Final distribution of nodes produced by running the
MCMC feature-finder with eight-node sequences and no additional
restrictions on the simulated data set from Figure 1c. The main
feature discovered is a tunneling-like feature at high conductance
because tunneling traces are also correlated with their own history.
(b) To focus our search on plateau-like features in particular, we add
slope criteria to the MCMC feature-finder, leading to the successful
recovery of the rare plateau feature hidden in the data set in Figure 1c.
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molecular plateau feature, these node sequences are con-
centrated in the high-conductance tunneling region. This is
because tunneling is also not a random-walk behavior; as
explained in Section 2, each simulated tunneling trace has a
fixed average slope, so its future trajectory is correlated with its
past behavior (and this is likely true of experimental tunneling
traces as well). This demonstrates a critically important point:
traces in the same data set can possess correlation with their
histories in multiple different ways. To identify a specific type
of correlation in a given data set using the MCMC feature-
finder, therefore, we include the option within this tool to
impose extra criteria on the node sequences being generated.
For example, in this paper, we are focused on the specific

case of plateau-like features. In our second illustration of the
MCMC feature-finder (Figure 3b), we thus require the eight-
node sequences to have slopes of no more than 2.5 decades/
nm (for details on slope calculation, see Section S.5.2). The
inclusion of this relatively weak restriction results in the
MCMC feature-finder highlighting exactly the rare molecular
plateau feature that was built into this simulated data set. The
high-probability nodes in Figure 3b thus represent “interesting
nodes” in the context of plateau-like behavior, which could be
further explored using connection strength distributions as in
Figure 2d. We note that these nodes and the rare plateau
feature they constitute were identified without knowing
anything a priori about its location in distance/log-
(conductance) space. The only input needed was what type
of rare event we were looking for, i.e., relatively flat sequences
that are eight nodes (∼0.32 nm) in length.
While specifying the type of feature ahead of time does

provide an avenue of influence for the user’s biases, we note
that user choice and biases are necessarily involved in any type
of analysis, for example, through the selection of which
unsupervised machine-learning algorithm to use. We therefore
believe that it is advantageous to have the user make certain
decisions explicitly and consciously, rather than making them
implicitly and perhaps unknowingly via algorithm design. This
is especially true for the case of choosing a feature type because
constructing a single universal and automated algorithm for
identifying every type of rare event in every possible data set is
likely unfeasible. Our MCMC feature-finder should therefore
be thought of as a guided exploration tool used to locate rare
events of a type loosely defined by the user based on their
physical intuition and/or the context of their particular
application. Under this view, the ability of our MCMC
feature-finder to be targeted at different types of rare behavior
in the same data set, depending on the user’s focus, is an
advantage.
3.3. Using Grid-Based Correlation Tools to Find Rare

Molecular Features in Experimental Data. In the previous
section, we used a simulated data set containing a known rare
molecular plateau feature to demonstrate that our new grid-
based correlation tools can detect such rare behaviors in
principle, and to explain how and why this is the case.
Simulated breaking traces, however, can differ in critical ways
from experimental breaking traces. Validating that these new
tools achieve their goals in practice thus requires turning to
such experimental data.
Figure 4a shows overlaid 1D conductance histograms for

three data sets collected on the same MCBJ sample with the
short molecule OPV2-2SMe (see Section S.3 for 2D
histograms). These data sets collectively form an ideal test
case for our ability to detect rare molecular plateau features.

The “actually empty” data set (blue in Figure 4a) is composed
of breaking traces collected before any molecule was
introduced to the system and so serves as a control in which
no molecular plateaus should exist. The “clearly molecular”
data set (red in Figure 4a) contains breaking traces collected
after a solution of the molecule OPV2-2SMe was deposited on
the sample. As the name suggests, this data set contains a clear
molecular feature and thus serves as a positive control for
where the plateaus for this particular molecule are expected to
appear. Crucially, the “seemingly empty” data set (yellow in
Figure 4a) contains breaking traces that were also collected
after molecular deposition and yet appears nearly identical to
the “actually empty” data set when examining histograms. This
“seemingly empty” data set thus serves as our test case because
it could plausibly contain OPV2-2SMe plateaussince OPV2-
2SMe was physically present on the MCBJ sample during data
collectionbut if so they must be rare, which would inform
our understanding of the junction environment (see below).
We applied our MCMC feature-finder to all three data sets

from Figure 4a, with the MCMC simulation set to generate 12-
node sequences restricted to have a slope of no more than 2.5
decades/nm (see Section S.5.2). As shown in Figure 4b and
Section S.6, the MCMC discovered a plateau feature in the
“seemingly empty” data set that is nearly identical to the
plateau feature discovered in the “clearly molecular” data set
and distinct from the feature found in the “actually empty” data
set. Due to the presence of both positive and negative controls,
this result provides strong evidence that we have indeed
successfully identified rare molecular plateaus for this OPV2-
2SMe molecule. To demonstrate the advantages of our
approach for such rare plateau detection, in Section S.10, we

Figure 4. (a) Overlaid 1D conductance histograms for three
experimental MCBJ data sets collected on the same sample with
the molecule OPV2-2SMe (inset). The “actually empty” data set was
collected before any molecules were deposited, the “seemingly empty”
data set was collected after molecular deposition, but its raw data
looks indistinguishable from the actually empty data set, and the
“clearly molecular” data set was collected after molecular deposition
and shows a clear molecular peak. (b) Node probabilities, projected
onto the conductance axis, from the MCMC feature-finder when it
was applied to the three data sets from panel (a) to search for plateau-
like features. The same plateau feature is discovered in both the
“seemingly empty” and “clearly molecular” data sets and not
discovered in the “actually empty” data set.
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have analyzed the “seemingly empty” data set from Figure 4a
using a few representative clustering strategies. The results
show that these strategies, while having some success, are
generally challenged by this task, especially as the “rareness” of
the feature increases. Our approach performs better at this task
because it was specifically designed with rare events in mind.
To validate the results in Figure 4b, two potential concerns

must be addressed. First, there is a concern that the plateau
shapes discovered by the MCMC feature-finder are not
representative of the original experimental data. This concern
arises because the node sequences in the MCMC simulation
are not restricted to node sequences that occurred in the actual
experimental traces. Moreover, as described above, in order to
focus on rare plateaus in particular, we applied a slope
restriction to the MCMC simulations. There is thus a potential
risk that the final MCMC results were “forced” into plateau-
like shapes for the “seemingly empty” data set.
To address this concern and connect back to the original

breaking traces, we start by considering the connection
strength distribution with respect to one of the “interesting
nodes” identified by the MCMC feature-finder (Figure 5a).
Next, we introduce a new grid-based correlation tool by
scoring each trace passing through the selected node by the
average connection strength vs the selected node of all of the

other nodes the trace passes through (Section S.8). Intuitively,
higher scores identify the least-random-walk-like experimental
traces passing through the selected node. Finally, we plot 2D
and 1D histograms of just the top-10% scoring of these traces
(Figure 5b,c). This reveals that plateau-like features are indeed
present in the actual experimentally collected traces in the
“seemingly empty” data set. No slope criteria or restrictions are
used at any point in making Figure 5; we just selected the least-
random-walk-like traces through a particular node, and those
traces turn out to have plateau features. This scoring tool is
thus a useful way to validate that a feature discovered with the
MCMC feature-finder really exists in the experimental data. It
is also a great way to extract for further analysis the traces in a
data set that actually correspond to a particular type of rare
behavior. The results in Figure 5 are robust to other choices of
high-probability nodes from the MCMC output (Section S.9).
The second potential concern about the MCMC feature-

finder results in Figure 4b is that the plateau feature discovered
in the “seemingly empty” data set could be located at the same
conductance as the plateau feature in the “clearly molecular”
data set simply by chance. After all, the MCMC feature-finder
is designed to always find some feature matching its input
criteria because some path through distance/log(conductance)
space will always be least-random-walk-like. For example, a
“plateau-like” feature (albeit at a different conductance) was
still discovered in the “actually empty” data set despite our
expectation that plateaus will not occur when no molecules are
present. This is, in fact, an inherent and unavoidable challenge
for any attempt at rare event detection in a highly stochastic
and/or noisy system: in any single data set, it can be difficult to
distinguish whether an identified rare event is “real” or just due
to random noise-like behavior. The solution is to consider
multiple data sets since “real” rare events should be detected
consistently in the same place.
We thus applied our MCMC feature-finder, with the same

settings used in Figure 4b (12-node sequences, slope ≤2.5
decades/nm) to additional examples of “actually empty”,
“seemingly empty”, and “clearly molecular” data sets collected
in the presence of three different short molecules (see Section
S.3 for all data set details and histograms). As shown in Figure
6, for each molecule, the MCMC feature-finder consistently
identifies essentially the same plateau feature in both the
“seemingly empty” and the “clearly molecular” data sets, and
this result is robust to changes in the MCMC feature-finder
parameters (Section S.7). This constitutes strong evidence that
the rare plateaus detected in the “seemingly empty” data sets
are, in fact, molecular signatures and not just random/noisy
behavior. That the identified plateau features appear at
different conductances for the different molecules provides
yet more evidence that these plateaus originate from the
experimental data and are not simply an artifact of the MCMC
simulation. In contrast, there is significant variation in the
conductance of the features found in the “actually empty” data
sets, and these features are mostly not robust to changes in the
MCMC feature-finder parameters (Section S.7). This is in
agreement with our hypothesis that these data sets do not
contain consistent plateau features but rather just random
behaviors that sometimes approximate plateau-like shapes by
chance.
Besides helping to validate our ability to detect rare events in

practice, the data in Figure 6 also provide potential insights
into the nanoscopic environment of single-molecule junctions.
We note that most of the “seemingly empty” data sets were

Figure 5. (a) Connection strength distribution for the “seemingly
empty” data set from Figure 4 vs the node circled in green, which was
identified as a high-probability node by the MCMC feature-finder. To
connect these results back to the original traces, we use this
distribution to score each of the traces passing through the selected
node by the average connection strength of the other nodes they visit.
(b) 2D histogram for the top-10% scoring traces through the selected
node (now shown in red) demonstrates that plateaus are present in
the original experimental traces, not just the MCMC results. (c)
These top-scoring traces show a very clear molecular peak (green)
that is completely invisible in the raw data (gray) and only weakly
visible in all of the traces passing through the selected node (black).
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collected under essentially identical conditions to their “clearly
molecular” counterparts (Section S.3). While the reasons for
such variation in event frequency are not well studied in the
field, one hypothesis is that the concentration of molecules in
the immediate vicinity of the junction (and hence the
frequency of molecular plateaus) is controlled, in large part,
by random chance, and is only loosely dependent on the
concentration of the deposited molecular solution. Therefore,
our identification of molecular behavior in so many “seemingly
empty” data sets may suggest that, at room temperature, these
molecules are mobile enough that they can still find their way
into the junction even when their concentration in the
immediate vicinity is quite low. Additionally, the fact that there
is little-to-no systematic difference between the conductances
of the plateaus identified in the “seemingly empty” and “clearly
molecular” data sets is consistent with the widely held
assumption that MCBJ experiments are truly measuring
single-molecule junctions, with little-to-no contribution from
multi-molecule junctions.

4. CONCLUSIONS

Extracting as much meaningful information as possible from
the large, stochastic data sets created by single-molecule break
junction experiments continues to be a challenging multi-
dimensional problem that will consequently require multiple
different approaches to solve. Much effort has recently gone
into developing different types of filtering and, especially,
clustering algorithms for break junction data. While these
approaches have many advantages and documented successes,
to date they have mostly been designed for and applied to the
problem of extracting prominent data set features, rather than
the related but distinct challenge of identifying rare behaviors
in huge samples of breaking traces. In this work, we specifically
addressed this latter challenge by introducing a novel approach
that uses the trace history information that is ignored by
traditional histogram-based analysis to calculate pairwise
correlations between discretized locations in distance/log-
(conductance) space. This framework is quite distinct from
other published analysis tools for single-molecule transport

data, which we believe has value; all analysis tools make
implicit assumptions about data set structure through their
design, and increasing the variety of these designs and
assumptions is important for gaining new perspectives and
generating new hypotheses. Using simulated breaking traces,
we demonstrated how a suite of tools based on our framework
can be used to detect different types of rare features in the
same data set.
To evaluate the utility of these new rare event identification

tools, we chose to focus on the specific challenge of detecting
rare molecular plateaus in the case of short molecules for which
those plateaus overlap with a strong tunneling background
signal. Using experimental MCBJ data sets collected for three
separate short molecules, we demonstrated a consistent ability
to detect molecular plateau features corresponding to the
molecular species that was known to be physically present but
whose signature was invisible in the raw data. These rare and
hidden molecular plateaus were identified without any a priori
knowledge or assumptions about their conductance values, and
multiple controls and validation tests supported our inference
that they are, in fact, signatures of the molecules in question.
The successful detection of rare molecular plateaus in several

experimental data sets is important for multiple reasons. First,
it provides us with important insights into the junction
environment, suggesting, for example, that molecules can find
their way to the very middle of the junction even when the
overall frequency of molecular bridging events is quite low. In
future studies, our tools may help yield insights into the causes
of variable bridging frequency, such as varying local
concentrations. Second, we believe that addressing the
challenge of identifying rare molecular plateaus is of particular
importance because if very weak molecular signatures can be
reliably detected, then single-molecule researchers are
empowered to explore a greater variety of molecular binding
groups, concentration regimes, or perhaps single-molecule
chemical reactions. Third, despite the importance of rare
plateaus in particular, we stress that our grid-based correlation
approach is not limited by design to this one type of rare event.
Therefore, rigorously validating that the new tools presented

Figure 6. (a−c) Conductance distributions for the plateau-like features identified by the MCMC feature-finder in 27 different experimental data
sets for three different short molecules. The distributions for “actually empty”, “seemingly empty”, and “clearly molecular” data sets are shown in
blue, yellow, and red, respectively (see Section S.3 for details). For each molecule, the location of the identified plateau is quite consistent across all
“seemingly empty” and “clearly molecular” data sets, providing strong evidence that the rare plateaus discovered by the MCMC feature-finder are,
in fact, signatures of the molecules in question.
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here can successfully detect one form of rare behavior is also
important because it suggests that they can be used for rare
event detection more generally. This could potentially allow
new types of physically meaningful break junction behaviors to
be found and understood. We also note that our approach was
able to identify molecular plateaus in the “clearly molecular”
data sets as well, suggesting that while these tools were
designed for rare event detection in particular, they may, in
fact, have applicability for extracting more common events as
well.
In contemplating the possible extension of our grid-based

correlation approach to other types of rare events, however, it
is also important to consider its limitations. For example, the
MCMC feature-finder is designed to focus on the single most-
correlated feature of a given type. If multiple features match
the user-specified criteriae.g., a data set with two rare plateau
featuresthen the MCMC feature-finder is likely to be heavily
weighted toward the one with even just slightly higher internal
correlation (though the second could then be found by
modifying the MCMC criteria). An example of this situation is
shown in Section S.11.1 using simulated data. Another
limitation of our approach is that it is designed to identify
rare events that are localized in distance/log(conductance)
space. This is relevant, for example, for the consideration of
rare switching events between multiple molecular conductance
states. As illustrated in Section S.11.2 using simulated data, our
approach is capable of identifying such switching events if they
occur at a preferred distance (e.g., if the switching is caused by
stretching-induced conformational change) but is not suitable
for detecting switching that stochastically occurs across a broad
range of distances (e.g., if the switching mechanism is light-
induced).
To enable these and other extensions of our work, we have

made all of the MATLAB code needed to implement our new
approach freely and publicly available as part of our SMAUG
Toolbox at github.com/LabMonti/SMAUG-Toolbox.
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