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A B S T R A C T   

This paper presents a generalized cutting force and regenerative chatter stability prediction for the modulated 
turning (MT) process. Uncut chip thickness is modeled by considering current tool kinematics and undulated 
(previously generated) surface topography for any given modulation condition in the feed direction. It is found 
that chip formation is governed by the undulated surface generated in multiple past spindle rotations. Uncut chip 
thickness is computed analytically in the form of trigonometric functions, and cutting forces are predicted by 
making use of orthogonal cutting mechanics. Regenerative chatter stability of the process is also modelled. 
Analytical semi-discretization-based solution is developed to accurately predict the stability lobe diagrams 
(SLDs) of the MT process. Predicted stability lobes are validated through numerical time-domain simulations and 
experimentally via orthogonal (plunge) turning tests. It is found that as compared to conventional single-point 
continuous turning, regenerative stability of MT exhibits multiple (3) regenerative delay loops and long out- 
of-cut duration in-between tool engagement stabilizes the process to reach up to 2x higher stable widths/ 
depths as compared to the conventional continuous turning.   

1. Introduction 

Turning is a well-established and effective material removal process 
and can provide high material removal rates. A practical problem in 
turning of ductile materials has been disposal of the cut chips. Long 
slender chips of ductile material are difficult to break and may cause 
chip-jam around the cutting point. The most well-known solution for 
this problem is the use of chip breakers first proposed Zhang and 
Peklenik (1980). Various mechanical chip breaker strategies have been 
developed by Jawahir and van Luttervelt (1993). However, robustness 
of chip breakers among wide range of cutting conditions is limited as 
shown by Hong et al. (1999). A novel chip guiding system developed by 
Aoki et al., which does not break the chip but guides it for more efficient 
chip disposal using a tunnel structure (Aoki et al., 2016). Recently 
turn-milling process has been employed to prevent chip jam in certain 
automotive applications that use low carbon steel (Zhu et al., 2015). 
Turn-milling converts continuous turning into discrete machining to 
generate short chips like in the milling process. However, it requires 
relatively expensive multi-purpose machining centers and may suffer 
from surface location errors when machining cylindrical parts as shown 
by Uysal et al. (2014). In order to address chip evacuation problem in 
continuous cutting processes, Low frequency modulation (vibration) 

assistance has been proposed Mann et al. (2011a) in the past. The first 
application of low frequency assisted (modulated) machining dates back 
to 1992 when it was applied in deep hole drilling by Sakurai et al. 
(1992). This paper focuses on the modulated turning (MT) process and 
presents a generalized mechanics and dynamics model. 

Kinematics of the low frequency MT is illustrated in Fig. 1. As shown, 
cutting tool is modulated continuously in the feed direction. Such si
nusoidal motion generates a wavy surface initially, but for certain 
modulation amplitudes and frequencies cutting edge loses its contact 
from the undulated surface. Thus, continuous turning process becomes 
discrete and generates discontinuous chip, which inherently addresses 
the chip jam problem. Another advantage of MT is that it does not need 
special purpose machines since tool modulations are at low frequency 
and can be realized with the existing drives of a turning center as shown 
by Chhabra et al. (2002). 

Mann et al. (2011a) were the first to analyze kinematics of the MT. 
They focused on discovering the modulation conditions to generate 
discrete chip. Fig. 2 illustrates such discrete cutting maps. The shaded 
areas indicate discrete cutting regions where discontinuous chip is 
generated. Notice that discrete chip can be generated for a modulation 
frequency (fm) of ½ of the spindle rotation frequency (fs), fm = fs/2 at a 
modulation amplitude (A [m]) of ½ of the nominal feed rate (h0 
[m/rev]), A = h0/2. Similar discrete chip generation maps can also be 
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produced for the drilling process by Guo et al. (2017). Notice that when 
modulation parameters are selected in the discrete cutting zone (gray 
areas in Fig. 2), tool loses its contact with the workpiece and experiences 
an air cutting (out-of-cut) phase. Such air-cutting phase is critical for 
generating discrete chip in machining ductile materials. 

Benefits of the low frequency assistance in turning is not limited by 
just mitigating chip jam as originally proposed. Yeung et al. (2016) 
analyzed chip formation in modulated turning by synchronous force and 

Nomenclature 

fm Modulation frequency 
fs Spindle rotation frequency 
A Modulation amplitude [m] 
h0 Nominal feed rate [m] 
SS Spindle speed [min−1] 
θ Spindle rotation angle [rad] 
λ Angular wavelength of tool modulation [rad] 
ϕ Shift in tool trajectories in successive spindle revolutions 

[rad] 
Amin Minimum modulation amplitude for discrete chip 

generation [m] 
y Tool trajectory [m] 
σ Modulation amplitude and nominal feed rate ratio 
γ Absolute minimum phase difference between tool 

trajectories [rad] 
h Uncut chip thickness [m] 
Rout Air-cutting ratio percentage 
hm Static uncut chip thickness [m] 

hd Dynamic uncut chip thickness [m] 
τ Time delay [s] 
Ky Specific cutting force coefficient in feed direction [MPa] 
Kx Specific cutting force coefficient in thrust direction [MPa] 
b Cutting width [m] 
Fd Dynamic cutting force [N] 
ΔT Discretization time step [s] 
r Delay resolution 
Φ State transition matrix 
m Modal mass [kg] 
c Viscous damping coefficient [N/(m•s)] 
k Modal stiffness [N/m] 
d Diameter of workpiece [m] 
Gyy Direct dynamic compliance [m/N] 
Gyx Cross dynamic compliance [m/N] 
Geq Equivalent dynamic compliance [m/N] 
ωn Natural frequency [Hz] 
alim Stability limit of cutting width [m]  

Fig. 1. Kinematics of modulated turning.  

Fig. 2. Discrete chip generation map of modulated turning.  
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image analysis using Particle Image Velocimetry (PIV). They reported 
that feed modulations can reduce specific cutting energy. Later, Eren 
and Sencer (2020) have investigated on the specific cutting energy ef
ficiency during modulated turning and concluded that it reduces 
average cutting effort by utilizing the non-linear relationship between 
cutting forces and removed material volume. Low frequency tool mod
ulations have potential to reduce average cutting temperature as well. 
Gao et al. (2016) have measured the temperature distribution in the 
cutting zone and developed predictive models. They showed that 
average cutting temperature is lower in modulated turning. Later, Guo 
et al. have investigated tool-life in modulated machining of compact 
graphite iron (CGI) workpieces and reported that low frequency feed 
modulations can significantly improve the tool life (Guo et al., 2012) as 
compared to continuous cutting. 

Dynamics of modulated turning process differs greatly from the 
conventional continuous turning. Copenhaver et al. (2018) were the first 
ones to report that tool modulations introduce stabilization effect and 
helps attain greater chatter stability margins. They used various metrics 
to detect occurrence of chatter. Notice that in modulated turning, the 
process is no longer continuous since the cutting tool loses its contact 
with the workpiece. An air-cutting phase is introduced into the cutting 
cycle, which in return disturbs development of self-excited chatter vi
brations over successive spindle revolutions and helps increase the 
chatter stability limits. As the average in-cut duration of the tool is 
minimized, total energy consumed by the dynamic cutting force is 
reduced. As a result, it increases the gain margin of the process and 
improves asymptotic chatter stability limits. Multi-axis milling process 
with complex tool and immersion geometries may provide similar dy
namics as reported by Ozkirimli et al. (2016). In turning, such dynamics 
has been observed in the ultrasonic elliptical vibration cutting (EVC) 
(Ma et al., 2011). Copenhaver and Schmitz (2020) utilized time-domain 
simulations to draw stability lobe diagrams (SLDs) of low frequency 
assisted MT. It was until very recently that Nam et al. proposed a fre
quency domain-based approach to analytically predict the SLD of MT 
(Nam et al., 2021). However, the developed frequency domain model 
could only predict chatter stability when modulation frequency is 0.5, 
1.5, 2.5… times of the spindle rotation frequency. It was not general and 
showed deteriorating accuracy with smaller modulation amplitudes and 
spindle speeds. This was mainly due to: 1) only 2 delay regeneration 
effects were included in the modeling stage, and 2) approximations 
(averaging) used in the derivation of the frequency domain solution. 

Based on these past works, this paper provides the following two new 

knowledge to better understand the kinematics and dynamics of the MT. 
Firstly, a generalized kinematics model is developed to analytically 
predict the chip formation and uncut chip thickness. This allows 
generalized prediction of cutting forces for any set of modulation pa
rameters. Furthermore, it facilitates analytical prediction of cutting duty 
cycle of the process. Secondly, based on the generalized kinematics, a 
generalized chatter stability prediction is proposed to accurately predict 
the regenerative chatter stability for this process. For the first time, it is 
shown that regenerative chatter stability of modulated turning process is 
governed by up to 3 regenerative loops leading to a multi-delay regen
eration, whereas continuous turning only exhibits single regeneration. 
In order to accurately predict the SLDs, a semi-discrete time domain 
model is developed. The proposed model is benchmarked against nu
merical full time-domain model of the process and validated experi
mentally in plunge turning tests. 

The following sections introduce the generalized kinematics of the 
process. Chatter stability prediction models are then introduced and 
validated through simulation studies and in cutting tests. 

2. Kinematics of low frequency assisted turning 

Fig. 1 illustrates kinematics of MT. As the cutting tool is fed into the 
workpiece at a nominal feed rate of h0, sinusoidal modulations (Gao 
et al., 2018; Mann et al., 2011b) are superimposed as: 

y(t) = h0fst + Asin (2πfmt) (1)  

where fs = 60/SS is spindle rotation frequency with spindle speed SS 
[min−1], fs is the modulation frequency [Hz], A is the modulation 
amplitude, and t denotes the time. Eq. (1) can be re-written based on 
spindle rotation angle θ[rad], and tool trajectory in nth spindle revolu
tion can be expressed as: 

yn(θ) =

(

n − 1
)

h0 +
h0θ
2π + A sin

(
2πθ

λ
+

(

n − 1
)

ϕ
)

, 0 ≤ θ ≤ 2π (2)  

where λ = 2πfs/fm [rad] denotes the angular wavelength of tool mod
ulations. Fig. 1b illustrates tool trajectories in successive spindle revo
lutions. The integer portion of tool modulation-spindle rotation 
frequency ratio, int[fm/fs] indicates how many full tool modulations are 
completed within a single spindle revolution, and the phase angle ϕ in 2 
(2) is defined based on the remainder as: 

ϕ = 2π
(

fm

fs
− int

[
fm

fs

])

, 0 ≤ ϕ ≤ 2π (3) 

Phase angle ϕ[rad] represents the shift in the tool trajectories in 
successive spindle revolutions and illustrated in Fig. 3. Setting 0 < ϕ <

2π ensures that there is always an incomplete tool modulation within a 
single spindle revolution. As a result, tool trajectory continuously shifts 
ϕ amount over successive spindle rotation, and the tool cuts slightly 
different angular portion of the workpiece in each spindle revolution. 
This is the fundamental condition to realize discrete cutting in MT. For 
any given modulation frequency, ϕmust be determined, and the mod
ulation amplitude, A must be selected to ensure that tool loses its contact 
with the surface. The minimum modulation amplitude A is determined 
by ensuring that the nth and n-1th spindle revolutions, i.e. yn(θ) and 
yn−1(θ) from 2(2) intersect, 

yn(θ) = yn−1(θ)→Amin =
h0

2 sin
(ϕ

2

) (4) 

4(4) reveals that for any phase angle ϕ, there is a minimum modu
lation amplitude Amin that needs to be met for a nominal feed rate, h0. 
Note that ϕ is controlled by the ratio fm/fs, and Fig. 2 shows the resultant 
discrete chip generation map also shown by Mann et al. (2011b). For 
ϕ = π discrete chip can be generated for the smallest modulation 
amplitude of A/h0 = 0.5. In the following section chip formation for that 
most practical condition, i.e. ϕ = π, is firstly analyzed, which is then 

Fig. 3. Tool trajectories and uncut chip thickness for ϕ = π.  
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followed by the generalized chip formation formulation for any given 
modulation frequency and amplitude. 

2.1. Prediction of chip formation for ϕ = π 

Fig. 3 illustrates tool trajectories for ϕ = π with the light grey shaded 
areas indicating sections where material is removed, i.e. chip is gener
ated. For ϕ = π, tool modulation is half incomplete within a spindle 
revolution. This enforces current nth tool trajectory to intersect with the 
tool trajectories from n-1th and n-2th spindle revolutions. 

Notice from Fig. 3 that the current (nth) tool trajectory cuts the un
dulated surface generated by the tool trajectory 2 spindle revolutions 
before, i.e. n-2th revolution. Therefore, a single piece of chip is formed 
within 3 successive, nth, n-1th and n-2th revolutions of the spindle. As 

shown in Fig. 3, a full tool modulation cycle starts with the spindle 
orientation θ1 and ends at θ4. For θ ∈ [θ0,θ1), air cutting is observed, and 
no chip is generated. For θ ∈ [θ1, θ2) first portion of the chip is formed 
with the surface generated in the previous n-1th spindle revolution. 
While θ ∈ [θ2, θ3) the tool cuts the surface left from the n-2th spindle 
revolution. Finally, the last portion of the chip is formed when the tool 
cuts the surface left from the previous n-1th spindle revolution. Hence, 
θ1, ., θ4 mark the start and end of each individual segment (portion) of a 
single piece of chip. Intersection points of the tool trajectories from nth 

and n-1th spindle revolutions can be used to compute θ0, θ1 and θ4. For 
instance, tool trajectories in n-1th and n-2th spindle revolutions intersect 
with each other to define θ2 and θ3, which can be computed using 2(2) 
as: 

Table 1 
Chip formation for ϕ = π.   

Phase Angle: ϕ = π  

θ1 θ2 θ3 θ4 σ Interval 

Tool Trajectory Intersections yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 0.5 ≤
A
h0  

Fig. 4. Comparison of chip formations for different σ = A/h0 ratios when ϕ = π/2 and ϕ = π.  
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Table 2 
Chip formation for ϕ = π/2.   

ϕ = π/2  

θ1 θ2 θ3 θ4 σ Interval Row No: 

Tool Trajectory Intersections yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 0.7071 ≤ σ < 1 1 
yn(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 1 ≤ σ < 2.236 2 
yn(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−4(θ) yn−4(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 2.236 ≤ σ 3  

Fig. 5. Flow chart for generating the chip formation table.  
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θ0 =

π + sin−1
(

h0

2A

)

fm/fs
, θ1 =

2π − sin−1
(

h0

2A

)

fm/fs

θ2 =

2π + sin−1
(

h0

2A

)

fm/fs
, θ3 =

3π − sin−1
(

h0

2A

)

fm/fs
, θ4 =

3π + sin−1
(

h0

2A

)

fm/fs

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5) 

Above equations can be converted into time domain by setting ti =

θi/2πfs, i = 0.4, and the ratio of air cutting to cutting within a tool 
modulation cycle can then be expressed as: 

θ1 − θ0

θ4 − θ1
=

π − 2sin−1(h0
2A

)

π + 2sin−1(h0
2A

) (6) 

Finally, analytical uncut chip thickness can be derived by simply 
evaluating the difference between nth, n-1th and n-2th tool trajectories 
from 2(2) as: 

h(t)=

⎧
⎨

⎩

yn(θ)−yn−1(θ),

yn(θ)−yn−2(θ),

yn(θ)−yn−1(θ),

θ1 ≤θ<θ2
θ2 ≤θ<θ3
θ3 ≤θ≤θ4

⎫
⎬

⎭
→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A
(

sin
(

2πθ
λ

)

− sin
(

2πθ
λ

+π
))

+h0

2h0

A
(

sin
(

2πθ
λ

)

− sin
(

2πθ
λ

+π
))

+h0

(7) 

Above chip formation can also be summarized in a tabulated format 
shown in Table 1. Each column shows the angular positions of chip 
segments and which spindle revolutions define them. For instance, chip 
formation starts at θ1, and it is generated by the current tool trajectory 

yn(θ) and its intersection with theyn−1(θ) tool trajectory. The next 
segment (section) of the chip starts at θ2 defined by the intersection of 
yn−1(θ) and yn−2(θ) tool trajectories. A symmetrical copy of the first chip 
segment is then observed as a third (last) segment of the chip. The last 
column of the table indicates for which modulation amplitudes such 
configuration is valid. For ϕ = π, modulation amplitude does not alter 
the chip formation. As long as modulation amplitude and nominal feed 
rate ratio σ = A

h0
≥0.5, discrete chip is always generated by the same tool 

trajectories. Increasing modulation amplitude, A only increases the air 
cutting duration and does not alter the maximum uncut chip thickness as 
indicated in 6(6). 

2.2. Prediction of generalized chip formation 

To accurately predict the uncut chip thickness for various phase 
angles and modulation amplitudes, tool trajectories that generate indi
vidual sections chip must be identified carefully. This section presents a 
systematic way to calculate the uncut chip thickness for any given 
modulation condition. 

Firstly, the effect of modulation amplitude on the chip formation is 
presented through an example. Fig. 4 compares chip generation for 
phase angles ϕ = π/2 and ϕ = π at various modulation amplitude and 
nominal feed rate ratios σ = A/h0. As shown, in case of ϕ = π/2 more 
complex chip formations are generated with changing σ. When σ is small 
chip formation starts with intersection of nth and n-1th tool trajectories, 
then switches to nth and n-2th, and finishes off with nth and n-1th. How
ever, when the modulation amplitude is increased, σ > 1, chip formation 
alters. Table 2 provides all the 3 different tool intersections for different 
modulation amplitudes. 

Each column in Table 2 indicates the spindle revolutions involved in 
chip formation, and each row indicates the chip formation sequence 
with the increasing modulation amplitude, σ. Notice that 1st row of the 
Table 2 is identical to the case of ϕ = π (see Table 1). However, that chip 
formation it is only valid until σ = 1. At that upper limit value, multiple 
(>2) tool trajectories intersect at one point, which is illustrated in 
Fig. 4b and denoted as the “critical condition”. This upper limit value 
can be solved by setting θ1 = θ2: 

yn(θ) = yn−1(θ)→θ1
yn−1(θ) = yn−2(θ)→θ2

}

→θ1 = θ2→σc, p = 1 (8)  

where p represents the row number in the table. When σ is further 
increased, a different chip formation is observed and presented in the 2nd 

row of Table 2. 
It is critical to determine which tool trajectories intersect and form 

the chip. A generalized approach is developed here to generate the chip 
formation table for any given modulation condition, and Fig. 5 presents 
the flow chart to generate the chip formation table automatically. 
Firstly, for any given phase angle ϕ, the first two rows of the chip for
mation table are pre-determined; namely, taken from Table 3 based on 
whether the phase angle is ϕ < π or ϕ > π. Notice that when ϕ = π, 
Table 1 is directly used since chip formation does not alter with σ. The 
remaining chip formations in the chip formation table with the 
increasing σ (starting from 3rd row) and the upper limit σc, p values of 

Table 3 
Initial rows for chip formation for ϕ < π and ϕ > π.   

ϕ < π  
θ1 θ2 θ3 θ4 σ Interval Row No: 

Tool Trajectory Int. yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 1
2 sin(ϕ/2)

≤ σ < σc, 1 
1 

yn(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) σc, 1 ≤ σ 2  
ϕ > π  
θ1 θ2 θ3 θ4 σ Interval Row No: 

Tool Trajectory Int. yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 1
2 sin(ϕ/2)

≤ σ < σc, 1 
1 

yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn(θ) σc, 1 ≤ σ 2  

Fig. 6. Tool trajectories and chip formation for ϕ = 108◦.  
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the rows (starting from 2nd row) are determined by utilizing the flow 
chart (see Fig. 5). The rest of the chip formation table is created by firstly 
computing the absolute minimum phase difference γ[rad] between the 
tool trajectories that determine θ2 and θ3 in the previous row by: 

γ = rem(ϕ|Δn|, π) (9)  

where rem is a function that computes the remainder of the division of 
ϕ|Δn|/π, and Δn is the difference in spindle revolutions. For instance, 
consider the case of ϕ = π/2 in Table 2, and observe the chip formation 
in the 2nd row. Phase difference between the tool trajectories that 
determine θ2 is calculated as γ2 = rem

(π
2 |(n − 2) − (n − 3)|, π

)
, and for 

θ3, it becomes γ3 = rem
(π

2 |(n − 3) − (n − 1)|, π
)
. It should be noted that 

γ must be converted to stay within the bounds of −π < γ < π Based on 
the γ value, upper limit of the modulation amplitude σc, p is determined 
by the mutual intersection point of tool trajectories θ1 and θ2 or θ3 and 
θ4. In other words, a unique σc, p value which makes θ1 = θ2 or θ3 = θ4 

must be found for the current row of the table. As given in the flow chart, 

a new row is then added that describes the new chip formation when the 
modulation amplitude is further increased, σ > σc, p. Spindle modula
tions that determine this new chip formation are determined as pre
sented in the flow chart. 

By following the flow chart in Fig. 5, all the possible chip formations 
can be determined. Specifically, spindle revolutions that form various 
sections of the chip are deduced. 

2.3. Illustrative Example 

An illustrative example is provided in Fig. 6 to showcase how the 
tabulated approach can predict complex chip formations in modulated 
turning. In the example, the phase angle is set to ϕ = 108◦. Table 4 is 
generated by following the flow chart given in Fig. 5. As shown, with the 
increasing modulation amplitude σ, there are 5 different chip forma
tions. An example of tool trajectories and resultant chip formation is 
provided for the 4th row of the Table 4. As illustrated, chip generation 
starts with the intersection of the tool trajectories of nth and n-3th spindle 
revolutions. Subsequently, tool trajectory in n-3th spindle revolution 
intersects with n-7th revolution This initiates generation of the second 
segment of the chip. Next, tool trajectory in n-7th revolution intersects 
with the n-4th to form the third segment of the chip. Finally, n-4th tra
jectory intersects with the current nth tool trajectory. As a result, the chip 
has 3 different sections where the first chip portion is formed with the 
undulated surface generated 3 spindle revolutions before. The second 
chip portion is formed with surface cut 7 revolutions before, and the last 
portion is generated with the surface formed 4 revolutions before. The 
uncut chip thickness can be computed analytically by using the entries 
in the table, and the tool trajectory expression given in 2(2). It can also 
be simulated numerically by calculating the difference between the 
current tool trajectory and the maximum of past ones as h(θ) = yn(θ) −

max{yn−1(θ), yn−2(θ), ., y1}. Fig. 6 shows that the simulated and 
analytically computed uncut chip thicknesses match well. 

Finally, air cutting duration for various modulation amplitudes and 
frequencies can be predicted. Fig. 7 is generated using the proposed 
generalized chip formation approach and predicts the air-cutting ratio 

percentage 
(

ROUT% = θ1−θ0
θ4−θ0

× 100
)

for all the possible modulation fre

quencies, feed rates and amplitudes. As shown, the largest air cutting is 
achieved when ϕ ≅ π/2 or ϕ ≅ 3π/2 is selected. Overall, by utilizing 
the proposed map, modulation parameters can be tuned accurately to 
achieve more robust discrete chip generation and higher stability. 

3. Prediction of regenerative chatter stability 

3.1. Semi-discrete time domain solution 

Previous section presented that a single discrete chip generated in 
modulated turning (MT) has 3 portions (sections). Each chip portion is 
formed by the tool trajectory in the current (nth) spindle revolution and 
with the undulated surface generated in past spindle revolutions (see 
Fig. 4). When machining with a flexible workpiece/tool system, cutting 
forces excite the mechanical structure and introduce a dynamic chip 
formation component. The total uncut chip thickness can be expressed 
by: 

Table 4 
Sample Chip Formation Table for ϕ = 108◦.   

ϕ = 108◦

θ1 θ2 θ3 θ4 σ Interval 

Tool Trajectory Intersections yn(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 0.618 ≤ σ < 1.0515 
yn(θ) ∩ yn−2(θ) yn−2(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 1.0515 ≤ σ < 5.3405 
yn(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−4(θ) yn−4(θ) ∩ yn−1(θ) yn−1(θ) ∩ yn(θ) 5.3405 ≤ σ < 9.1293 
yn(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−7(θ) yn−7(θ) ∩ yn−4(θ) yn−4(θ) ∩ yn(θ) 9.1293 ≤ σ < 26.3987 
yn(θ) ∩ yn−3(θ) yn−3(θ) ∩ yn−10(θ) yn−10(θ) ∩ yn−7(θ) yn−7(θ) ∩ yn(θ) 26.3987 ≤ σ  

Fig. 7. Cutting duty cycle map ROUT =
Out−of−cut Durtaion
Total Modulation Cycle.  

Fig. 8. Periodic unit pulse functions and uncut chip thickness variation.  
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h(θ) = hm(θ) + hd(θ) = yn(θ) − max
{

yn−1(θ), yn−2(θ), ., yn−(lcm(ϕ,2π)/ϕ)

}

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
hm

+

{
−gcut (θ)yd (θ)+g1(θ)yd (θ−2πd1)

+g2(θ)yd (θ−2πd2)+g3(θ)yd(θ−2πd3)

}

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
hd

(10)  

hm [m] is the commanded (static) uncut chip thickness, which is dictated 
by the low frequency rigid body motion of the tool where lcm calculates 
the least common multiple, and hd [m] is the dynamic chip component 
generated by the structural vibrations of the tool/workpiece between 
present nth and 3 past spindle revolutions; namely, n-d1, n-d2 and n-d3. 
dj=1,2,3 denotes the spindle revolution counter that can be determined for 
any given modulation amplitude feedrate ratio σ and the phase angle ϕ 
based on the tabulated approach presented in previous section. gcut(θ) is 
a unit pulse (windowing) function periodic at the modulation frequency 
fm activated only when the tool is in-cut, i.e. immersed into the work
piece. gj=1,2,3(θ) denotes set of another periodic unit pulse functions that 
are activated based on the individual segments of the dynamic uncut 
chip thickness that is formed between current and past tool vibrations. 
For example, g1(θ) indicates formation of the first chip segment. Simi
larly, g2(θ) and g3(θ) are activated when the second and third portions/ 
segments of the chip are formed. Fig. 8 illustrates definition of these 
windowing functions expressed as: 

gcut(θ) =

{
1, θ1 ≤ mod(θ, 2π) ≤ θ4

0, elsewhere

g1(θ) =

{
1, θ1 ≤ mod(θ, 2π) < θ2

0, elsewhere

g2(θ) =

{
1, θ2 ≤ mod(θ, 2π) < θ3

0, elsewhere

g3(θ) =

{
1, θ3 ≤ mod(θ, 2π) ≤ θ4

0, elsewhere

(11) 

where θ1, . , θ4 indicate the start and end of individual chip portions. 
Since the modulation frequency is typically much lower than the 

resonance frequencies of the flexible tool/workpiece structure, static 
uncut chip thickness component hm in 10(10) does not affect growth of 
chatter vibrations and can be dropped. Noting that θ = 2πfst, 10(10) is 
re-written in time domain as: 

hd(t) = − gcut(t)y(t) + g1(t)y(t − τ1) + g2(t)y(t − τ2) + g3(t)y(t − τ3) (12)  

where τj = dj/fs [s] are the time delays originating by the dynamic uncut 
chip thickness formed by the current and 3 past tool vibrations, j = 1,2,

3. Please note that those 3 past tool vibrations (regenerations) can 
originate from multiple spindle revolutions. As an example, Fig. 6 shows 
that for ϕ = 108◦ when 9.1293 ≤ σ < 26.3987, regeneration delays 
would originate from 3, 7 and 4 spindle revolutions before. The table 
generation procedure presented in Section 2 must be followed to accu
rately determine the chip formation and the delays. 

Workpiece/tool dynamics is approximated by a single degree of 
freedom (SDOF) system in the feed direction and the equation of motion 
for the process can be expressed by: 

myÿd(t) + cyẏd(t) + kyyd(t) = Fd(t) = Kybhd(t)

= Kyb
{

−gcut(t)yd(t) + g1(t)yd(t − τ1)

+g2(t)yd(t − τ2) + g3(t)yd(t − τ3)

}

(13)  

where the Ky [MPa] is the specific cutting force coefficient in the feed 
direction, b [m] is the cutting width, and Fd [N] becomes the dynamic 
cutting force. Since the right hand side of 13(13) includes time varying 
periodic windowing functions and depends on the 3 past vibration 
states, dynamics of the modulated turning process is represented by a 
time-varying delay differential equation with multiple delay terms as 
opposed to conventional turning or milling process dynamics that 
typically modeled by a single delay and time-invariant as shown by 
Altintas (2011). 

Stability of modulated turning with multiple delays is firstly 
analyzed in discrete time domain by applying the semi-discrete tech
nique presented by Insperger and Stépán (2004). Dynamics of the 
orthogonal cutting system from 13(13) is put in a state-space form with 
2 states, x1(t) = yd(t) and x2(t) = dyd(t)/dtwhere 

d2yd(t)
dt2 =

dx2(t)
dt

= −ω2
n

⎛

⎝1+gcut(t)
Kyb
ky

⎞

⎠x1(t)−2ζωnx2(t)+
ω2

n

kx
Kyb

⎡

⎣
g1(t)x1(t−τ1)

+g2(t)x1(t−τ2)

+g3(t)x1(t−τ3)

⎤

⎦

(14)  

and expressed as set of first order differential equations:   

In the above state-space representation (15(15)), delayed states are 
used as forcing functions (inputs) rather than the states of the system. 15 
(15) is then discretized: 

{
ẋ1(t)

ẋ2(t)

}

⏟̅̅̅̅⏞⏞̅̅̅̅ ⏟
ẋ(t)

=

⎡

⎢
⎢
⎣

0 1

−ω2
n

(

1 + gcut(t)
Kyb
ky

)

−2ζωn

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
A(t)

{
x1(t)

x2(t)

}

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
x(t)

+

⎡

⎢
⎢
⎣

0 0

ω2
n

ky
Kybg1(t) 0

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
B1(t)

{
x1(t − τ1)

0

}

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
x(t−τ1)

+

⎡

⎢
⎢
⎣

0 0

ω2
n

ky
Kybg2(t) 0

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
B2(t)

{
x1(t − τ2)

0

}

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
x(t−τ2)

+

⎡

⎢
⎢
⎣

0 0

ω2
n

ky
Kybg3(t) 0

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
B3(t)

{
x1(t − τ3)

0

}

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
x(t−τ3)

ẋ(t) = A(t)x(t) +
∑3

j=1
Bj(t)x

(
t − τj

)

(15)   
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ẋ(t) = Aix(t) +
∑3

j=1
Bj,ix

(
t − τj

)
, t ∈ [ti, ti+1) (16)  

where ti = iΔT [s] is the discrete (sampled) time with a discretization 

time step of ΔT[s], which is selected as follows. The windowing func
tions are periodic by the modulation cycle, 1/fm, and the delay period of 
the system is dictated by the largest delay max(τj=1,2,3). Delay resolution 
r must be selected large enough to capture both chatter and modulation 
frequencies. For r ∈ Z+, the discretization time step becomes ΔT =

min(τj=1,2,3)/r. 
The delayed states in 16(16) are approximated by their average over 

two successive samples: 

x
(
ti − τj

)
≈

1
2

(
xi−rj+1 + xi−rj

)
(17)  

where rj = int(τj/ΔT) is the delay samples for the delayed states. Simi
larly, the continuous time-varying state transition A(t) and input Bj(t)
matrices (See 16(16)) can be discretized by taking their average over a 
sampling interval as shown by Insperger and Stépán (2004), 

Ai =
1

ΔT

∫ ti+1

ti
A(t)dt

Bj,i =
1

ΔT

∫ ti+1

ti
Bj(t)dt, j = 1, 2, 3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(18)  

and 16(16) is written over the interval [ti, ti+1) as: 

xi+1 = Lixi +
1
2

∑3

j=1
Rj,i

(
xi−rj+1 + xi−rj

)
(19)  

where 

Li = eAiΔT

Rj,i =

∫ ΔT

0
eAi(ΔT−s)ds Bj,i

⎫
⎪⎬

⎪⎭
(20) 

If A−1
i exists, then the integration in 20(20) gives 

Rj,i =
(
eAiΔT − I

)
A−1

i Bj,i (21)  

where I is a 2 × 2 identity matrix. Finally, by assuming r3 > r2 > r1, 19 
(19) can be written in matrix-vector from as 

zi+1 = Φizi (22)  

where 

zi =
(
xi, xi−1…xi−r1+1, xi−r1 …xi−r2+1, xi−r2 …xi−r3+1, xi−r3

)T (23) 

Finally, the augmented state transition matrix Φi is constructed as:   

The discrete state transition matrix Φi is time varying, and it needs to 
be evaluated based on 20(20) at each sample. Time varying dynamics of 
the process can be simulated by solving the discrete set of recursive 
equations from 22(22). The stability of the overall system can be eval

uated through q = int
(

1
ΔT fm

)
times repeated application of 22(22): 

zi+q = Φ zi = Φi+q−1Φi+q−2⋯Φi zi (25) 

According to the Floquet theory (Altintas et al., 2008; Insperger and 
Stépán, 2004), stability of the linear system described by 25(25) can be 
tested by evaluating eigenvalues λ of the final state transition matrix Φ 
as: 

zi+q = Φ zi→|λI − Φ| = 0 (26) 

Based on the calculated eigenvalues, if |λ| < 1 the system will be 
stable exhibiting only forced vibrations. If |λ| > 1 the system is unstable 
and leads to regenerative chatter vibrations. If |λ| = 1, the system would 
be critically stable. Henceforth, stability lobes diagrams (SLD) can be 
constructed analytically by scanning the spindle speed at the operating 
range of the machine at discrete increments and increasing the width of 
cut at acceptable increments Δb for any given set of modulation pa
rameters; namely, modulation amplitude and feed rate ratio σ, and the 
phase angle ϕ. 

Fig. 9. Time domain simulation model.  

1
↓

rj
↓

rj + 1
↓

Φi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Li 0 ⋯ 0 0

I 0 ⋯ 0 0

0 I ⋯ 0 0

⋮ ⋱ ⋮

0 0 ⋯ I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2(max(rj)+1 )×2(max(rj)+1 )

+
∑3

j=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 1
2Rj,i

1
2Rj,i 0 ⋯ 0

0 0 ⋯ 0 0 0 0 ⋯ 0

0 0 ⋯ 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ 0 0 0 0 ⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2(max(rj)+1 )×2(max(rj)+1 )

(24)   
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3.2. Time domain simulation of the process dynamics 

To benchmark accuracy of the presented analytical stability solution, 
dynamics of the process is also simulated in time domain. The discrete 
time domain simulation technique presented by (Copenhaver and 

Schmitz, 2020) is adapted here with minor modifications and briefly 
summarized in the following. 

The simulation model is illustrated in Fig. 9. As shown, structural 
flexibility is assigned to the tool side, and it is modeled as a SDOF system 
where u(t) denotes the dynamic displacement of the tool tip. In modu
lated turning, the tool modulation frequency is significantly lower than 
any of the structural resonances of the machining system. Therefore, the 
interaction between rigid body tool motion and flexible structural dy
namics can be considered negligible. This assumption is realized by 
feeding a modulated workpiece surface to the tool rather than directly 
modulating the tool itself as: 

ys(ti) = fsh0ti + A sin(2πfmti) (27) 

Note that the discretization interval ΔT should be selected small 
enough to capture chatter vibrations. The relative dynamic displace
ment between the tool tip and workpiece surface is expressed as: 

u(ti) = ys(ti) − yd(ti) (28)  

and registered in the memory so that the workpiece surface can be 
updated over N spindle revolutions, and uncut chip thickness due to 

Table 5 
Identified specific cutting coefficients.  

Specific Cutting Force Coefficient Calculated Value 

Ky(feed) 1338 [N/mm2] 
Kx(principal) 1537 [N/mm2]  

Table 6 
Identified dynamic system parameters of the experimental setup.  

Dynamic System Parameters 

Natural Frequency (ωn) 2.55 [kHz] 
Mass (m) 0.05 [kg] 
Viscous Damping Coefficient (c) 49.31 [N/m/s] 
Stiffness (k) 1.45 × 107 [N/m]  

Fig. 10. Benchmark of semi-discrete and time domain stability solutions.  
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undulated workpiece surface is computed as follows: 

hd(ti) = u(ti) − max
{

u
(

ti −
1
fs

)

, u
(

ti −
2
fs

)

, ., u
(

ti −
N
fs

)}

(29) 

Notice that 29(29) allows direct evaluation of the actual dynamic 
uncut chip thickness and eliminates the need to use any windowing 
functions. Cutting force is generated when the dynamic uncut chip 
thickness is positive h(ti) > 0, 

F(ti) =

{
Kybh(ti) , h(ti) > 0
0 , else (30) 

This allows incorporating tool’s jump out of the cut jumping phe
nomenon (Dombovari et al., 2017), which cannot be simulated by the 
semi-discrete domain approach. Cutting force generated by the dynamic 
tool tip displacement can then be expressed as 

mÿd(ti) + cẏd(ti) + kyd(ti) = F(ti) (31)  

where m[kg], c[N/(m•s)], k[N/m] represent mass, viscous damping 
coefficient and stiffness respectively and 31(31) is digitized by 

approximating higher order derivatives of the tool displacement u(ti)
based on second order central differentiation by 

ẏd(ti) =
yd(ti+1) − yd(ti−1)

2ΔT

ÿd(ti) =
yd(ti+1) − 2yd(ti) + yd(ti−1)

ΔT2

⎫
⎪⎪⎬

⎪⎪⎭

(32) 

Fig. 11. Time domain simulation of stable and unstable conditions for ϕ = π, h0 = 4μm, A = 12μm, int(fm/fs) = 4, fs = 25 Hz, fm = 112.5 Hz at bunstable = 1.5 mm, 
bstable = 0.8 mm. 

Fig. 12. Experimental setup.  

Fig. 13. Specific cutting force identification for orthogonal cutting of Al6061 
T6511 tube with b = 2.75 [mm]. 
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Substituting 32(32) into 31(31) and combining with 30(30) allows 
prediction of successive tool tip position as: 

yd(ti+1) =
Kybhd(ti) − m

(
−2yd(ti)+yd (ti−1)

ΔT2

)
+ c yd (ti−1)

2ΔT − kyd(ti)

m
ΔT2 + c

2ΔT
(33)  

which is then used to calculate the dynamic uncut chip thickness in Eqs. 

(28) and (29). The occurrence of chatter is evaluated by running the 
simulation for a long period of time and manually judging the growth of 
tool vibrations. Considering the short duration of tool’s in-cut phase, the 
simulation may have to be run for up to 200–500 spindle revolutions 
until considerable growth of chatter vibrations is observed and regen
erative chatter condition is judged. 

Before presenting the experimental results, a simulation study is 
conducted. Time domain simulations are conducted by using the specific 
cutting coefficients given in Table 5 and experimental system parame
ters given in Table 6 to demonstrate accuracy of the proposed stability 
solutions. For the semi-discrete time domain solution, the resolution of 
spindle revolution and width of cut are set to 1 rpm and 0.1 mm, 
respectively. The results are summarized in Fig. 10. 

Firstly, it can be observed that MT provides significantly larger stable 
depth of (alim) as compared to conventional continuous turning. Time 
domain simulations are run to validate accuracy of the semi-discrete 
domain chatter stability predictions. 

Fig. 10 presents some unique insight on the effect of phase angle and 
modulation frequency on the chatter stability as well. The left column of 
Fig. 10 shows stability when phase angle is fixed at ϕ = 1800 and 
modulation frequency is increased. As shown, increasing modulation 

Fig. 14. Direct (Gyy) and cross (Gyx) dynamic compliance of the tool.  

Fig. 15. Equivalent compliance of the setup.  

Table 7 
Experimental conditions for cutting.  

Cutting conditions 
Spindle speed SS 1500–1800 

[min−1] 
Cutting width b 0.5 – 1.25 [mm] 
Static feed rate (static depth of cut) h0 4.0 – 5.0 [μm/rev]  

Tool modulation parameters 
Ratio of tool modulation frequency to spindle rotation 

frequency fm/fs 
1.22–4.0 

Tool modulation amplitude A 12.0–13.0 [μm] 
Shift in tool trajectories in successive spindle revolutions ϕ 80–252 [deg]  

B. Eren et al.                                                                                                                                                                                                                                     



Journal of Materials Processing Tech. 308 (2022) 117708

13

frequency stabilizes the system and directly increase the asymptotic 
stability border. For instance, at 1400[rpm] the stability is increased 
from 0.8[mm] up to ~1.2[mm] by increasing the modulation frequency 
by 6x (40[Hz] to 240[Hz]). Also note that increasing the spindle speed 
for a fixed modulation frequency increases overall stability limit as well. 
As compared to the stability lobes for continuous turning, stability lobes 
of MT are slightly tapered revealing stabilizing effect of spindle speed. 

Right column of Fig. 10 presents effect of phase angle ϕ on the 
chatter stability. For a fixed modulation frequency-spindle frequency 
ratio int(fm/fs)= 4, phase angle is increased from ϕ = 900 up to ϕ =

2520. As shown, the largest stability limit is observed for ϕ = 900, and 
the lowest is observed when ϕ = 1800. The difference can be partially 
explained considering the air cutting duty ratio presented in Fig. 7. Note 
from Fig. 7 that for ϕ = 1800 the air cutting ratio is rather lowest, e.g. 
the tool is not cutting any workpiece roughly 35% of the spindle rotation 
period. In contrast, when ϕ = 900, the air cutting ratio increases 
significantly. Noting from Fig. 7, it increases up to 45–50%. Since the 
tool spends longer time in air cutting, self-excited vibrations do not grow 
as fast. 

Fig. 16. Validation of cutting (feed/thrust) forces in various modulated turning conditions.  
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Fig. 17. Simulation and experimental results without/with tool modulation under various conditions.  

Fig. 18. Cutting signals recorded in stable and unstable cutting conditions (points C and D).  

B. Eren et al.                                                                                                                                                                                                                                     



Journal of Materials Processing Tech. 308 (2022) 117708

15

In Fig. 11, two of time domain analysis results, shown with “A” and 
“B” letters in Fig. 10-c, are given in detail. Here, two different widths of 
cut values are analyzed to compare stable and unstable conditions by 
using the same tool modulation parameters. As can be seen, for b = 1.5 
mm, the process becomes unstable and chatter vibrations grow gradu
ally. On the other hand, for b = 0.8 mm, process is stable and only forced 
vibrations can be observed. However, as shown in Fig. 11(d), slight vi
bration on chatter frequency is observed even for the stable case. This 
can be interpreted as follows. When width of cut is above the stability 
limit of the conventional cutting, chatter vibrations onset during in-cut 
(immersion) periods of the cutter. However, this in-cut period is too 
short for chatter growth, and the air-cutting (out-of-cut) region provides 
a dampening effect mitigating further growth of regenerative chatter. 

4. Experimental validation 

A series of experiments are conducted to verify the stabilizing effect 
by modulated turning and the validity of the stability solutions. The 
setup shown in Fig. 12 is used for experimental validation. Turning is 
realized on HAAS TL-1 CNC lathe, and tool is modulated in the feed 
direction using a piezo actuator driven fast tool servo (FTS) mounted on 
tool-post and controlled by a PID controller implemented in an in-house 
servo control system. Servo position loop is closed at 10 [kHz] sampling 
and positioning bandwidth is set to 300 [Hz]. Mechanical design and 
controller system of the FTS system are introduced in (Altintas and 
Woronko, 2002). 

As shown in Fig. 12 Al6061 T6511 tubes with d = 66.45 [mm] 
diameter is used as workpiece material, and carbide insert with 7◦ relief 
angle is used as a cutting tool. Cutting forces are measured by a Kistler 
9257B 3-axis dynamometer. A set of orthogonal cutting experiments are 
firstly conducted in stable cutting conditions to determine specific cut
ting force coefficients in feed/thrust (Ky) and principal (Kx) directions. 
The cutting width is set constant as 2.75 mm, and a various static feed 
rates are set from 2 μm/rev to 12 μm/rev considering the aimed mod
ulation amplitude in cutting experiments. The gradient of each cutting 
force against the cross-sectional area of the uncut chip through linear 
fitting is identified as the specific cutting force. Fig. 13 shows the ac
curacy of the identification. Identified coefficients are given in Table 5. 

Note that orthogonal tube-cutting experiments are conducted. Since 
material is removed on the face of the workpiece, it becomes very rigid 
in the feed direction (See Fig. 12). However, as shown in Fig. 12, the 
projection length of the tool shank is set long enough as 47 mm making 
it flexible in both feed (y) and principal (x) directions. In other words, 
the chatter mainly occurs on the tool side. Therefore, the dynamic 
compliance of the tool is measured by hammer testing on the tool tip. An 
impulse hammer (DYTRAN Instrument Inc., 5800SL 9083) is utilized for 
the force input, and two accelerometers (DYTRAN Instrument Inc., 
3035B1 16021 and 3035B1G 15306) are utilized to measure the vibra
tion acceleration in the two directions. The impact for each direction is 
repeated 15 times for higher reliability of measurement. It should be 
noted that the cutting force in feed (y) as well as in principal (x) di
rections affects vibration in the feed direction. Hence, the equivalent 
dynamic compliance (Geq) [27] should be considered for the stability 
analysis. Fig. 14 shows the direct (Gyy) and cross (Gyx) dynamic com
pliances. The direct dynamic component (Gyy) is measured by exciting 
the tool tip in feed (y) direction and measuring its vibration in the same 
direction. Cross dynamic compliance (Gyx) is measured by exciting the 
tool in the principal (x) direction and measuring the vibration in the 
feed. The equivalent dynamic compliance (Geq) can be calculated as: 

Geq =
Kx

Ky
Gyx + Gyy (34) 

Peak picking method (Altintas, 2011) is then used to identify modal 
parameters of Geq, and fitting accuracy is shown in Fig. 15. As shown 
dominant resonance at 2.55 kHz is well represented by the model. 

Table 6 shows identified modal parameters. 
Cutting experiments are carried out to validate the accuracy of cut

ting force prediction and the stability solutions. The experimental con
ditions for cutting are shown in Table 7. The pipe wall thickness of the 
workpiece is changed by pre-cut for setting the various cutting width. 
Beforehand of the actual cutting experiments, every actual tool modu
lation profile is validated against the reference profile to be certain with 
their accordance. Because of the limitation of the maximum amplitude 
and frequency of the piezo actuator, the tool modulation amplitude as 
well as the spindle speed are set a limited range as shown in Table 7. 

Accuracy of cutting force prediction is firstly validated. Cutting tests 
are conducted in stable machining conditions. Note that the parameters 
of tool modulation in each cutting condition are set unequal to verify the 
influence of each modulation parameter into the accuracy of predicted 
cutting force. The tool modulation conditions and the results are pre
sented in Fig. 16. The feed force is predicted by using the conventional 
orthogonal cutting model (Altintas, 2011) and compared with the 
experimental measurements. As shown in Fig. 16, the cutting forces are 
predicted accurately in all the condition. Specifically, the highest ac
curacy of predicted cutting force is confirmed at ϕ = 180◦ (Fig. 16-c). 
The reason for this result can be explained as follows. Due to static and 
dynamic deflections of the tool shank during cutting, in-cut and 
out-of-cut durations show small discrepancy [12]. In particular, the 
maximum cutting load at ϕ = 180◦ denotes smallest value because of its 
small uncut chip thickness as shown in Fig. 16-c, and hence the static 
and dynamic deflections of the tool shank comparatively smaller. In 
other words, the smallest delay between experimental and predicted 
force data is observed when the tool travels opposite to its trajectory in 
the previous revolution. Note that such delay from the static and dy
namic deflection of the tool can influence chatter stability and it makes 
the small discrepancy between the predicted stability and the experi
mental results presented in the following. 

Chatter tests with various tool modulation conditions are conducted 
to verify accuracy of predicted stability and to confirm the improved 
gained through MT compared to conventional turning process. Experi
mental results are summarized in Fig. 17. In order to evaluate the sta
bility of the system, accelerometer signal in the feed direction is short- 
time Fourier transformed. As an indicator, the frequency domain vi
bration magnitudes are compared to the pre-determined tool modula
tion amplitude. The cases that show larger magnitude at a chatter 
frequency than the vibration magnitude at a modulation frequency are 
determined as unstable (chatter). Fig. 18 shows the experimental signals 
of cutting force, acceleration in feed direction, and its short-time Fourier 
transform results for both stable and unstable cases shown with “C” and 
“D” letters in Fig. 17-e. 

As presented in Fig. 17, the proposed semi-discrete time domain 
solution accurately predicts the chatter stability of modulated turning 
for most cutting conditions. Some discrepancy is observed when ϕ =

900, at which maximum chip thickness becomes 4x of the nominal feed 
rate. As discussed above, static deflection of flexible tool shank may 
distort the in-and-out-of-cut durations, may cause discrepancy between 
the simulated stability with the experimental results. On the other hand, 
the static deflection of the tool shank are the smallest at ϕ = 180◦, and 
hence the predicted stability shows a better accordance with experi
mental results as shown in Fig. 17-(b and c). It can be clearly confirmed 
that stability with tool modulation is higher than that of conventional 
turning process (without tool modulation) regardless of the tool mod
ulation parameters. In particular, process stability is increased by more 
than 2x for ϕ = 90◦ and 252◦. Although ϕ = 1800provides the smallest 
modulation frequency and amplitude conditions for implementation in 
practice [11], setting ϕ = 900provides better stability. This is also dis
cussed in previous section through simulation based benchmarks and 
summarized in Fig. 10. Next, the higher spindle speed with a certain tool 
modulation condition can achieve higher stability as shown in simulated 
solutions in each graph. Furthermore, as shown in Fig. 17-(b and c), 
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higher tool modulation frequency denotes the higher stability. The 
reason for this can be explained that a higher spindle speed/tool mod
ulation frequency makes a shorter continuous in-cut section, and thus 
the chatter cannot be grown sufficiently even under the unstable 
condition. 

5. Conclusion 

This paper, for the first time, presented a generalized mechanics and 
dynamics model for the modulated turning (MT) processes. 

Firstly, a generalized kinematic model is developed to predict the 
uncut-chip thickness. The developed model uses a tabulated approach to 
accurately model the complex chip formation observed in MT. It is found 
that a single chip consists of 3 sections (portions), and each portion is 
generated by the intersection of the current tool trajectory with the 
workpiece (undulated) surface generated in the multiple past spindle 
revolutions. The proposed approach can accurately describe the spindle 
revolutions involved in the generation of the undulated surface. 
Orthogonal cutting models are then applied to accurately predict the 
uncut chip thickness and resultant cutting forces. 

The regenerative chatter stability of the process is also analyzed. 
Semi-discrete time approach is used and SLDs of the process are pre
dicted. Accuracy of the stability predictions is validated both through 
time-domain simulations and via actual cutting experiments. It is 
observed that the proposed model can accurately estimate chatter sta
bility of the modulated turning (MT) process. It is found that modulated 
turning can provide up to 2x higher chatter stability as compared to 
conventional single point continuous turning. It is clarified that stabi
lization effect of modulated turning originats from its discrete cutting 
kinematics and by the existence of the multiple regeneration loops. 

CRediT authorship contribution statement 

Bora Eren Role: Methodology, Experimentation, Formal analysis, 
Investigation, Writing – review & editing. Soohyun Nam. Role: 
Conceptualization, Experimentation, Writing – review & editing. Burak 
Sencer Role: Methodology, Experimentation, Formal analysis, Investi
gation, Writing – review & editing, Supervision, Project administration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research is supported by the US’s National Science Foundation 
(Award no: 2019370, GOALI/Collaborative Research: Mechanics and 
Dynamics of Low Frequency Vibration Assisted Machining). 

References 

Altintas, Y., 2011. Manufacturing Automation. Cambridge University Press. https://doi. 
org/10.1017/CBO9780511843723. 

Altintas, Y., Stepan, G., Merdol, D., Dombovari, Z., 2008. Chatter stability of milling in 
frequency and discrete time domain. CIRP J. Manuf. Sci. Technol. 1 (1), 35–44. 
https://doi.org/10.1016/j.cirpj.2008.06.003. 

Altintas, Y., Woronko, A., 2002. A piezo tool actuator for precision turning of hardened 
shafts. CIRP Ann. Manuf. Technol. 51 (1), 303–306. https://doi.org/10.1016/S0007- 
8506(07)61522-4. 

Aoki, T., Sencer, B., Shamoto, E., Suzuki, N., Koide, T., 2016. Development of a high- 
performance chip-guiding turning process—tool design and chip flow control. Int. J. 
Adv. Manuf. Technol. 85 (1–4), 791–805. https://doi.org/10.1007/s00170-015- 
7990-5. 

Chhabra, P.N., Ackroyd, B., Compton, W.D., Chandrasekar, S., 2002. Low-frequency 
modulation-assisted drilling using linear drives. Proc. Inst. Mech. Eng., Part B: J. 
Eng. Manuf. 216 (3), 321–330. https://doi.org/10.1243/0954405021519997. 

Copenhaver, R., Schmitz, T., 2020. Modeling and simulation of modulated tool path 
(MTP) turning stability. Manuf. Lett. 24, 67–71. https://doi.org/10.1016/j. 
mfglet.2020.03.013. 

Copenhaver, R., Schmitz, T., Smith, S., 2018. Stability analysis of modulated tool path 
turning. CIRP Ann. 67 (1), 49–52. https://doi.org/10.1016/j.cirp.2018.03.010. 

Dombovari, Z., Munoa, J., Kuske, R., Stepan, G., Dombovari, Z., Munoa, J., Kuske, R., & 
Stepan, G. (2017). Non-smooth torus to identify domain of attraction of stable 
milling processes. 

Eren, B., Sencer, B., 2020. Mechanistic cutting force model and specific cutting energy 
prediction for modulation assisted machining. Procedia Manuf. 48, 474–484. 
https://doi.org/10.1016/j.promfg.2020.05.071. 

Gao, Y., Sun, R.L., Chen, Y.N., Leopold, J., 2016. Mechanical and thermal modeling of 
modulation-assisted machining. Int. J. Adv. Manuf. Technol. 86 (9–12), 2945–2959. 
https://doi.org/10.1007/s00170-016-8421-y. 

Gao, Y., Sun, R., Leopold, J., 2018. An analytical force model for modulation-assisted 
turning. J. Manuf. Process. 31, 712–730. https://doi.org/10.1016/j. 
jmapro.2017.12.024. 

Guo, Y., Lee, S.E., Mann, J.B., 2017. Piezo-Actuated modulation-Assisted drilling system 
with integrated force Sensing. J. Manuf. Sci. Eng. 139 (1), 38–45. https://doi.org/ 
10.1115/1.4033929. 

Guo, Y., Mann, J.B., Yeung, H., Chandrasekar, S., 2012. Enhancing tool life in high-speed 
machining of compacted graphite iron (CGI) using controlled modulation. Tribology 
Lett. 47 (1), 103–111. https://doi.org/10.1007/s11249-012-9966-z. 

Hong, S.Y., Ding, Y., Ekkens, R.G., 1999. Improving low carbon steel chip breakability by 
cryogenic chip cooling. Int. J. Mach. Tools Manuf. 39 (7), 1065–1085. https://doi. 
org/10.1016/S0890-6955(98)00074-1. 

Insperger, T., Stépán, G., 2004. Updated semi-discretization method for periodic delay- 
differential equations with discrete delay. Int. J. Numer. Methods Eng. 61 (1), 
117–141. https://doi.org/10.1002/nme.1061. 

Jawahir, I.S., van Luttervelt, C.A., 1993. Recent developments in chip control research 
and applications. CIRP Ann. 42 (2), 659–693. https://doi.org/10.1016/S0007-8506 
(07)62531-1. 

Ma, C., Ma, J., Shamoto, E., Moriwaki, T., 2011. Analysis of regenerative chatter 
suppression with adding the ultrasonic elliptical vibration on the cutting tool. Precis. 
Eng. 35 (2), 329–338. https://doi.org/10.1016/j.precisioneng.2010.12.004. 

Mann, J.B., Guo, Y., Saldana, C., Compton, W.D., Chandrasekar, S., 2011a. Enhancing 
material removal processes using modulation-assisted machining. Tribology Int. 44 
(10), 1225–1235. https://doi.org/10.1016/j.triboint.2011.05.023. 

Mann, J.B., Guo, Y., Saldana, C., Compton, W.D., Chandrasekar, S., 2011b. Enhancing 
material removal processes using modulation-assisted machining. Tribology Int. 44 
(10), 1225–1235. https://doi.org/10.1016/j.triboint.2011.05.023. 

Nam, S., Eren, B., Hayasaka, T., Sencer, B., Shamoto, E., 2021. Analytical prediction of 
chatter stability for modulated turning. Int. J. Mach. Tools Manuf. 165. https://doi. 
org/10.1016/j.ijmachtools.2021.103739. 

Ozkirimli, O., Tunc, L.T., Budak, E., 2016. Generalized model for dynamics and stability 
of multi-axis milling with complex tool geometries. J. Mater. Process. Technol. 238, 
446–458. https://doi.org/10.1016/J.JMATPROTEC.2016.07.020. 

SAKURAI, K., ADACHI, K., OGAWA, K., 1992. Low frequency vibratory drilling of Ti-6Al- 
4V alloy. J. Jpn. Inst. Light Met. 42 (11), 633–637. https://doi.org/10.2464/ 
jilm.42.633. 

Uysal, E., Karaguzel, U., Budak, E., Bakkal, M., 2014. Investigating eccentricity effects in 
turn-milling operations. Procedia CIRP 14 (July), 176–181. https://doi.org/ 
10.1016/j.procir.2014.03.042. 

Yeung, H., Guo, Y., Mann, J.B., Compton, W.D., Chandrasekar, S., Dale Compton, W., 
Chandrasekar, S., Compton, W.D., Chandrasekar, S., 2016. Effect of low-frequency 
modulation on deformation and material flow in cutting of metals. J. Tribology 138 
(1), 1–9. https://doi.org/10.1115/1.4031140. 

Zhang, Y.Z., Peklenik, J., 1980. Chip curl, chip breaking and chip control of the difficult- 
to-cut materials. CIRP Ann. 29 (1), 79–83. https://doi.org/10.1016/S0007-8506(07) 
61299-2. 

Zhu, L., Jiang, Z., Shi, J., Jin, C., 2015. An overview of turn-milling technology. Int. J. 
Adv. Manuf. Technol. 81 (1–4), 493–505. https://doi.org/10.1007/s00170-015- 
7187-y. 

B. Eren et al.                                                                                                                                                                                                                                     

https://doi.org/10.1017/CBO9780511843723
https://doi.org/10.1017/CBO9780511843723
https://doi.org/10.1016/j.cirpj.2008.06.003
https://doi.org/10.1016/S0007-8506(07)61522-4
https://doi.org/10.1016/S0007-8506(07)61522-4
https://doi.org/10.1007/s00170-015-7990-5
https://doi.org/10.1007/s00170-015-7990-5
https://doi.org/10.1243/0954405021519997
https://doi.org/10.1016/j.mfglet.2020.03.013
https://doi.org/10.1016/j.mfglet.2020.03.013
https://doi.org/10.1016/j.cirp.2018.03.010
https://doi.org/10.1016/j.promfg.2020.05.071
https://doi.org/10.1007/s00170-016-8421-y
https://doi.org/10.1016/j.jmapro.2017.12.024
https://doi.org/10.1016/j.jmapro.2017.12.024
https://doi.org/10.1115/1.4033929
https://doi.org/10.1115/1.4033929
https://doi.org/10.1007/s11249-012-9966-z
https://doi.org/10.1016/S0890-6955(98)00074-1
https://doi.org/10.1016/S0890-6955(98)00074-1
https://doi.org/10.1002/nme.1061
https://doi.org/10.1016/S0007-8506(07)62531-1
https://doi.org/10.1016/S0007-8506(07)62531-1
https://doi.org/10.1016/j.precisioneng.2010.12.004
https://doi.org/10.1016/j.triboint.2011.05.023
https://doi.org/10.1016/j.triboint.2011.05.023
https://doi.org/10.1016/j.ijmachtools.2021.103739
https://doi.org/10.1016/j.ijmachtools.2021.103739
https://doi.org/10.1016/J.JMATPROTEC.2016.07.020
https://doi.org/10.2464/jilm.42.633
https://doi.org/10.2464/jilm.42.633
https://doi.org/10.1016/j.procir.2014.03.042
https://doi.org/10.1016/j.procir.2014.03.042
https://doi.org/10.1115/1.4031140
https://doi.org/10.1016/S0007-8506(07)61299-2
https://doi.org/10.1016/S0007-8506(07)61299-2
https://doi.org/10.1007/s00170-015-7187-y
https://doi.org/10.1007/s00170-015-7187-y

	Generalized mechanics and dynamics of modulated turning
	1 Introduction
	2 Kinematics of low frequency assisted turning
	2.1 Prediction of chip formation for φ=π
	2.2 Prediction of generalized chip formation
	2.3 Illustrative Example

	3 Prediction of regenerative chatter stability
	3.1 Semi-discrete time domain solution
	3.2 Time domain simulation of the process dynamics

	4 Experimental validation
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


