2105.08148v2 [math.NA] 8 Jun 2022

arxiv

Adaptive Density Tracking by Quadrature
for Stochastic Differential Equations

Ryleigh A. Moore*! and Akil Narayan!

'Scientific Computing and Imaging Institute, and Department of Mathematics,
University of Utah

June 9, 2022

Abstract

Density tracking by quadrature (DTQ) is a numerical procedure for computing solutions to
Fokker-Planck equations that describe probability densities for stochastic differential equations
(SDEs). In this paper, we extend upon existing trapezoidal quadrature rule DTQ procedures by
utilizing a flexible quadrature rule that allows for unstructured, adaptive meshes. We describe
the procedure for N-dimensions, and demonstrate that the resulting adaptive procedure can
be significantly more efficient than the trapezoidal DTQ method. We show examples of our
procedure for problems ranging from one to five dimensions.

Keywords: stochastic differential equations, Leja points, numerical methods

1 Problem History and Background

Stochastic differential equations (SDEs) are prevalent in many areas of research. Kloeden and
Platen [1] outline a variety of SDE uses, including population dynamics, protein kinetics, psychol-
ogy problems involving neuronal activity, investment finance and option pricing, turbulent diffusion
of a particle, radio-astronomy and the analysis of stars, helicopter rotor and satellite orbit stability,
biological waste treatment with analysis of air and water quality, seismology and structural mechan-
ics, the stability of materials prone to fatigue cracking, and blood clotting dynamics and cellular
energetics. In this paper, we are interested in solving SDEs and their associated Fokker-Planck
equations.

1.1 Stochastic Differential Equations

Let W; be an N-dimensional Wiener Process and X; be an N-dimensional vector stochastic 1to
diffusion process governed by the SDE

dX = f(Xy¢,t)dt + g(X¢,t)dW; (1)

with the drift £f(X;,¢) as an N-dimensional vector and the diffusion defined by an N x N-dimensional
matrix g(Xy,t). This equation is endowed with a ¢ = 0 initial condition X .

*Corresponding author email: rmoore@math.utah.edu
R. Moore and A. Narayan were partially supported by AFOSR under award FA9550-20-1-0338. A. Narayan is partially
supported by NSF DMS-1848508.

The evolution of the probability density function for X; is governed by the corresponding Fokker-
Planck partial differential equation (PDE). The Fokker-Planck equation for the evolution of the
probability density p(x,t) of the random variable X; from equation is given by

0 S A
Ep(xa t)=— ; 920 [fi(x, t)p(x, 1)) + ”2:1 FNGEC) [Di;(x,t)p(x,1)] (2)
where x = (z(), ..., 2T The diffusion tensor D is related to the SDE diffusion g by

N
1
Di;(x,1) =5 > gio(x, O)gje(x,t),
=1

see, e.g., [2, p. 5]. Since p(x,t) is a probability density function, it satisfies a normalization condition

/ p(x,t)dx = 1.
RN

This paper focuses on numerical approximation of the time-dependent probability density function
p(x,t) governed by equation .

1.2 Current Methods

Several methods have been developed to numerically approximate the statistics of the SDE’s so-
lution X4, or the probability density function p(x,t) from the associated Fokker-Planck PDE in
equation . Perhaps among the more straightforward approaches is through Monte Carlo simu-
lation [3], which typically collects a large ensemble of realizations of X, from equation (). The
large number of samples needed to sufficiently approximate the solution of the SDE makes using
this method with sufficient accuracy computationally expensive.

Many numerical methods have been developed to compute solutions to the Fokker-Planck equa-
tion, such as finite element methods (FEMs) [4, |5l (6, 7, |8, |9} |10, |11] and finite difference methods
(FDMs) [4, 11} [12]. FEMs are often preferable over FDMs to solve the Fokker-Plank equation be-
cause of their accuracy and stability; however, they can be more complicated to implement compared
to FDMs. Current FDMs are empirically less numerically stable than FEMs, but they also usually
require less memory and computational power to implement [4, [11]. Both FEMs and FDMs suffer
from the curse of dimensionality stemming from the computational difficulty of forming a sufficiently
dense mesh in N dimensions. When using FDMs or FEMs, erroneous oscillations and negative val-
ues can arise if the drift is large compared to the diffusion. One method to address this challenge
utilizes a moving finite element mesh where basis functions, which depend on time instead of only on
space, are used to eliminate the spurious oscillations [13]. Some adaptive FEM procedures monitor
regions of non-negligible probability and adjust the mesh coarseness appropriately [14]. Adaptive
FEM procedures also adjust the mesh based on the local value and gradient of p near boundary
regions [15].

Additionally, finite volume methods (FVMs) have been applied to the conservation form of the
Fokker-Plack equation, utilizing a linear multistep method for temporal discretization [16]. Such
procedures can be made to adaptively adjust the mesh and time step based on an error tolerance
criterion. Deep learning approaches have also been leveraged to numerically approximate solutions
to the Fokker-Planck equation. If a large amount of training data is available, neural networks can
be used to learn solution behavior [17]. Of course, this requires availability of such training data,
and guaranteeing generalizability and accuracy with such approaches is often difficult.

The curse of dimensionality is a concern with current methods because the required memory
and computational cost increases substantially with the dimension N of the problem. FEMs and
finely discretized FDMs have been used to solve four-dimensional problems |10 [11], but more work
is needed for higher dimensional problems to become tractable.

In this research, we extend current density tracking by quadrature methods to approximate
the PDF of SDEs in high dimensions. DTQ has also been described previously as numerical path
integration (NPI) [18}19,|20] and has been applied to many different disciplines including engineering
[19] and finance |21 [22} 23]. A transformed path integral approach is discussed in [24]. Results on the
stability, consistency, and convergence of NPI/DTQ under certain conditions are given in |25} [26].
In one dimension, DTQ has been shown to be a convergent method that computes an approximation
to the probability density function p(x,t) of X; on a discrete grid. In some examples, DTQ is 100
times faster compared to other methods with similar accuracy [26], making it very appealing for
further study.

1.3 Outline and Contributions of this Paper

We work to augment current DTQ algorithms by implementing an accurate and flexible interpola-
tory quadrature rule, along with adaptive mesh updates, to minimize the computational cost. Our
quadrature rule allows for an N-dimensional, unstructured mesh that provides flexibility to allo-
cate mesh points to areas of high density and to remove mesh points from areas of low density.
The unstructured mesh allows for nontensorial discretizations and partially addresses the curse of
dimensionality.

We first summarize the current DTQ method which utilizes a structured mesh and a trapezoidal
quadrature rule [26]. Then, we discuss and fully detail our adaptive DTQ method, which uses an
interpolatory quadrature rule on Leja points. Finally, we compare the two procedures.

2 Density Tracking by Quadrature

We present DT'Q in the framework of N-dimensional SDEs in equation . For a fixed temporal step
size h > 0, we first discretize the SDE in equation in time using the Euler-Maruyama method,
which results in the equation

X1 =X + £(Xop,)0 48X,) VA Z 4 1. (3)

Here, X, represents an approximation of the state X; at time ¢, = nh and Z,4; is a standard
N-dimensional normal random variable (i.e., 0 mean, identity covariance).

Now, we interpret the time discretized equation as a discrete-time Markov chain. Let p(x,t,,)
denote the PDF at location x at time t,, of the Markov chain. From equation , we observe that
the conditional density of)~(n+1 given)~(n =y is Gaussian with mean g = y + f(y)h and covariance
= hg(y)g(y)T7 notated as

P(Xnp1 =x| X, =y) = G(x,y; [, 2),

where

Gixy) = Glyiin) = ————ew (3 - S - m). (@)
]

Notice that G(x,y) depends on the drift f and diffusion g through g and 3, but we will omit this
dependence notationally.

The evolution of the density of the Markov chain is described by the associated Chapman-
Kolmogorov equation,

P trin) = [PRoes = x| Ko =)iy)y
R

= G(x,y)p(y,tn)dy.
RN

The next step is to approximate the evolution of p(x,t,) by discretizing equation in space.
Let {yi1,...,ys} be a set of global mesh points where we will track the density. Then, p can be
approximated by p via a discretization of equation ,

m

P(yj tns1) = > Gy m)Pn, tn)w; (6)
i=1

where {w;}7, are quadrature weights and {n;}, are quadrature nodes. The initial condition is
given as Z/)\(Yjv 0) = ﬁ(yj’ O)

One-dimensional DTQ has previously been analyzed and error estimates were established |26,
25]. Convergence of p to p, when using the Euler-Maruyama method [27], was used to help show
that, for one-dimensional DTQ, the density p converges in L; exponentially to the exact density
of the Markov chain p, and p converges to the exact density of p with a first-order convergence
rate [26]. Furthermore, DTQ has been used for parameter inference problems [28|, and a two-
dimensional implementation was employed to analyze basketball tracking data from the National
Basketball Association [29)].

2.1 Simple One-Dimensional Interpretation of DTQ

One way to approximate equation (@ is using a trapezoidal quadrature rule [26]. We consider a
one-dimensional problem with an equispaced mesh, {y1,...,7;} C R, which has a spatial step size
k. Then, the density at a point y; € {g;}{_, is updated using the trapezoidal quadrature rule

q
BTy tass) = &S GG 505G tn)- (7)
i=1
Mathematically, equation can also be written as the matrix vector multiply
P, =GP,
SN PP T ~
where PTL-’rl = [p(y17 tn+1)7 o 7p(yQ7 tn+1)] and Giﬂ) = G(yia yv)

2.2 Tensorized DTQ

In more than one dimension, N > 1, a straightforward choice for the mesh is a tensorial grid, e.g.,
an isotropic grid is formed from the tensorization of a univariate grid,

N
{S;i}f:1:®{?/jla"'7@\q}7 {yla"'a@\q}CR'
(=1

In this case, the discretization of equation @ can proceed dimension by dimension. If the univariate
grid {7;}!_, is equispaced with mesh stepsize £ > 0, then equation @ can be written as

S
ﬁ(?jvtnqu) = KN Z G(ij ?z)ﬁ(?u tn)
i=1
In vector form, the above is

Pn+1 = KNGan Gi,v = G(?ivyv)a

where Poy1 == [p(¥1,tns1), .-, DFs,tns1)]’. The matrix NG contains values describing the
movement of density; however, it is not a Markov transition matrix in general |26].

The numerical solution p can, in principle, be directly computed using this procedure; however,
this can become expensive quickly as the dimension increases. For higher dimensional problems,
we require ¢V mesh points for the tensorization strategy. For example, if we need 100 points per
dimension, in four dimensions we will need 10® points, which is computationally prohibitive. In
order to help extend DTQ to higher dimensions, we provide an a different strategy to discretize the
integral in equation , which allows for an unstructured set of mesh points.

3 DTQ on an Unstructured Mesh

We will now describe our procedure for implementing DTQ on an unstructured mesh in N dimen-
sions. We utilize an unstructured, adaptive mesh and an interpolatory quadrature rule to approxi-
mate the integral in equation by treating a portion of the integrand as a Gaussian density. For
each point in the global unstructured mesh, y; € {y1,...,¥s}, we compute quadrature nodes and
weights for an interpolatory quadrature rule. We denote the quadrature nodes as {n,,...,n,,},
where we suppress the j dependence since the procedure updates one mesh point at a time (eg.

{nla s 7nm} = {nla .. 7nm}])
Now we will update the density associated to a member of the global mesh y;,

Py tn / G(y;,y)P(y, tn)dy (8)
= /RN r(y)N(y; u, X)dy (9)

so that N
Plyjitn) = > _r(m, (10)

where .

N 11, 3) = w%m exp (~ (x—)" =7 (x—).

Section describes how we effect the integral in equation @ by using a Laplace approximation
of the integrand in equation to identify pu and ¥ which subsequently allows us to define the
weight function A (through p and X) and the new integrand r. These values differ for each y;
(i.e.,, p = p;, % = X;, 7 = r;, but we suppress this j dependence). Then, section details the
identification of the quadrature weights in equation , and section details the selection of the
quadrature nodes.

3.1 Laplace Approximation via Least Squares

In this section, we describe how r and AV in equation @D are determined. We identify A as a Laplace
approximation to the integrand of equation , which we implement practically by performing a
local least-squares quadratic fit to the log-integrand using nearby mesh points.

The Laplace approximation is computed for each point in the mesh. We consider a specific global
mesh point y; for this discussion. Let 91 be the set of points used for the Laplace approximation.
We note that 91 depends on the point y; (i.e. 91 = ;) but we suppress the j dependence. When
available, the quadrature nodes {ny,...,n,,}, which were used at the previous time step to update
the density at y;, are used. Otherwise, we use a set of nearest neighbor points to y; (including
itself). When needed, the nearest neighbors are determined using the Euclidean distance. The size
of the set M is formalized in section [5] In the beginning stages of the procedure, quadrature nodes
are not known, so we use y;’s nearest neighbors. After quadrature nodes are known, we typically
use them in place of the nearest neighbors. In this section, we will assume the use of {n,...,n,,}
for notational simplicity; however, the procedure is equivalent if nearest neighbors are used instead.

Now, we will compute the Laplace approximation. Let the i*" component of the vector 1 be
given as

Y; = —10g(G(y;,m,)p(n;: tn)); i=1....m
so that 9 is an m-~dimensional vector. The Laplace approximation will model this log-integrand as
a quadratic polynomial, _

Y = P(n;) = c+dn; + (n,)" An;, (11)
for a scalar ¢, vector d € RV, and a symmetric matrix A € RV*Y that we identify via least-squares
polynomial approximation.

To describe this procedure, we require more notation. Let a € NY¥ be a multi-index with the
standard convention,

N N
g
a:(ala"'aaN)? |Oé| ::Zaf7 na:H(n(Z)))
(=1 (=1
with p = (M, ..., n™NT . Then, define
Si = span{no‘ | aGTk}7 dim S, = | T/,

where we take Y to be the set of multi-indices corresponding to a degree-k approximation,

N+ k
Tp={aeN) | |o| <k}, |Tk:< N)
We will perform a quadratic fit with & = 2. We use a(?, ..., a(72D an enumeration of the elements

of T, to form a Vandermonde matrix, M € R™*|T2| defined as,

(v)
Mi,v = 77?

Now, a least-squares fit to the data 1) is the emulator,

[T2]
-~ ~ (v) ~ ~ ~
w(n):ZTvna) T:(Tlv'-'vT\Tgl)Tv
v=1

where T is given as the least-squares solution to the linear system,
M7 = .

Once the coefficients T are computed, we translate {/; into the symmetric quadratic form in equa-
tion using the following identification of the entries of ¢, d and A,

~ ~ 1
¢ =T1(0), dy = T1(e); Ay = mTI(eHeu)
where d;,, is the Kronecker delta, e, € IN(I)V is the cardinal unit vector in direction ¢ with entry 1 in
location ¢ and zeros elsewhere, and Z(«) is a function that returns the linear index in Ty associated
to a,

v=I(a) = a=a.

In order to associate this quadratic fit with a normal distribution, the matrix A must be positive-
definite. We will explain in section how we address situations when A is not positive-definite.
However, when A is positive-definite, we have the following immediate identification of a density A/
from this quadratic fit to the log-integrand:

Proposition 1. If A in equation is positive-definite, then
exp(~0(m) = Cexp (— (n—)" =7 (n - p)), (12)
where
w= —%UA‘ld »l=A C = exp(—c+ idTA‘ld)) (13)

Proof. Since A is symmetric (by construction) and positive-definite, it has an orthogonal diagonal-
ization
A =UAUT, uut =1, A = diag(\1,...,AN)
with positive eigenvalues A\, > 0 for all £. Define v := U7, then
d(n) =c+d"y+ (1) Ay.

Let d) and v be the components of d and -, then a rearrangement yields

N
D) = c+ Z (dww + Xe(19)?)

N 2

=C—

*Z (fw) ! r)

T
=c— 1(1T1v1c1 + (7 + ;A1d> A (7 + ;A1d>

~

=1

T
1 1 1
S~ Z(iTzvlcl + <n + 2UAld) A (n + QUAld) ;

and we achieve equation , with p, 3, and C as given in equation . O

Using the Laplace approximation, we specify the weight function A using g and ¥ from equa-

tion so that

Gly;, y)p(y, tn)
Ny;mwX)

We can approximate this integral using a quadrature rule like in equation with quadrature
nodes {nq,...,M,,}

A tuin) = [N By, ") = (1)

3.1.1 Alternative Method

In some situations we cannot use the above Laplace approximation procedure. For example, Propo-
sition [I| requires that A be positive-definite, which may occasionally not occur in practice. When A
is not positive-definite, we use the alternative method shown in equation . Additionally, we use
the alternative method in the case that the quadrature nodes selected via the procedure described
in section [3.3] make the quadrature rule described in section [3.2] ill-conditioned. In practice, when
the alternative method is used, it is typically to update the denblty of mesh points at or near the
mesh boundary.

For the alternative method, we use a temporary set of quadrature nodes denoted as {n%,...,n%,}.
Note, the quadrature nodes for the alternative procedure are such that {n3,...,n*%} € {y1,...,¥s}-
This is distinctly different than the quadrature nodes {my,...,m,,} used in the standard proce-
dure which are members of the global mesh. In the case of the alternative procedure only, the
corresponding PDF values, p(n*,t,+1), are determined via interpolation and/or extrapolation to

avoid ill-conditioned quadrature. In the case of extrapolation, we assign the density value to be
min; p(y;,tn). Use of the alternative method varies, but it usually is only used for around 0-2% of
mesh points per time step on average in two-dimensional problems.

For the alternative procedure, we take advantage of the structure of G(x,y) to procure a weight
function so that

s t) = [INsy; + (). he(y)a(y) Ty

G(y;,y)P(y; tn)
N(ys;y; +hE(y;), hely;)e(y;)")
For the alternative method, the weight function N has a mean and variance that depends only on

the current point we are updating, y;. We can approximate this integral using a quadrature rule
like in equation with quadrature nodes {n3,...,n% }.

(15)

r(y) =

3.2 Quadrature Weights
We now detail how the quadrature rule in equation of
/RN r(y)N (y; w, S)dy =~ Y r(n,)d;
i=1

is generated, assuming the quadrature nodes {n,}", are known. Section later describes the
selection process of {n,}7; from the global mesh.

For each point y; in the global mesh, the Laplace approximation of section allows us to write
the integral for the update of p at y; as in equation @ Now, let ¥ = LLT be any decomposition
of X (e.g., the Cholesky decomposition). Then, integral @ can be rewritten as

[N iz dy Y E [(e (o1 de.
RN RN
Under the same map, we define quadrature nodes {n,}™, which are in y space, as

n,=L{ +p (16)

where {{;}, are nodes in ¢ space. The weights @; of the quadrature rule in equation are
chosen as the interpolatory weights associated to a particular polynomial space. The nodes {¢;}"
are chosen in a way that guarantees unisolvence of a polynomial interpolation problem, i.e., given a
degree-k polynomial family Py, we construct a unique polynomial @) € Py, so that

r(LC; + 1) = Q(C,), i=1,...,m.

More precisely, set m = my, and let {¢;}; be a basis for the degree-k polynomial space Py, so that

Q) = Z@‘Q’%‘(C),

where € = (C1,...,6m,)T solves the linear system,
Ve = r, Vi,'u = ¢’U(C’i)7 V g RMexm
where r = (r(n,),...,7(n,,,))". We generate the quadrature weights from exact integration of Q

in place of 7:

/ F(LC+ N (¢:0,T)d¢ ~ / QUON (¢:0.1)dc = r(n,) s (17)

where 7, are the quadrature nodes and the quadrature weights w; are given by

B = (1, ...,) = €TV, ¢ = / 6:(CIN(C; 0, T)dC. (18)

The expression for w can be somewhat simplified computationally if we choose the basis ¢; as a family
of polynomials that are L?-orthogonal under the weight function A. Since N is a Gaussian, the
appropriate orthonormal polynomial family are (normalized and tensorized) Hermite polynomials. In
particular, let oM, ..., a(™) be an(y) enumeration that satisfies |a¥| < |a(" 1|, then we consider
the basis

N
6:(¢) = [T o0 (Go). (19)

{=1

where /ﬁl() is the degree-i normalized univariate Hermite polynomial, satisfying the orthogonality
condition,

/R (OB (ON (G;0,1)d¢ = 6., deg by = i,

and 6; ¢ is the Kronecker delta. The uniqueness of each El is assured if we insist that the leading

coefficient is positive. Since N (+;0,1) is a probability density, 710(() = 1. The chosen basis defined
from equation for Py, then satisfies the following multivariate orthogonality condition,

[, @0 N (@01 ¢ =5, =1, (20)

so that the moments £ in equation are given by &, = d;1. Therefore, with this basis, equa-
tion implies that the quadrature weights are simply given as the first row of V1,

W = (V) . (21)

)

In terms of the quadrature nodes {n,};"", we connect w; from equation @ to w; as

r(n;) ~
G(yjm:)p(n;: tn)

W; =

3.3 (Weighted) Leja Sequences

We now describe the selection of quadrature nodes {n,};"%. Fix a global mesh index j, and let 3
denote the set of candidate Leja points determined from the (L, p)-affine map found via the Laplace
approximation in section where ¥ = LL7. More specifically, the global mesh is transformed so
that

CG=L7 (yi—n), ¢ €3

Note that in practice, we take 3 as a a subset of the transformed global mesh for computational
efficiency.

Our goal is to identify a subset of nodes {¢;};~% , from 3, which define {n,};"* through equa-
tion . Recall, {n,}** are used as quadrature nodes in the approximation given by equation .
The nodes {¢,};*% are computed as a discrete weighted Leja sequence from 3.

We will formally define one-dimensional Leja sequences, first on a compact interval [a,b], and
then weighted on R. Afterwards, we will detail a linear algebra procedure to define N-dimensional

Leja sequences.

On an interval [a, b], an unweighted Leja sequence is classically defined as any sequence of points

z¢ € la,b] C R for £ =1,2,... that solves the sequential optimization problem,
J
2j11 = argmax H |z — zel, (22)
z€lab] ;-

where zg is arbitrarily chosen in the interval [a,b] |30} |31]. Leja sequences are not unique due to
the choice of the initial point zy as well as the potential for multiple maximizers at each step of
equation .

In the one-dimensional setting, we are interested in identifying nodes whose corresponding inter-
polatory quadrature rule is an accurate approximation of the form in equation . To accomplish
this, we must consider integrals over the entire real line with respect to a weight function. For now,
we will use a general weight function W which we will later specify as A'. A naive extension of the
optimization in equation that replaces [a,b] by R is not well defined, so we adopt the strat-
egy from [32] that uses weighted Leja sequences and shows that these sequences result in accurate
interpolatory quadrature rules with respect to a weight function.

Let zp for £ =1,2,... be any sequence of solutions to a modified version of equation ,

J
Zj41 = argI%aX VW(z) H |z — zel, (23)
=€ =0

where zg is chosen arbitrarily as an initial point. The use of the weight function penalizes the
selection of points at infinity. The use of v/ is motivated by the fact that weighted Leja sequences
defined by equation satisfy the asymptotic Fekete property, and asymptotically distribute like
W-weighted Gauss quadrature nodes [32]. Empirically, these sequences also form stable quadrature
rules for approximating W-weighted integrals.

We cannot directly use equation in the DTQ framework because we do not have the freedom
to choose points arbitrarily in R. Instead, we pose an optimization problem over the discrete
candidate set 3. We therefore construct the following discrete, A-weighted Leja sequence

J
Cran = argmax (/NC:0.1) IT1¢= ¢l (24)
£=0

Ideally, the candidate set 3 should form a so-called weakly admissible mesh so that the points
sufficiently cover the domain of interest [33] [34] [35].

The above discussion holds for one dimension, but the objective function being maximized in
equation does not directly generalize to higher dimensions. We will now discuss the one-
dimensional problem in a form that can be extended to the multivariate case. The calculation of
weighted discrete Leja sequences in equation can be simplified. It is possible to show that
equation is equivalent to constructing a Vandermonde-like matrix via a particular kind of
greedy determinant maximization [36] which reduces the process into a simple numerical linear
algebra problem. The sequence in equation can be computed from the pivots of a row-pivoted
LU factorization of a Vandermonde-like matrix. In particular, let V e RIBIXmt denote a weighted
Vandermonde-like matrix on the candidate points 3,

Vi = VN(C;0,1) 7i(Co), €3,

where we choose {E}Qﬁ as the univariate, N/ (+;0,1)-weighted orthonormal Hermite polynomials.

With PV = LU the pivoted LU decomposition of V, a solution to equation is given by the
first my P-permuted points

{Cors -2 G I €3, (e l3)" =P (1,2, [3)" (25)

10

Due to the equivalence between the solution to equation and the linear algebra procedure, in
practice we compute weighted Leja sequences via an LU factorization with partial row pivoting of a
Vandermonde-like matrix [36].

This linear algebra procedure is directly generalizable to multiple dimensions. For N > 1, we
use N-dimensional points ¢; to define

Vii= VN 0.1T) ¢5(¢y), Cr €3,

where we use the multivariate, N(+; 0, I)-weighted orthonormal Hermite polynomial basis {¢;};"" .
Then, we use the same greedy determinant maximization procedure (implemented via the pivoted
LU approach) used in the one-dimensional case to compute the N-dimensional Leja sequence.

We emphasize that the points selected from the pivots of the LU factorization make up a weighted
discrete Leja sequence and are used as quadrature nodes in the approximation . For the overall
DTQ method, the procedure above must be repeated for every point in the global mesh (i.e., for
every global index j). Our computation of these discrete weighted Leja sequences makes use of code
from the PyApprox package [37].

3.4 Quadrature Rule Condition Number: Leja Point Reuse
and Alternative Method Use

Although the Laplace-approximated affine map parameters (L,) are recomputed at every time step,
to save computational effort, we recompute Leja sequences only if a stability condition is violated.
Leja points are attempted to be reused from time step to time step as long as the condition number

I'=|wl|, <1+e¢,

where || - ||; is the ¢! norm on vectors, @ are the interpolatory quadrature weights defined in
equation , and e is an adjustable threshold. In practice, the number of mesh points for which we
can reuse Leja sequences from the previous time step depends on the drift and diffusion. However,
we find that we are often able to reuse a large portion of the Leja points from the previous time
step, which increases the speed of the algorithm substantially. We will quantify Leja point reuse in
section [5| for several examples.

We also use the condition number to check if we should revert to the alternative procedure.
More specifically, if our computation results in a quadrature rule with condition number such that
I' > condg;, we assume that the quadrature rule will not yield an accurate result, and revert to
using the alternative procedure.

4 DTQ with an Adaptive Mesh

In this section, we describe the adaptive part of the procedure, which updates the mesh based on
the density as time evolves. We outline the overall adaptive DTQ method in Algorithm [f}

The adaptive procedures attempts to reduce the number of mesh points required to compute p(x, t)
by adaptively updating the mesh as the solution evolves in time. To do this, we form a mesh that
covers most of the support/mass of the solution. Figure [1| gives a visual example of how the mesh
is updated to track the density.

4.1 Identifying the Mesh Boundary

Our adaptive procedure adds points to extend the boundary of the mesh. In one-dimensional
problems, identifying the boundary points simply involves finding the maximum and minimum
mesh coordinate. In order to identify the boundary of the mesh in higher dimensions, we utilize
a procedure that combines a mesh triangulation and alpha shape procedure. First, we construct a

11

Algorithm 1 Adaptive DTQ

1: procedure ADAPTIVEDTQ:

2: while step forward do:

3: add points to mesh boundary if needed (section

4: remove points from mesh boundary if needed (section
5: for each mesh point do:

6: attempt local Laplace approximation (section

7 if the Laplace approximation is successful then:

8 if attempting to reuse Leja Points then:

9 compute quadrature weights (section

10: step forward using equation with 7 from evaluated at Leja points
11: if condition number is sufficient then
12: save updated density value
13: record if we should try to reuse Leja points at next time step
14: continue
15: attempt Leja point computation (section
16: if computed Leja points successfully then
17: compute quadrature weights (section
18: step forward using equation with r from evaluated at Leja points
19: if condition number is sufficient then
20: save updated density value
21: record if we should try to reuse Leja points at next time step
22: continue
23: use alternative method (section
24: save updated density value
6
Shift the mesh 4
to track the PDF 2
0

©

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.07+

Figure 1: Shifting the mesh to keep track of the density is achieved through adding and removing
mesh points.

Delaunay triangulation of the global mesh {y;}?_,, which satisfies the condition that no mesh point
lies in the interior of any circumscribing sphere of any simplex in the triangulation. The Delaunay
triangulation ensures that the minimum angle is maximized for all the triangles in the triangulation
to avoid thin, sliver triangles [38].

The alpha shape algorithm uses the simplices from the Delaunay triangulation to recover the
boundary points of a point mesh. A pseudocode explanation of this procedure is given in Algorithm 2]
and illustrated in Figure[2] This algorithm works for NV > 1 dimensions. Figure[3|shows a completed

12

identification of boundary points. A survey of alpha shapes is available for more information .
For the procedure, we select @ = (3/2)Amax, where Amax is the enforced maximum distance
between points in the mesh.

Algorithm 2 Alpha Shape for Finding Boundary Points

1: procedure ALPHASHAPE(Q, triangulation):

2 compute the radius of the circumsphere for each simplex in the triangulation
3 simplicesList = all simplices with circumsphere radius < &

4: initialize edgesList = |]

5: for simplex in simplicesList do:

6 add simplex edges to edgesList

7 boundaryEdges = edges in edgesList which appear exactly once

8 boundaryVertices = all vertices associated with edges in boundaryEdges

9 return boundaryVertices

PN NN

Edge Frequency Boundary Edges Boundary Vertices

Figure 2: Alpha shape algorithm depiction. This outlines the alpha shape algorithm. First,
identify all edges from the simplices (including duplicates). For example, the edge from point 0 to 3
has frequency two because it appears in both simplex 1 and 2. Then, all edges that appear only once
are boundary edges. Finally, the vertices corresponding to the boundary edges are the boundary
vertices, in this case, vertices 0, 1, and 2.

Figure 3: A depiction of a completed two-dimensional alpha shape procedure. The Delaunay trian-
gulation is shown, and the red edges indicate the boundary that is identified.

4.2 Adding Boundary Points

After the mesh boundary is identified, as described in the previous section, we add mesh points
based on a prescribed tolerance parameter, 3, which is tuned to maintain a sufficiently small value
of p on the mesh boundary. For each boundary point where p is larger than 1077, candidate points
are generated as equispaced points on an N-dimensional grid with spacing Amax. For a candidate
point to be added to the mesh, the distance to the closest point in the mesh must be greater

13

than a set value Amin and it must be less than a set value Amaz. Essentially, Amaz and Amin
are the enforced minimum and maximum distances, respectively, between mesh points. New mesh
coordinates added at time ¢, are assigned a density value of min; p(y;, ¢,). During the simulation,
we begin adding points at time step number stepac € Z*, and from time step stepac we run the
procedure for adding points every steps € Z* time steps. For example, if stepac = 1 and steps = 3
we would start adding points every three time steps starting at the first time step. We typically
take stepa = 1 so that we check to add points every time step after stepac.

4.3 Removing Points

We remove the mesh points that are deemed unnecessary in terms of the value of the density p.
Points are removed based on the prescribed tolerance, 8 from section [:2] which is used to maintain
a sufficiently small value of p at the boundary. More specifically, all mesh points (anywhere in the
mesh, not just at the boundary) that are smaller than 107°~%° are removed from the mesh. This
procedure for adding points is typically run periodically; however, not at every time step.

We first run this removal procedure on time step steprc € ZT, and subsequently run the pro-
cedure for removing points every stepr € Z* time steps. We typically take steprc, stepr ~ 10 so
that we do not start removing points right away nor at every time step.

5 Results

The code for the adaptive DTQ procedure is located on GitHub [40]. In this section, we demonstrate
Algorithm [I] through several examples. Some examples use spatially-dependent drift and diffusion
functions. Problems from one to five dimensions are included. Table [I] outlines parameters used for
the Adaptive DTQ along with a brief description.

Table 1: DTQ parameter symbols and descriptions.

Parameter | Description

€ 1 + € is the condition number threshold for Leja point reuse
condgs The condition number threshold for using the Alternative method
LPg Number of Leja points used for the quadrature rule

size of 91 | The size of the set used for the Laplace approximation
size of 3 | The number of candidate Leja points

stepac The first step number where adding points is considered
stepre The first step number where removing points is considered
stepa Determines how often points are added
stepr Determines how often points are removed
Amin Minimum distance allowed between points
Amazx Maximum distance allowed between points

R Used to define the radius of points in the initial mesh

h The temporal time step size

B Used to define values for adding and removing points

5.1 Commonalities Among Examples

We demonstrate our adaptive DTQ method in this section through a variety of examples. Some
examples use spatially-dependent drift and diffusion functions. Problems from one to five dimensions
are included. We first describe some experimental setup characteristics that are common among all
examples.

14

Table 2:

DTQ parameter values by dimension. The values of the parameters used in the

examples in this manuscript. The two numbers given for the size of 91 depend on if Leja points or
nearest neighbors are used (see section [3.1]).

Parameter N=1 N =2 N =3 N =141 N =5
€ 0.1 0.1 0.1 0.1 0.1
condgy 5 5 5 5 5
LPg 6 10 15 15 40
size of M | LPg or 20 | LPg or 20 | LPg or 150 | LPg or 200 | LPg or 300
size of 3 50 150 150 250 450
stepac 1 1 1 1 1
steprc 10 10 10 10 10
stepa 1 1 1 1 1
stepr 10 10 10 10 10

5.1.1 Parameter Values

Table [2] outlines some parameters which are consistent among all examples in this section. We note
that these values are adjustable and all parameter values given are likely not optimal, but they
work well for the examples we show. The size of 91 depends on if Leja quadrature nodes or nearest
neighbor points are used (see section . Additional parameter values for Amin, Amazx, R, h, and
[are given in each individual example.

5.1.2 Initial Condition and Initial Mesh

The initial condition in these examples is taken to be a Dirac mass centered at the origin, 0. We
compute the first time step as p(y;,tn) = G(y;,0) where G is defined in equation @

The initial mesh is an equispaced grid of points which is centered at the origin with mesh spacing
Amin and with a radius within the range [R — Amin, R], where R is a parameter defining the
initial mesh radius. This range occurs due to the fact that the mesh spacing may not evenly divide
into the radius. Figure 4| shows initial mesh examples with R = 2 in 1, 2, and 3 dimensions.

[SHENN]

|
N =

Figure 4: Initial mesh. Initial mesh examples with R =2in N =1, N = 2, and N = 3 dimensions
respectively.

15

We report errors in the experiments below, which are measured in the following ways. Let p be
the exact solution and p be the computed (adaptive DTQ) solution. With s the number of points
in the mesh, define the following spatial errors at a fixed time:

1 ° _
Loy = m ; <(p(Yi) - P(Yz'))QP(Yz‘)>

L= |1 (0ly) ~ 302
i=1

1 .
Ly=+ > Ip(yi) = Blyi)l
i=1
Loo = max |p(y;) — p(yi)l,
i€[s]
which are, respectively, approximations of the Li(IRN), L2(RYN), LY(RY), and L>(RY) norms.

5.1.3 Error, Leja Point Reuse, and Alternative Procedure Use Metrics

Furthermore, we report statistics on the average Leja point reuse and the alternative method use.
Let Nsteps be the number of time steps taken in the simulation, then
Nsteps
100 # of points reusing Leja points at time t;
2 Z :

Average Leja Reuse % =
Nsteps -

— # of points in the mesh at time ¢;
i=

We start at the third time step because Leja points are first computed in the second time step since
the first time step is computed directly as discussed in section [5.1.2)). Similarly,

Nsteps

100 #
Average Alt. Method Use % =
Nsteps -1 ;

of points using alt. method at time t;

of points in the mesh at time ?;

Again, we do not include the first time step because it is computed directly.

5.2 One-Dimensional Example

For this example, we consider the one-dimensional SDE with
f(z) =2, g(xr) =1.

We set simulation parameters as (Amin, Amaz, R, h,3) = (0.4,0.4,2,0.05,4). The average Leja
reuse was 94% and the average alternative method use was 1.8%. The Lo, error at ¢t = 10 is 3.5e-05.
The PDF at several times is shown in Figure

5.3 Two-Dimensional Examples

Now, we will cover several examples using our adaptive DTQ procedure.

5.3.1 Constant Drift and Diffusion
Consider the solution to the SDE in equation with constant drift and diffusion

0= (G) o= (G 4) (26

16

1.6{ - ¢ t=0.05
1.4 t =2.50
1] « t=5.00

: ¢ t=7.50

_ 1.0/ © t=10.00

-~

X038

‘Q
0.6
0.4
0.2
0.0

0 10 20 30
X

Figure 5: One-dimensional constant drift and diffusion example. This figure shows the
computed density at several different times indicated in the legend.

This SDE corresponds to the Fokker-Planck PDE

dp(x,t) 0 cz 9? c3: 02

(%, 1)

which has the exact solution

—((2M) = Cut)* + (x<2>>2>> (27)

1
px,t) = an(C2/2)t P (4(C2/2)t

Here, we select C; = Cy = 1, and we define (Amin, Amaz,R,h) = (0.2,0.2,2,0.01). We explore
the effect of 3, the tolerance parameter for allowable density values on boundary nodes, from sec-
tion [£:2] The error at time ¢ = 1.15 for varying 3 are shown in Table [3]

Table 3: Adaptive DTQ errors for different values of the boundary tolerance parameter
B at time t = 1.15 for the moving hill example of section Also shown are the number
of points s in the adaptive mesh at ¢ = 1.15. Generally, as 3 increases, the error decreases because
we use more points to cover a larger area of the domain.

B Loy Error Lo Error L; Error Lo Error # Points s

1 1.7e-02 1.6e-02 1.2e-03 3.5e-02 181
2 1.8e-03 1.6e-03 7.5e-05 2.7e-03 556
3 2.1e-04 2.2e-04 5.1e-06 3.3e-04 994
4 1.8e-05 1.9e-05 3.0e-07 3.0e-05 1436
5 1.4e-06 2.1e-06 1.7e-08 3.5e-06 1866
6 8.5e-08 2.1e-07 7.6e-10 4.3e-07 2319
7 8.5e-09 2.5e-08 6.2e-11 4.8e-08 2780
8 5.6e-10 2.6e-09 3.2e-12 8.0e-09 3295
9 2.3e-11 1.8e-10 8.0e-14 5.3e-10 3588
10 1.6e-12 1.5e-11 6.7e-15 4.7e-11 3996

We observe that § has a somewhat direct control on error of the approach for this simple example.
For larger 8, more points are used to form a mesh on a larger region, which improves the overall

17

accuracy of the method. Table [3| shows that as 8 increases, the error tends to decrease. Thus,
the adaptive DTQ method can be quite accurate if 8 is chosen appropriately. With that said, the
selection of 8 must be balanced with the computational cost associated with a larger mesh. The
number of mesh points s at the last time step is also shown.

5.3.2 Adaptive Leja Quadrature vs. Equispaced Trapezoidal DTQ

We will now compare and contrast our adaptive DTQ method with the trapezoidal rule DTQ method.
For notational purposes, we will refer to the two differing DTQ methods as follows:

e DTQrg: non-adaptive density tracking by quadrature method using an equispaced mesh and
a trapezoidal quadrature rule (section [2.2)).

e DTQrq : adaptive density tracking by quadrature method using a interpolatory Leja quadra-
ture rule with the ability to add and remove mesh points.

In many lower-dimensional problems (e.g. N = 1,2) over a small domain, DTQrgr will be
computationally faster than DTQrgo. With that said, DTQrg will typically require more memory
due to the need to form a dense grid. As the domain grows, even in smaller dimensions, DTQpq
becomes more efficient than DTQrg, eventually becoming the preferred method. In this section,
we formulate a two-dimensional example where DTQrq is both computationally faster to run and
uses fewer mesh points than DTQrg. As the dimension of the problem increases, we expect that
DTQrg will typically be the superior option of the two for many problems because DTQrr will use
significantly more points or simply be too memory intensive.

We compared the computational timing for DTQrr against DTQr¢q for the constant drift and
diffusion example in equation with C; = 1 and C5 = 0.6. The simulation parameters for
DTQrg are (Amin, Amaz, R,h) = (0.38,0.38,2,0.05) with § € [2.5,3,4,5,6]. For DTQrg, we use
h = 0.05 and equispaced spatial step sizes of k € [0.25,0.2,0.18,0.15]. Notice that we varied the
accuracy and cost for each of these two methods by changing a parameter. For DTQrq, we adjusted
the boundary cutoff parameter, 8, and for DTQrr we adjusted the equispaced spatial step size .

Since we are considering a tensorized trapezoidal quadrature rule procedure that does not adap-
tively update the mesh, we need to determine the proper mesh for DTQrg a priori using the mesh
from DTQrqg as a starting point. In this example, we used information about the meshes from
the DTQrq result with § = 4 and added a 0% and 50% buffer. The buffer percentage is used to
create a tensorized mesh with padding. Psuedocode for how this works is given in Algorithm [3| and
a depiction of this is shown in Figure [6]

Algorithm 3 Form tensorized mesh based on DTQr¢o mesh

1: procedure TENSORIZEDMESHBASEDONDTQ o MESH(DT' Q1o mesh, buffer):
2: [ming, ...,miny] = min(DTQ g mesh) in each dimension

3 [maz1,...,mazy] = max(DTQrq mesh) in each dimension

4: [pady, ... ,padN] = buffer/2*[maxz; — ming, ..., maxy — miny)|

5 grid = [min; — pady, ..., miny — pady| X [maz; + pady, ..., maxry + pady]
6 return grid

Essentially, we form a tensorized mesh for DTQrr based on the DTQo mesh with an additional
buffer which depends on the coverage of the domain during the DTQp g simulation. We refer to the
0% buffer as an oracle solution because the knowledge needed to set a mesh which tightly supports
the solution in this way requires complete knowledge of the solution support. The 50% buffer still
requires knowledge of the solution; however it represents a much looser estimate than the oracle of
the required mesh and is meant to be more indicative of an educated guess for the mesh.

Figure |Z| shows the timings for each simulation recorded relative to the timing of the DTQrq
simulation with 8 = 2.5, indicated by the star. The exact Lg, errors are compared since the

18

>0% buffer
0% buffer

Figure 6: Two-dimensional example of forming a tensorized mesh based on an adaptive
mesh with a buffer. This figure illustrates how we form a tensorized mesh for DTQ7rx
based on the DTQ.o mesh with an additional buffer. The orange and blue meshes
depict the coverage during a DTQ.q simulation at the starting and ending time re-
spectively. The rectangular lines indicate the region the equispaced tensorized mesh
will fill in given a buffer percentage of 0 or > 0. Notice, the padding in each dimension
can be different.

exact solution is known (see equation (27)). Figure [7] shows that, for similar effort (relative time),
DTQrg takes about two (0% buffer) to ten (50% buffer) times longer than DTQrq. Additionally,
we emphasize again that DTQrgr requires information gathered from the DTQrg mesh in order to
run the simulation.

Recall, the enforced mesh spacing for DTQrg was kept at 0.38 for all simulations since the
parameter was adjusted for accuracy. This mesh spacing was much larger than the mesh spacing of
0.2 and 0.15 used by the accurate DTQrpg simulations. The number of points for each simulation
are shown in Figure 8] We see that DTQrp required one to two orders of magnitude more points
to achieve similar error to DTQprg. Also, we note that the recorded points shown in Figure [§| are at
or near a maximum for the DTQrq procedure since they are reported at the final time step.

An AMD EPYC 7702P 64-Core Processor with 251 GiB of memory was used for this example.

5.3.3 Erf Drift Example
We consider the solution to the two-dimensional SDE in equation (|1)) with drift and constant diffusion

~(2erf(10z™M) (075 0
fx) = (2erf(102®))’ gX)=\ " om)
The error function used for the drift is defined as

2 2 e
erf(z) = ﬁ/o e ' dt.

In this example involving the erf drift, we use DTQr¢ simulation parameters defined as

(Amin, Amaz, R,h,3) = (0.25,0.3,3,0.04,4). We also use a finely discretized DTQrpg simulation
with parameters of (k,h) = (0.08,0.01) for comparison. We would have preferred to use x = 0.05 or
smaller for accuracy purposes; however, running such an experiment was not feasible on available
hardware due to memory limitations.

The simulation features a single mass breaking into four distinct hills and expanding outwards.
The computed solutions of p at various times are shown in Figure)] The comparison shows that
DTQrg with a lenient discretization holds its own against a finely discretized DTQr g simulation.
Here, DTQr g utilized a spatial distance between points that was more than three times larger than

19

Relative Running Time

k=0.18

¢ K=0.15

Y¢ Unit Time
—o— DTQ.q

DTQqg, buffer = 0%, Oracle
—=— DTQqg, buffer = 50%

1072 10! 10° 10!

Error

102

Figure 7: DTQrr and DTQj timing comparison. In this figure, we compare the error (L))
and timing between DTQrr and DTQp g for a constant drift, constant diffusion example where the

end time is t = 40.

106
10, K= °-,18\x=_o.z\.
k=0.15
a8 K=0.2
g 104,
(a9}
G
5
3
2 B=4
£ 1034
=
Z B=25
2 |
10 e DTQu
DTQrg, buffer = 0%, Oracle
—s— DTQrg, buffer = 50%
10! ; . ,
10-6 107> 104 10-3 10-2 10-1 10° 101
Error

102

Figure 8: DTQ7r and DTQ.g end time mesh size comparison. In this figure, we compare
the number of points at the end time ¢ = 40 between DTQrr and DTQrg for a constant drift,
constant diffusion example. The error is given in terms of Lg,. The trapezoidal rule uses the same
number of points per time step whereas the adaptive procedure updates the mesh points to track

the density.

the DTQrg procedure and a temporal step size that was four times as large while still achieving very
similar results. The average number of points used by DTQrg was about 2,000 per time step, and

20

t=20.16 t=0.04 t=4.0
10 * o @

0- o : B : DTQ.o

104 | { | {® @
10 1 1

| l L 41— DTQ.q
107' | | ﬁ:ﬁ: Mesh
10 * o ®

0 ? | 8] DTQrr
~10 — ® @
-100 10 -100 10 -100 10
X1
1073 102 101 10°
p(x, t)

Figure 9: Erf drift example. The solution at the indicated times for the erf drift example of
section Top row: Density values of DTQrg. Middle row: DTQrg mesh points. Bottom row:
Density values of a finely discretized DTQrg. Density values below 1072 are shown as white for
visualization purposes.

the finely discretized DTQrg simulation used over 120,000 per time step. If a less finely discretized
grid was used for DTQrg, it would need to span about [—13,13] x [—13,13]. Assuming the same
spacing used by the DTQrq and using x = 0.25, the coarser DTQrr simulation would still require
about 11,000 points for such a grid, which is still significantly larger than the DTQrg mesh size.
Additionally, a priori knowledge of the necessary grid domain size is needed for DTQrg, which
depends on the end time.

In this simulation, the percent of Leja points reused from the previous time step averaged about
84% per time step. The alternative procedure from Sectionwas used for approximately 1.2% of
the mesh on average per time step. The computation of these metrics is discussed in section |5.1.3

Figure [10| shows the breakdown of time spent in the DTQr ¢ algorithm for the erf function drift
example. Figure|10[left) shows the high level breakdown between the quadrature rule and the mesh
updates. Figure [10(right) gives the breakdown of the time spent computing the different pieces of
the quadrature rule.

5.3.4 Spiral Example

We now consider the solution to the SDE in equation in two dimensions where
B 5 derf(52(V)) 4 222 (06 0
£00) = (5L 710 (—2z(1) 4 @)) 8x)={"0 o06)

21

Addi . .
poiﬁ&g Leja points

tion [4.2 (section [3.3)
Removing (section
points // Quadrature

(section Alternative weights
(se (:I?i%tn ’ } (section

AN

AN Laplace

liadrature a pro;dmation
@ rule section [3.1))

Figure 10: Breakdown of DTQrq algorithm for the erf function drift example in section m
(Left) Breakdown of time spent between approximating the Chapman-Kolmogorov equation and
mesh updates. (Right) Breakdown of the algorithm components which make up the “Quadrature
rule” slice of the left chart.

with DTQpq simulation parameters (Amin, Amaz,R,h,3) = (0.2,0.2,2,0.02,4) and the finely
discretized DTQr g simulation parameters were (x, h) = (0.05,0.01). The solution to this problem
features a single mass splitting into two and rotating in a clockwise spiral.

On average, DTQpq reused Leja points approximately 83% of the time per time step, and the
alternative method was used about 0.01% of the time. The computation of these metrics is discussed
in section [5.1.3] The computed solutions at various times are shown in Figure[TI] We again see very
similar results between the two procedures.

5.3.5 Nonconstant Diffusion

Now we consider the SDE in equation in two dimensions with a nonconstant diffusion and drift
defined as

2erf(102M) 0.01(z™M)2 +0.7 0.2
flx) = (0 ’ g(x) = 0.2 0.01(z@)2+0.7)

This is the first example with a spatially dependent diffusion term. The DTQ. ¢ simulation pa-
rameter values were (Amin, Amazx, R, h,) = (0.2,0.2,2,0.02,4) and the finely discretized DTQrgr
simulation parameters were (k, h) = (0.05,0.01). On average, Leja points were reused approximately
87% per time step, and the alternative method was used for 0% of the mesh points for each time
step. The computation of these metrics is discussed in section [5.1.3] The solution at various times
is shown in Figure

This example was included to illustrate that DTQrq can simulate a spatially dependent drift.
We see very similar results between DTQrq and a finely discretized DTQrr.

5.4 Higher Dimensional Examples
5.4.1 Constant Drift and Diffusion

We now consider the solution to the SDE in equation with constant drift and diffusion in higher
dimensions. For N dimensions, we take

f(x) = Ciey, g(x) = Colnxn

22

t=0.4 t=14 t=2.4

10
o ® | Q@ | o DTQwo
-10 : , :
10
_ =
o & | | f | | E0|orew
x H) 4_- Mesh
_10 T
10
0 @] Q] DTQqr
-10 : : :
-10 0 10 -10 O 10 -10 O 10
X1
103 102 107! 10°
p(x, t)

Figure 11: Spiral example. The solution at the indicated times for the spiral drift example of
section Top row: Density values of DTQrg. Middle row: DTQrg mesh points. Bottom row:
Density values of a finely discretized DTQrg. Density values below 1072 are shown as white for
visualization purposes.

where Iy« is defined as the the N x N-dimensional identity matrix and e; is the cardinal N-
dimensional unit vector which has a 1 as the first element and zeros elsewhere. This SDE corresponds
to the Fokker-Planck PDE

op(x,t) 9 Mooz 92
ot = C1ggP 0+ 25 gyl

i=1

which has the exact solution

1 N/2 —((2® = C1t)% + Zili (z()2)
p(x,t) = (M(C%/Q)J exp (4(C3/2)t : '

For these examples, we take C; = 1 and Cy = 0.6. In the three-dimensional example, we set
simulation parameters as (Amin, Amaz, R, h,3) = (0.22,0.22,1,0.02,3), in the four-dimensional
example we set simulation parameters as (Amin, Amaz, R, h,3) = (0.18,0.18,0.8,0.02,3), and
in the the five-dimensional example we set simulation parameters as (Amin, Amaz, R, h,3) =
(0.1,0.1,0.5,0.01, 3). The results for these simulations are in Table El

The purpose of this example is to illustrate that we can use DTQrq successfully in NV > 3
dimensions. While we are able to demonstrate feasibility up to N = 5 dimensions, computational
constraints on memory play a role for such large dimensions. We estimate that the mesh size for

23

t=0.3 t=0.9 t=1.5

5, d d
of @ | OO @@ | pTAwo
-5-]]
57 | i
8 of H“ | DTQLq
"_57 &] 1 R Mesh
5, d d
‘5) @ | OO 4 DTOQrr
-50 5 -50 5 -50 5
X
103 102 107! 10°
p(x, t)

Figure 12: Nonconstant diffusion example. The solution at the indicated times for the noncon-
stant drift example of section Top row: Density values of DTQrgo. Middle row: DTQrq mesh
points. Bottom row: Density values of a finely discretized DTQ7g. Density values below 103 are
shown as white for visualization purposes.

Table 4: Constant drift and diffusion error for N = 3,4,5 dimensions

N End Time h Ly, Error Starting Mesh Size Ending Mesh Size
3 1 0.02 0.00014 437 4,144
4 0.5 0.02 0.00017 2,041 38,678
5 0.04 0.01 0.0086 16,875 38,089

DTQrg in five dimensions that accurately covers the necessary support would be around 370,000
points, assuming a spatial grid spacing of 0.1 on a domain spanning from about —0.6 to 0.6 in each
dimension.

5.4.2 Three-dimensional Error Function Drift

We consider the solution to the SDE in equation in three dimensions with drift and constant
diffusion

2erf(1021)) 0.75 0 0
f(x) = | 2erf(102®) |, g(x) = 0 075 0
2erf(102(3)) 0 0 0.75

24

In this three-dimensional erf drift example, we use DT QL simulation parameters defined as (Amin, Amax, R, h,)
= (0.25,0.25,1,0.02, 3). We visualize the density using a color scale from white to black. The darker

the color, the lager the density. The solution at time ¢ = 1.22 is shown in Figure We note that

the adaptive mesh has broken into eight different clusters in order to capture areas of high density

without needing mesh points in areas of low density.

Figure 13: Three-dimensional erf drift example. The density is shown at ¢t = 1.22. The
three spatial dimensions are plotted and the density is represented by the color of each
point with the darker colors representing larger density.

6 Conclusion

We have implemented an accurate and adaptive N-dimensional DTQ solver that uses fewer mesh
points than current trapezoidal DT(Q procedures and does not require a priori knowledge of the
necessary mesh coverage and domain. We included examples of the method when applied to prob-
lems from one to five dimensions. The results in Figure [7] and Figure |8 show that our adaptive
DTQ procedure can be significantly more efficient while using substantially fewer mesh points when
compared to DTQ using the trapezoidal quadrature rule on a tensorized grid.

25

[12]

[13]

P. E. Kloeden and E. Platen. “Applications of Stochastic Differential Equations”. In: Numerical
Solution of Stochastic Differential Equations. Springer, 1992, pp. 253-275.

H. Risken. The Fokker-Planck equation : methods of solution and applications. eng. 2nd ed.
Springer series in synergetics ; v. 18. 1989. 1SBN: 354061530X.

E. Platen and N. Bruti-Liberati. “Monte Carlo Simulation of SDEs”. In: Numerical Solution
of Stochastic Differential Equations with Jumps in Finance. Springer, 2010, pp. 477-505.

L. Pichler, A. Masud, and L. Bergman. “Numerical Solution of the Fokker-Planck Equation by
Finite Difference and Finite Element Methods-A Comparative Study”. In: vol. 2. Jan. 2013,
pp- 69-85. DOI: 10.1007/978-94-007-5134-7_5.

L. A. Bergman and J. C. Heinrich. “On the reliability of the linear oscillator and systems
of coupled oscillators”. In: International Journal for Numerical Methods in Engineering 18.9
(1982), pp. 1271-1295. 1ssN: 10970207. DOI: 10.1002/nme . 1620180902,

R. S. Langley. “A finite element method for the statistics of non-linear random vibration”. In:
Journal of Sound and Vibration 101.1 (1985), pp. 41-54. 1SsN: 10958568. DOI:|10.1016/S0022-
460X (85)80037-7.

B. F. Spencer and L. A. Bergman. “On the numerical solution of the Fokker-Planck equation
for nonlinear stochastic systems”. In: Nonlinear Dynamics 4.4 (1993), pp. 357-372.

A. Masud and R. A. Khurram. “A multiscale/stabilized finite element method for the advection—
diffusion equation”. In: Computer Methods in Applied Mechanics and Engineering 193.21-22
(2004), pp. 1997-2018.

M. Kumar, P. Singla, S. Chakravorty, and J. Junkins. “The partition of unity finite element
approach to the stationary Fokker-Planck equation”. In: ATAA/AAS Astrodynamics Specialist
Conference and Ezhibit. 2006, p. 6285.

S. F. Wojtkiewicz and L. A. Bergman. “Numerical solution of high dimensional Fokker-Planck
equations”. In: 8th ASCE Specialty Conference on Probablistic Mechanics and Structural Re-
liability, Notre Dame, IN, USA. Citeseer. 2000.

S. F. Wojtkiewicz, L. A. Bergman, B. F. Spencer, and E. A. Johnson. “Numerical solution
of the four-dimensional nonstationary Fokker-Planck equation”. In: ITUTAM Symposium on
Nonlinearity and Stochastic Structural Dynamics. Springer. 2001, pp. 271-287.

P. Kumar and S. Narayanan. “Solution of Fokker-Planck equation by finite element and finite
difference methods for nonlinear systems”. In: Sadhana - Academy Proceedings in Engineering
Sciences 31.4 (2006), pp. 445-461. 1sSN: 02562499. DOT: 10.1007/BF02716786.

G. W. Harrison. “Numerical solution of the Fokker Planck equation using moving finite el-
ements”. In: Numerical Methods for Partial Differential Equations 4.3 (1988), pp. 219-232.
ISSN: 10982426. DOI: [10.1002/num. 1690040305,

S. L. Cotter, T. Vejchodsky, and R. Erban. “Adaptive finite element method assisted by
stochastic simulation of chemical systems”. In: SIAM Journal on Scientific Computing 35.1
(2013), B107-B131.

M. Razi, P. J. Attar, and P. Vedula. “Adaptive numerical solutions of Fokker-Planck equations

in computational uncertainty quantification”. In: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference April (2011). 1SSN: 02734508. DOTI:
10.2514/6.2011-1976.

L. Ferm, P. Lotstedt, and P. Sjoberg. “Adaptive, Conservative Solution Of The Fokker-Planck
Equation”. In: (2004), pp. 1-25.

Y. Xu, H. Zhang, Y. Li, K. Zhou, Q. Liu, and J. Kurths. “Solving Fokker-Planck equation
using deep learning”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 30.1 (2020),
p. 013133.

26

https://doi.org/10.1007/978-94-007-5134-7_5
https://doi.org/10.1002/nme.1620180902
https://doi.org/10.1016/S0022-460X(85)80037-7
https://doi.org/10.1016/S0022-460X(85)80037-7
https://doi.org/10.1007/BF02716786
https://doi.org/10.1002/num.1690040305
https://doi.org/10.2514/6.2011-1976

[18]

[22]
[23]

[24]

[25]

M. F. Wehner and W. G. Wolfer. “Numerical evaluation of path-integral solutions to Fokker-
Planck equations”. In: Physical Review A 27.5 (1983), p. 2663.

A. Naess and J. M. Johnsen. “Response statistics of nonlinear, compliant offshore structures
by the path integral solution method”. In: Probabilistic Engineering Mechanics 8.2 (1993),
pp. 91-106. 18SN: 0266-8920. DOIL: https://doi.org/10.1016/0266-8920(93)90003-E.

J.S. Yu, G. Q. Cai,and Y. K. Lin. “A new path integration procedure based on Gauss-Legendre
scheme”. In: International Journal of Non-linear Mechanics 32 (1997), pp. 759-768.

M. Rosa-Clot and S. Taddei. “A Path Integral Approach to Derivative Security Pricing: II.
Numerical Methods”. In: International Journal of Theoretical and Applied Finance 05 (1999),
pp. 123-146.

C. Skaug and A. Naess. “Fast and accurate pricing of discretely monitored barrier options by
numerical path integration”. In: Computational Economics 30 (2007), pp. 143-151.

Vadim Linetsky. “The Path Integral Approach to Financial Modeling and Options Pricing”.
In: Computational Economics 11 (1997), pp. 129-163.

G. M. Subramaniam and P. Vedula. “A transformed path integral approach for solution of the
Fokker—Planck equation”. In: Journal of Computational Physics 346 (2017), pp. 49-70. 1SSN:
10902716. DOT: [10.1016/3 . jcp.2017.06.002!

L. Chen, E. R. Jakobsen, and A. Naess. “On numerical density approximations of solutions of
SDEs with unbounded coefficients”. In: Advances in Computational Mathematics 44.3 (2018),
pp. 693-721.

H. S. Bhat and R. W. M. A. Madushani. “Density Tracking by Quadrature for Stochastic
Differential Equations”. In: ArXiv (2018).

Vlad Bally and Denis Talay. “The Law of the Euler Scheme for Stochastic Differential Equa-
tions: II. Convergence Rate of the Density”. In: Monte Carlo Methods and Applications 2 (Dec.
1995). DOI: 10.1515/mcma. 1996.2.2.93.

H. S. Bhat, R. W. M. A. Madushani, and S. Rawat. Parameter inference for stochastic differen-
tial equations with density tracking by quadrature. Vol. 231. Springer International Publishing,
2018, pp. 99-113. 1SBN: 9783319760346. DOI: [10.1007/978-3-319-76035-3_7.

H. S. Bhat, R. W. M. A. Madushani, and S. Rawat. “Bayesian inference of stochastic pursuit
models from basketball tracking data”. In: International Conference on Bayesian Statistics in
Action. Springer. 2016, pp. 127-137.

A. Edrei. “Sur les déterminants récurrents et les singularités d’une fonction donnée par son
développement de Taylor”. In: Compositio Mathematica 7 (1940), pp. 20-88.

F. Leja. “Sur certaines suites liées aux ensembles plans et leur application a la représentation
conforme”. In: Annales Polonici Mathematici 4.1 (1957), pp. 8-13.

A. Narayan and J. D. Jakeman. “Adaptive Leja sparse grid constructions for stochastic collo-
cation and high-dimensional approximation”. In: SIAM Journal on Scientific Computing 36.6
(Apr. 2014), A2952-A2983. DOI: 10.1137/140966368|.

L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello. “Geometric weakly ad-
missible meshes, discrete least squares approximations and approximate Fekete points”. In:
Mathematics of Computation 80.275 (Jan. 2011), pp. 1623-1638. 1sSN: 0025-5718. (Visited on
02/14/2012).

L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. “Weakly Admissible Meshes and Dis-
crete Extremal Sets”. In: Numerical Mathematics: Theory, Methods and Applications 4 (2011),
pp. 1-12.

Y. Xu and A. Narayan. “Randomized weakly admissible meshes”. In: arXiv:2101.04043 [cs,
math, stat] (Jan. 2021). arXiv: 2101.04043. URL: http://arxiv.org/abs/2101.04043.

27

https://doi.org/https://doi.org/10.1016/0266-8920(93)90003-E
https://doi.org/10.1016/j.jcp.2017.06.002
https://doi.org/10.1515/mcma.1996.2.2.93
https://doi.org/10.1007/978-3-319-76035-3_7
https://doi.org/10.1137/140966368
http://arxiv.org/abs/2101.04043

L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. “Computing multivariate Fekete and
Leja points by numerical linear algebra”. In: Journal on Numerical Analysis 48.5 (2010),
pp. 441-470.

J. D. Jakeman. Adaptive Leja Sequences. 2019.

B. Delaunay. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk 7.793-800 (1934), pp. 1-2.

H. Edelsbrunner. “Alpha shapes—a survey”. In: Tessellations in the Sciences 27 (2010), pp. 1-
25.

R. A. Moore. AdaptiveDT(). https://github.com/RyleighAMoore/AdaptiveDTQND. 2021.

28

https://github.com/RyleighAMoore/AdaptiveDTQND

	1 Problem History and Background
	1.1 Stochastic Differential Equations
	1.2 Current Methods
	1.3 Outline and Contributions of this Paper

	2 Density Tracking by Quadrature
	2.1 Simple One-Dimensional Interpretation of DTQ
	2.2 Tensorized DTQ

	3 DTQ on an Unstructured Mesh
	3.1 Laplace Approximation via Least Squares
	3.1.1 Alternative Method

	3.2 Quadrature Weights
	3.3 (Weighted) Leja Sequences
	3.4 Quadrature Rule Condition Number: Leja Point Reuse and Alternative Method Use

	4 DTQ with an Adaptive Mesh
	4.1 Identifying the Mesh Boundary
	4.2 Adding Boundary Points
	4.3 Removing Points

	5 Results
	5.1 Commonalities Among Examples
	5.1.1 Parameter Values
	5.1.2 Initial Condition and Initial Mesh
	5.1.3 Error, Leja Point Reuse, and Alternative Procedure Use Metrics

	5.2 One-Dimensional Example
	5.3 Two-Dimensional Examples
	5.3.1 Constant Drift and Diffusion
	5.3.2 Adaptive Leja Quadrature vs. Equispaced Trapezoidal DTQ
	5.3.3 Erf Drift Example
	5.3.4 Spiral Example
	5.3.5 Nonconstant Diffusion

	5.4 Higher Dimensional Examples
	5.4.1 Constant Drift and Diffusion
	5.4.2 Three-dimensional Error Function Drift

	6 Conclusion

