
Hands-On Teaching of
Hardware Security for Machine Learning

Ashley Calhoun, Erick Ortega, Ferhat Yaman, Anuj Dubey, Aydin Aysu
Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC, U.S.A
{ancalhou,eortega,fyaman,aanujdu,aaysu}@ncsu.edu

ABSTRACT
Hardware security for machine learning (ML) and artificial intel-
ligence (AI) circuits is becoming a major topic within the cyber-
security framework. Although much research is ongoing on this
front, the community omits the educational components. In this
paper, we present a training module comprised of a set of hands-
on experiments that allow teaching hardware security concepts
to newcomers. Specifically, we propose 5 experiments and related
training material that teach side-channel attacks and defenses on
the hardware implementations of neural networks. We report the
organization and the findings after testing these experiments with
sophomore undergraduate students at North Carolina State Univer-
sity. The students first study the basics of neural networks and then
build a neural network inference circuit on a breadboard. They then
conduct a differential power analysis attack on the hardware to
steal trained weights and a circuit-balancing (hiding) style defense
to mitigate the attack. The students develop all related hardware
and software codes to perform attacks and build defenses. The
results show that such complex notions of digital circuits design,
neural networks, and side-channel analysis can be instructed at the
sophomore level with a well-thought set of experiments. Future
extensions could include establishing an online infrastructure for
remote teaching and efficient scaling to a broader audience.

CCS CONCEPTS
• Security and privacy → Security in hardware; Side-channel
analysis and countermeasures; • Applied computing → Edu-
cation.

KEYWORDS
education, hardware security, neural networks, side-channels

ACM Reference Format:
Ashley Calhoun, Erick Ortega, Ferhat Yaman, Anuj Dubey, Aydin Aysu. 2022.
Teaching the Next Generation of Cryptographic Hardware Design to the
Next Generation of Engineers. In Proceedings of the Great Lakes Symposium
on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3526241.3530828

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530828

1 INTRODUCTION
Hardware security is an emerging field in the broader cybersecurity
framework. This field focuses on how to establish trust in hard-
ware. Indeed, trusted computing in hardware is fundamental to
information security practices. If the hardware, which typically
forms the root of trust, is compromised, security mechanisms at
higher abstraction levels such as software will also likely fail. Out-
sourced semiconductor fabrication, counterfeit digital chips in the
supply chain, hardware backdoors, leaks in hardware through side-
channels, and other attacks on hardware have triggered a significant
research activity in hardware security over the past decade [2, 17].

The research in hardware security has been traditionally study-
ing cryptographic systems given the importance cryptography
plays in cybersecurity. However, in recent years, with the rise of
machine learning (ML) and artificial intelligence (AI) applications,
there is a growing interest in the hardware security aspects of AI/ML
systems. [20]. For example, a recent line of research has started
exploring how the electromagnetic (EM) and power consumption-
based side-channel attacks/defenses extend from cryptographic
workloads to AI/ML applications [1, 7, 8]. Others have likewise
extended other threat vectors to AI/ML such as hardware fault
attacks [10], hardware Trojans [4], hardware IP theft [14], and cold
boot attacks [19].

Despite the visible change in research focus toward hardware
security of AI/ML systems, the educational aspects have been unfor-
tunately omitted so far. Teaching these topics is critically important
to raise the next-generation science, technology, engineering and
math (STEM) workforce. It was estimated that cybersecurity job
openings are about 3.5 million [3] and the number is growing due
to the talent gap. Some of those jobs will inevitably be related to
the security aspects of AI/ML applications given their widespread
and growing use-cases in a range of domains.

In this paper, we propose a training module—a set of experi-
ments/assignments along with related training material—that al-
lows teaching the complex hardware security and machine learning
topics as early as the sophomore undergraduate level. We designed
four hands-on experiments that act as a step-by-step guide to prac-
tice fundamentals of logic design, implementing neural network
circuits, conducting side-channel attacks, and building defenses
for mitigation. These experiments have been conducted by under-
graduate sophomores over a span of 6 months. Upon completion,
the students have shown a working understanding of hardware
design, security risks, and related protections of neural network
implementations. Our study, therefore, shows that such complex
topics can be taught at the sophomore level and even potentially
before.

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

455

https://doi.org/10.1145/3526241.3530828
https://doi.org/10.1145/3526241.3530828

The rest of the paper is organized as follows. Section 2 describes
the preliminaries needed for this work. Section 3 gives an overview
of the experiments, organization, and the design rationale behind
them. Section 4 provides the details of the experiments and the
results. Section 5 discusses the challenges and potential approaches
for resolution, and Section 6 concludes the paper.

2 PRELIMINARIES
This section introduces the basics of neural networks and side-
channel analysis.

2.1 Basics of ML/AI: Neural Networks
A neural network (NN) is a trainable, deterministic mathematical
function 𝑓 : X → Y that can be used for classification tasks. For
a classification task, Y is a categorical set, e.g., a collection of dog
breeds, and 𝑥 ∈ X can be a dog photo. Training and inference are
the two modes of operation of neural networks. Training allows
the network to adjust its functional form based on examples it has
seen. An example is a pair (𝑥,𝑦), where 𝑥 is called the input and
𝑦 is called the label. NNs gradually adapt to a functional form by
a learning algorithm that makes the calculated label 𝑦 = 𝑓 (𝑥) as
close to the true label 𝑦 as possible for all 𝑥 ∈ X. The inference is
the process of calculating the label for an input 𝑥 .

A trained NN model contains parameters such as weights and bi-
ases, which define the function 𝑓 : X → Y. NNs execute a sequence
of linear operations (e.g., multiply-accumulate) using weights and
biases, and they also perform non-linear operations such as a Rec-
tified Linear Function based on the chosen network topology. This
work focuses on Binarized Neural Networks (BNNs) [11] given
their conceptual simplicity and edge-device friendly nature. In a
BNN, all weights and linear operation results are binarized (to ±1),
reducing the memory overheads and simplifying floating-point
multiplications operations to XNORs.

2.2 Side-Channel Security
Rather than applying a direct, mathematical attack, side-channel at-
tacks extract secret information computed inside the device through
side information such as power consumption [12]. These attacks
evaluate the statistical correlation of the predicted secret-dependent
operations to the side information leaking from the device. The
differential power analysis (DPA) is a common side-channel attack.
In DPA, the typical assumption is for the adversary to have physi-
cal access and to observe/send multiple inputs/outputs and record
corresponding side information for estimating the correct secret
with sufficient statistical evidence. Previous works have shown that
cryptographic devices are vulnerable to such attacks unless they
employ a countermeasure [13].

2.3 Side-Channel Countermeasures: WDDL
Numerous works over the past two decades have explored build-
ing effective countermeasures against physical side-channel at-
tacks [15]. Every countermeasure aims to minimize the correlation
of power/EM leakage of the target with the data processed in the
target. These countermeasures can be classified but not restricted
to be based on either masking or hiding. Masking transforms the
original function to manipulate random values called secret shares
instead of directly manipulating the secret [9, 16]. Hiding aims to
equalize the power consumption in the target during the entire
computation [18, 21].

For this work, we use a hiding defense because of two reasons.
First, it is conceptually simpler for undergraduate level compared to
masking, which requires mathematical background. Second, unlike
masking, it does not require PRNGs, making breadboard implemen-
tations easier. We specifically choose the Wave Dynamic Differen-
tial Logic (WDDL) style of hiding defense [18]. In a WDDL circuit,
there exists a complimentary net for each net of the original circuit
making the logic differential—every 0–>1 transition is accompanied
by a 1–>0 transition, and vice versa. Differential logic alone is not
fully secure because some transitions continue to remain distin-
guishable, for instance, 0–>0 and 0–>1. Thus, it is combined with
dynamic logic which precharges every net to a constant in before
computation in each cycle.

3 TRAINING FLOW AND OVERVIEW
This section provides a high-level overview about the organization
of our training module.

3.1 Learning Objectives
The primary objective of our experiments is to teach side-channel at-
tacks on neural networks and corresponding defenses at the circuit-
level design. Doing so requires a deep understanding of hardware
design, side-channel analysis, and neural network algorithms. We
thus set the learning objectives as follows.

• Analyze the details of neural networks and study their hard-
ware implementation.

• Apply circuit simulation and verification techniques using
electronic design automation tools and Verilog hardware
description language.

• Practice and demonstrate an actual digital circuit implemen-
tation on a breadboard.

• Understand the foundations of side-channel secret extraction
and execute it on a real target.

• Explore power-balancing side-channel countermeasures at
the circuit-level and quantify their effectiveness.

Figure 1: Flow of our training module. The first part consists of understanding the basics of digital design and implementation—
this can be also done as part of an undergraduate course. The students are then guided through the implementation of a neural
network inference hardware, conducting side-channel attacks, and building defenses with Assignments 2, 3, and 4, respectively.

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

456

Table 1: Potential Schedule for Our Training Module
Day Hours Topics
1 (Mon.) 09–12AM Lecture: Hardware Design Basics
1 (Mon.) 12:30–5PM Hands-on: Implementing Ripple Carry-Adder
2 (Tue.) 09–12AM Lecture: HDL and Verilog
2 (Tue.) 12:30–5PM Hands-on: Implementing Vending Machine
3 (Wed.) 09–12AM Lecture: Neural Networks Fundamentals
3 (wed.) 12:30–5PM Hands-on: Implementing BNN
4 (Thu.) 09–12AM Lecture: Side-Channel Attacks (DPA)
4 (Thu.) 12:30–5PM Hands-on: Implementing (DPA)
5 (Fri.) 09–12AM Lecture: Side-Channel Defenses (WDDL)
5 (Fri.) 12:30–5PM Hands-on: Implementing WDDL

3.2 The Training Structure
Figure 1 outlines the overall flow of our training module. We have
organized four assignments/experiments and related training ma-
terial that follows sequential steps. First, the students learn about
the basics of digital circuit design. Then, they implement the first
exercise which has three parts: (1) blink an LED on the breadboard,
(2) design and implement a simple combinational circuit design, (3)
and a sequential circuit design. After completing this experiment,
the students will be able to implement any given circuit on the
breadboard and simulate it to verify functionality both on a Verilog
module as well as on the real hardware. The second experiment
is about implementing a BNN in hardware. This allows students
to grasp the details of neural network implementation. The third
experiment is on attacking the neural network built in the sec-
ond experiment with a DPA-style attack. The fourth experiment
is on building a WDDL-style defense and quantifying the reduc-
tion in side-channel leakage. Section 4 provides the details of these
experiments.

3.3 Student Background and Schedule
Our training module targets students with a basic understanding
of logic design but does not require a background in other related
concepts such as cryptographic engineering, or neural network
design, We have hired five REU students to carry out the exper-
iments. These students were chosen from the participants of an
undergraduate sophomore class on logic design.

The students spend about 3-5 hours each week on average (self-
reported). There were minimal interactions with the instructor.
Over the summer, the students prepared a monthly report upon
completing their assignments and met with the instructor once
a month to present the details of their report in 30 minutes. All
five students were able to finish the first two parts of the first
experiment, and 3 of them were able to complete the last part. Over
the fall semester, 2 of these students were re-hired to complete the
last three experiments with the same time commitment.

We estimate that with intensive hands-on supervision, the entire
experience can be compressed into a single week and be taught at a
summer camp to early-phase undergraduates. Table 1 demonstrates
a possible schedule of events. The first two days can be spent teach-
ing fundamentals and completing the first experiment. The last
three days could be sufficient to cover the rest by completing one
experiment each day.

(a) Fig 1 (b) Fig 2

Figure 2: Schematic and circuit construction of LED setup

4 ASSIGNMENT DEVELOPMENT & RESULTS
This section describes the four assignments created to enable the
hands-on teaching of hardware security for machine learning.
4.1 Assignment I: Introduction to Circuit

Building Basics
The objective of the first assignment is to teach the basics of digital
circuit design and implementation. Indeed, the students need to
study many basic aspects before they can understand specifics of
hardware security for machine learning and artificial intelligence.

We choose the participants enrolled in the electrical and com-
puter engineering program. This program already covers the basic
logic design concepts as part of a sophomore undergraduate re-
quired course. The course material including a guided walk-through
of Modelsim software is sufficient to cover the basics.

4.1.1 Assignment 1 Part 1. This part includes building simple cir-
cuit functions using breadboards, wires, battery packs, voltage reg-
ulators, integrated chips for basic Boolean operators, resistors, and
LEDs. Consequently, the students learn how to properly connect a
power source, apply input/output to the breadboard, and construct
simple combinational circuits with a logic verification test. The first
step of Part 1 is to establish power rails on the breadboard using
a power supply. The students used a 4 D-Cell battery pack as the
power supply and regulated it using the LM7805 voltage regulator.
Next, the students replace the battery pack with the power outputs
of Analog Discovery 2 (AD2). AD2 also orchestrates the events in
the experiments such as sending/receiving data from the bread-
board and starting capture on the oscilloscope. It communicates to
the breadboard via Analog Discovery Toolkit.

Next, the students learn to place LEDs and resistors on the bread-
board. They test the circuit via AD2 Static I/O waveforms and
LEDs [6]. This step requires studying the datasheets for IC chips
that implement simple Boolean gates (AND, OR, Inverter, etc.),
placing them accordingly into the breadboard, and individually
testing them. The LEDs are helpful in debugging the circuit in later
assignments by probing specific points. The AD2 device comes
with 30 color-coded connections. The students learn how to use
the AD2 waveforms software after making the appropriate circuit
connections. This involves using the Static I/O, Patterns, and Logic
Analyzer windows of the software. The students create a binary
bus in the Patterns window to verify the design. Figure 2 shows
the resulting schematic and the circuit on breadboard.

4.1.2 Assignment 1 Part 2. The objective of this part is to use the
previously tested basic Boolean logic gates and build a (relatively)
complex combinational circuit design. The students will learn how

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

457

to design, verify, and implement circuits using logical gates, which
is critical in gaining confidence for the later assignments.

Specifically, the students implement a two-bit ripple-carry adder
in this part. The two-bit ripple-carry adder consists of two cells.
One cell uses traditional logic gates and the other uses 4:1 mul-
tiplexers. The students first design the circuit on paper and then
verify the design in Verilog using ModelSim software. The students
are instructed to draw formal schematics for the circuits rather
than rough hand-drawn figures. Next, the students test the circuit
on breadboard using the binary bus feature of AD2 software.

4.1.3 Assignment 1 Part 3. The objective of Part 3 is to design, test,
and implement a sequential circuit on the breadboard. Specifically,
the goal is to realize a vending machine controller as a Mealy state
machine. The vending machine has to meet specific requirements: it
stocks two items (A & B, where A costs 5 cents and B costs 10 cents),
only accepts nickels up to 15 cents, and gives back the change along
with the requested item if the amount exceeds selection.

The first step is to assign the states for the finite state machine
(FSM). After designing the FSM, the assignment asks to develop
the symbolic state table, the state-encoded transition table, and
construct the K-Map to design the schematic. The students are
asked to minimize the number of states and exploit the "don’t care"
conditions. The students use the resulting schematic to know the
IC chips they need to implement the design on a breadboard. The
resulting design uses 2 D flip-flops and several AND, OR, and INV
gates.

Finally, the students test the state machine for its correctness
through the AD2 waveforms software. They use the patterns win-
dow on the AD2 to supply the clock and two inputs. The students
add these signals along with the outputs to the Logic window and
verify the correct functionality of the circuit.

4.2 Assignment II: Implement a Neural Network
Inference Circuit

The second assignment teaches the students how to design the
hardware for a simple neural network classifier. Specifically, they
build a BNN hardware inference on breadboard [5]. Learning how to
design such hardware enables them to execute effective attacks and
implement related mitigation techniques in the next assignments.

The assignment includes an initial lecture on understanding the
basics of BNN, and further learnings through educational videos and
doubt-clearing sessions. The students follow the general guideline
of drawing the schematic first, followed by Verilog-based modeling,
and finally the functional verification using Modelsim simulations.
Each step is closely monitored by the instructors to ensure that the
students are on the right track.

The BNN consists of an input layer with four nodes, a single hid-
den layer with one node, and an output layer with one node. Figure
3 shows the schematic of the BNN circuit and Figure 4 shows the
corresponding breadboard circuit. XNOR gates multiply 1-bit inputs
with the binarized weights in the input layer. The students imple-
ment the weighted-summation using XNOR-POPCOUNT, which is
typical for BNNs to save area, power, and memory. Next, the non-
linear sign function extracts the sign of the summation and stores
it in a D flip-flop. The hidden and the output layer also compute

Figure 3: BNN circuit schematic

Figure 4: BNN breadboard and attack setup
the summations in a similar way using the weights correspond-
ing to those layers to finally generate the inference result. The
students use LEDs to functionally verify the final output from the
breadboard.

4.3 Assignment III: DPA of BNN Hardware
The objective of this assignment is to conduct a DPA attack on
the BNN hardware designed in Assignment II to steal the valuable
trained neural network weights. Indeed, such attacks are of growing
concern given the high costs of ML training [7, 8]. The successful
completion of this task allows the students to practice state-of-the-
art attack techniques.

The assignment asks following the standard practices in DPA:
apply random inputs to the target circuit (BNN in this case), record
power measurements during computations with an oscilloscope,
and finally extract the secret by correlating a power model with
the recorded power measurements. The students first create a
side-channel evaluation setup. They use AD2 to send/receive in-
puts/outputs to/from the BNN circuit and to also measure power.

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

458

Figure 5: DPA of BNN. Full trace (top), Pearson correlation
scores of weight guesses (middle). Last chart shows number
of required traces for the correct key guess.

They automate the communication and subsequent power capture
by writing a script in JavaScript for AD2. Figure 4 shows the picture
of this entire setup along with the BNN inference circuit under
attack.

The students developed a trace acquisition script that triggers
oscilloscope and simultaneously sends the randomized inputs to
the breadboard. The script sends a zero input between two measure-
ments to reset flip flops between measurements. The BNN circuit
registers the asynchronous inputs sent from AD2 using flip-flops
for proper alignment in the captured power traces. To ensure that
the oscilloscope is triggered before loading of inputs, the circuit
adds more flip-flops in the input path compared to the trigger path.
The complete inference finishes in 2 clock cycles. Design performs
4 XNOR operations between input activations and weights and a
subsequent POPCOUNT in the first cycle. Then, it executes one
more XNOR operation between the first layer activation and the
weight of the second layer in the second cycle. D flip flops store the
output of the first and second cycles.

Next, the students conduct the DPA. They use the hamming
weight (HW) power model for the attack because their setup resets
the design between two measurements. The assignment prescribes
them to use the Pearson’s correlation coefficient as the side-channel
evaluation metric. First, they compute the correlation between
the input power model (HW of inputs) and the power traces. A
successful input correlation test validates the correctness of the
measurement setup because it confirms the loading of inputs in
the design. Second, the students target the flip flops of the first and
second layer for the DPA attack. They hypothesize on the respective
weights and compute the correlation between the power model of
the registers for each weight guess and the power trace. The first
layer contains four weights, which results in 16 possible hypotheses.
The second layer only contains one weight and thus results in two
possible hypotheses. The following equations present the Boolean

Figure 6: Circuit schematic using the WDDL technique

equation of the target hidden layer registers.

𝑜1 = 𝑎1 ⊕𝑤1, 𝑜2 = 𝑎2 ⊕𝑤2, 𝑜3 = 𝑎3 ⊕𝑤3, 𝑜4 = 𝑎4 ⊕𝑤4 (1)

𝐻𝐿𝑂𝑢𝑡0 = (𝑜1 · 𝑜2) · (𝑜3 |𝑜4) + (𝑜2 · 𝑜4) · (𝑜1 |𝑜2) (2)

The students recover the hidden layer weights using DPA. They
also plot the evolution of the correlation coefficient with the num-
ber of measurements. This plot helps them to find the number of
measurements needed to find the hidden weights with a statistically
reasonable confidence, as show in Figure 5.

4.4 Assignment IV: Hiding Defenses for Neural
Network Side-Channels

The objective of the fourth assignment is to implement a counter-
measure on the BNN against DPA. The successful completion of
this assignment leads to a deep understanding of state-of-the-art
defenses. The defense follows WDDL technique (see Section 2.3).
WDDL reduces the side-channel leakage by precharging each net
in every clock cycle and by adding complementary logic paths
for every original logic path. This technique equalizes the power
consumption throughout the computations performed in the cir-
cuit and thus, hinders the attacker’s ability to analyze the power
consumption to extract the secret, which is the BNN weights.

The assignment focused on hardening the XNOR operation since,
in a BNN, the multiplications are equivalent to an XNOR opera-
tion. The WDDL XNOR gate complementary part was formulated
via the DeMorgan’s Law resulting in the function 𝑎′ |𝑏 ′ · 𝑎 |𝑏. For
each original input, the WDDL circuit also requires its comple-
ment. Therefore, the assignment instructed the students to design a
preparation circuit before feeding the inputs to the WDDL circuit.

The students also implemented the precharge logic at the input.
The assignment allowed exploring circuit designs for WDDL that
resulted in implementing precharge and evaluation phases in the
same cycle using clock signals as precharge. This approach is easier
to understand and implement compared to others like precharge
and evaluation in consecutive clock cycles with Master-Slave DDL
flip flops [18]. The students used a NOR gate to precharge the inputs
by connecting one of the NOR inputs to the clock. The NOR-based
precharge ensures that every time the clock is high all the inputs
are precharged to zero and the circuit evaluates the outputs when
the clock is low. Figure 6 depicts the resulting schematic.

The assignment asks the students to implement the WDDL cir-
cuit with careful consideration. They implemented both paths on
identical breadboards and placed logic gates at the exact same lo-
cation on each breadboard to achieve close electrical properties in
the paths. They also used jumper wires of similar lengths to again
ensure a minimum difference between the paths.

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

459

Figure 7: Mean power trace (top), DoM trace (middle), and the
evolution of DOM with number of measurements (bottom)
for unprotected (left) and WDDL-protected circuits (right).
The number of traces needed to cross the 99.99% confidence
intervals increase from 1k to 15k–an increase of 15×.

After verifying the functionality of the Verilog code and then the
breadboard implementation, the assignment proceeds to instruct
the students to verify the results with a security test. To that end, the
assignment dictates the common difference-of-means (DoM) metric.
The goal is to demonstrate that the number of traces needed to get a
statistically significant DoM ismore for the secure circuit, compared
to the baseline insecure circuit. Figure 7 (left) and (right) shows
the attack on the unprotected and protected designs, respectively.
Moreover, it shows the mean traces (top), the DoM plot during
the targeted operation (middle), and the evolution of DoM with
respect to the number of measurements (bottom). The results show
a reduction of 5× in the DoM of the WDDL protected circuit and a
further improvement of 15× when comparing the number of traces
needed for statistical significance.

5 EXPERIMENT OUTCOME AND ANALYSIS
5.1 Student Participation and Interest
We have tested the proposed training with five undergraduate stu-
dents. These students are chosen from the participants of the "ECE
212: Fundamentals of Logic Design" course in Spring 2021. All
students were engaged during the experiments.

5.2 Final Results
We gave three months for students to complete the experiments
who spent an average of 3–5 hours per week including the doc-
umentation and meeting times. The students spent most of their
time learning “how to debug” and then debugging small issues such
as fixing loose wires–the whole process thus can be significantly

accelerated with a close, hands-on supervision. 2 out of 5 students
could not complete the last part of Assignment 1. We picked 2 out
of 3 students who completed and employed them for another three
months with the same workload to complete the rest of the assign-
ments. Both students have succeeded in finishing the assignments
and became the co-authors of this paper. Therefore, the results show
that it is feasible to teach complex notions in hardware security
to early-phase undergraduate students, but closer supervision is
needed.

5.3 Experiment Challenges
To help adoption of a similar setup, this section discusses the major
challenges, potential resolutions, and our future plans.
5.3.1 Participant Demographics. The proposed training module
has been executed by 5 undergraduate students. These includes
student from a diverse background (including underrepresented
minorities in STEM) and those who do not have perfect GPA—the
GPAs range between 3.2 and 4.0. Having such a range of students
allowed us to test the effectiveness of our assignments to a broader
audience. Unsurprisingly, students with a lower GPA were more
challenged especially when it comes to designing and debugging
new circuits that they have not seen before. The issues can be
addressed with a closer engagement with those students.
5.3.2 First-Time and One-Time Practical Challenges. Attempting
to debug breadboard through zoom made it hard to provide helpful
feedback. Students needed to verify their designs throughModelSim
and test alone. Not all students could run ModelSim; this made it
hard for students to finish the last design. Due to chip shortages,
not all students had voltage regulators. Some students used the
AD2 power supplies or batteries. When collecting traces; not all
students had enough RAM to process the data on MatLab.

An issue arose from the incompatibility of the AD2 script and
the Graphical User Interface (GUI). AD2 GUI at high clock speeds
could not capture measurements. The lag of the GUI made it so
the script would also control the trace acquisition. Students were
challenged when writing the script due to their lack of JavaScript
knowledge, but they learned it within a week. A potential remedy
for this challenge is to provide the full script except a few lines and
to guide students to complete those parts.

Another issue was the lack of knowledge regarding probe po-
sitioning: the probes can be differential or single-ended—it was
confusing how to place the probe pins to accurately capture the
power consumption of the breadboard. During Assignment 3, one
student decided to represent the targeted hidden layer output of
1-bit by using two flip-flops (‘01’ to represent value ‘1’ and ‘10’ to
represent value ’0’). This differential encoding inadvertently acted
as a defense and suppressed the DPA signal. The research team
provided supplemental videos and even guided walkthroughs of
DPA students that could not figure out the issue.
5.3.3 COVID-19 Challenges. COVID-19 has had significant chal-
lenges in purchasing the needed parts and hands-on collabora-
tion/tutoring. The parts ordered arrived after three months due to
semiconductor supply chain issues. This can be a significant chal-
lenge if these experiments are to be integrated into a sophomore-
level course that typically has 100+ students. Building and debug-
ging breadboard circuits require significant physical labor. The

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

460

basics and troubleshooting can be done much simpler if the instruc-
tor or teaching assistant can be co-located in the same physical
medium for an extended amount of time. This will still create an
issue in scaling the experiments to a large class during COVID-19
or future pandemics. A remote hardware security testing ecosystem
could be helpful.

5.3.4 Planned Future Changes. In light of this experience, we aim
to apply the following changes.

• Record a single, multi-parted but full training video that
teaches all basics of neural networks, side-channel attacks on
neural networks, and application of defenses. This will help
understand the fundamentals and theory before proceeding
to the hands-on component.

• Provide hands-on tutoring in case COVID-19 or future pan-
demics allow.

• Include a rubric or layout for the reports in order to ensure
professional and organized content.

• Include further experiments for covering other concepts in
hardware security of ML.

6 CONCLUSIONS AND FUTURE DIRECTIONS
Hardware security of ML/AI applications is an emerging field of
research with critical importance for future cyberinfrastructure.
This paper described a set of hands-on experiments that aims teach-
ing hardware security and ML/AI hardware implementations to a
broad audience such as early undergraduate students. We revealed
4 experiments that allow teaching hardware implementation basics,
neural networks fundamentals, side-channel analysis, and circuit-
level hardware defenses, respectively. The results have shown that
the students can successfully complete these experiments with min-
imal supervision beyond the experiment documentation. Therefore,
the proposed training module can help address the problem of scal-
ing the education of the next-generation STEM workforce. Our
framework can further extend in the future by adding experiments
related to the other emerging hardware security topics such as fault
attacks, hardware Trojans, and logic locking.

7 ACKNOWLEDGEMENTS
This paper was funded in part by NSF CNS Grants no. 1943245. We
thank anonymous reviewers for their valuable feedback.

REFERENCES
[1] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. {CSI}{NN}:

Reverse engineering of neural network architectures through electromagnetic
side channel. In 28th USENIX Security Symposium (USENIX Security 19). 515–532.

[2] Swarup Bhunia and Mark Tehranipoor. 2018. Hardware Security: A Hands-on
Learning Approach.

[3] Jennifer Callen and Jason E James. 2020. CYBERSECURITY ENGINEERING: THE
GROWING NEED. Issues in Information Systems 21, 4 (2020).

[4] Joseph Clements and Yingjie Lao. 2019. Hardware Trojan Design on Neural
Networks. In 2019 IEEE International Symposium on Circuits and Systems. 1–5.

[5] Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1. CoRR
abs/1602.02830 (2016). arXiv:1602.02830 http://arxiv.org/abs/1602.02830

[6] Mircea Dabacan. 2018. Analog Discovery 2 Reference Manual. Analog Discovery
2 Reference Manual-Digilent Reference (2018).

[7] Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota, and
Aydin Aysu. 2021. ModuloNET: Neural Networks Meet Modular Arithmetic for
Efficient Hardware Masking. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022, 1 (Nov. 2021), 506–556.

[8] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. MaskedNet: The First
Hardware Inference Engine Aiming Power Side-Channel Protection. In 2020 IEEE

International Symposium on Hardware Oriented Security and Trust, HOST 2020,
San Jose, CA, USA, December 7-11, 2020. IEEE, 197–208.

[9] Louis Goubin and Jacques Patarin. 1999. DES and Differential Power Analysis
The “Duplication” Method. In Cryptographic Hardware and Embedded Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 158–172.

[10] Xiaolu Hou, Jakub Breier, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2020. Security Evaluation of Deep Neural Network Resistance Against Laser
Fault Injection. In 2020 IEEE International Symposium on the Physical and Failure
Analysis of Integrated Circuits (IPFA). 1–6.

[11] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. 2016. Binarized neural networks. Advances in neural information processing
systems 29 (2016).

[12] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology — CRYPTO’ 99, Michael Wiener (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 388–397.

[13] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction
to differential power analysis. Journal of Cryptographic Engineering 1, 1 (01 Apr
2011), 5–27.

[14] Yuntao Liu, Yang Xie, Abhishek Charkraborty, and Ankur Srivastava. 2019. Secure
and effective logic locking for machine learning applications. Cryptology ePrint
Archive (2019).

[15] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power analysis
attacks: Revealing the secrets of smart cards. Vol. 31. Springer Science & Business
Media.

[16] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold
Implementations Against Side-Channel Attacks and Glitches. In Information and
Communications Security, Peng Ning, Sihan Qing, and Ninghui Li (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 529–545.

[17] Nicolas Sklavos, Ricardo Chaves, Giorgio Di Natale, and Francesco Regazzoni. [n.
d.]. Hardware security and trust. ([n. d.]).

[18] K. Tiri and I. Verbauwhede. 2004. A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation. In Proceedings Design, Automation
and Test in Europe Conference and Exhibition, Vol. 1. 246–251 Vol.1.

[19] Yoo-Seung Won, Soham Chatterjee, Dirmanto Jap, Arindam Basu, and Shivam
Bhasin. 2021. DeepFreeze: Cold Boot Attacks and High Fidelity Model Recovery
on Commercial EdgeML Device. In 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 1–9.

[20] Qian Xu, Md Tanvir Arafin, and Gang Qu. 2021. Security of Neural Networks
from Hardware Perspective: A Survey and Beyond. In 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC). 449–454.

[21] Pengyuan Yu and Patrick Schaumont. 2007. Secure FPGA Circuits Using Con-
trolled Placement and Routing. In Proceedings of the 5th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis. ACM, New York,
NY, USA, 45–50.

Session 6A: Special Session -1: Machine Learning and Hardware Attacks GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

461

http://arxiv.org/abs/1602.02830

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics of ML/AI: Neural Networks
	2.2 Side-Channel Security
	2.3 Side-Channel Countermeasures: WDDL

	3 Training Flow and Overview
	3.1 Learning Objectives
	3.2 The Training Structure
	3.3 Student Background and Schedule

	4 Assignment Development & Results
	4.1 Assignment I: Introduction to Circuit Building Basics
	4.2 Assignment II: Implement a Neural Network Inference Circuit
	4.3 Assignment III: DPA of BNN Hardware
	4.4 Assignment IV: Hiding Defenses for Neural Network Side-Channels

	5 Experiment Outcome and Analysis
	5.1 Student Participation and Interest
	5.2 Final Results
	5.3 Experiment Challenges

	6 Conclusions and Future Directions
	7 Acknowledgements
	References

