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Spectral signatures of axionlike dark matter
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We derive spectral line shapes of the expected signal for a haloscope experiment searching for axionlike
dark matter. The knowledge of these line shapes is needed to optimize an experimental design and data
analysis procedure. We extend the previously known results for the axion-photon and axion-gluon
couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is
its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which
leads to the directional sensitivity of the corresponding haloscope. We also discuss the daily and annual
modulations of the gradient signal caused by the Earth’s rotational and orbital motions. In the case of
detection, these periodic modulations will be an important confirmation that the signal is sourced by

axionlike particles in the halo of our Galaxy.
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I. INTRODUCTION

According to diverse astronomical observations, about
85% of the total mass of the Universe can be attributed to
dark matter (DM), whose origin and composition remain
unknown [1-3]. Most galaxies are thought to be embedded
in DM halos, which play a key role in their formation and
evolution [4,5]. Among the best-motivated DM candidates
are the quantum chromodynamics axion and other light
pseudoscalar bosons, which are collectively referred to as
axionlike particles (ALPs) [6-8]. Their characteristic fea-
ture is low mass (m, < 1 eV/cz) that leads to high number
density. This feature distinguishes ALPs from other popular
DM candidates, such as weakly interacting massive par-
ticles (WIMPs), which are much heavier. On the scale of
laboratory detectors, ALPs exhibit wavelike, rather than
particlelike, behavior. To first approximation, axionlike
DM can be described as a classical field,

a(t) = agcos (2zv,t), (1)

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2022/105(3),/035029(12)

035029-1

permeating space and oscillating at the ALP Compton
frequency, v, = m,c?/h, where c is the speed of light and
h = 2zh is the Planck constant. The amplitude a; of the
oscillations is related to the local DM energy density, ppp.

as ag = hv/2ppm/(m,c) [9]. The canonical value of ppyy is
03 GeV/cm3, which is accurate within a factor of 2-3 [3].

Besides the gravitational interaction, there are three
possible couplings between ALPs and Standard Model
particles [9]: (1) the axion-photon (or electromagnetic)
coupling that mixes ALPs and photons, (2) the axion-gluon
coupling giving rise to oscillating nuclear electric dipole
moments, and (3) the axion-fermion coupling between
ALPs and nuclear or electron spins. The first two cou-
plings, which are proportional to a(f), are referred to as
the ALP field couplings. The third one is proportional to the
spatial gradient of a(t) and is therefore referred to as the
gradient coupling.

All three couplings listed above are used to search for
ALPs in the DM halo of our Galaxy. The corresponding
terrestrial detectors are usually called “haloscopes™ to
distinguish them from “helioscopes” looking for ALPs
produced in the Sun [10]. The axion-photon interaction is
the most commonly targeted, but the other two couplings
are also promising [9]. Regardless of the chosen interac-
tion, the knowledge of the expected signal line shape is
needed to optimize any experimental design and data
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analysis procedure. Although the line shape for the axion-
photon coupling has been known for decades [11,12] and
used for data analysis in multiple experiments (e.g., ADMX
[13,14], CAPP [15,16], HAYSTAC [17-19], and SHAFT
[20]), there are no studies of its gradient counterpart. We fill
this gap and derive spectral line shapes for both the ALP
field and the gradient couplings using the same unified
approach. We also discuss the daily and annual modula-
tions of the gradient line shape, which, if detected, will be
an important confirmation that the signal is sourced by
ALPs in the halo of our Galaxy.

II. STOCHASTIC MODEL OF THE ALP FIELD

Equation (1) is only an approximate model for the field
a(t): it assumes that all ALPs in the galactic halo oscillate
coherently and that the corresponding spectral line shape is
a delta function 8(v —v,). A more realistic model should
account for the speed distribution of halo particles, which
leads to a broadening of the line shape. This broadening
occurs because frequencies of moving ALPs, as seen by an
external observer, are larger than v, by an amount propor-
tional to their kinetic energies:

02
= (1455 ) @)

C

where v, is the frequency of the nth particle and v, < c is
its speed relative to the observer. Another effect spoiling
coherence is that oscillations of different ALPs may not be
synchronized. In this paper, we follow the most common
assumption that their phases are completely uncorrelated.
The ALP field can be modeled more accurately as a
superposition of N independent oscillators [21]:

N
a(r, 1) = %Z cos 2avpt =Ky T+ dn), (3
n=1

where k,, = m_v,/h is the wave vector of the nth ALP, v,
is its velocity, and the phases ¢, € [0,27z) are uniformly
distributed. The velocities v,, are sampled from the velocity
distribution of halo particles. The frequencies v, are given
by Eq. (2) with v,, = |v,|. The model (3) is similar to that
describing chaotic light with Doppler broadening [22].

It is instructive to qualitatively discuss the effects caused
by different terms in the cosine argument in Eq. (3). As
already mentioned, the first term, 2av,t, leads to the
broadening of the spectral line shape. To experimentally
resolve the line shape, one needs to have sufficiently long
interrogation time 7 compared to the ALP coherence time
7. Therefore, this effect is important when T > 7, which
can be rewritten in a form useful for quick estimates as
T[s] > 2/m,[neV/c?]. Note that the sensitivity to the ALP
coupling scales with T as T'/2 when T < 7. (coherent
averaging) and as (z.T)"/* when T > 7. (incoherent

averaging) [23]. While the majority of haloscope searches
for the axion-photon coupling [13-20] have operated in the
regime where 7 > 7., many of the experiments targeting
the gradient coupling [24-29] have operated in the T < 7,
regime, more amenable to a time-domain analysis such as
that presented in Refs. [30,31]. However, the CASPEr [32]
and QUAX [33,34] experiments, for example, are now
exploring the T > 7, regime, where knowledge of the line
shape as discussed here can be important for data analysis.

The term k,, - r can be eliminated, in the case of a single
detector sensitive to the ALP field couplings, by choosing
the coordinate system with r = (. In contrast, two detectors
located at positions r; and r, lead to the nonvanishing term
k, - (r; — ;). Therefore, an experiment exploring corre-
lations between two or more spatially separated detectors
can probe the three-dimensional velocity distribution of
halo ALPs rather than the speed distribution [35,36]. The
same result can be achieved with only a single detector
sensitive to the gradient coupling. This is because Va
sourced by each ALP is proportional to its velocity v, as
can be seen after calculating the gradient of the field (3):

Va(r,t) = "Cz\‘/’%““

Note that the model (3) assumes that the amplitude a, does
not have any spatial dependence, which corresponds to a
homogeneous ALP field. In the most general case, spatial
inhomogeneity of the field a(r,t) also contributes to the
gradient (4).

Having different arguments (2zv,t+¢,), the cosine
waves in Eq. (3) interfere with each other, which manifests
in stochastic fluctuations of the ALP field amplitude [30].
This effect is similar to acoustic beats caused by interfer-
ence between multiple tones of slightly different fre-
quencies. The resulting stochastic amplitudes follow a
Rayleigh distribution, as discussed in Sec. V, Appendix A,
and Refs. [21,30]. In the next two sections, we leave these
stochastic fluctuations aside and derive statistically aver-
aged line shapes for both types of couplings.

N
D Vasin Qavyt - K, v+ ). (4)
n=1

ITII. THE CASE OF ALP FIELD COUPLINGS

In this section, we consider the case of axion-photon or
axion-gluon couplings and show how the corresponding
spectral line shape can be derived. For these couplings, the
detector response (e.g., the voltage induced in a pickup
coil) is proportional to either the ALP field a(¢) itself or its
time derivative. The experimentalist records this response,
5(t), for a long interrogation time, T > 7,.. The raw time-
domain data are then converted to the frequency domain by
calculating their Fourier transform, S(v). The most con-
venient quantity to analyze is the power spectral density
(PSD, also called power spectrum), which is |S(v)[%.
The PSD shows how the average power of the signal is
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distributed over the frequency v. It satisfies Parseval’s
theorem

P % A " \s()dt = A ® ISPy, (5

where P is the signal power averaged over the interrogation
time 7. The spectral line shape, A(v), is a closely related
quantity, defined as A(v) = |S(v)|*/P, so that it is normal-
ized to unity:

f ¥ Aw)dv = 1. (6)
0

To derive the line shape, we assume a continuous limit,
N — o0, of the discrete model for the ALP field discussed
in Sec. II. Then, Eq. (2) can be rewritten as

v(v) = e\/2(v/y, - 1). (7)

Equation (7) suggests that A(v) can be obtained from the
distribution function, f(v), of ALP speeds in the halo by
changing variables from v to v

W =g ®

In the case of gradient coupling, Eq. (8) involves a more
complicated distribution function that accounts for the
spatial orientation of the detector (see Sec. IV).

As is typical for direct-detection experiments, we assume
the standard halo model for the DM halo of our Galaxy
[37,38]. According to this model, the velocities v of DM
particles in the galactic rest frame follow the Maxwell-
Boltzmann distribution

®) (W Py — L _\&
fgal(v)d v _ﬁygvgexp( vg)d v, (9)

where vy & 220 km/s is the circular rotation speed of the
Galaxy at the solar radius [38]. To clearly distinguish
between one-dimensional and three-dimensional distribu-
tion functions, we denote them as f(v) and fG)(v),
respectively. Note that DM particles moving faster than
the escape speed, ves & 544 km/s, are not bound by the
gravitational potential of the Galaxy. Therefore, the dis-
tribution (9) should be truncated at |v| > v., but this effect
leads to only minor corrections that are not significant for
our analysis.

The velocity distribution (9) should be modified to
account for the fact that any Earth-based laboratory moves
through the DM halo with a relative velocity vi:

() = Fol(v = Vigy). (10)

A

AViab

FIG. 1. The coordinate system used in this paper. The
following vectors are shown: vy, = (0,0,vy) is the labo-
ratory velocity relative to the galactic rest frame, v =
(vsin @ cos ¢, v sin @sin ¢, v cos B) is the velocity of an individual
ALP in the galactic rest frame, and fi = (sin a, 0, cos @) is the unit
vector directed along the external static magnetic field B,.

The velocity v, is dominated by the Sun’s motion relative
to the galactic frame at the speed vg &~ 233 km/s. However,
both the magnitude and the direction of vy, are periodically
modulated due to the orbital and rotational motions of the
Earth. These modulations are considered in Sec. VI, but for
now we assume that vy, is fixed.

To derive the lab-frame speed distribution, fi,,(v), from
the velocity distribution (10), we employ spherical coor-
dinates (v,6,¢) chosen such that v = |v|, the z axis is
directed along vy, and the polar angle @ is the angle
between v and vy, (see Fig. 1). Then, taking into account
that d®v = v>dv sin 0dfd¢p, we can write fp(v) as the
following integral over the angles @ and ¢:

Fran(v)dv = p?dpfh dg /”f{;g(v) sin6dg.  (11)
0 0

After substituting into Eq. (8) the result of the integration
(11) and the derivative of Eq. (7), we finally obtain the
following spectral line shape:

2¢? ot vd,
=—= exp (-0 b gjpp 12
) N ( v, vi ) sinh . (12)

where vy, = |viap| and we have denoted for brevity

ﬂZZm;m, 2(;;—123). (13)

In different forms, the line shape (12) has been previously
reported in Refs. [12,21,35,39].

We can also obtain an expression for the corresponding
power spectrum. Let us assume that the signal is
5(t) = ka(t), where a(t) is the ALP field and « is a factor
proportional to the coupling strength and dependent on
specific experimental details. Then, according to Parseval’s
theorem (5),
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FIG.2. Spectral line shapes and power spectra for both types of ALP couplings. (a) Dimensionless line shapes v,4(v), where A(v) are
given by Egs. (12), (21), and (22). For the gradient coupling, we consider two detector orientations: @ = 0 and a = z/2. Note that the
line shape 4, , @ = 0 coincides with 4, @ = /2. (b) Monte Carlo simulation (solid curve) and analytical description (dotted curve) for
the power spectrum in the case of ALP field couplings. Monte Carlo results are obtained by averaging over 500 PSDs calculated using a
Fourier transform of the time-domain signal s(f) = xa(t), where a(t) is given by Eq. (3). Note that we increased the linewidth by a factor
of 106 to reduce the computational cost of the simulation. The analytical PSD is given by Eq. (14). (c) Similar to panel (b) but for the
parallel gradient case. Two detector orientations are considered: @ = 0 and @ = 7/2. The time-domain signal is s(¢) = x| Vay (), where
Va(t) is given by Eq. (4). The analytical PSD is given by Eq. (23). (d) Similar to panels (b) and (c) but for the perpendicular gradient
case. The time-domain signal is s(f) = x; Va, (), and the analytical PSD is given by Eq. (24).

IS = 5 (a4 (v). (14)

The dimensionless line shape v,4(v) is shown as a black
dotted curve in Fig. 2(a). Its shape is highly asymmetric:
there is a steep rise starting at the frequency v, and a long
tail at high frequencies. We can also see that the spectral
linewidth, defined as the full width at half maximum, is
Av/u, = v}/c®~ 107, Assuming that the relationship
between the linewidth Av and the coherence time 7, is
the same as for a Lorentzian [22], we can estimate

1 2h
3 (15)

T, = —— N —s.
¢ mAv muvd

Note that there is an ambiguity, up to a factor of 2z, in the
definitions of 7, used in the literature [30].

IV. THE CASE OF GRADIENT COUPLING

The axion-fermion (or gradient) coupling to nuclear
spins can be described by the nonrelativistic Hamiltonian

H = hcgVa -1, (16)
where g is the coupling strength, Va is the spatial gradient
of the ALP field, and I is the nuclear spin operator [9]. Note
that the factor fic in Eq. (16) is written assuming that the
combination ga, is dimensionless. By drawing an analogy
with the Zeeman effect, we can think of Va as a
pseudomagnetic field oscillating at the frequency vu,.
There are different experimental approaches for detecting
this field. For example, the CASPEr-ZULF experiments
[26,27] search for ALP-induced modulations of Zeeman
splittings between nuclear energy levels in an ultralow
external magnetic field B. Since these experiments mea-
sure small perturbations of the leading magnetic field, they
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are sensitive only to the component of Va parallel to B,
Therefore, the time-domain signal can be written in this
case as §)(t) = x| Va(¢), where the factor x| depends on
the coupling strength and specific experimental details.

The CASPEr-Gradient and CASPEr-Electric experi-
ments use a different approach [23,32]. An ensemble of
nuclear spins is initially polarized in a strong magnetic field
B, so that the net magnetization of the sample is parallel to
B. The ALP-induced pseudomagnetic field serves as an
oscillating driving field. If the Larmor frequency of the
nuclear spins [v;, = yBy/(2x), where y is the gyromagnetic
ratio of the nuclei] matches the frequency v, of the driving
field, then a magnetic resonance occurs, resulting in a
torque on the nuclear spins. This torque causes the spins to
precess around the B, axis, which leads to an oscillating
transverse magnetization of the sample. One can use a
sensitive magnetometer to detect this transverse magneti-
zation. This experimental technique is sensitive only to
the component of Va perpendicular to B. Therefore, the
signal in this case is 5, () = k; Va, (). Note that CASPEr-
Electric [32] is sensitive to both the axion-gluon and the
axion-fermion couplings, but here we focus on the latter,
since the signal due to the axion-gluon coupling has the line
shape (12).

In the rest of this section, we derive spectral line shapes
and power spectra for the two types of experiments
described above. We characterize the direction of the
leading magnetic field B, by the unit vector fi = By/B,
(see Fig. 1). As follows from Eq. (4), each ALP produces a
Va that is proportional to its velocity v. Therefore, to take
into account the directional sensitivity of the detector, we
first determine the components of v parallel and
perpendicular to the leading field:

vl:1!vz—vﬁ. (17)

Then, we integrate over the angles @ and ¢ in the same way
as in Eq. (11) but with the integrand multiplied by each of
the squared components (17):

I)” = V'fl,

v2dv

2r T 3 .
C”J_L d‘ﬁﬁ vﬁ‘J_f{al)}(v) sinfdg,  (18)

f”‘l(v)dv =

where the normalization coefficients,

2

v :
C= ?O—i— v, cos’a, C, = v} + vpsin’a, (19)

which depend on the angle a between the vectors fi and
Viap. are chosen so that

/m flo(v)dv=1. 20)
0

The factors vﬁ and v2 appear in Eq. (18) because the
corresponding PSDs are proportional to [V |? and |Va, |?,

respectively. The normalization coefficients (19) ensure
that f|(v) and f,(») are proper distribution functions.

After calculating f)(v) and substituting the result into
Eq. (8), we obtain the following spectral line shape for
experiments sensitive to the parallel component of the
gradient:

x [cosﬁa - % (coth = %) (2- 3sin?a)} 1)

Similarly, by repeating the same calculation for f, (v), we
derive the line shape for the case of magnetic resonance
experiments sensitive to Va, :

2c%v -,
p —
CJ_ Vg

X [sinza —i—% (cothﬂ - %) (2- 3sin2a)} . (22)

AL(v) = A

The dimensionless quantities v,4)(v) and v,4, (v) are
shown in Fig. 2(a) for two spatial orientations of the
detector (@ = 0 and @ = 7/2). We can see that the gradient
line shapes rise slower and reach maxima at higher
frequencies than the curve (12). There is also a noticeable
dependence of the gradient line shapes on the angle a.

After taking into account Parseval’s theorem (5), we
obtain the following expressions for the corresponding
PSDs:

1) @) > = P2y (@), (23)

|SL(V)|2 = PJ_)VJ_(V), (24)
where

P =230 Gl (25)

is the total signal power. Note that, as can be seen from
Eq. (17), P results from a projection along the axis defined
by fi, while P, results from a projection into the plane
orthogonal to fi. In the parallel case, the signal power is
maximum when @ = 0 and minimum when a = /2. Inthe
perpendicular case, it is vice versa. The ratio of the
maximum to the minimum values is ~3 for P and ~2
for P, (assuming that vy & vp).

V. STATISTICS OF THE ALP FIELD

The line shapes and power spectra derived in the
previous sections are smooth functions of frequency w.
However, the ALP field (3) is a stochastic variable in the
sense that its amplitude and phase vary randomly on a
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timescale of 7.. As a consequence, even for a noiseless
experiment sensitive to axionlike DM, the power spectrum
is a stochastic function of v [21,30,31]. The expres-
sions (14), (23), and (24) are the expected values for the
corresponding PSDs. In this section, we discuss the
statistical properties of both the ALP field and the resulting
power spectra.’

Before proceeding, let us make a digression into prob-
ability theory to introduce results important for the sub-
sequent discussion (see Appendix A for further details).
Consider a random variable z defined as the sum,

N
2= s,exp(i,), (26)
n=1

of complex numbers with random magnitudes s, and
arguments ¢,. The s, values are drawn from some pro-
bability distribution with mean p, and variance o2, while
the phases ¢, € [0,2x) follow a uniform distribution. The
summation (26) corresponds to a two-dimensional random
walk on the complex plane: we start at the origin and make
N steps, each of size s, and in the direction given by the
angle ¢,. Then, the complex number z = x + iy specifies
the (x,y) coordinates of the end point. As shown in
Appendix A using the central limit theorem, both x and
y are drawn from the normal distribution with zero mean
and variance 62 = N(u? +02)/2. This result does not
depend on the specific probability distribution for s, as
long as N > 1.

It is also instructive to rewrite z in polar form as

z = rexp (i¢'). Then, the absolute value r = /x> + y?
represents the distance from the origin and follows the

Rayleigh distribution with probability density function

p(rio) = O%exp (—%). (27)

The argument ¢ follows a uniform distribution, which
reflects the isotropy of the random walk.

The above results allow us to evaluate the sum of cosine
waves having the same frequency v but random amplitudes
s, and phases ¢, as

'While we have not carried out a detailed comparison of
results, our treatment here is based on the same assumptions as
the approaches described in Refs. [21,30,31] to analyze the
stochastic properties of ALP signals. In particular, our power
spectra should correspond, in the regime T > 7., to Fourier
transforms of the correlation functions obtained in Ref. [31].
Although the authors of Ref. [31] point out some differences in
their approach with respect to that described in a preprint of
Ref. [30], it turns out that these differences were corrected for in
the published version of Ref. [30].

N 2
z s,cos 2avt + ¢,) = ﬁwf cos (2mvt +¢'),
n=1

(28)

where ¢’ € [0,27) is drawn from a uniform distribution
and ¥ is drawn from the Rayleigh distribution (27) with
o = 1. Equation (28) is derived in Appendix A, and a
similar relation also holds for sine waves. Note that the
variable r' = r/o in Eq. (28) is a dimensionless version of
the distance r discussed in the previous paragraph.

We are now ready to consider the case of ALP field
couplings and calculate the sum (3) over all N terms.
To make this calculation feasible, we partition the full set of
N particles into subsets labeled by index j and containing
N; ALPs with lab-frame speeds between v; and v; + Aw,
where Av is a small interval [21]. The contribution of the
jth subset to the ALP field a(r) can be evaluated as

N;
ay
a;(t) =— E cos (2zvjt + ¢y,),
N n=1

a N;
= \/ 517} cos (2wt + ¢)).

N

where the first line follows from Eq. (3) with r = 0 and the
summation is performed using Eq. (28) with s, =1,
pus =1, and o, = 0, which corresponds to a random walk
with unit step size. After summing over all the subsets, we
finally obtain

a(t) = %; i (v))Av P cos Qavt + @), (30)

where we have taken into account that the number of ALPs
in the jth subset is N; = N fiu(v;) Av with fi,(v) given
by Eq. (11).

Each term in the sum (30) corresponds to the subset
containing ALPs with speeds ~v; and frequencies ~v;,
where v; is given by Eq. (2). The relative contribution of

each subset is governed by two factors: \/fiu(2;) and 7.
The former, deterministic factor describes the expected
value of the field amplitude at the frequency v; and is
related to the spectral line shape A(v;) by Eq. (8). The latter,
stochastic factor is drawn from the Rayleigh distribution
(27) with ¢ = 1. It is in this sense that the amplitude of the
ALP field is a Rayleigh-distributed stochastic variable.
Since the power contained in the jth subset is propor-
tional to |a;(¢)|?, it is also a stochastic variable distributed

(29)

as (r:,)2 As discussed in Appendix A, the square of a
Rayleigh-distributed variable follows an exponential dis-
tribution. Therefore, the PSD at each frequency v; is drawn
from the exponential distribution with probability density
function
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1 IS;(V;)IZ)
s (“ ) @
where [S(v;)|? is the expected value given by Eq. (14).
The same approach can be extended to the case of
gradient coupling. We skip the intermediate steps and
provide here only the final result for the parallel and
perpendicular components of the ALP field gradient:

p(IS;;)I?) = |

Vﬂnl‘)—m [\/f‘nl v;) +o 1 (v))

X1/ fuap(v;)Avrsin 2zv;t + ) |, (32)

-2 -
where g , (v;) and a”‘l(vj) are the mean and variance of

v),. for the jth subset, see Egs. (B1) and (B2) for explicit
definitions. As shown in Appendix B,

Wi + 0 Dfin(v)) = Cy Lfy. (), (33)

with f| 1 (v) given by Eq. (I8). Since the factor (33) is
deterministic and the factor r:, in Eq. (32) is again Rayleigh
distributed, the gradient coupling has the same statistical
properties as the nongradient couplings considered above.
In particular, the power spectra follow the exponential dis-
tribution (31), with the expected values given by Egs. (23)
and (24).

To illustrate the stochastic nature of the ALP field and to
verify our derivation of the power spectra, we performed a
dedicated Monte Carlo simulation. In the nongradient case,
we generated the time-domain signal s(7) = xa(r) using the
model (3) for a(t) with N = 10? particles. We sampled ALP
velocities according to the Maxwell-Boltzmann distribution
(9) and then used Eq. (10) to transform them from the galactic
rest frame to the laboratory frame. We assumed the following
parameters: Compton frequency v, = 1 kHz, sampling
frequency of 10 kHz, and interrogation time 7" = 0.05 s.
To reduce the computational cost of the simulation, we set
vy = 2.2 x 10° km/s and v, = 2.33 x 10° km/s, which
increased the width of the spectral line by a factor of 10°
while preserving its characteristic shape. We calculated the
power spectrum by performing a Fourier transform of the
signal s(¢) and normalizing the result according to Parseval’s
theorem (5). We repeated this process 500 times and
averaged over the individual PSDs in order to reduce the
size of stochastic fluctuations. The resulting averaged power
spectrum is shown in Fig. 2(b) in comparison with the
analytical formula (14).

For the gradient coupling, we followed the same pro-
cedure but assumed that s(#) = xVa(¢) in the parallel
case and s(t) = k, Va (t) in the perpendicular case, where
Va(t) is given by Eq. (4). We obtained the corresponding
projections of Va by substituting the velocity components

(17) into Eq. (4) instead of v. The resulting averaged power
spectra are shown in Figs. 2(c) and 2(d) for the parallel and
perpendicular cases, respectively, and for two spatial
orientations of the detector (@ = 0 and @ = z/2). For both
types of couplings, there is good agreement between the
Monte Carlo simulation and our analytical expressions. We
also verified that the distribution of PSD values within each
frequency bin matches the exponential distribution (31).
Despite the averaging, the simulated power spectra are
stochastic and scattered around the expected values, as can
be seen in Fig. 2. For further details on the simulation, we
refer the reader to our PYTHON code [40].

Finally, we note that there is an important difference
between the gradient and the nongradient cases. As shown
in Ref. [30], stochastic amplitude fluctuations can reduce
the sensitivity of an axion-photon or an axion-gluon
haloscope by as much as an order of magnitude in the
regime with T < z.. A gradient haloscope with three
mutually orthogonal sensitivity axes is significantly less
susceptible to this effect. This is because both the stochastic
amplitude r; and the phase ¢; are independent random

variables for each of the three axes and for each frequency
v;. Although we are unable to resolve different frequencies
when T < 7., we still have three independently sampled
amplitudes. The probability of all three values being small
is suppressed compared to the nongradient case of a single
amplitude.

VI. PERIODIC MODULATIONS OF THE
GRADIENT SIGNAL

As already mentioned, the observer’s velocity relative to
the galactic DM halo is periodically modulated due to the
Earth’s orbital and rotational motions. It is well known that
annual modulations in the event detection rate are an
important experimental signature for WIMP searches
[37.41,42]. The same is true for axionlike DM experiments.
One needs to know the time dependence of the power
spectrum in order to optimize the detector sensitivity and
data analysis procedure. In the case of detection, the
periodic modulations will be an important confirmation
that the signal is indeed sourced by the galactic DM halo. In
this section, we consider annual and daily modulations of
the axionlike DM signal in the case of gradient coupling.

Both the magnitude and the direction of the vector v,
vary with time. There are several reasons why it is
convenient to consider these time dependences separately.
First, the line shape (12) is sensitive only to the magnitude
Viap = |Viap|- Second, the time dependence of wy, is
dominated by the orbital motion of the Earth and can be
neglected for short experiments (when T < 1 year). On
the other hand, the direction of vy, varies daily due to
the Earth’s rotation. Moreover, we show below that the
gradient signal is affected more strongly by the changes in
the direction of vy, than by the annual variations in its
magnitude.
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FIG.3. Periodic modulations of vy, and of the signal power in the case of gradient coupling. (a) Annual modulation of vy, due to the
Earth’s orbital motion around the Sun. (b) Daily modulations of cos a for the three orthogonal orientations of an external magnetic field:
towards the north (solid red line), towards the west (dashed blue line), and towards the zenith (dash-dotted green line). (c) Daily
modulations of the total signal power P, for the three orientations of an external magnetic field. The signal power is normalized such that
the maximum value is 1 (the scaling factor is the same for the three cases). (d) Similar to panel (c) but for the power P, . For panels
(b)—(d), we assume that the location is the Metcalf Science Center of Boston University (4,4, = 42.3484°, ¢4, = —71.1002°) and the

date is January 1 (from 00:00 to 24:00 in local time).

The magnitude of v, is given, neglecting the 0.2%
contribution from the Earth’s rotation, by the following
expression [21,43]:

Viap (1) = \/v% + v%e + e g cos [wy(t —7)],  (34)

where vg = 233 km/s is the speed of the Sun in the
galactic rest frame, vg = 29.8 km/s is the orbital speed of
the Earth revolving around the Sun, @, = 2z/(365 days) is
the Earth’s orbital angular speed, and n =~ 0.982 accounts
for the inclination angle of about 60° between the Earth’s
orbit and the galactic plane. Note that the rotational speed
of the Earth at the equator is about 0.47 km/s, which is
negligible compared to vg. The time offset in Eq. (34) is
T=1,+1 where t, is the time of the vernal equinox
(occurring usually on March 20) and 7 = 72.4 days.

The dependence v,;,(f) given by Eq. (34) is shown in
Fig. 3(a) for a one-year period starting on January 1. We
can see that vy, varies by only 13%, from 220 km/s
(around December 1) to 249 km/s (around June 1). This
annual variation corresponds to the 19% and 14% changes
in the signal powers P and P, respectively, assuming
that the angles a are chosen to maximize the sensitivity

(@ =0 for P and a = x/2 for P, ). As we will see below,
typical variations in the signal power due to daily modu-
lations of & are significantly larger (of the order of 100%).

To specify the direction of v, we use the coordinate
system (JQ", W, 2’), which is given by the three mutually
orthogonal vectors pointing to the north, to the west, and to
the zenith, respectively. The angles between vy, and these
three vectors can be written as [43]

cosay(t) = by cos A, — by sin Ay, cos (wgt + @), (35)
cosay(t) = by sin(wyt + @), (36)
cosaz(t) = bgsin Ay, + by cos Ay cos (wgt + @), (37)

where ¢ = ¢ha, + v is the phase, Ay, and ¢y, are
the latitude and the longitude of the laboratory, and
wg = 2x/(0.9973 days) is the Earth’s rotational angular
speed. The time ¢ in Egs. (35)—(37) is measured from the
beginning of January 1. Although the parameters bg, by,
and y vary during the year, they can be considered con-
stant on a timescale of several days. The corresponding
values on January 1| are by = 0.7589, b, = 0.6512, and
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w = —3.5336. Full analytical expressions for by, by, and y
as functions of time are provided in Ref. [43].

Figure 3(b) shows the time dependences (35)—(37) for a
24-hour period on January 1 and for the location of the
Metcalf Science Center of Boston University. Note that
the cases @ = ay, @ = ay, and a = a; correspond to the
external magnetic field B, oriented towards the north, the
west, and the zenith, respectively. The daily variations in
cos a lead to corresponding modulations in the signal powers
P” and P, as shown in Figs. 3(c) and 3(d). We can see that
the signal power varies during the day by as much as a factor
of 3. In the case of detection, these daily modulations will be a
powerful confirmation that the signal is correlated with the
Earth’s rotation with respect to the galactic DM halo. The
amplitude and phase of the modulations are deterministicand
can be predicted for a specific time and location. Going a step
further, one can put the haloscope on a rotating platform and
modulate the signal in a controlled way.

In addition to the total signal power, the spectral line
shape is also daily modulated due to its dependence on
the angle a shown in Fig. 2(a). This dependence can serve
as an additional nontrivial signature of axionlike DM. For
example, one can divide the collected time-domain data in
several subsets taken at the same time of day and compare
the shapes of the corresponding signals in frequency
domain. The most complete information can be obtained
by analyzing data from three haloscopes having mutually
orthogonal sensitivity axes.

VII. CONCLUSION

In this paper, we have considered spectral line shapes
and power spectra of the expected signal for a haloscope
experiment searching for axionlike DM in our Galaxy.
Assuming the standard halo model, we have rederived the
spectral line shape (12) that has been previously obtained
for the nongradient couplings in Refs. [12,21,35,39]. Our
derivation is straightforward and based on the connection
(8) between the line shape A(v) and the speed distribution
f(v) of ALPs in the galactic halo, as seen in the laboratory
frame. We have extended this derivation to the gradient
coupling and have considered experiments sensitive to a
specific component—either parallel or perpendicular—of
the ALP field gradient with respect to the direction of
applied static magnetic field. The resulting spectral line
shape and power spectrum are given by Egs. (21) and (23)
in the parallel case and by Egs. (22) and (24) in the
perpendicular case. To independently check our formulas,
we have also performed a Monte Carlo simulation based on
the stochastic model of the ALP field given by Eq. (3). The
simulated power spectra agree with the analytical results, as
shown in Fig. 2. Finally, we have discussed the daily and
annual modulations of the signal in the case of gradient
coupling. We have demonstrated in Fig. 3 that the direc-
tional sensitivity of a gradient haloscope leads to strong
daily modulations of the total signal power.

We would like to conclude by reiterating the advantages
of the gradient coupling for axionlike DM searches. One can
achieve directional sensitivity with a single gradient halo-
scope, while in the case of ALP field couplings this would
require two spatially separated detectors [36]. The direc-
tional sensitivity leads to strong daily modulations that, in
the case of detection, would greatly help in confirming the
DM nature of the signal. Another advantage is that the
gradient coupling allows one to probe the 3D velocity
distribution of ALPs in the galactic halo, thus paving the
way to full-fledged “axion astronomy” [39]. Finally, since
one can simultaneously probe three independent spatial
directions, a gradient haloscope is less susceptible to
stochastic amplitude fluctuations of the ALP field that
may reduce the sensitivity of a nongradient experiment
by as much as an order of magnitude [30]. We also point out
that a gradient haloscope may have enhanced sensitivity to
the relativistic cosmic axion background [44].
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APPENDIX A: TWO-DIMENSIONAL RANDOM
WALK WITH A VARIABLE STEP SIZE

Here we provide additional information on isotropic two-
dimensional random walks [45—47] as well as a derivation
of Eq. (28). As discussed in Sec. V, the end point of an
N-step walk can be described by the complex random
variable

N
z=x+iy =Y s,exp(ig,),

n=1

(A1)

where the size s, of each step is drawn from a specific
probability distribution with mean g, and variance o2,
while the direction angle, ¢, € [0, 2x), follows a uniform
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distribution. We assume that s, and ¢, are statistically
independent, which, in combination with the central limit
theorem, allows us to show that x and y (the real and
imaginary parts of z) are distributed normally.

Indeed, if r, and r, are two independent random
variables with means y,, y, and variances o2, o3, respec-
tively, then the probability distribution of the product rr,
has the expected (mean) value

E(rir) = ppa (A2)
and the variance
Var(riry) = (ui +61) (45 + 03) — i (A3)
Since
N N
x:ancoscﬁn, y :an sing,, (A4)
n=l1 n=l1
and
E(cos ¢,) = E(sing,,) =0, (AS)
1
Var(cos ¢,) = Var(sing,) = 3 (A6)
we immediately conclude that
E(s, cos¢,) = E(s,sing,) =0, (A7)

Var(s, cos ¢,) = Var(s, sing,) = %(pf +02). (A8)

We then use the central limit theorem [48], which states
that the distribution of a sum of N independent and
identically distributed random variables with mean y and
finite variance o> approaches, as N increases, a normal
(Gaussian) distribution with mean Ny and variance Né&2.
After applying this theorem to the sums (A4) and taking into
account Egs. (A7) and (AS8), we conclude that, as long as
N > 1, both x and y follow the normal distribution with zero
mean and variance N(u? + 62)/2. Note that this conclusion
does not rely on our knowledge of the specific probability
distribution for s, (besides its mean and variance).

Thus, z is a complex Gaussian random variable with zero
mean and variance 6> = N (u? + 62) /2. In the polar form, it
can be written as z = rexp (i¢), where

r=4/x 4+,

It is well known (see Example 6-15 in Ref. [48]) that the
magnitude r, which corresponds to the distance between
the end point of the walk and the origin, follows the
Rayleigh distribution

r r?
p(r;o) = —eXp (—?)

¢’ = arctan2(y,x).  (A9)

(A10)

The argument ¢’ is distributed uniformly, which reflects the
fact that there is no preferred direction for an isotropic
random walk. The squared distance, 12, follows the
exponential probability distribution

p(rko) = %exp (—%) (A11)

as demonstrated in Example 6-14 of Ref. [48]. This
distribution appears in Eq. (31) and describes the PSD
values sampled at each frequency v;.

Let us now show how to derive Eq. (28). The left-hand
side of this equation can be rewritten as

N N
> scosn + ) = Re((0 s,
n=1 n=1

= Re(e''z) = rcos(wt + ¢'),

(A12)
where the angular frequency, @ = 2z, is used for brevity.
Recall that r follows the Rayleigh distribution (A10) with
variance o> = N(u? + o62)/2. Finally, we introduce a nor-

malized variable, ' = r/o, and the right-hand side of
Eq. (A12) becomes

rcos (wt+¢') = '”‘w:’cos (0t +¢"), (A13)

where ' follows the Rayleigh distribution (A 10) with unit
variance.

APPENDIX B: EXPRESSIONS FOR g, AND a‘ﬁ N
AND A DERIVATION OF EQ. (33) '

The mean p, and the variance a‘ﬁl introduced in
Eq. (32) are defined as

v

2
= [ nesiwaa. @y

,UZ
aj.(v) = Fn(® ﬂ (v).L = Hy L) fin(V)dQ,  (B2)

pL(v) =

where for brevity we have denoted the integral over the
solid angle as

LZEMLI...sianﬂzﬂ...dQ.

Let us show how Eq. (33) can be derived assuming these
definitions. We first note that

(B3)

2

as immediately follows from Eq. (11). Then, we rewrite

Eq. (B2) as

(B4)
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2
=7 ] e

>
=2u.1 )ﬁ(v),[/ ”||‘Lf{:tz(")dg

2
ol R

2
= )ﬁ(v) [/ v fan(VdQ -t |, (BS)

+,Uﬁ‘l

where at the last step we used Egs. (Bl) and (B4).
Therefore, we have shown that

6+ (@) =0 [[ 0} s,

= C Lf)L(v), (B6)

where the last step follows from Eq. (18).
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