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The prism manifold realization problem II

WILLIAM BALLINGER, YI NI, TYNAN OCHSE
AND FARAMARZ VAFAEE

We continue our study of the realization problem for prism mani-
folds. Every prism manifold can be parametrized by a pair of rel-
atively prime integers p > 1 and q. We determine a complete list
of prism manifolds P(p, ¢) that can be realized by positive integral
surgeries on knots in S® when ¢ > p. The methodology undertaken
to obtain the classification is similar to that of the case ¢ < 0 in
an earlier paper.
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1. Introduction

This paper is a continuation of [BHM™20], where the authors studied the
Dehn surgery realization problem of prism manifolds. Recall that prism man-
ifolds are spherical three-manifolds with dihedral type fundamental groups.
Alternatively, an oriented prism manifold P(p, q) has Seifert invariants

(*1; (27 1)7 (2’ 1)7 (p7 Q))v

where ¢ and p > 1 are relatively prime integers. A surgery diagram of P(p, q)
is depicted in Figure 1A. When ¢ < 0, the realization problem for prism
manifolds was solved in [BHM*20]. More precisely, a complete list of P(p, q),
with ¢ < 0, that can be obtained by positive Dehn surgery on knots in S°
is tabulated in [BHM'20, Table 1]. Indeed, every manifold in the table
can be obtained by surgery on a Berge—Kang knot [BK]. Our main result,
Theorem 1.1 below, provides the solution for those P(p,q) with ¢ > p: see
Table 2.

Theorem 1.1. Given a pair of relatively prime integers p > 1 and q > p,
the prism manifold P(p,q) can be obtained by 4q-surgery on a knot K C S3
if and only if P(p,q) belongs to one of the six families in Table 2. Moreover,
in this case, there exists a Berge-Kang knot Ky such that P(p, q) = Si’q(Ko),
and that K and Kg have isomorphic knot Floer homology groups.

Table 1 presents the list of realizable prism manifolds for ¢ > p with the
range of parameters suppressed.

Remark 1.2. In the arXiv verison of [BHM*20], for each prism manifold
in Table 1, we listed a Berge—-Kang knot realizing the corresponding surgery
following the work of Berge—Kang [BK]. However, since Berge-Kang’s work
is not publicly available, we did not include this list of Berge—Kang knots
in the published version of [BHM™20]. An explicit list of primitive/Seifert-
fibered knots admitting prism manifold surgeries was given in [Shangl9],
independent of [BK]. The second statement of Theorem 1.1 now follows
from [Shangl9].

The methodology used to obtain Table 1 is similar to that of [Grel3,
BHM™20]. When ¢ > p, the prism manifold P(p,q) bounds a negative def-
inite four-manifold X = X (p,q) with a Kirby diagram as in Figure 1D:
see Section 2. Let P(p,q) arise from surgery on a knot K C S3. Let also
Way = Way(K) be the corresponding two-handle cobordism obtained by
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Table 1. Pq>p, table of P(p, q) with ¢ > p that are realizable; the constraints
on the parameters p, ¢ and r are supressed. See Table 2 for the complete

version.

Type P(p,q)

1A P(p,3(p* +3p+4))

1B (p%p +3p+4))

2 P(p rp—l))

3 P (p, 3:(p = Dp—4))
4 P(p, 55 ((2r +1)%p — 1))
5 (p7'r2 2r— 17’])—1))

Sporadic  P(11,19), P(13,34)

attaching a two—handle to the four—ball along the knot K with framing
4g. Form the four-manifold Z := X Up, o (—Wiyg). It follows that Z is a
smooth, closed, negative definite four-manifold with ba(Z) = n + 2 for some
n > 1: see Figure 1D. Now, the celebrated theorem of Donaldson (“The-
orem A”) implies that the intersection pairing on Hy(Z) is isomorphic to
—7"*2 [Don83], the Euclidean integer lattice with the negation of its usual
dot product. This provides a necessary condition for P(p,q) to be positive
integer surgery on a knot; namely, the lattice C(p, q), specified by the neg-
ative of the intersection pairing on Hs(X), must embed as a codimension
one sublattice of Z"*2. The key idea we use to sharpen this into a necessary
and sufficient condition is the work of Greene [Grel3], which is built mainly
on the use of the correction terms in Heegaard Floer homology in tandem
with Donaldson’s theorem. In order to state the theorem, we first require a
combinatorial definition.

Definition 1.3. A vector o = (00,01, ...,0,+1) € Z"2 that satisfies 0 <
090 <01 < --- < opt1 is a changemaker vector if for every k, with 0 < k <
00+ 01+ -+ ony1, there exists a subset S C {0,1,...,n+ 1} such that

k= ZiESUi'



1282 W. Ballinger, Y. Ni, T. Ochse, and F. Vafaee

Using Lemma 2.6, the following is immediate from [Grel5, Theorem 3.3].

Theorem 1.4. Suppose P(p,q) with q > p arises from positive integer
surgery on a knot in S3. The lattice C(p,q) is isomorphic to the orthog-
onal complement (o) of some changemaker vector o € Z"+2.

By determining the pairs (p,q) which pass the embedding restriction
of Theorem 1.4, we get the list of all prism manifolds P(p,q) with ¢ > p
that can possibly be realized by integer surgery on a knot in S3: again, see
Table 1. We still need to verify that every manifold in our list is indeed
realized by a knot surgery. In fact, this is the case.

Theorem 1.5. Given a pair of relatively prime integers p > 1 and q > p,
C(p,q) = (o)* for a changemaker vector o € Z"2 if and only if P(p,q)
belongs to one of the six families in Table 2. Moreover, in this case, there
exist a knot K C S with Siq(K) =~ P(p,q) and an isomorphism of lattices

2 (Zn+2>I) — (H2(Z)? _QZ)a

such that ¢(o) is a generator of Ho(—Wa,). Here I denotes the standard
inner product on Z""? and Qyz is the intersection form of Z = X(p,q) U
(_W4q)'

Remark 1.6. Theorem 1.5, in particular, highlights that the families in
Table 2 are divided so that each changemaker vector corresponds to a unique
family. However, a prism manifold P(p,q) may belong to more than one
family in Table 2. We will address the overlaps between the families of
Table 2 in Section 9: see Table 3.

Table 2 in [BHM'20] gives a conjecturally complete list of prism man-
ifolds P(p,q) with ¢ > 0 that can be obtained by performing surgery on a
knot in S3. Every manifold in [BHM*20, Table 2] is obtained by integral
surgery on a Berge-Kang knot (see [BHM™120, Table 4] and [BK]). Theo-
rem 1.1 proves [BHM*20, Conjecture 1.6] for the case ¢ > p since the man-
ifolds in Table 1 coincide with those in [BHM™20, Table 2] with ¢ > p. In
the present work, we leave open the realization problem for prism manifolds
P(p,q) with 0 < g < p. We address this case in [BNOV18].

1.1. Organization

Section 2 collects the topological background on prism manifolds, and also
reviews the essentials needed to prove our main results. In Section 3, we
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study C—type lattices C(p, ¢) that are central in the present work. To prove
Theorem 1.5, we begin with a study of the changemaker lattices (Section 4),
i.e. lattices of the form (o) C Z"*? for some changemaker vector o € Z"+2.
We then study when a changemaker lattice, with a standard basis, is isomor-
phic to a C—type lattice, with its distinguished vertez basis. The key to an-
swering this combinatorial question is detecting the irreducible elements in
either of the lattices. Indeed, the standard basis elements of a changemaker
lattice are irreducible (Lemma 4.4), as are the vertex basis elements of a
C—type lattice. Furthermore, the classification of the irreducible elements
of C—type lattices is given in Proposition 3.2. We collect many structural
results about these lattices in Sections 3 and 4.

We classify the changemaker C—type lattices based on how xg, the first el-
ement in the ordered basis of a C—type lattice, is written in terms of the stan-
dard orthonormal basis elements of Z"+2. Accordingly, Sections 5, 6, and 7
will enumerate the possible changemaker vectors whose orthogonal com-
plements are C—type lattices. Section 8 tabulates the corresponding prism
manifolds.

Finally, in Section 9, we address the overlaps between the families in
Table 2. More precisely, we provide distinct knots corresponding to distinct
changemakers that result in the same prism manifold. We then proceed with
proving Theorems 1.1 and 1.5.
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2. Preliminaries

For a pair of relatively prime integers p > 1 and g, the prism manifold P(p, q)
is a Seifert fibered space with a surgery description depicted in Figure 1A.
It is shown in [BHM*20] that if P(p,q) is obtained by surgery on a knot in
53, p must be odd.
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An equivalent surgery description for P(p, q) is depicted in Figure 1D. To
get the coefficients a;, write %f;}f’ in a Hirzebruch—Jung continued fraction

2q—p 1 _
(1) - :al——lz[al,ag,...,an] .

ag — 1

an,

From this point on in the paper, we assume that ¢ > p. As a result, we have
a; > 3 in Equation (1). Moreover, each a; > 2.

Definition 2.1. The C-type lattice C(p,q) has a basis

(2) {zo,...,Zn},

and inner product given by

4 1=35=0

a; t=7>0

(i, 25) = ¢ -2 {i,j} ={0,1}

-1 |i—j]=1,i>0,7>0
0 li — 7] > 1,

where the coefficients a;, for i € {1,...,n}, are defined by the continued
fraction (1). We call (2) the vertezx basis of C(p,q).

Let X = X(p, q) be the four-manifold, bounded by P(p, ¢), with a Kirby
diagram as depicted in Figure 1D. The inner product space (Ha(X), —Qx)
equals C(p, q), where Q x denotes the intersection pairing of X: see Figure 2.
Note that ba2(X) = n + 1, where n is defined in (1).

Remark 2.2. When ¢ < 0 in Equation (1), it follows that a; =2 and
C(p, q) is indeed isomorphic to a D-type lattice [BHM™20, Definition 2.8].
The prism manifold realization problem is solved in this case [BHM*20].

2.1. The four—manifold X (p, q) revisited
In this subsection, we present a different construction of the four—manifold

X (p,q) as the branched double cover of B* over a particular surface: see
Figure 3. As a Seifert fibered rational homology sphere, the prism manifold
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O G
5P

Figure 1. Surgery presentations of P(p,q). A and B correspond to the
two equivalent choices of Seifert invariants (—1;(2,1),(2,1),(p,q)) and
(1;(2,1),(2,—1),(p,g — p)). To go from B to C, blow down two 1-framed
unknots in sequence: first blow down the middle unknot, changing the fram-
ing on the upper left unknot to 1, and then blow down the upper left unknot.
Finally, to get to D, use slam-dunk moves to expand qu—; in a continued
fraction. The last link gives a negative-definite four-manifold if ¢ < 0 or

q>p-

— o o o

4 ai as cee an

Figure 2. A C—type lattice C(p, q) with Qqq%}f = la1,a,...,a,|”. Note that
a1 > 3 when g > p.

P(p,q) is the branched double cover of S branched along a Montesinos
link [Mon73]: choose by, ..., by, so that

(3) L b+

= [bl,bg,...,bm]+.
9-p by + ———
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Pa—— | b

s

-1

Figure 3. A handle decomposition of a surface embedded in S3. The bound-
ary of this surface is an alternating Montesinos link whose branched double
cover is P(p, q), and the branched double cover of B* over this surface with
its interior pushed into the interior of B* is X (p,q). Sliding the 1-handles
in this picture along the red arrows and then cancelling all but one of the 0—
handles gives Figure 5. This surface depends on parameters by, . .., b, where
m is either 2k + 1 or 2k; if m = 2k omit the band labelled bogy1.

Since ¢ > p, (;f;p > 0 and we can choose the b; so that by > 0 and b; > 0 for
i > 1. The boundary of the surface ¥ drawn in Figure 3 is an alternating
Montesinos link L, and ¥ itself is the surface formed by the black regions in
a checkerboard coloring of the alternating diagram. We point out that we
are using the coloring convention as in Figure 4. The branched double cover
of $3 branched along L is P(p,q). Let Xy be the branched double cover of
B* over the surface ¥ with its interior pushed into the interior of B. With
this notation in place:

Proposition 2.3. X(p,q) = X5.

We first recall the following lemma that will be used in the proof of
Proposition 2.3 and also in Section 8.

Lemma 2.4 (Lemma 9.5 (1) and (3) of [Grel3]). For integersr,s,t >
0,
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A

Figure 4. The coloring convention.

R RS R
\ . 7

"
by — 1

Figure 5. Another view of the surface shown in Figure 3. From this picture
a Kirby diagram representing the branched double cover of B* over this
surface (shown in Figure 6) can be read off using the methods of Figure 4
in [AK80]. As before, if m is even omit the band labelled oy .

Ll..,m2blt. - =L..,r=1,—(s+1),t—1,...]", and
2. [.,s2M]m=[ .. s—1,—(t+1)],
where 29 means that the entry 2 appears a times.
We now proceed to prove Proposition 2.3. In order to obtain a Kirby di-

agram of branched double covers, we closely follow the treatment of [AK80];
in particular, see [AK80, Figure 4].

Proof of Proposition 2.3. Figure 3 depicts a handle decomposition of the
surface ¥ whose branched double cover is Xsx. By sliding the 1-handles
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along the red arrows in Figure 3 and then canceling all but only one of the
O0-handles, we obtain the surface in Figure 5: a disc with several bands at-
tached. The odd-numbered b2;4+1 with 0 < i < mTfl contribute bands with
boi+1 + 2 half-twists, b; contributes a band with b; + 3 half-twists, and b,,
contributes a band with b,, +1 half-twists when m is odd. The even-
numbered by; contribute by; — 1 bands each, each with 2 half-twists. There-
fore, the coefficients a, ..., a, of Figure 6 are

(4)
(a1, an) {(b1 +3,20271 by 2,201 ol 1) moodd,
1y---5Un) =

| (by + 3,207 py 42 201y 42 2le =)y even.,
Using Lemma 2.4,

[al, .. .,an]_ = [bl + 2, *bg,bg, —by,.. .,:tbm]_

= [b14+2,D2,...,bp]"
D

q—p

29 —p

q—p

That is, the a; in Equation (4) are the same as those of Equation (1). The
branched double cover of B* branched over the surface in Figure 5 is depicted
in Figure 6; comparing it with Figure 1D, the result follows. O

2.2. Input from Heegaard Floer homology

We assume familiarity with Floer homology and only review the essential
input here for completeness. In [OS03], Ozsvath and Szabd defined the cor-
rection term d(Y, t) that associates a rational number to an oriented rational
homology sphere Y equipped with a Spin® structure t. If Y is boundary of
a negative definite four-manifold X, then

(5) c1(5)% + b (X) < 4d(Y, 1),
for any s € Spin®(X) that extends t € Spin‘(Y).
Definition 2.5. A smooth, compact, negative definite four—-manifold X is

sharp if for every t € Spin®(Y'), there exists some s € Spin®(X) extending t
such that the equality is realized in Equation (5).
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Figure 6. A Kirby diagram representing the branched double cover of the
surface in Figure 3. This is the same as the diagram defining X (p, q). The
grey box is not part of the link, but is included only to show the relationship
with Figure 5.

Using Proposition 2.3, the following is immediate from [OS05b, Theo-
rem 3.4].

Lemma 2.6. X(p,q) is a sharp four-manifold.

2.3. Alexander polynomials of knots on which surgery yield
P(p,q) with ¢ > p

Using techniques that will be developed in the next sections in tandem with
Theorem 1.4, we will find the classification of all C-type lattices C(p,q)
that are isomorphic to (o) for some changemaker vector o in Z"2. If the
corresponding prism manifold P(p,q) is indeed arising from surgery on a
knot K C S3, we are able to compute the Alexander polynomial of K from
the values of the components of o: let S be the closed surface obtained by
capping off a Seifert surface for K in Wy,. It is straightforward to check that
the class [S] generates Ha(Wyq). It follows from Theorem 1.4 that, under
the embedding Ha(X) @ Ho(—Wig) — Ha(Z), the homology class [S] gets
mapped to a changemaker vector o. Let {eg,e1,...,en4+1} be the standard
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orthonormal basis for Z"*2, and write

n+1

o = E 0;€;.
1=0

Also, define the characteristic covectors of Z"* 2 to be

n+1
Char(Z"”) = {Z ¢;e; | ¢; odd for all z} .
i=0
We remind the reader that, writing the Alexander polynomial of K as
(6) Ag(T)=bo+ Y _b(T +T7"),
i>0

the k-th torsion coefficient of K is
th(K) = ik,
i>1

where k£ > 0. The following lemma is immediate from [Grel5, Lemma 2.5].

Lemma 2.7. The torsion coefficients satisfy

2
-2
cin’ for each i € {0,1,...,2q},

min
ti(K)={ ° 8
0, fori > 2gq.

where ¢ s subject to
¢ € Char(Z"?), (c,0)+4g=2i (mod 8¢).
And fori >0,

bi =ti—1 — 2t + tit1,

and

bo=1-2) b,

1>0

where the b; are as in (6).
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3. C-type lattices

This section assembles facts about C-type lattices that will be used in the
classification. We mainly use the notation of [Grel3, BHM*20]. Recall that
we always assume g > p, so a; > 3: see Figure 2.

Let L be a lattice. Given v € L, let |v| = (v,v) be the norm of v. An ele-
ment ¢ € L is reducible if £ = x + y for some nonzero x,y € L, with (z,y) >
0, and irreducible otherwise. An element ¢ € L is breakable if £ = x + y with
|z],|y| > 3 and (x,y) = —1, and unbreakable otherwise.

Among the irreducible elements of a lattice, intervals are the most con-
venient for us:

Definition 3.1. In a C-type lattice, if I is any subset of {zg,z1,..., 2}
then write [I] =) _,x. An interval is an element of the form [I] with
I ={z4,2041,...,2p} for 0 < a <b < n. We say that a is the left endpoint
of the interval, and b is the right endpoint of the interval. Say that [I]
contains x; if I does.

Given the fact that a; > 3, the following is immediate from [Grel3,
Proposition 3.3]. We point out that every C-type lattice is a graph lattice:
see [Grel3, Definition 3.1]. The graph G has vertice set V' = {r, zg, z1,..., 2}
with r being the root. There are two edges between xg and x1, and one edge
between x; and x;41 when ¢ > 0. There are two edges between r and z¢, and
a; — 2 edges between r and x; when ¢ > 0.

Proposition 3.2. If v e C(p,q) is irreducible, v = €[I] for some e = £1
and [I] an interval. Also, every vertex basis element of a C-type lattice is
wrreducible.

Definition 3.3. Given a lattice L and a subset V C L, the pairing graph
is G(V) = (V, E), where e = (v;,v;) € E if (v;,v;) # 0.

Corollary 3.4. The lattice C(p, q) is indecomposable; that is, C(p, q) is not
the direct sum of two nontrivial lattices.

Proof. Suppose that C(p,q) = L1 ® Ls. Then each x;, being irreducible
(Proposition 3.2), must be in either L; or Ls. However, any element of L; has
zero pairing with any element of Lo. Since (x4, 241) # 0, G({zo, ..., 2n})
is connected. This means that all of the x; are in the same part of the
decomposition, and the other is trivial. O



1292 W. Ballinger, Y. Ni, T. Ochse, and F. Vafaee

In a C-type lattice, we have that |(zg,x1)| = 2. It turns out that the
inner product of zg with any other element in the C-type lattice lives in 2Z.
The following lemma is straightforward to prove.

Lemma 3.5. For any v € C(p,q), {(xo,v) is even.
Definition 3.6. A vertex z; has high weight if i > 0 and |z;| = a; > 2.

Proposition 3.7. Suppose that I # {xo} is an interval. An element €[I] €
C(p,q) with e € {£1} is unbreakable if and only if [I| contains at most one
element of high weight.

Proof. The proof is similar to [Grel3, Corollary 3.5 (4)]. If [I] contains more
than two elements of high weight, we can break I into two consecutive
intervals I, Iy with |[I1]], |[I2]| > 3 and ([I1], [I2]) = —1, so [I] is breakable.

Coversely, if [I] is breakable, let G be the graph described before Propo-
sition 3.2, we can apply [Grel3, Proposition 3.4]. Then either G|I contains
a cut edge e or G|(V — I) contains a cut edge e. If G|I contains a cut edge
e, then I — e = I U Iy, and |[11]],|[{2]] > 3. It follows that each of I, I con-
tains an element of high weight. If G|(V — I) contains a cut edge e, then
G|(V —1—e) =1 UIly with Iy containing r, and [I| =[I U]+ (—[I1])
with [[I U L]|,|[1]| > 3 and ([l UI;],—[I1]) = —1. Note that I; is always
an interval not containing xo, so ([I U I1], —[1]) = —|[11]| — ([I], [11]) < -2,
a contradiction. O

Definition 3.8. Consider the graph C' on vertex set {zg,...,z,} that has
two edges between xg and x; and one edge between x; and ;1 for 0 < ¢ < n.
Given two intervals [I] and [J], say that an edge of C' is dangling if one of
its ends is in I, the other is in J, and at least one of the ends is not in I N J.
Write §([I],[J]) for the number of dangling edges.

Lemma 3.9. For two intervals [I],[J], ([I],[J]) = |[I N J]| — o([Z],[]])-

Proof. Suppose I = {zq,...,zp} and J = {z.,...,z4}. Then we can express
b d
(L) =D (i)
1=a j=c

Terms in this sum with |i — j| > 1 vanish. The remaining terms either have
x; and x; in I N J, so occur as terms in the expansion of |[I N J]|, or have
at least one of z; or ; not in I N J, so contribute to §([I], [J]). O
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We frequently use the following lemma, which is stated without proof.

Lemma 3.10. Let I # {x¢} be an interval. Then

]| =2+ Z (|| —2).

z,€I\{zo}

Given the structure of a C-type lattice, the following is immediate.

Lemma 3.11. For any intervals I, J, 0([1],[J]) is0,1,2, or3. If 6([I],[J]) =
3, then (xo, [I]) = — (zo, [J]) = £2.

To more precisely describe the value §([Z],[J]), it will be convenient to
use some terminology from [Grel3]:

Definition 3.12. For two intervals [I] and [J] with left endpoints i, jo and
right endpoints i1, j1, say that [I] and [J] are distant if either i1 + 1 < jo or
J1+ 1 <'ip, that [I] and [J] share a common end if ig = jo or i; = ji, and
that [I] and [J] are consecutive if i; +1 = jo or ji + 1 =1ip. Write [I] <
[J] if I C J and [I] and [J] share a common end, and [I] { [J] if they are
consecutive. If [I] and [J] are either consecutive or share a common end, say
that they abut. If I N J is nonempty and [I] and [J] do not share a common
end, write [I] h [J].

Remark 3.13. If ([I],z0) = ([J], zo) or if either ([I], zo) or ([J], zo) is zero,
then §([I],[J]) is 0 if [I] and [J] are distant, 1 if [I] and [J] abut, and 2 if
[I] N [J]. If ([I], o) # ([J],x0) and both are nonzero, 6([Z], [J]) is 2 if [I] and
[J] abut, and 3 if [I] th [J]. In the latter case, [I] and [J] are never distant.

Definition 3.14. For an unbreakable interval [I;] € C(p, q) with |[1;]| > 3,
let =, be the unique element with |z, | > 3.

We end this section by determining when two C-type lattices are iso-
morphic.

Proposition 3.15. If C(p,q) = C(p',q'), then p=1p' and q =¢'.

Proof. If L is a lattice isomorphic to C(p, q), then to recover p and ¢ from L
it suffices to recover the ordered sequence of norms v = (|z1|, [z2|,. .., |zn]).
To do this, we will first identify the elements of this sequence that are at
least 3, and then fill in the 2’s.
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We claim that unless v = (4) or v = (3, 2[4, 3) for t > 0, there is a unique
(up to sign) irreducible element y such that

(7) ly| =4 and (y,v) is even for all v in L.

(This y is £x.) Let I # {xo} be any interval representing an irreducible
element with norm 4. Suppose I = {x4,Zq+1,-..,2p}. If a>1, then
([I],xq—1) = —1is odd. If b < n, then ([I], xp4+1) = —1 is odd. So we assume
a=0or1,and b =n.If |x;| = 2, then ([I],z1) = £1is odd. If |z,,| = 2, then
([I],zn) =1 is odd. So we have |z1| > 3, |z,| > 3. Since |[I]| = 4, either I
contains a unique high-weight vertex with norm 4, or I contains exactly two
high-weight vertices such that both have norm 3. Our claim holds.

If there are at least two (up to sign) irreducible elements y satisfying
(7), v is (4) or (3,2[4,3) by the previous claim. We can determine v from
the rank of the lattice. From (1) we can get (p, q).

From now on, we assume y = x is the unique (up to sign) irreducible
element satisfying (7). Let R be the sublattice of L generated by z( and all
vectors of norm 2. Since L contains no vectors of norm 1, any vector of norm
2 in L is irreducible. By Lemma 3.10, then, R is generated by x¢ and the x;
with ’xz‘ = 2.

Now, let V be the set of irreducible, unbreakable elements of L \ {£+xo}
with norm at least 3, and let V' be the quotient of Vjy by the relation v ~ u
whenever either v —u € R or v+ u € R. Every element of Vj corresponds
to an interval containing a unique high-weight vertex, and v ~ u if and only
if these high-weight vertices are the same. Therefore, V' consists of precisely
the equivalence classes of the x; with |z;| >3, ¢ >0, and if v € V with
v ~ x; we have |v| = |z].

Finally, let W be the set of indecomposable components of R, so each
element of W corresponds to either xg or a run of 2’s in the sequence of norms
(|z1], |z2l, - - -, |zn|). Let B be the bipartite graph with vertex set VU W, and
an edge between v € V and w € W if there is a representative v € L of v
and an element w € W such that (0, w) = —1, or w corresponds to zy and
(0,29) = —2. Then v and w neighbor in B if and only if the element xz;
representing v is adjacent to xg or the run of 2’s corresponding to w, so
B is in fact a path. Furthermore, there is a unique element wy € W that
contains xg, and wy must be one of the ends of the path B. We can now
recover (|z1|,|xal,...,|xn|) as follows: The vertex wgy neighbors a unique
element v € V in B. The rest of the sequence is completed in the following
way - as we travel down the path B, when we encounter an element w € W,
an indecomposable component of R, we add as many 2’s to the sequence as
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the rank of w, and when we encounter an element v € V- we add || to the
sequence for ¥ a representative of v. O

4. Changemaker lattices

A lattice is called a changemaker lattice if it is isomorphic to the orthogonal
complement of a changemaker vector. Whenever P(p, q), with ¢ > p, comes
from positive integer surgery on a knot, C(p, ¢) is isomorphic to a change-
maker lattice (0)% C Z"*2. In this section, we will assemble some basic
structural results about C-type lattices that are isomorphic to changemaker
lattices.

Write (eg, €1, ..., ent1) for the orthonormal basis of Z"2, and write o =
>, oie;. Since C(p, q) is indecomposable (Corollary 3.4), og # 0, otherwise
(0)* would have a direct summand Z. So ¢ = 1.

We will need several results from [Grel3, Section 3] about changemaker
lattices:

Definition 4.1. The standard basis of (o)* is the collection S =
{v1,...,vn}, where

whenever 0; =1+ 00+ ---+ 0,1, and

vV = ( E 6i> —€j
i€A

whenever o; =), ,0;, with A C{0,...,7 — 1} chosen to maximize the
quantity » ;. 4 2°. A vector v; € S is called tight in the first case, just right
in the second case as long as i < j — 1 and ¢ € A implies that ¢ + 1 € A, and
gappy if there is some index ¢ with i € A, i < j—1,and i+ 1 ¢ A. Such an
index, 4, is a gappy index for v;.

The standard basis S is in fact a basis of C(p, q).

Definition 4.2. For v € Z"*2, suppv = {i| (e;,v) # 0} and supptv =
{i| (es,v) > 0}.

Lemma 4.3 (Lemma 3.12 (3) in [Grel3]). If|vii1| =2, then k is not
a gappy index for any v; with j € {1,--- ,n+1}.
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Lemma 4.4 (Lemma 3.13 in [Grel3]). FEach v; € S is irreducible.

Lemma 4.5 (Lemma 3.15 in [Grel3]). Ifv; € S is breakable, then it is
tight.

Lemma 4.6 (Lemma 3.14 (2) (3) in [Grel3]). Suppose that v, € S is
tight.

(1) If vy =e; +ej_1 —ej, j > t, then vy + v; is irreducible.

(2) If vi41 = eg+e1+ -+ e — epq1, then vy — vy is irreducible.

Lemma 4.7 (Lemma 4.9 in [BHM120]). For any v; € S, we have j —
1 € suppvj.

For the rest of this section, suppose o = (0qg,01,...,0n041) € Z"? is
a changemaker vector such that (o)% is isomorphic to a C-type lattice
C(p, q) with ¢ > p. Also, let zg, ..., x, be the vertex basis of C(p, q), and let
S = (v1,...,vn41) be the standard basis of (¢)*. Each v; is an irreducible
element in a C-type lattice (Lemma 4.4), so corresponds to some interval
(Proposition 3.2). By a slight abuse of notation, denote [v;] for the interval
corresponding to v;. Let ¢; € {41} satisfy v; = ¢;[v;].

The C-type lattice C(p, ¢) contains an element xy with |z| = 4, and any
vector of norm 4 in Z"*2 is of the form either +2ey, or +ey, T ex, ek, ek,
for distinct indices k;. Vectors of the first form cannot be in (o)* since
oo # 0, so xg must be of the second form. In fact, we can say a little bit
more about how xg can be written in terms of the e;. We start by the
following lemma.

Lemma 4.8. There is no element v € C(p, q) with (v,x0) # 0 and |v| = 2.

Proof. Since C(p, q) is indecomposable, it contains no x with |z| =1 (such
an = would generate a Z-summand of C(p, q)). Therefore, if v € C(p, q) with
|v| = 2, it must be irreducible, so v = £[I] for [I] an interval. By Lemma 3.10,
[I] contains only x( or elements of norm 2. In particular, [I] does not contain
x1, since a; > 3. This means that [I] also cannot contain z, since then
[I] = zo and |v| = 4. Therefore, ([I], zo) = 0, and so (v, zg) = 0. O

Proposition 4.9. For some indices ki1 < ko < ks, xg is equal to one of
eo+ ek, + ek, — ek, oreg — e, — €k, + ek, , possibly after a global sign change
in the isomorphism between (o)* and C(p,q).
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Proof. Since |zg| = 4 and zg € (0)",
xo = dpek, + 1€, + daex, + b2ey,

for indices kg < k1 < ka2 < k3 and signs 6; such that ), 6;0; = 0. By a global
sign change, we might as well assume that dy = 1. If ko > 0, (xg,vg,) = —1
is odd, violating Lemma 3.5. So kg = 0.

We claim that if oy, = oy,, then §; = §;. Otherwise v = d;ex, + djex,
would be in (¢)* with |v| = 2 and (v, 2¢) = 2, which contradicts Lemma 4.8.
Therefore, if §1 = —1 then o1 > o0¢, and so dpoy + d101 < 0. Therefore, dooo +
0303 > 0. Since o9 < 03, this means that 43 = 1, and then do = —1 since o1 <
00 + 02 + o3. In the other case, if 41 = 1 then dgog + d101 > 0, S0 dooo +
0303 < 0 and d3 = —1. If also 49 = —1, then

09+ 01 =02+ 03.

Since oy < 01 < 09 < 03, this can only happen if all of the o; are equal,
again contradicting the fact that if o; = o; we must have §; = 9. O

Corollary 4.10. The vector vy is equal to 2eq — ey if k1 > 1, and ey — e1
otherwise. If xo = ey — e, — e, + €k,, the first of these occurs.

Proof. Note that vy is always either ey — e or 2eg — e1. Using Lemma 3.5,
the first statement of the lemma follows. For the second statement, if k; = 1
and v1 = e; — e, then if 29 = eg — ek, — ex, + e, we have that (v, zg) =2
and |v1| = 2, contradicting Lemma 4.8. O

Lemma 4.11. If k; > 1, vy is the only tight vector. If k1 =1, vg, can be
tight but there is no other tight vector.

Proof. We claim that if v; is tight, then either ¢t < ky or t = ko. Using
Lemma 3.5, we must have that either ko <t < k3 or t < k1 as otherwise
v; will have odd pairing with zg. If ke < ¢t < k3, then

or=14+o09+01+ -+01—1 21+ 00+ 0k, + 0p,-
However, by Proposition 4.9, the fact that (zg, o) = 0 implies that
Oky = O, + Ok, T 00 < Ok, + 0k, + 00 < 0,

contradicting the fact that ¢t < k3. The claim follows.
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If k1 =1, it is only possible that ¢t = ko, so the second statement of the
lemma follows. Suppose now that k1 > 1. We have that v; = 2eg — e; by
Corollary 4.10. So if v; is tight with ¢ > 1, we get that (v;,v;) =3 and
|vg| > |vi] = 5. Also, since either ¢t < ki or t = ko, (v, z0) = (v1,20) = 2.
Therefore, either ¢; = —1 and [v;] has left endpoint 1, or € =1 and [v{]
has left endpoint 0, and the same holds for ¢; and [v;]. By Lemma 3.9,

3 = (v1,v) = exes(|for Noel| = 6([vr], [va]),

[[vr Nv]| > 2 and d([v1], [ve]) < 3, so if €1 # €, the right hand side of this
equation is at most 1. Therefore, €; = ¢, and the left endpoints of [v1] and
[v;] are equal. Since |v;| > |v1], the right endpoint of [v] is to the right of
the right endpoint of [v1]. This means that §([v1], [v¢]) = 1 and v; N, = vy,
SO

(v1,00) = erer(|[vr Noel| = 6([on], [ve])) = [[wn]] =1 =4 # 3.

Therefore, vy is the only tight vector. O

Lemma 4.12. For j # k3, (vj,x0) >0

Proof. Using Proposition 4.9, either xg = eg + e, + ex, — €x, Or g = ey —
€k, — €k, +ek,. If zo =eo + ey, + ex, — ek, it would only be possible to
have (vj,zg) <0 for j=k; or j = k. However, in these cases one has
(vj, o) > —1, and since (v;, zg) is even, it follows that (vj, o) > 0. If zg =
ep — ey, — ek, + €k,, then (v;,xo) is always at least —3, since (vj,eg) > 0.
Therefore, since it is even, (v;, zg) > —2. Given that j # k3, the only possible
way to have (vj, zo) = —2 is that kq, ka € supp™(v;), and 0, k3 & supp™ (v;).
Observe that this cannot happen since then v; + xg is still of the form
—ej 4+ Y icq € forsome A" C {0,...,7 — 1}, but A’ is lexicographically after
supp™ v;, contradicting the maximality criterion in Definition 4.1. [l

Lemma 4.13. Ifv; and v; are two unbreakable standard basis vectors with
i,j # ks, then it cannot be the case that [v;] contains x¢ and [v;] contains
x1 but not xg. In particular, §([v;], [v]) < 2.

Proof. Assume the contrary. Since i, j # k3, and k3 = max supp(zg), neither
v; nor v; is equal to +x¢, and by Lemma 4.12, (v;, o) and (v;, zg) are both
nonnegative. Therefore, (v;, zg) = (vj, z9) = 2. Since ¢ is contained in [v;],
the left endpoint of [v;] is 0 and ¢; = 1. Similarly, [v;] has left endpoint 1
and €; = —1. Therefore, 6([v;], [v]) is either 2 or 3, and since v; and v; are
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unbreakable and a; > 3, z; = z; = 1 (see Definition 3.14) and |[v; Nv;]| =
|vi| = |vj| = a1. This means that

(8) (i, v5) = €ies ([[vi Nwj]| = 6([vil, [v5]))
= —[vi| + 6([vil, [v;]) = —lv;[ + 6 ([wi], [v3])

Since v; and v; are standard basis vectors, (v;,v;) > —1. Since |v;| > 3 and
d([vi], [v4]) is either 2 or 3, |v;| is either 3 or 4. That is, using Equation (8),
(vi,vj) is equal to —1 if |v;| = 4 and either 0 or —1 if |v;| = 3. In particular,

(9) <’UZ‘, Uj> S 0.

Using Proposition 4.9, suppose first that zo = eg + ex, + e, — ex,. Then
since (v;, o) = (v;, o) = 2 and 4, j # k3, each of supp™(v;) and supp™ (v;)
contains at least two of 0,k;, and ko, and ,j ¢ {k1,ke}. In particular,
supp™ (v;) and supp™(v;) intersect, so (v;,v;) > 0. Therefore, using Equa-
tion (8) and the earlier discussion, we must have |v;| = |v;| = 3, so supp™ (v;)
and supp™ (v;) in fact contain no elements outside of {0, k1, k2}. In particu-
lar, supp™ (v;) does not contain j, and vice versa, supp™ (v;) does not contain
i. Therefore, we get that (v;,v;) > 1 which is a contradiction to (9).

If now o = eg — ey, — eg, + ex,, then since (v;, z9) = 2 and @ # ks, there
are two cases: Case 1 is that supp™(v;) contains 0 and k3 but not k; and
ko, and Case 2 is that i = ko or ki, supp™'(v;) contains 0, and (if i = k»),
supp™ (v;) does not contain k1. The same holds for v;. If one of v; and v; is
in Case 1, then (v;,v;) > 1, a contradiction to (9). If both v; and v; are in
Case 2, we may assume i = ki and j = ko, and we still have (v;,v;) > 1, a
contradiction. O

Corollary 4.14. If v; and vj are two unbreakable standard basis vectors
with i # j and i,j # ks, then | (vi,v;) | < 1, with equality if only if [v;] abuts
[v;]-

Proof. If neither [v;] nor [v;] contains xg, then both v; and v; are contained
in a linear sublattice of C'(p,q) and this reduces to [Grel3, Lemma 4.4].
Similarly, if one of [v;] or [v;] contains x¢ and the other contains neither x
nor z1, or if both [v;] and [v;] contain x¢, then reflecting both v; and v; about
ry puts both of them in a linear sublattice of C(p,q). Using Lemma 4.13,
these are the only possibilities. O

Corollary 4.15. If v; and vj are unbreakable with |v;|, |vj| >3, i # j and
i,] # k3, then z; # z;, where z; and z; are defined in Definition 3.14.
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Proof. Suppose for contradiction z., = ;. By Lemma 4.13, §([vi], [v;]) < 2.
Therefore, using Lemmas 3.9 and 3.10,

(10)  (foil, [vj]) = lfoi O ojl| = 6([vil, [v3]) = |2z | = 6(fvil [v;]) =3 =2=1,

By Corollary 4.14, ([vi], [v;]) =1 and [v;] abuts [v;]. We would then have
d =1, so the equality in (10) cannot be attained, a contradiction. O

Corollary 4.16. There is at most one j # k3 for which v; is unbreakable
and (vj, xo) is nonzero.

Proof. Since a; > 3, if there exists an unbreakable standard basis element v;
for which (vj,z0) # 0, j # k3, then z., = 1. It follows from Corollary 4.15
that there exists at most one such j. ([

Since the pairings of vi, with other standard basis vectors are difficult to
control, and since Corollary 4.16 gives good control on the pairings between
o and the other standard basis vectors, it will be easier in what follows if
we replace S with the modified basis

(11) S" = (S\ {vr,}) U{wo}.

The set S’ is still a basis of (o)L because (xg,ex,) = £1 but (z¢,e;) =0
for 7 > ks, so if we write zg as a linear combination of elements of S, the
coefficient of vy, will be £1.

Using Corollaries 4.14 and 4.16, we can relate the pairings between el-
ements of S’ very closely to the geometry of the intervals. It will be con-
venient to use two graphs associated to a C-type lattice. Recall that the
pairing graph G(V) for a subset V of a lattice L has vertex set V and an
edge (v;,vj) whenever (v;,v;) # 0 (Definition 3.3).

Definition 4.17. If T is a set of irreducible vectors in a C-type lattice
C(p,q), the intersection graph G(T') has vertex set T, and an edge between
v and w if the intervals corresponding to v and w abut. We write v ~ w if
v and w are connected in G(T).

Lemma 4.18. If the intervals corresponding to v and w abut, then

(v, w) # 0.

Proof. If one of v,w is xg, (v,w) = =42 # 0. If none of v,w is xg, then
d([v], [w]) = 1, our conclusion follows from Lemma 3.9. O
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The following is immediate from Corollary 4.14 and Lemma 4.18:

Proposition 4.19. For T C S', G(T) is obtained from G(T) by removing
some edges incident to breakable vectors.

In particular, if we write S’ for the set of unbreakable elements of S,
G(S") = G(S"). The main use we have for this result is the following struc-
tural facts about the intersection graph.

Definition 4.20. A claw in a graph G is a quadruple (v,w;, w2, ws) of
vertices such that v neighbors all the w;, but no two of the w; neighbor each
other.

If [v;] abuts three intervals [v;], [vg], [vi], then it abuts two of the three
at the same end, and so those two abut. That is, using Lemma 4.18, the
corresponding vertices pair nonzero. The following is then immediate. Recall
that T is a set of irreducible elements in a given C-type lattice.

Lemma 4.21 (Lemma 4.8 of [Grel3]). The intersection graph G(T)
has no claws.

Definition 4.22. Given a set T of unbreakable elements in a C-type lattice
and vy, va,v3 € T, (v1, v, v3) is a heavy triple if |v;| > 3 and v; # £z for each
i, and if each pair among the v; is connected by a path in G(T) disjoint from
the third.

Lemma 4.23 (Based on Lemma 4.10 of [Grel3]). G(S') has no heavy
triples.

Proof. If v;,vj, and v}, are unbreakable and have norm at least 3, and none
of them is +x¢, then by Corollary 4.15 we might as well assume z; < z; < zj.
Then any path from v; to v; in G(S’) includes some v, € S’ such that [v]
contains z,, where S’ is defined in (11). But then ¢ = j, so (v;, v, vy) is not
heavy. O

The proof of the following lemma is identical to [Grel3, Lemma 3.8].
Again, T is a set of irreducible elements in a given C-type lattice.

Lemma 4.24. If the elements of T are linearly independent, any cycle in
G(T) induces a complete subgraph.

Corollary 4.25 (Based on Lemma 4.11 of [Grel3]). Any cycle in
G(S") has length three.



1302 W. Ballinger, Y. Ni, T. Ochse, and F. Vafaee

Proof. By Corollary 4.16, any cycle in G(S’) does not contain xg. Using
Lemma 4.24, the cycle will contain at most two vertices of norm > 2 to
avoid producing a heavy triple. (See Definition 3.6.) If it had two vertices
of norm 2, using Lemma 4.24, they would have nonzero inner product, so
must be of the form v; = e;_1 — ¢; and v;41 = e; — e;41 for some ¢. But for
any other j (j # ¢, + 1), Lemma 4.3 implies that supp(v;) N {i —1,4,i+ 1}
is one of 0, {i + 1}, {4,7 + 1}, or {i — 1,4,i + 1}. In none of these cases does
v; have nonzero inner product with both v; and v;41, a criterion that must
be fulfilled by Lemma 4.24. That is, any cycle in G(S’) must be of length
three. (]

Lemma 4.26. Let m < N be two possitive integers satisfying ks ¢ [m, N].
Suppose that vy, is unbreakable and it neighbors either xy or some unbreak-
able v; with 7 < m. Suppose that for any index i satisfying m <i < N, we
have min supp(v;) > m, and v; is unbreakable. Then |v;| = 2 for any i satis-
fyingm <i < N.

Proof. When i =m + 1, we clearly have |v;| = 2. Now assume |v;| =2 for
any ¢ satisfying m <i <! <N, we want to prove |y =2. Let t=
minsupp(v;) > m, then v; is just right by Lemmas 4.3 and 4.7. If m <t <
[ — 1, we would have a claw (vy, v, v4—1, v¢4+1). If t = m and vy, neighbors xg
in G(S5), we would have a claw (v, vy, Zo, Um+1) by Corollary 4.16. If t = m

and, for an unbreakable v; with j < m, v, neighbors v; in G(S”), we would
have a claw (v, v, V5, Umy1). Sot =1 —1 and |y| = 2. O

5. The case ky = 1,ky > 2

In this section we consider, in the notation of Proposition 4.9, the case where
k1 =1 and ke > 2. Using Corollary 4.10, one has

(12) To=eg+ el + ek, — €k,
where ko > 2. Also, we have that v1 = eg — e1. So
(13) g =01 = 1.

By Lemmas 4.5 and 4.11, the only possible breakable vector is vg,. In what
follows we classify all changemaker vectors whose orthogonal complements
are isomorphic to C-type lattices with z( as given in (12) and ko > 2. We
start by determining the first k3 + 1 components of such changemaker vec-
tors.
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Proposition 5.1. Ifk; =1 and ke > 2, the initial segment (0¢, 01, . ..,0%,)
of o is equal to (1,1,218 oy, op, +2) for some s > 0.

Proof. We start by observing that, using Lemma 3.5, we must have vy = ¢g +
e1 — eg. So o9 = 2. By Corollary 4.16, minsupp(v;) > 2 for all 2 < ¢ < ko. It
follows from Lemma 4.26 that |v;] = 2 for all 2 < i < ky. So 0; =2 for 2 <
i < ky. Now, using (12) and (13) together with the fact that (o, z¢) = 0, we
get that oy, = oy, + 2. We claim that k3 = k2 + 1. Suppose for contradiction
that k3 # ko + 1. The component o, 1 must be between oy, and oy, +2 =
Ok, If ok, 41 is equal to either oy, or oy, there will be an element v € (0)*
with (v, zg) = 1, contradicting Lemma 3.5. If oy, 11 = op, + 1, then vg,11 =
€1+ ek, — ek,+1. But then (vg,+1,70) = 2 # 0, contradicting Corollary 4.16
since (vy, xg) = 2. This finishes the proof. O

Corollary 5.2. In the situation of Proposition 5.1, the component oy, of
the changemaker vector is one of 2s — 1, 2s + 1, or 2s + 3. These correspond
to vy, being gappy, just right, or tight, respectively.

Proof. If vy, is tight, the third of these possibilities occurs. If not, using
Corollary 4.16, we get that (vg,,zo) = 0. (Note that (ve,xz9) =2.) So 1 €
supp™ (vg,) and 0 & supp™ (v, ). Since |v;| =2 for 2 < j < ko, Lemma 4.3
implies that the only possible gappy index for vy, is 1, so

Vg, = €1+ €+ €41+ -+ €1 — €Ly,

for some 1 < j < ko. If j > 3, the pairing graph will have a cycle on vy, ...,
vj, Uk, of length larger than 3, contradicting Corollary 4.25. In particular, if
1 is indeed a gappy index for v,, then j = 3, and oy, = 25 — 1. Otherwise
one has j = 2, and therefore oy, = 25 + 1. O

It turns out that the classification will highly depend on the type of the
vector vg,: whether it is tight, just right, or gappy. For j > k3, let

(14) S; =supp(v;) N{0,1,..., ks},
and let
(15) S = supp(v;) N {0,1, k2, k3}.

Given that (v2, z9) = 2 and, using Corollary 4.16, we must have (v;, zg) = 0,
and that S} is one of 0, {1, k3}, or {k2, k3} by Lemma 4.3. Figure 7 depicts
the paring graphs of the possible changemaker C-type lattices on their first
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vg?) .’L'(()4) ng) $é4) 1)52) 1'(()4)
| |+ | 7| | |+
U}(éﬂ) Ués) Ul(:?%) +U(3) v}(gﬂ) +v§3)
e U:(f) \v§2)

| | |
vl(ci)fl véfll vzifll

Figure 7. Pairing graphs of the standard basis when vy, is just right (left),
tight (center), and gappy (right). Superscripts give the norm of the basis
vector, the number of edges gives the absolute value of the inner product,
and an edge is labelled with + if the inner product is positive.

k3 vectors of the basis S’, defined in (11), depending on the type of vy,. For
simplicity of notation, we often refer to xy as vy, for the rest of the section.
With the notation of this section in place:

Lemma 5.3. If S; =0, S; is either O or {ka — 1}. In the second case, vy,
15 not gappy.

Proof. Set i = min S;. Suppose for contradiction that S; is nonempty and
i < kg —1.If 7> 2, then there will be a claw on v, vj41,vi—1,vj. If ¢ =2
there will be a claw (v, vs,x0,v;). Therefore, i = ky — 1, and so the first
statement follows. If §; = {ks — 1}, then (vj, vg,—1) = —1, (v, vk,) = 1, and
(vj,v;) = 0 for all other ¢ < k3, so if vy, is gappy there is a claw (vg,, v1, v, v;)
(see Figure 7). O

Lemma 5.4. If S; = {ko,ks}, S; is either {ka, ks} or {ka —1,ko, ks}. In
either case, vg, s not gappy.

Proof. Again, set ¢ = min S;. If ¢ < ko — 1, there will be a claw on either
Vi, Vi1, Vi—1,Vj O V2,V3,%0,Vj, depending on whether i >2 or i =2. So
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the first statement follows. Corresponding to the two possibilities for Sj,
the vector v; will have nonzero inner product with either vy, or vy,_1, but
no other v; with ¢ < k3. If vy, is gappy, this creates a claw (vg,,v1,v2,v;)
in the first case, and a heavy triple (va,vk,,v;) in the second: again, see
Figure 7. g

Lemma 5.5. IfS;- = {1, k3}, either Sj is one of {1,2,3,..., ky — 1,k3} and
{1,3,... k2 — 1,ks} and vy, is tight, or S; = {1,ks}, s =1, and vy, is not
gappy-.

Proof. Using Lemma 4.3, none of 2,...,ky — 2 can be a gappy index for v;.
Thus, we must have either S; = {1,k3} or S; ={1,k,k+1,...,ky — 1,k3}
for some 1 < k < ko.

In the first case, v; will have nonzero inner product with just vy, v2, and
Uk, . If vy, is gappy, this creates a heavy triple (ve, vk,,v;). If vy, is just right
or tight, this creates a claw (vg, v;, zo,v3), unless s = 1: see Figure 7.

In the second case, to avoid a cycle (va,vs, ..., v, vj) of length longer
than 3 (Corollary 4.25) we must have k equal to 2 or 3. Then (vj, vy, ) is either
s or s+ 1, and unless vy, is tight this must be at most 1 (Corollary 4.14).
Since s > 1, if vy, is not tight, we must have (v;, vg,) = s = 1. Note that in
this case k3 = 4, ky = 3, v, = e1 + €2 — e3, and S; = {1,2,4}. Consequently,
(vj,v3) = 2, again contradicting Corollary 4.14. a

Proposition 5.6. If vy, is gappy, then s > 2 and n+ 1 = k3. The corre-
sponding changemaker vectors are

(1,1,28 25 — 1,25+ 1),5 > 2.

Proof. By Corollary 5.2, o, =2s—12>2, so s > 2. By Lemmas 5.5, 5.4,
and 5.3, we get that S; =0 for all j > k3. If vy, 4 existed it would have
ks € Sk3+1. O

Proposition 5.7. If vy, is just right, then one of the following holds:

1) Vkyt1 = €ky + €ky — €hyt1s  Vkgt2 = €hy—1 + €hy + €ky + €1yl — Chyt2,
and ks +2=n+1.

2) Ukl = €hy—1 + €hy + €hy — €hyt 1, Ukygt2 = €y + Chy + €hyt1 — Eyt2,
and ks +2=n+1.

3) s=1, so ka=3. vy=e3+es—es, |v;|]=2 for 5<i<{l, vy=e1+
es+es+ - +ep_1 —ep, and either vpr1 = ep—1 + ep — eprq and |v;| =
2 fori>f+4+1, or{=n+1.
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4) s=1, so ke =3. vs =e1 +e4 —e5, and either vg = e3 +e4 + €5 — g
and |v;| =2 fori>6 or5=n+1.

The distinct changemaker vectors are
1) (1,1,26),25 +1,25 4+ 3,45 + 4,85 4+ 10), s > 1.
2) (1,1,20) 25+ 1,25 4 3,45 4+ 6,85 + 10), s > 1.

3) (1,1,2,3,5,85), 85 + 6,85 + 1418 5.t > 0, (the parameter s in this fam-
ily is not the previous s.)

Proof. We divide the proof into two cases, based on whether or not there
is some ¢ with Sy = {1, k3}. If there is no such ¢, then by Lemmas 5.5, 5.4,
and 5.3, for any j > k3, S; is either empty or one of the three possibili-
ties: {kQ — 1}, {kg,k‘g}, or {k)g — 1, kg,k;),}. If Sj = {]{22 — 1}, <Uj,1)k2,1> and
(vj,vg,) are both nonzero, but (vj, v;) = 0 for all other ¢ < k3. If S; = {ko, k3},
(vj,vg,) is nonzero but (vj,v;) =0 for all other ¢ < k3, and if S; = {ko —
1, kg, ks} only (vj,vk,—1) is nonzero. In particular, no v; with j < k3 except
for vy, and vg,—1 can have nonzero pairing with v; for some ¢ > k3. Further-
more, for j equal to either ko or ko — 1, we claim that there can be at most
one i > k3 with (vj,v;) nonzero: if there were two, there would be either a
claw if they did not neighbor each other, or a heavy triple if they did. See
Figure 7. (For instance, if v, and vy, with r, ¢ > ks, both have nonzero pair-
ing with vg,_1, and also if v, and v; pair with each other, then there will be
a heavy triple (v,, v, v2).) Since the pairing graph of a basis must be con-
nected, there in fact must be some j > k3 with (vj, vg,) nonzero, and some
J > ks with (vj,v,—1) nonzero. This has two implications. First that the
vector vy, 41 exists, and either Si, 1 = {k2, k3} or Sk,+1 = {k2 — 1, ko, ks }.
Second, there is another index j' > k3 + 1 with Sj equal to the other of
these two possibilities of Sk, 1.

It remains only to show that j' = k3 + 2, and that there is no fur-
ther standard basis vector. Since Sj,+1 NS = {ko, k3}, in order to keep
(Vkyt+1,vj7) < 1 (Corollary 4.14), it must be the case that k3 + 1 € supp™ (v;/),
and in this case (vg,41,v;:) = 1. Therefore, vi, 1 and vj are adjacent in
the intersection graph. If j' > ks + 2, then since Sk,12 =0, we get that
|Ug,+2| = 2. Therefore, using Lemma 4.3, k3 + 1 cannot be a gappy index
for v;/, so ks + 2 € supp™ (v;/). This means that (v;/, vg,4+2) = 0, so there is
a claw on either vy, 1, Vg, , Uk, 42, Vjs OF Vgyy1, Vk,—1, Vky42, V57, depending on
the possibilities for Sy, ;1. Therefore, j' = k3 + 2.

Finally, if vy, 13 existed, it would have Sk, 3 = 0, so would equal either
€kst1 T €ks+2 — €kyt3 OF €fst+2 — €k, +3. Therefore, vy, 3 would have nonzero
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inner product with either vy, 41 or vg,42 but not both, hence we get a claw
centered at either vg,y1 or vg,4o.

If there is some ¢ with Sy = {1, k3}, then s = 1 by Lemma 5.5. In this
case, (vg,v1) = —1, (vg,v2) = 1, ko = 3, and (vg,vg,) = 1. If, for any ¢ > k3
with ¢ # £, we had (v;,v9) # 0, there would be either a claw (va, g, v;, vp)
or a heavy triple (ve,v;,v¢) depending on whether or not [v;] and [vs] abut.
Since we must have (v;,v9) = 0 for all i > k3 with ¢ # ¢, the set S; cannot
be {1,ks}, {ka — 1} or {ko — 1, k2, k3}, so by Lemmas 5.3 5.4 and 5.5,

(16) S; =0 or {ke, ks}.
Also, we have
(17) (vi,v) =0, for any ¢ > kg with i # £.

Otherwise, either S; = () in which case there would be a claw (v, v1,v2,v;),
or S; = {ka, k3} and there would be a heavy triple (v;, ve, vg,).

Now, k3 € Sk, 41 (Lemma 4.7), so S}, is either {1,k3} or {ko,k3}. Tt
follows from Lemmas 5.4 and 5.5 and (16) that Sy,,1 =S5 ;. If Sg,11 =
{1, k3}, from (17) we get that (vg,t2,vk,+1) = 0if n+ 1 > k3 + 2, and there-
fore by (16), Sk,+2 = {ka, k3}. We claim that S; = () for i > k3 + 2, and also
ks + 1 & supp(v;). Note that from (16) if S; # (), one necessarily has S; =
{k2, k3}. Also, to avoid pairing with vy, 1, it must be the case that ks +1 €
supp™ (v;), but this would imply supp™ (v;) N supp™ (v, 1+2) = {k2, k3, k3 + 1}
hence (vj, Vg, 1+2) > 2, contradicting Corollary 4.14. So S; = (), hence k3 + 1 ¢
supp(v;) by (17). This justifies the claim. It follows from Lemma 4.26 that
|v;| = 2 for i > k3 + 2. This is the last of the possibilities listed in the state-
ment of the proposition.

Lastly, suppose that Sk,+1 = {k2, k3} (note that Sy = {1, k3}). When i >
ks + 1andi # ¢, S; # {ke, ks}, otherwise we get a heavy triple (v, Vg,, Uk, +1)-
So S; = 0 by (16). By Lemma 4.26, |v;| =2 for ks +1 < i < £. By (17), vy
is orthogonal to all of vg,41,...,v0_1, so all of k3 +1,...,¢ —1 are mem-
bers of supp vy, forcing v, to be of the listed form. If n+1>1+1, vy
is also orthogonal to vy, so suppvgr; N{ks +1,...,¢ — 1} contains exactly
one element, which must be £ —1 by Lemma 4.3. It follows that vy, =
er—1 + er — epy1, as desired. If, for some ¢ > ¢+ 1, (v;,v—1) is nonzero,
then ¢ — 1 € supp(v;), and £ € supp(v;) by (17), so (v;,vey1) # 0 and hence
(Vky+1,Ve41,0;) is a heavy triple. Therefore, v; is orthogonal to both vy_; and
vg for ¢ > £+ 1, so by Lemma 4.3 minsupp v; > ¢ + 1. Then Lemma 4.26 im-
plies that |v;| = 2 for i > ¢ 4 1, so we are in the third listed situation. [
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Lemma 5.8. If vy, is tight, S; is one of 0, {ko — 1}, or {1,2,3,...,ky —
1,ks} for each j > ks.

Proof. By Lemmas 5.5, 5.4, and 5.3, it suffices to show that S; cannot be
{ka,ks}, {ko — 1,ka,ks}, {1,3,...,ka — 1,ks}, or {1,k3}. In the first case,
(vj,vp,) = —1 and (v;,v;) = 0 for all other i < k3. In particular since v; is
orthogonal to v; and wvp, v; cannot neighbor vy, in the intersection graph
without creating a claw. Therefore, [v;] M [vg,], and so 6([v;], [vg,]) = 2. In
order to have (vj,vy,) = —1, then, we must have |v;| = |[v; Nvg,]| = 3 and
€j = —€,. Since €; = —ey, and [v;] M [vg,], vj + v, is the sum of two distant
intervals, so is reducible. However, since |v;| =3, j = k3 + 1 and v; = e, +
€ky — Cks+1, and S0 vy, + v; is irreducible by Lemma 4.6.

In the second case, (vj,vk,—1) = —1 and all other (v;,v;) with i < k3 are
zero. Since (va, o) # 0, [v2] contains z1, so 3 = |va| = |x1|. Since |vg,| > 3,
[vk,] contains high weight elements other than x;. Since [v2] contains z; and
vk,—1 is connected by a path of norm-two vectors to vs, the unique high
weight element x, of [v;] is contained in [vg,]. This implies that (v;,vg,)
must be nonzero, a contradiction.

In the last two cases, v; has nonzero inner product with both v; and
vg, s0 [v;] abuts both [v1] and [va]. Since [v1] and [vo] abut [vg,] at opposite
ends, [vg,] must be contained in the union of [v1], [v2], and [v;]. However,
(Vj,vp,) <5, 50 |vj| <5+ 6([vg,], [vj]) < s+ 2. This means that there are
only two high weight elements in [vg,], with one being z; and the other
having norm at most s + 2, so by Lemma 3.10, |vg,| < s + 3. This contradicts
the fact that |vg,| = s + 6. O

Proposition 5.9. If vy, is tight, vk,+1 = e1+ea+---+€p,—1+€k, —Chyti;
Ukyt2 05 €ither ep,41 — €pyq2 O €hy—1 + €hyq1 — €kyta, and |vj| =2 for all
Jj > ks+2. (None of the vectors past vy, are necessary to make the lattice
C-type — n + 1 could be ks or anything larger.)

The corresponding changemaker vectors are

1) (1,1,2, 25 + 3,25 + 5,45 + 61), s > 1, > 0.
2) (1,1,20), 25 43,25 + 5,45 + 6,45 + 8l), s > 1,¢t > 1.

Proof. Since k3 € supp(vk,+1), Sk,+1 1s necessarily equal to {1,2,3,...,ky —
1,k3} by Lemma 5.8, and so vg,11 = e1 +ea+ -+ + ep,—1 + €, — €k, +1. For
any other j with Sj = Sy, 41, we get that (vj,vg,+1) > ko —1 > 2, contra-
dicting Corollary 4.14. Therefore, for j > k3 + 1, S; is either () or {ko — 1}.
Suppose for some j > k3 + 1 we have S; = {ky — 1}. Then (v;, vy,) = 1 while
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v;j is orthogonal to both xy and vi. Since (vg,,v1) =1 and (zg,v1) =0,
[v1] abuts the right endpoint of [v,]. Hence z, € [vg,]. By Lemma 3.9,
we get that |v;| =3, and €; = €,. Since also (Vg,41,Vk,) =S+ 1, €pq1 =
€k, = €j, SO (Vj, Ug,+1) is either —1 or 0 depending on whether their inter-
vals abut. However, since |vj| =3, vj = eg,—1 + €j—1 —€j, 50 (vj, Vg, 41) is
1if j> ks +2 and 0 if j = k3 + 2. Therefore, j = k3 +2 and S; =0 for
i > ks + 2. For any ¢ > kg + 2, if minsupp(v;) = ks + 1, v; ~ vg,11. Since
Vkyt1 ~ U1, (Uk,11,Vk,) 7 0 and [v1] abuts the right endpoint of [vg,], =2, .,
is the rightmost high weight vertex in [vg,] and [v1] abuts the right endpoint
of [vg,+1]- As (v, vk,) = 0, [v;] must abut the right endpoint of [vg,1]. We
then conclude that [v1] and [v;] abut, which is impossible. So min supp(v;) >
ks +1 when i > k3 4+ 2. Using Lemma 4.26, we conclude that |v;| =2 for
> k?g + 2. ]

6. The case k1 =1, ks = 2

In this section we consider the case where k1 = 1 and ko = 2. Using Corol-
lary 4.10, we get that

(18) To =egt+ e+ ey — €.
Also, we have that v1 = ¢y — e1. So
(19) opg =01 = 1.

By Lemma 4.11, the only possible tight vector is vo. In what follows we
classify all the changemaker vectors whose orthogonal complements are iso-
morphic to C-type lattices with zp as given in (18). As in the previous
section, we start by determining the first k3 + 1 components of such change-
maker vectors. It turns out that the initial segment of o depends on whether
or not vy is tight.

Lemma 6.1. Ifwvs is tight, the initial segment (oo, 01, ...,0k,) of o is equal
to (1,1,3,5).

Proof. By assumption, ve = 2eg + €1 — ez, so 02 = 3 and |ve| = 6. This to-
gether with (18) and (19), yields ok, = 5. We claim that k3 = ka +1 = 3.
Suppose for contradiction that ks # ko + 1. Recall from Lemma 4.11 that
Uk,+1 cannot be tight. By combining this together with Lemma 3.5, it can
only be the case that oy,11 = 4 and v3 = e; + e2 — e3. Note that (ve, zo) = 2,
(v1,x0) = 0, and (v, ve) = 1. Therefore, [v1] abuts the right endpoint of [vs].
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Given that [vs] abuts both xy and [v1], it follows that the only high weight
vertex of [vg] is that of [v3] (see Definition 3.6 and Proposition 3.7). This

implies that |[ve]| = |[vs]| = 3 which is a contradiction. Hence k3 = 3 and
v3 = €9+ e1 + ez — es. O
Lemma 6.2. If vy is not tight, the initial segment (09,01, ...,0k,) of 0 is

equal to either (1,1,1,3) or (1,1,1,2,3).

Proof. When vy is not tight, using Lemma 3.5 together with the fact that
ko = 2, we get that vy = e1 — eg, s0 09 = 1. This together with (18) and (19),
gives us that o, = 3. Either k3 = 3 and we get the first possibility stated
in the lemma, or k3 > 3. In the latter case, using Lemmas 3.5 and 4.7, we
must have that vg = e1 + eg — e3, so o3 = 2. We claim that, if k3 > 3, then
ks = 4. If k3 # 4, then we must have vy = e3 — e4. That will produce a claw
on (vs,vq, zp,v1). This gives the second stated possibility. O

We use the notation of Equations (14) and (15) in Section 5. Again,
we use the basis S’, defined in (11). Note that in this section, vg, = xo.
Moreover, if k3 = 3, then S; = 7.

Proposition 6.3. If vy is tight, then one of the following is true:
1) |vg| =4, va=e1+e3—eq, and |v;| =2 for all5 < j <4+t t>0.

2) |vs| =4, va =e1 +e3 —eq, V5 =eg+e1 +e4 —es5, and |v;| = 2 for all
6<j<5+t t>0.

The corresponding changemaker vectors are:
1) (1,1,3,5,6[)
2) (1,1,3,5,6,80+1)

Proof. When vy is tight, using Lemma 6.1, the initial segment (oo, ..., o0,)
of o is (1,1,3,5). For any j > 3, S; will be one of 0,{1,2}, {2,3}, {1,3},
{0,1}, or {0,1,2,3} by Lemma 3.5 and Lemma 4.3. We will first show
that {1,2}, {2,3} and {0,1,2,3} do not occur. If S; ={1,2} for some
J >4, then (vj,v1) = —1, (vj,20) =2, and (vj,v2) = 0. Since [zg] and [v1]
abut [vg] on opposite ends, and [v;] abuts both [x] and [v;], the interval
[v2] is contained in the union of [z¢], [v;], and [vi]. Therefore, |[v2 Nv;]| =
|va| =6, so | (vj,v2) | =6 — d([vj], [v2]) > 3, a contradiction. If S; = {2, 3},
then (v;, v2) = —1 but (v;,v1) = (v, z9) = 0. To avoid a claw (v, v1, xo, vj),
then, we must have [vg] th [v;]. Since v; is orthogonal to zg, this means
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that 6([v2], [v5]) = 2, so |vj| = [[v; Nvo]| = 3 and ez # €;. Therefore, vj + vy
is reducible. Since j — 1 € supp™(vj), the only way to have |v;| =3 is to
have j = 4, but then v; 4 vy is irreducible by Lemma 4.6. If S; = {0, 1, 2, 3},

(vj,v2) =2, (vj,z0) =2, and (vj,v1) = 0. Also, |[va Nv;]| = |v;| > 5, so in
order to have (vj,v2) =2 we must have €; = ez and J([v2], [v;]) = 3. By
Lemma 3.11, (vj, z0) = — (v2, x9) = £2, a contradiction. Therefore, for each

j >3, 5 is one of 0, {0,1} and {1,3}. Furthermore, if S; = {0,1}, then
(vj, o) # 0, so by Corollary 4.16 there is at most one j with S; = {0,1}.

If the index 4 exists, 3 € Sy, so Sy = {1,3}, v4 = €1 + €3 — €4, and 04 =
6. If, for some j > 4, S; = {1, 3}, then also 4 € supp™ (v;) by Corollary 4.14.
Therefore, |v;| >4 and (vj,v4) =1, so [v4] abuts [v;]. Since v; is orthogo-
nal to xo, 0([v2], [v;]) < 2, so since |v;| >4 and (vj,v2) =1 we must have
[v2] T [vj]. Therefore, using Corollary 4.15, either [vo] and [v4] are distant or
they share a common end, but in either case we cannot have (vo,v4) = 1.
Therefore, there is at most one j >4 with S; = {0,1}, and for all other
i we have S; = (. Suppose that for some j we have S; ={0,1}. It fol-
lows from Lemma 4.26 that |v;| =2 when 4 < i < j. By Lemma 4.3, v; =
eo+er+ep+epypr + - +ej—1 —e; for some 4 <k <j, and to avoid a
claw (vj,v1, o, v;) we must have k = 4. Therefore, |v;| =j — 1 > 4. Since
(vj,v2) = 3, we must have €; = e, and since (v;, ) = (v2, x9) = 2 this means
that d([va), [v]) = 1. Therefore, |v;| = (v;,v2) + 1 =4, so j = 5. This means
that Sy is either () or {0,1}, and S; = ) for i > 5.

If S5 =0, by Lemma 4.26, |v;] =2 when ¢ > 5. If S5 ={0,1}, we will
show that minsuppwv; > 5 when ¢ > 5.

We first claim that x,, € [ve]. Otherwise, as (vy, v2) = 1, we get [va] T [v4]
and €2 = —e4. We also have (vg,v1) = — (v4,v1) = 1. Thus we have either
[v1] < [ve] or [v1] < [v4]. If [v1] < [v2], then €; = €2 and € = €4, a contra-
diction to ez = —e4. Similarly, we can rule out [v;] < [v4]. This proves the
claim.

Note that og = o1 are the only two 1’s in the coordinates of o, so there
does not exist any norm 2 vector y € (o) such that (y,v;) = —1. Thus [v1]
contains only one vertex which does not neighbor any norm 2 vertex. Since
v ~vg and (vy,zo) = 0, [v1] abuts the right end of [v2]. As x,, € [v2] and
V4 ~ V1, T, is the rightmost high weight vertex in [vg]. If minsuppv; =4
for some ¢ > 5, then v; ~ vq and |v;| > 3. As (v;, v2) = 0, z,, is the leftmost
high weight vertex to the right of [v3]. So [v1] is the unique vertex between
x,, and x,,. We then see that [v;] and [v;] abut, which is not possible as
(v1,v;) = 0. This proves that minsuppv; > 5 when i > 5. By Lemma 4.26,
|v;| = 2 when ¢ > 5. O
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Proposition 6.4. If vy is not tight and (oo, ...,0k,) # (1,1,1,2,3), then
one of the following is true (if only the norm of a standard basis vector is
given, it is just right):

1) fvs| =4, s =3, [vj| =2forb < j <4+t vsp=e1+ertestes+
oot eayt — €544, [Vert| =3, and |v;| =2 forj > 64+t (t>0).

2) Jus] = 4, [oa] = 3, and [v5] = 6.
3) |vs| =4, |va| =5, and |vs| = 4.

with corresponding changemaker vectors:
D) (1,1,1,3,4,49, 41 46, (4 +10)19), 5,6 > 0
2) (1,1,1,3,4,10)
3) (1,1,1,3,6,10)

Proof. If vy is not tight and (oo, ...,0x,) # (1,1,1,2,3), using Lemma 6.2, it
follows that (og,...,0k,) is (1,1,1,3). Note that, using Lemmas 3.5
and 4.3,

(20) S; =0,{1,2},{2,3}, or {0,1,2,3}, when i > 4.

Using Lemma 4.7, we get that Sy is either {2,3} or {0, 1,2, 3}, that is, o4 is
either 4 or 6.

When o4 = 6, v4 = ep + €1 + €3 + e3 — e4. Since (v4, xg) = 2, using Corol-
lary 4.16 and (20),

(21) S;i=0or{2,3} wheni>4.

Since the intersection graph must be connected, there will be some index
j for which S; = {2,3}. Additionally, using Corollary 4.14, we get that 4 €
supp™ v;, as otherwise (v;,v4) = 2. It turns out that there is only one such
J- In fact, if there were two such indices ji, j2, then {2,3,4} C S;, N S;,, we
would have (vj,,v;,) > 2, a contradiction. We claim that j = 5. If j # 5, then
S5 = 0 by (21). Therefore, |vs| = 2, so, by Lemma 4.3, 4 cannot be a gappy
index for vj. This will give us a claw (v4, Zo, vs, v;). This justifies the claim;
in particular, o5 = 10. If the index 6 existed, by (21) we must have S = 0.
Thus, vg is either e4 + e5 — eg or e5 — eg. In the first case, there will be a
claw (v, vs, v6, 20) and in the second case there will be a claw (vs, v4, vg, v2).
So the index 6 does not exist, and we get the third possibility listed in the
proposition.
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Now, suppose that o4 = 4. If 05 # 4,6, by Lemma 4.7 and (20), S5 is
either {0,1,2,3} or {2,3}. If S; = {0, 1,2,3} or {2, 3} for some i > 5, we will
get a heavy triple (v4,vs,v;). So S; =0 or {1,2} when ¢ > 5.

If S5 =1{2,3}, then e5 = e2 + e3+ e4 — e5. Since the pairing graph is
connected, there exists an index i > 5 such that S; = {1,2}. Using the path
v; ~ V1 ~ vy, we will get a heavy triple (v, vs, v;).

If S5 = {0, 1,2,3}, 05 = 10. If the index 6 does exist, using Corollary 4.16,
S¢ = 0. We will have a claw (vg,ve,v5,v6) or (vs,xo,vs4,vs), depending on
whether or not 4 € supp™(vg). So we get the second possibility listed in the
proposition.

If 05 = 6, since (vs, z9) = 2, by Corollary 4.16 and (20) we have S; = {)
or {2,3} when ¢ > 5. Assume that there exists ¢ > 5 such that S; = {2, 3}.
Since (v;,v4) <1, 4 € supp(v;). Since (v;,vs5) <1, 5 € supp(v;). We would
then have a heavy triple (v4,vs5,v;). So S; = ) whenever i > 5. If |vg| = 2,
there will be a claw (vs,v1,xg,v6). So vg = €4+ €5 — €g. Since (vs,xg) =
2, x,, = x1. Since vy is connected to vy by a path of norm 2 vectors, x,,
is the leftmost high weight vertex to the right of z. . Since v4 ~ vg, by
Corollary 4.15, (v;, v5) = (v;, v4) = 0, whenever i > 6. We then conclude that
min supp(v;) > 6 when i > 6. Using Lemma 4.26, we get |v;| = 2 when ¢ > 6.
This gives us the case t = 0 in the first possibility listed in the proposition.

If o5 = 4, since the pairing graph is connected, there must be a unique
index j > 4 for which (vj,zo) = 2. Then o; > 4, and S; is either {0, 1,2, 3}
or {1,2} by (20). Let ¢ + 5 be the index such that o444 = 4 < o¢45.

If S; = {0,1,2,3}, then in order to avoid (v;,v4) = 2 (which contradicts
Corollary 4.14) we must have 4 € supp™(v;). Moreover, using Lemma 4.3,
neither of 4,5,...,¢t+ 3 can be a gappy index for v;. Hence we get a claw
(va,v2,v5,v5) as j >t +4 > 5. That is, we must have S; = {1,2}.

We claim that j =t + 5. Suppose for contradiction that j # ¢ + 5. Then,
using Corollary 4.16 and (20), S5 is either (0 or {2,3}. If Siys5 = {2,3},
then there will be a heavy triple (v4,viy5,v;), where the paths connecting
the three high norm vertices are through v, and/or ve. If Syi5 =10, set
i = minsupp(vi4+5). Using Lemma 4.3, none of 4,...,¢t+ 3 can be a gappy
index for vy45. Then there will be a claw on either (v;,vi—1, V45, vi+1) or
(v4, V2, V45, 05), depending on whether 4 < ¢ <t+4 or i = 4. (Note that
i #t+ 4 since o445 > 4.) This finishes the proof of the claim, that is, j =
t+5and Spys = {1,2}.

To avoid a cycle vi15 ~ v4 ~ vg ~v] ~ vy5 of length bigger than 3
(which violates Corollary 4.25), we must have 4 € supp™ (vsy5). Further-
more, using Lemmas 4.3 and 4.7, all the indices 5,...,t + 4 € supp(v¢ts),
so o445 = 4t 4+ 6. For i > t + 5, using Corollary 4.16 and (20), the set S; is
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either () or {2,3}. If S; = {2, 3}, we will get a heavy triple (v;, v4, v¢15). This
proves that S; = ) whenever i >t+5. Set ¢ = minsupp(v;). If £ =¢+5,
there will be a claw (vits5, 2o, v, v1). If 4 < <t+ 4, there will be a claw
(v, Vo1, V5, vp41), and if £ =4 the claw will be on vy, ve,v;, v5. Therefore
{=t+4 or £ >t+6. In particular, e;1 = €444 + €145 — €r46 and oy =
4t 4+ 10. When i >t + 6, if £ =t 4 4, we get a heavy triple (v;, v4, Vry6). SO
{>t+6 when i >t + 6. Now we can apply Lemma 4.26 to conclude that
|vi| = 2 whenever ¢ > t + 6, and we will get the first possibility listed in the
proposition. O

Proposition 6.5. If (0o,...,0%,) =(1,1,1,2,3), vs = ez + e3 + €4 — €5,
and |vj| =2 for j > 5. In this case, 0 = (1,1, 1,2,3,6M), ¢t > 1.

Proof. Since 4 € St, St ={2,4} by Lemma 3.5 and Corollary 4.16, so the
set S5 is equal to either {2,4} or {2,3,4}. If S5 = {2,4}, then there will be a
cycle of length 4 on (vs,v1, va, vs). Therefore, S5 = {2, 3,4}, and so, o5 = 6.
There is a path vs ~ vy ~ vg ~ vs. For any 7 > 5, to avoid a heavy triple
(vi, v3,v5), v; cannot neighbor v or va. Combined with Lemmas 4.3 and 3.5
and Corollary 4.16, we must have S, = (. If 3 € S;, we would have a claw
(v3,v5,v1,20). So S; = (. By Lemma 4.26, we have |v;| = 2 whenever i > 5.

Now o = (1,1,1,2, 3, G[ﬂ), t >0.If t =0, then p =1, (see Section 8.) So
we must have ¢ > 1. O

7. The case k; > 1

In the present section we classify all the changemaker C-type lattices that
have

rog = € :I:ekl :|:€k2 :I:eks,

where k; > 1. Using Lemma 3.5, we know that
(22) v = 2eq — e1,

and therefore, o1 =2 and |vi| =5. We remind the reader that, by
Lemma 4.11, v; is the only tight vector in the C-type lattices that concern
us in this section. We also note that

(23) 0 € supp(vg, )

by Lemma 3.5. Compared to Sections 5 and 6, it will take longer to determine
the initial segment (oy,...,0x,) of 0. We start by specifying the positive
integer k.
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Lemma 7.1. The segment (oo, ...,0k,) is either (1,2,3) or (1,2,2,3). In
particular, k1 = 2 or 3, and ox, = 3.

Proof. Using Lemma 4.11, we get that vy is either ey + e1 — eg or e; — es.
In the former case, using Lemma 3.5, we get that k; = 2, and so o, = 3.
Now suppose that vy = e; — ea. More generally, suppose that there exists
t > 1 such that (09,01,...,0041) = (1,2,2[1), and that |v;o| > 2. We will
show that ¢t =1, k; = 3, and that o2 (or simply o3) is 3.
Set j = minsupp(viy2). We argue that j = 0. (Note that, by Lemma 4.3,
none of 1,2,...,¢ is a gappy index for viy0.) If 1 < j <t + 1, there will be

a claw on vj,vj_1,V42,vj41. If j =1, then (vi40,v1) = —1 and vi4o will
be orthogonal to vy. Then k; >t +2 by (23). There will be a claw on
V1, L0, V42, U2, unless [vipo] M [v1], [[u1 N vppo]| = |vige| = 3, and €49 = —e;.

Thus v1 + vipe is the sum of two distant intervals and so is reducible.
Since |vi4a] = 3, vi42 = €1 + €141 — er+2, and S0 v + vyyo is irreducible by
Lemma 4.6, a contradiction. That is, j = 0, and that,

(24) Vigo =e€o+ € +eip1 + -+ ey1 — €42,

with ¢ > 1.

Since 0 € supp™ (vt42), using Lemma 3.5, we get that k; =t + 2. Fur-
thermore, we claim that z¢g = eg + er2 + e, — eg,. See Proposition 4.9. If
Ty = €y — €442 — €k, + €k,, then (vipo, xo) = 2. Observe that (vipo,v1) =1
or 2 depending on whether or not ¢ = 1 in (24); in particular, (vi19,v1) > 0.
Since |viro Nvi| = |vepo| > 3 and 0([v1], [veg2]) < 3, using Lemma 3.9, it
must be that €; = €;49. Since (v1,zo) = (Vit2, o) = 2, [v1] and [ve4o] share
their left endpoint, and §([vi12], [v1]) = 1. Moreover, we must have |v42| =
3 (as otherwise (vii1o,v1) > 2). That is, viyo = €9+ €141 — er42. We have
(v2,v1) = —1 and (v2,xg) = 0, so [vz] abuts the right end of [v1]. Since also
Vit ~ Uit1, |vi| =2 fori e {2,...,t+ 1},

Vg ~ U3 Y Y Ui,

the interval [v1] is a subset of the union of the [v;] for j € {2,...,t + 2},
which in turn implies that |vi| = |ver2| = 3, a contradiction. This shows
that

Ty =€+ eti2 + e, — €, -

We now argue that 1 ¢ supp(v42). Suppose for contradiction that 1 €
supp(ve+2). Using (24), we get that |viro| > 4, (v1, vi42) = 1 and (ve, vi42) =
0. To avoid a claw on vy, g, Vit2, v2, we must have [vi2] M [v1]. This implies
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that d([v1], [vire]) = 2. Using Lemma 3.9 and that |viyo| > 4, we see that
| (v1,vi42) | > 2, a contradiction. That is, in (24), we must have i > 1.

We claim that ¢ =2. If 2 < i <t+ 1, there will be a claw on v;, v;_1,
V42, Vip1. If i =t + 1 (and @ > 2), to avoid a claw on vy, g, v¢42, v2, it must
be that [viyo] M [v1], and so §([ves2], [v1]) = 2. To get (viyo,v1) = 2, however,
it must be |vsy2| = 4 which contradicts ¢ = ¢ + 1. Therefore, in (24), we have
1 = 2. In particular, vo ~ vya.

Finally, we argue that ¢t = 1. If £ > 1, we must have vy ~ v449 as otherwise
we get a claw (vg, v1, vpr2,v3). That is, [viye] abuts [v1]. Therefore, to fulfill
(Veg2,v1) = 2, [ve42] < [v1], and that |vi2| = 3, which contradicts ¢ > 1 and
(24). So t =1 as desired. O

As part of the proof of Lemma 7.1, we showed that zo = eg + ex, + e, —
ek, when k; = 3. Indeed, this is the case also when k; = 2.

Lemma 7.2. Let k; > 1. Then xo = eg + e, + ex, — €k

3.

Proof. We only need to show this for k1 = 2. Suppose for contradiction
xo = ey — e2 — ek, + ek, (see Proposition 4.9). Note that vo = eg + €1 — ea,
and therefore, (ve, o) =2 = (v1,x0), and (v2,v1) = 1. Since |v2| =3, us-
ing Lemma 3.9, we see that €; = e and §([v1], [v2]) = 2. Since ([v2],x0) =
([v1], o) = £2, [v1],[ve] share their left end point, so we cannot have
d([v1], [v2]) = 2, a contradiction. O

Now we proceed to determine the changemaker vectors. As in Section 5,
we use the notation of (14) and (15). Also, we use the basis S’, defined
in (11), where vy, is replaced by zg.

71, k1 =2

This subsection is devoted to classifying the changemaker C-type lattices
with

(25) xo = eo+ ez + e, — ex,.
Recall that the changemaker starts with (1,2,3). We have
(26) <U171)2> = 17 </U27 .’130> =0.

Lemma 7.3. The intervals [va] and [v1] are consecutive with e3 = —e;.
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Proof. Using (26) and Lemma 3.9, either [ve] M [v1], |[v2] N [v1]] = |[v2]] = 3,
d([va], [v1]) = 2, and €3 = €7, or [ve] T [v1], and €2 = —€1. In the former case,
v9 — v1 is the sum of two distant intervals, and so is reducible. However, we
have v = ey + e1 — ez, and so ve — vy is irreducible by Lemma 4.6 (2). O

Lemma 7.4. There does not erist an index j >3, j # ks, such that
supp(vj) N {07 1, 2} = {1}

Proof. Otherwise, we will have (vj,v1) = — (vj,v2) = —1. We also have
(vj, o) =0 by Lemma 3.5. By Lemma 7.3, [v;] and [vq] share their right
endpoint, so 6([v;], [v1]) = 1. By Lemma 3.9, | (v1,v;) | = |v;| —1 > 1, a con-
tradiction. g

Lemma 7.5. o3 € {3,4}. Furthermore, if o3 =4 then [vs] and [vi] share
their left endpoint, and that €3 = €7.

Proof. All the possibilities for o3 lie in {3,4,5,6}. If 03 =5, we get that
v3 = e1 + e2 — e3. So (v3,v1) = —1 and v3 is orthogonal to vy. By Lemma 3.5,
ko = 3 and (v3, z9) = 0. Using Lemma 7.3, we know that [ve] abuts [v;], and
therefore, there will be a claw on vy, xg, v3, va, unless [vs] th [v1], |[v1] N [vs]| =
|vg| = 3, and €3 = —e;1. Thus v; + v is the sum of two distant intervals and so
is reducible. However, v3 4+ vy is irreducible by Lemma 4.6, a contradiction. If
o3 = 6, we see that vs = ey + e + ez — e (and, in particular, |vz| = 4). This
implies that (vs,z¢) = 2 and (vy,vs) = 1. The latter will only be possible if
both d([v1], [vs]) = 3 and €; = €3, a contradiction to Lemma 3.11.

If o3 = 4, we have v3 = eg + es — e3. Using Lemma 3.9, the second state-
ment of the lemma is immediate because (vs,v1) = (v3, xg) = (v1,20) = 2
and |vs| = 3. O

Lemma 7.6. If0 € supp(v;) and 2 ¢ supp(v;) for some j > 3 and j # ks,
then [vj], [v1] share their right endpoint, and v; = eg + ej—1 — ej. Moreover,
there exists at most one such j.

Proof. We have 1 ¢ supp(v;), otherwise (vo, vj) = 2, a contradiction to Corol-
lary 4.14. So (v1,v;) = 2. Since (vj,v2) = 1, [v;] and [v] are consecutive by
Corollary 4.15. It follows from Lemma 7.3 that [v;] and [v1] share their right
endpoint, and so 6([v;], [v1]) = 1. Then, to get (vi,v;) =2, we must have
lvj| =3 and v; = eg + ej_1 — e;. Lastly, there exists at most one such j by
Corollary 4.15. O

Proposition 7.7. If o3 =3, the initial segment (og,...,0k,) of o is
(1,2,3,3,7).
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Proof. Suppose that o3 =3 (see Lemma 7.5). This implies that ko =3
(Lemma 3.5). Using Equation (25), we see that oy, = 7. We claim that k3 =
ko +1=4.1If ks # 4, by Lemma 3.5, 04 € {4,6}. Suppose 04 = 4, or equiva-
lently, v4 = eg + e3 — e4. This gives us that (vy,z9) = 2 and (v4,v2) = 1. By
Lemma 7.3, the interval [v1] will be a subset of [v4] U {z¢}, which implies that
|v1] = 3, a contradiction. Suppose o4 = 6, or equivalently, v4 = e2 + €3 — e4.
Then there will be a claw (vg,v1,v4,v3). This justifies the claim, that is,
04:7andk3:4. O

Proposition 7.8. If o3 =4, the initial segment (oo, ...,0x,) of o is either
(1,2,3,4,5,9) or (1,2,3,46) 45 + 3,45 +7), s > 1.

Proof. All the possibilities for o4 lie in {4,5,6,7,8,9,10}. We first argue
that o4 & {6,8,9,10}. Suppose 04 = 6, then vg = ej + e3 — ey, contradicting
Lemma 7.4. If 04 = 10, then v4 will have nonzero inner product with v
and vs. Using Lemmas 7.5 and 7.3, the interval [v;] equals the union of
[vs] and [v4], that is, |vi| =6, a contradiction. If o4 =8, then both the
unbreakable vectors vs and vs will have nonzero inner product with xg,
contradicting Corollary 4.16. When o4 =9, vy = €1 + e + e3 — e4. Notice
that (vg,v1) = —1 while vy is orthogonal to xg. The latter gives us that
d([va], [11]) < 2. Therefore, given that |vy| = 4, we must have [v4] and [ve]
share their left endpoint by Lemma 7.3, a contradiction to Corollary 4.15.
Therefore o4 € {4,5,7}.

Suppose that o4 = 5, that is, v4 = ey + e3 — e4. Using Lemma 3.5, ko =
4, and so oy, = 9 by Equation (25). Since (v3, o) = 2, (vs,z9) = 0 by Corol-
lary 4.16, unless k3 = 5. Since 4 € supp(vs), we get that kg = 5.

Let s > 1 be the integer satisfying that o3 = -+ = 05120 = 4, and that
0st3 > 4. By Lemma 3.5, ko > s+ 3. Set j = min supp(vsys) < s+ 2. If
3 < j <s+2, there will be a claw (vj,vj—1,vs4+3,vj41), and if j =3, the
claw will be (vs, zo, vs43,v4). If 7 =1, then 2 € supp(vs4+3) by Lemma 7.4.
Thus |vs13| > 4. Since (vsy3,z0) = 0, 6([vsts], [v1]) < 2. Then

|<US+37/U1>‘ 24_2 Z 27

a contradiction. Lastly, suppose j = 0. By Corollary 4.16, (vsi+3,x0) =0, it
must be the case that 2 ¢ supp(vst+3). By Lemma 7.6, vs13 = eg + €542 —
est+s. If s =1 and o4 = 5, this case was discussed in the previous paragraph.
However, if s > 1, then (vsy3,v3) = 1, and so [v1] will be the union of [v3]
and [vs13] by Lemma 7.5 and Lemma 7.6. Since |vs| = 3, to get |v1| = 5, it
must be that |vsys| = 4, a contradiction. So we are left with the case j = 2.
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Note that (vs43,v2) = —1, and vs43 is orthogonal to v1 and zg, so [vs43]
is distant from [v1] by Lemma 7.3. Using Lemma 7.5, we get that vsys
is orthogonal to w3, and so 3 € supp(vs4+3). By Lemma 4.3, we get that
4,...,54+ 1 € supp(vs+3). That is, 0513 = 45 + 3, and that ky = s + 3. Using
Equation (25), we get that oy, = 4s + 7. With the same argument as in the
case o4 = b, we get that ks = ko + 1 = s + 4. This recovers the case o4 =7
when s = 1. O

Proposition 7.9. If (o0o,...,0k,) = (1,2,3,4,5,9), then n+1=ks (i.e

Uk, s the last standard basis vector).

Proof. We claim that the index 6 does not exist. Suppose for contradiction
that it exists. Since 5 € Si, then S; must be one of {4,5}, {2,5}, or {0,5}
(Lemma 3.5 and Corollary 4.16).

By Lemma 7.6, the intervals [v4] and [v1] share their right endpoint, and
S # 10,5},

Suppose that S§ = {4,5} or {2,5}, then (vg, zg) = 0. We have that one
of (vg,v4) and (vg,v3) is zero and the other one is nonzero, depending on
whether or not 3 € Sg. By Lemma 7.3 and Corollary 4.15, [vg] and [v;] are
not consecutive. Using Lemma 7.5 and the fact that [v4] and [v;] share
their right endpoint, we conclude that [vg] C [v1] and §([ve], [v1]) < 2. Since
|vg| > 3, we must have (vg,v1) # 0. That is, 1 € supp(vs), and so |vg| > 4.
Using Lemmas 7.3, 7.5 and Corollary 4.15, [v1] will have all the high weight
vertices of [vs], [vg], and [v4], and so, |v1]| > 6, a contradiction. This proves
the claim. U

Proposition 7.10. When (oy,...,0x,) = (1,2,3,3,7), there exists s > 0,
such that veis =e3+ - -+ €514 — €515, V5 =€y+eq4—e5 if s>0, and
lvj| =2 for 5<j<s+5 and j > s+5. In this case, 0 = (1,2,3,3,7,8l,
8s 4+ 101 (s, >0).

Proof. First suppose that o5 # 10. Since k3 = 4 € Si, the set Si is either
{0,4}, {3,4}, or {0,2,3,4} (Lemmas 3.5 and 4.3). If S{ = {3, 4}, as 05 # 10,
we must have 1 € S5, a contradiction to Lemma 7.4. If SL = {0,2,3,4},
then (v1,vs) > 0. Since |vs| > 5 and 0([v1], [vs]) < 3, we have €; = €5. Since
(v1,v5) < 2, and that |vs| > 5, we must have §([vs], [v1]) = 3. Since € = €5,
by Lemma 3.11, (vs,z9) = — (v1,z9) = £2, which is not true. Therefore,
St ={0,4} and vs = eg — e4 + e5 by Lemma 7.6.

We claim that if Sj # 0 for some j > 5, then S; = {3,4}. Assume that
Sj # 0. By Lemmas 3.5 and 4.3, S’ is one of 0, {0,3}, {0,4}, {2,3}, {3,4},
and {0,2,3,4}. If S7 =0, then S; = {1}, contradicting Lemma 7.4. Since
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Sy ={0,4}, 5% #{0,3} or {0,4} by Lemma 7.6. If S7={2,3}, then
(vj, o) = 2. Since 6([v;], [v1]) < 3,|v;| > 4, we have (vj,v1) # 0. Since 0 ¢
supp(v;), we must have 1 € supp(v;), and so |v;| > 5. Using Lemma 3.9, we
get |(vj,v1)|>1, contradicting the fact that (vi,v;)=-1. If S} =
{0,2,3,4}, then we have (vj,20) =2 and [v;| > 6. Thus z1 =z, is con-
tained in [v1]. However, [v1| =5 < 6 = |vj|, a contradiction. So S} = {3,4}.
Using Lemma 7.4, we conclude that 1 ¢ S;. So S; = {3,4}.

If S; = 0 for all j > 5, it follows from Lemma 4.26 that |v;| = 2 whenever
J > 5. Now assume that S; # () for some j > 5. Let s 4+ 5 be the smallest such
j. Then Ss5 = {3,4} by the earlier discussion. We also know that |v;| = 2 for
any b < i < s+ 5 by Lemma 4.26. If 5 & supp(vs+5), then (vsts5,v5) # 0 and
(Vs45,v3) # 0, and so there will be a cycle (vs45,v3,v2,v5) of length bigger
than 3: see Figure 8. Thus 5 € supp(vs45), and as a result 6,...,s+4 €
supp(vs4+5) by Lemma 4.3. Therefore, o545 = 8s + 10.

Note that, S; = ) when j > s+ 5. Otherwise, by the earlier discussion,
S; = {3,4}, and we would have a heavy triple (vj, vst5,v2). Given j > s+ 5,
let ¢ = minsupp(vj) > 5. Note that

Us ~ Vg ~ v~ Usyd,

[vs] and [v1] share their right endpoint, (v;,v1) =0 and |v;| =2 when 5 <
i <s+5,s0 [v;] C[vi] when 5 <i<s+5. If £ <s+4, then (vj,vs) # 0.
Thus [v;] N [v1] # 0. Note also that ¢([v;], [v1]) < 2 since v; is orthogonal to
xo. Since |vj| > 3, we get that | (v;,v1) | > 0, a contradiction. Thus we have
proved that minsupp(v;) > s + 5 when j > s + 5. It follows from Lemma 4.26
that |v;| =2 when j > s+ 5.

Finally suppose that o5 = 10. Assume that there exists ¢ > 5 such that
S¢ # 0. By Lemmas 3.5 and 4.3, S} is one of 0, {0,3}, {0,4}, {2,3}, {3,4},
and {0,2,3,4}. If S; =0, then S, = {1}, contradicting Lemma 7.4. By
Lemma 7.6, S # {0,3} or {0,4}. Suppose S; = {2,3}. If 1 & supp(vy), there
will be a claw (v2,v1,vs,v3). If 1€ supp(ve), then |(vs,v1)|=1. By
Lemma 7.3, [vg] and [vi] are not consecutive. Since d([v], [v1]) <3 and
|vg| > 5, we get | (vg,v1) | > 2, a contradiction. If Sj = {3,4}, there will be a
heavy triple (vs, vg, v2). If S; = {0,2, 3,4}, then |vg| > 6 and (v, zg) = 2, so
x,, = x1. Thus |[v1]| > |[ve]| > 6, a contradiction. So we proved that Sy = ()
whenever ¢ > 5. It follows from Lemma 4.26 that |v;| = 2 when j > 5. 0O

Proposition 7.11. If (oy,...,0%,) = (1,2,3,4 45 + 3,45 +7), s> 0,
then veys = €sy3 + €514 — €515, and |v;| =2 for j > s+ 5. In this case, 0 =
(1,2,3,45) 45+ 3,45 +7,(8s + 10))) (s > 0,¢>0).
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v§3) o x(()4) vff) + x(()4) x(()4)
.k N |+
’04(13)\ U§5) 04(12) \ U§5) 1)55)
y ‘+ ‘ ‘+ ‘Jr

,U§3) : u§3) v§3)
] |

,@ (s+2) v

s+2 vs+3

Figure 8. Pairing graphs when (o9,...,0%,) is (1,2,3,4,5,9) (left),
(1,2,3,40 45 4+ 3,45 4 7) (center), or (1,2,3,3,7) (right).

Proof. Suppose that £ > s+ 4 is an index such that S; # (). We will prove
that £ = s+ 5 and vsy5 = €543 + €544 — €s45. Our conclusion then follows
from Lemma 4.26.

Step 1. S, must be either ) or {s + 3, s+ 4}.

Using Lemma 4.3 and Corollary 4.16, S} is either 0, {0, s + 4}, {2, s + 4},
or {s+3,s+4}. Suppose S; = {0,544}, by Lemma 7.6, v, = eg + €544 —
es+5, [v¢] and [v1] share their right endpoint. As (vg,v3) # 0, [v1] equals
the union of [v3] and [v7] by Lemma 7.5, i.e. |vi| =4, a contradiction. Sup-
pose S; ={2,s +4}. If 1 €Sy, as s + 3 € Sy, (Ve vs43) # 0, there will be a
heavy triple (vg, vst+3,v2). If 1 € Sy (and consequently, |vg| > 4), then there
will be a claw (vi,zg,vs,v2), unless [vg] M [v1]. If [vg] M [v1], however, we
get O([vg], [v1]) = 2, and so | (vg,v1) | > 2, a contradiction to the fact that
(vg,v1) = —1.

Step 2. If S; = 0 or {s+ 3,5 + 4}, then Sy = S). In particular, Ssy5 = {s +
3,s+4}.

Suppose that S; =0 or {s+3,s+4}. Let ¢=minsupp(ve). By
Lemma 7.4, 7 # 1. That is, (vg, v1) = 0. Also, note that vy is orthogonal to x,
and so 0([vg], [v1]) < 2. If 3 <i < s+ 2, since vg ~ vy ~ -+ ~ v; ~ vy, using
Lemmas 7.5 and 7.3, z,, € [v1]. Therefore, (v1,vy) # 0, a contradiction. So
i > s+ 3 and hence Sy = §). Clearly, Ss15 = {s + 3,5+ 4} by Lemma 4.7.

Step 3. If Sy = {s+3,s+ 4}, then { = s+ 5.
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Assume that £ > s+ 5 and Sy = {s+ 3,s+ 4}, then we have a heavy
triple (vsy3, Vst5, V). O

7.2. k1 =3
In this subsection we focus on the changemaker C-type lattices with
(27) xo = eg + e3 + €k, — €k,.
Recall that the changemaker starts with (1,2, 2, 3).

Lemma 7.12. The intervals [vs] and [vi] share their right endpoint and
€3 = €1. Moreover, [v3] abuts the right endpoint of [vi] and [vs].

Proof. Since |vz| = 3 and (v1,v3) = 2, from Lemma 3.9, it must be the case
that € = e3 and §([v1], [vs]) = 1. The first statement of the lemma is now
immediate because vs is orthogonal to z¢. Since (vg, v1) # 0 and (ve, z9) = 0,
[va] abuts the right endpoint of [v1]. O

Corollary 7.13. Suppose that there exists a vector v; such that j > 3,
J # ks, and (vj,v1) = 2. Then j =4, and that vy = eg + €3 — ey.

Proof. Suppose that j is such an index. Therefore, 0 € supp™(v;) and 1 &
supp™ (vj). (This, in particular, implies that |vj| >3). We claim that
(vj,z0) # 0. Otherwise, assume (vj,z0) = 0. Since (v;,v1) =2, x, € [v1].
Using Lemma 7.12 and Corollary 4.15, [v1] contains at least 3 high weight
vertices x1,2;,,%,,, and §([v;], [v1]) = 2. Since |vi| =5, we have [z | =3,
so by Lemma 3.9 we have | (v;,v1) | =1, a contradiction. This justifies the
claim, and therefore, (v;,zo) = 2. Since |v;| > 3 and 6([v1], [v;]) < 3, to get
(vj,v1) = 2, we must have e; = ¢;. Thus, §([v;], [v1]) = 1 and |v;| = 3. That
is, v; = eg + ej—1 — e;. We now argue that j = 4. Suppose for contradiction
that j > 4. Thus (v;,v3) = 1. Using Lemma 7.12, we get that the interval [v;]
equals the union of [v;] and [v3]. Since |v;| = |v3| = 3, we get that |v;| =4,
which is a contradiction. (]

Lemma 7.14. Let v; be a vector such that j >3, j # k3. Then (vj,v1) €
{0,2}. As a result, minsupp(v;) > 2 unless j = 4 and vy = ey + e3 — eq.

Proof. Assume that (v;,v1) ¢ {0,2}, then supp(v;) N {0,1} = {1} or {0,1}.
By Lemma 4.3, 2 € supp(v;). If 0 € supp(v;), since | (vj,v3) | < 1 by Corol-
lary 4.14, we have 3 € supp(v;). Thus |vj| > 5. Since (z9,v;) = 2, x., = 1.
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By Corollary 4.15 and Lemma 7.12, x,, # x,. So
5= |U1‘ > ’w2J| + ‘xz?,’ -2> 5+17

a contradiction.

We have shown that 0 ¢ supp(v;). If 3 ¢ supp(v;), then j > 4 and |v;| >
4. As (vj,v3) =1, using Corollary 4.15, [v;] and [v3] are consecutive. By
Lemma 7.12 and the fact that (v, v2) = 0 we conclude that [v;] C [v;]. Since
(vj, zo) = 0, [v1] contains at least three high weight vertices: x1, 2, 2,. This
is impossible as |vi| =5 and |v;| > 4.

Now we have supp(vj)N{0,1,2,3} ={1,2,3}, so (v;,v3) =0. By
Lemma 4.7, |vj| > 5 unless j = 4. By Lemma 7.12 and the fact that (v;,v1) #
0 we conclude that [v;] C [v1]. So [v1] contains at least two high weight ver-
tices: x,, x.,. It follows that |v;| < 4. So j =4 and |v4| = e1 + €2 + e3 — e4.
Since |vg| = 4, [v1] contains exactly two high weight vertices, so x; must be
x,. So (v4,z0) # 0, which is not possible. This shows that (v;,v1) € {0,2}.

If minsupp(v;) < 2, then (vj,v1) # 0. We must have (v;,v1) =2, so j =
4 and vq = eg + e3 — e4 by Corollary 7.13. O

Lemma 7.15. Let vj be a vector such that j > 4, j # ks. Then supp(v;) N
{0,1,2,3} # {2} or {3}.

Proof. Assume that supp(v;) N {0,1,2,3} contains only one element which
is 2 or 3. Then |v;| > 3, (v;,v3) # 0 while (v;,v1) = 0. By Lemma 7.12, [v}]
abuts the left endpoint of [v3], so [v;] C [v1]. Since |v;| > 3 and §([v;], [v1]) <
3, using Lemma 3.9, we get that (v;,vi) # 0 unless |v;| = 6([v;], [v1]) = 3.
However, if §([v;], [v1]) = 3, [v1] is contained in the union of [v;], [v3] and
{x0}. Since |vj| = |vz| = 3, we have |vi| = 4, a contradiction. O

Lemma 7.16. o4 € {3,4,5}. Furthermore, if o4 = 3 then [v4] abuts the left
endpoint of [vs]. If o4 = 4 then [v4] and [v1] share their left endpoint.

Proof. If minsupp(vs) < 2, using Lemma 7.14, 04 = 4. By Lemma 4.7, if
minsupp(vg) > 2, v4 = eg + e3 — eq or e3 — e4. So 04 = 5 or 3.

When o4 =3, [v4] abuts [v3] and (v4,v1) =0. By Lemma 7.12, [v4]
abuts the left endpoint of [v3]. When o4 =4, (v4,v1) =2 = (v4,z0). So
0([va], [v1]) = 1 by Lemma 3.9. Thus [v4] and [v;] share their left endpoint
by Lemma 7.12. O

Proposition 7.17. If o4 =3, the initial segment (oy,...,0%,) of o is
(1,2,2,3,3,7).
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Proof. Suppose that o4 =3 (see Lemma 7.16). This implies that ko =4
(Lemma 3.5). Using Equation (27), we get that oy, = 7. If k3 # 5, using
Lemma 3.5 and Lemma 7.14, we must have S5 D {3,4}. By Lemma 7.15, we
have 2 € S5, so (vs,x9) = 2 and vs ~ ve. By Lemma 7.12, [v1] is contained
in the union of zg, [vs], [v2]. So |vi| = |vs| = 4, which is not possible. O

Proposition 7.18. If o4 # 3, the initial segment (oy,...,0k,) of o is
(1,2,2,3,45 45 + 5,45 +9), s > 0.

Proof. Suppose that o4 # 3 (see Lemma 7.16). Furthermore, let s > 0 satisfy
that o; = 4 for any 4 < i < s+ 4, and that 5,4 > 4. We have ky > s+ 4 by
Lemma 3.5. Set j = minsupp(vs44) < s+ 3. Then j > 2 by Lemma 7.14.
Also, j # 3 by Lemma 7.15. If 4 < j < s+ 3, we will get a claw (vj,vj_1,
Vst+4,Vj+1), and if j = 4, the claw will be on vy, 2o, Vs44, v5. This proves that
j = 2. By Lemma 7.15, 3 € supp(vs44).

We will show that o444 =45+ 5. If s =0, vg =e2+e3 —eq, and we
are done. If s> 0, since 2,3 € supp(vst4), |Vs+a| > 4. Also, vsy4 must be
orthogonal to vy, as otherwise, using Lemmas 7.16 and 7.12, all the three
intervals [v4], [vs+4], and [v3] will be subsets of [v1], which implies that |vy| >
6, a contradiction. That is, 4 € supp(vs44). Using Lemma 4.3, vs14 is just
right and o514 = 4s + 5.

Using Lemma 3.5, we see that ko = s + 4. By Equation (27), we have
ok, = 45+ 9. Note that ko € supp(vg,+1). Since the unbreakable vector vy
has nonzero inner product with xg, using Corollary 4.16, we get that ks =
ko + 1. O

Proposition 7.19. If (0o,...,0%,) = (1,2,2,3,3,7), then n+1 = k3 (i.e.
Vg, is the last standard basis vector).

Proof. We claim that the index ks + 1 (that is, 6) does not exist. Using
Lemmas 3.5, 4.7, 4.3, and 7.14, S;, = {4,5}. Then (vg,v4) # 0, and also vg
is orthogonal to z¢. Using Lemmas 7.16 and 7.12, we must have [vg] C [v1]

which implies that (vg,v1) # 0 since |vg| > 3. This contradicts Lemma 7.14.
]

Proposition 7.20. If (0y,...,0%,) = (1,2,2,3,45 45 + 5,45 +9), s >0,
then vs16 = €sta + €515 — €56 if it exists, and |v;| = 2 fori > s+ 6. In this
case, 0 = (1,2,2,3,4 45 +5 45 +9,(8s + 14)1), t > 0.
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Figure 9. Pairing graphs when (oo,...,0k,) is (1,2,2,3,3,7) (left) or
(1,2,2,3,45) 45 + 5,45 +9), s > 0 (right).

Proof. Suppose that £ > ks = s+ 5 is an index such that Sy # (). We will
prove that £ = s + 6 and Sy = {s + 4, s + 5}. This, together with Lemma 4.26,
will imply our desired result.

By Lemmas 3.5, 7.14, and Corollary 4.16, S, is one of 0,{3,4},{3,5}
and {4,5} if s =0, and one of 0, {3,s+ 5}, and {s+4,s+ 5} if s > 0. Let
j = minsupp(vy), then j > 2 by Lemma 7.14. Also, j # 3 by Lemma 7.15.

If s =0 and S) = {3,4}, we have (v, z9) =2 and |v/| > 4, so =1 € [vg].
Using Lemma 3.9, we get (v, v1) # 0, a contradiction.

If S;={3,5s+5}, to avoid (v, vs4a) > 1, 2 ¢ supp(vg). Thus, j =3,
which is impossible.

Having proved S, =0 or {s+4,s+ 5}, we claim that S, = Sj. First,
j # 2 by Lemma 7.15. So our claim holds when s =0. When s > 0, if
4 < j < s+ 3, we have a claw (vj,vj—1,vj4+1,0¢). If j = 5+ 3, (vp, vs43) # 0.
By Lemma 7.16, [v4] and [v1] share their left endpoint. Since |vs| =+ =
|vs43] =2 and vg ~ v5 ~ -+ ~ vgy3, we have [v7] C [v1] by Lemma 7.12.
Thus (vg, v1) # 0 by Lemma 3.9, a contradiction. So our claim is proved.

Now by Lemma 4.7, s + 5 € Ss16. S0 Ss16 = {s + 4, s+ 5} by the results
in the previous two paragraphs. If there was ¢ > s + 6 satisfying Sy = {s +
4,5+ 5}, we would have a heavy triple (vst4, Vst6, v¢). Thus Sy = () whenever
{>s+6. O
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8. Determining p and ¢q

Table 2. P2, table of P(p,q) that are realizable, ¢ > p

a>p:
Range of parameters
Type P(p.q) (p and r are always odd, p > 1)
1A P(p,5(*+3p+4))
12 p=>5or3 (mod 22)
1B P (p, 35(0" + 3p+4)) D £3.5
r=—1 (mod 4)
2 P (p7 ﬁ(?ﬁp — 1)) p=—2r+3 (mod 4r + 2)
r# -5 -1,3
p=1 (mod 2r)
3A P (p.5:(p—1)(p—4)) p#2r+1
r>>5
p=r+4 (mod 2r)
3B P(p,5:(p = 1)(p - 4)) p>r+4
r>1
B 90 p=—4r+1 (mod 2r?)
4 P(p, 5= ((2r+1)%p—1)) r A1 —1
5 P(p é(rzp—l)) rel
ri=2r—1 p=—-2r+5 (mod r?—2r —1)

Sporadic  P(11,19), P(13,34)
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In Sections 5, 6, and 7, we have classfied all the (n 4+ 1)—dimensional C-
type lattices that are isomorphic to changemaker lattices. In the present sec-
tion, we list all the corresponding prism manifolds P(p, ¢). To do so, we start
with the refined basis S" = {v1,...,vp41} \ {vk, } U{20} as defined in (11).
The first step is changing the basis into the vertex basis {z¢,z1,...,2,}.
We then recover the a; from the norms of vertex basis elements. By using
Equation (1), we obtain p and gq.

Example 8.1. We present an example that clarifies how (p, ¢) is computed
in Proposition 5.6. The changemaker is

(1,1,28, 25 = 1,25+ 1), s =n—2 > 2.

Let S” denote the modified standard basis for the changemaker lattice L =
(o)*. It is straightforward to check that

{wo} U{—va,..., —Vst1,03 + - + Vst2,01}
forms the vertex basis S*. Also, the vertex norms are
{3,271 s 41,2}

Using Lemma 2.4 together with Equation (1), we have

2q — 4% +3
170 (3,96 541,29/ = —> 2
q—7p 254 — 542

In particular, p = 2s — 1 and ¢ = 252 + s + 1. We see that q = %(pQ +3p +
4), p> 3.

Similar computations give prism manifolds P(p, q), with ¢ > p, so that
each falls into one of the families in Table 2. We denote the set of such prism
manifolds ngp. Here we divide the families so that each changemaker vector
corresponds to a unique family. In some cases there are prism manifolds
that correspond to more than one family in Table 2. For instance, it is
straightforward to check that P(5,22) belongs to both Families 5 and 1A.
The detailed correspondence between the changemaker vectors and P(p, q)

can be found in Table 4. Note that the positive integer p is always odd.
9. Prism manifolds realizable by surgery on knots in S3

Table 2 gives a list of all prism manifolds P(p,q), with ¢ > p, that can
possibly be realized by surgery on knots in $3. In [BHM*20, Table 2], a list of



1328 W. Ballinger, Y. Ni, T. Ochse, and F. Vafaee

realizable prism manifolds P(p, ¢) with ¢ > 0 is provided. See also [Shang19]
for an explicit list of the knots realizing the corresponding surgeries. It is
straightforward to verify that the manifolds in Table 2 coincide with those
of [BHM ™20, Table 2] with ¢ > p. That is, Table 2 is a complete list of prism
manifolds P(p, q), with ¢ > p, arising from surgery on knots in S3.

9.1. Prism manifolds corresponding to more than one
changemaker vector

As we pointed out in Section 8, some of the prism manifolds in Table 2
correspond to distinct changemaker vectors. In this subsection, we address
this by providing distinct knots corresponding to such prism manifolds. Our
strategy is as follows: let o be a changemaker vector whose orthogonal com-
plement is isomorphic to C(p,q) for some p and q. Let o correspond to a
knot K in S% on which surgery results in P(p, ¢). Using Lemma 2.7, we com-
pute the Alexander polynomial Ak (7). Then we exhibit a P/SF knot K,
that admits a surgery to P(p,q). By directly computing Ak (T) we show
that the two Alexander polynomials coincide. That is, K, matches with o.
See [BHM™'20, Section 13.2]. The parameters beneath the P/SF knots in
Table 3 are explained in the arXiv version of [BHM'20].

9.2. Proof of the main results

Proof of Theorem 1.5. If C(p,q) is isomorphic to a changemaker lattice L,
then it belongs to one of the families enumerated in Sections 5, 6, and 7.
Following Section 8, we can find a pair (p,¢’) such that L is isomorphic to

Cp,q),and P(p/,q) € Pl;p. Now, Proposition 3.15 finishes the proof. [

Proof of Theorem 1.1. Suppose P(p,q) = ijq(K), it follows from Theorem
1.4 and Theorem 1.5 that P(p,q) belongs to one of the six families in Ta-
ble 2 and P(p,q) = qu(Ko) for some Berge-Kang knot Kjy. To get the re-
sult about HFK , we note that K and K correspond to the saﬁe\change—
maker vector. Using Lemma 2.7, we know that Ax = Ag,, so HFK(K) =
I—TFT((KO) by [OS05a, Theorem 1.2]. O
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Table 3. Prism manifolds P(p,q) corresponding to more than one change-

maker
Prism manifold Type Changemaker P/SF knot Braid word
KIST IV, s> 0
(2,-3,-1,0,5 +2)
4 (1,2,3,3,7,8) (07 01)F B (013 - 01)~F
KISTI, s=0
(1,3,4,-2,-3)
P(8s + 13,165 + 18)
3A,5>0
) OPT II
(1,1,3,5,6,8) (o7 01) (o) - op) 2
3B, s =0 (2,3,0,1,5 +1)
5 s=3 (1,1,1,3,4,6,10,10) KIST IV ( )10
y 8= >4, 1,0,4,0, 10, (211717_312) g1 025) 030201
KIST IV .
5 (1,1,1,2,3,6,6) @1,1,-31) (29, 3)—cable of T'(5,2)
P(5,22)
TKM II
1A 1,1,2,2,2,5,7 o) 762
(122250 (1,2,-1,2,2) (71 on)ted
. . OPT III .
3B (1,1,3,5,6,6,6) (2,3,0,1,2) (o1 022)°020304010203
P(25,36)
KIST IV
5 1,1,1,3,4,4,10 coop3) O O
(1,1,1,3,4,4,10) @1,1,-1,3) (o1---013) 010203
OPT II _
3A (1,1,2,5,7,10,12,12) (2,5,0,1,3) (014..040)12 (o1---011) 2
P(43,117)
KIST IV
4 (1,1,2,3,5,6,14,14) (o1---033) (g7---01) 7"

(2,-3,1,-3,1)
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Table 4. C—type changemakers and the corresponding prism manifolds,
Part I

Prop. Changemaker vector Vertex basis (with zo omitted) {z1,..., 2.}
1,1,260 25 — 1,25 + 1)
5.6 5 ) {=v2, ., —Vs41,V3.642), V1 }

(1,1,20, 25 + 1,25 + 3,45 + 4,85 + 10)

s> 1 {*Uz«, coos TUsH1s TUs5; Usds Us42, 7Jl}
1,1,28, 25 + 1,25 + 3,45 + 6,85 + 10
5.7 g 21 ! ’ ) {=v2, ..., —Vsi1, —Vsid, Vsy5,Vsi2, 01}
1,1,2,3,5,85), 85 + 6, (85 + 14)1"
£> 1 ¢ ) {02, Vg5, V1, —V3 — V1, —Vsy .+« +y —Vsidy —Vs6s -+ y —Vsit5)
(1,1,2,3,5,6,14) {—v2, 01 +v5, —v1, —v3, V6, ..., —Vps5}
1,1,200 25 + 3,25 + 5, (45 + 6)[0
i P ¢ ) {20 = Vs 1, VL s1) F Vs s3] — Vsh2s ~Vshtd3, - - - —Vstd, —UL}
1,1,28 25 + 3,25 + 5
5.9 i 21 ! ) {02, o, =Vst1, V[t 541) — Ust2, —U1}
1,1,265 25 + 3,25 4+ 5,45 + 6, (45 4 8)!
i t>1 ¢ L P 1 P T ~Vst44s V[1,s41] T Vlstd,sttrd] — Us+2s —Ustd, —V1}
1,1,3,5,6
E>' 1 6%) {v1+ V[4,t43] — V2 —Vt435 -5 ~U4; —v1}
6.3 (1,1,3,5) {—va,v1}
(1,1,3,5,6,8(1]) {=vs,. ., —Urys, 01 + Vg p15) — V2, —va, —v1}
(1,1,1,3,4,41, 4¢ + 6, (4¢ + 10)1*)) {—Vt45, —V1, =2, —V4, .., ~Vtids —Vt46, s ~Vthsts )
6.4 (1,1,1,3,4,10) {—vs,v4, 00,01}
(1,1,1,3,6,10) {—v4,v5,v2,01}
N 1,1,1,2,3,6l
6.5 ,( 1 ) {—v3, —v1, —v2, —vs, ..., —Vt14}
7.9 (1,2,3,4,5,9) {—va,vp3,4) — v1, —va, 02}
1,2,3,3,7,85 (85 +10)11
7.10 §'> o it ™) {Uf5,5:04] = V1, —Vstdy - -+, —U5, V2, U3, Vs 5, - -, Vsrird }
(1,2,3,3,7,101) {—v1,v2,v3,v5, ..., v4a}
1,2,3,45) 45 + 3,45 + 7, (8s + 10)"]
7.11 i> | ( ") {035y —Vs12,V[3 6 42] = V1,02, Us3, Ust5y - -+ s Ustird )
7.19 (1,2,2,3,3,7) {vi3.4) — v1, —va, —v3, —v2}
1,2,2,3,45 45 45,45 + 9, (8s + 14)1¥
7.20 E ST % ( ) {=v4, ..., —vs13, U[3,543] — U1, —U3, —U2, —VUstd, —Us46,-- -, —Usti45}

(1,2,2,3,5,9,141) {v3 —v1, —v3, —v2, —v4, —V6, ..., —Vi15}
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Table 4. C—type changemakers and the corresponding prism manifolds,
Part II

Prop. Vertex norms {ai,...,an} Prism manifold parameters P;;p type
s—1 p= 25 —1
5.6 {3,271 s +1,2} (=2 4541 1A
o1 p=22s+ 25
{3,2°7,5,3,5+2,2} q = 2252 + 535 + 32 1B
o1 p=22s+ 27
5.7 {3,271 4,4, 5 + 2,2} 0= 295 1 5Ts 4 37 1B
r=2s+3
{3,5+3,2,3,3,27U 3 o=} —2p2(t 1) —dr 4+ 1 4
q=2r+1)%(t+1)—8 —6
r=23
{3,3,2,3,4, 21} p=18t+7 4
q=49t+19
r=2t+1
{3,201 4 201 543 2} p=2r(s+1)+r+4 3B
q=13(2rs+3(r+1))(2s+3)
r=1
5.9 {3,271 s+ 5,21 p=2s+7 3B
qg=(s+3)(2s+3)
r=2t+3
{3,271 3 9lt=1 3 5 4 3,2} p=2r(s+2)+1 3A
g=(s+2)(2r(s+2)—3)
r=2t+1
{5,213 2} p=6t+7 3B
q=9t+9
r=1
6.3 {6,2} p="7 3B
q=9
r=2t+5
{4,213 3,2} p=28t+21 3A

q =16t + 34
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Table 4. C—type changemakers and the corresponding prism manifolds,
Part II1

Prop. Vertex norms {ai,...,an} Prism manifold parameters 73;'>p type
r=2t+5
{t +4,2,2,3,2 3 26—1} p=0?=2r—1)(s+1)—2r+5 5
g=r*(s+1)—2r+1
p=25
6.4 {6,3,2,2} ¢ = 32 1B
p=27
{5,4,2,2} =37 1B
r=3
6.5 {3,2,2,4,20"1} p=2t+1 5
q=9t+4
p=13 .
7.9 {3,3,3,3} =34 Sporadic
r=-3—2s
7.10 {4,271 3,3 2 s+ 3,201} p=2r’t—4r+1 4
g=t(2r+1)>—8r—6
r=-3
{5,3,2,3,20-1 p=18t+13 4
q =25t + 18
r=—5—14s
7.11 {3,271 4,3, 5 +2 3,271} p=(—4r—2)t—2r+3 2
q:r2t+%(r272r+1)
p= 11 .
7.19 {4,2,3,2} =19 Sporadic
r="7+44s
7.20 {3,21.33.2, 543,32t p=(4r +2)t+2r+5 2
g=rt+i(r*+2r-1)
r="7
{4,3,2,3,3,2t71} p=30t+19 2
q =49t +31

In this table, vy, means v, + Va1 + -+ vp for a <b. All vertex bases
are presented in the form {z1,...,z,}. The parameters s,¢ > 0 unless oth-
erwise stated. A superscript [ at an element in the sequence of vertex
norms means that the sequence is truncated at this element and the ele-
ment preceding it. For example, the sequence {3, ols=1 4.3, 5+ 2,3, 2[t_1}}
becomes {3,271, 4,3, s + 2} when t = 0.
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