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We continue our study of the realization problem for prism mani-
folds. Every prism manifold can be parametrized by a pair of rel-
atively prime integers p > 1 and q. We determine a complete list
of prism manifolds P (p, q) that can be realized by positive integral
surgeries on knots in S3 when q > p. The methodology undertaken
to obtain the classification is similar to that of the case q < 0 in
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1. Introduction

This paper is a continuation of [BHM+20], where the authors studied the
Dehn surgery realization problem of prism manifolds. Recall that prism man-
ifolds are spherical three–manifolds with dihedral type fundamental groups.
Alternatively, an oriented prism manifold P (p, q) has Seifert invariants

(−1; (2, 1), (2, 1), (p, q)),

where q and p > 1 are relatively prime integers. A surgery diagram of P (p, q)
is depicted in Figure 1A. When q < 0, the realization problem for prism
manifolds was solved in [BHM+20]. More precisely, a complete list of P (p, q),
with q < 0, that can be obtained by positive Dehn surgery on knots in S3

is tabulated in [BHM+20, Table 1]. Indeed, every manifold in the table
can be obtained by surgery on a Berge–Kang knot [BK]. Our main result,
Theorem 1.1 below, provides the solution for those P (p, q) with q > p: see
Table 2.

Theorem 1.1. Given a pair of relatively prime integers p > 1 and q > p,
the prism manifold P (p, q) can be obtained by 4q–surgery on a knot K ⊂ S3

if and only if P (p, q) belongs to one of the six families in Table 2. Moreover,
in this case, there exists a Berge–Kang knot K0 such that P (p, q) ∼= S3

4q(K0),
and that K and K0 have isomorphic knot Floer homology groups.

Table 1 presents the list of realizable prism manifolds for q > p with the
range of parameters suppressed.

Remark 1.2. In the arXiv verison of [BHM+20], for each prism manifold
in Table 1, we listed a Berge–Kang knot realizing the corresponding surgery
following the work of Berge–Kang [BK]. However, since Berge–Kang’s work
is not publicly available, we did not include this list of Berge–Kang knots
in the published version of [BHM+20]. An explicit list of primitive/Seifert-
fibered knots admitting prism manifold surgeries was given in [Shang19],
independent of [BK]. The second statement of Theorem 1.1 now follows
from [Shang19].

The methodology used to obtain Table 1 is similar to that of [Gre13,
BHM+20]. When q > p, the prism manifold P (p, q) bounds a negative def-
inite four–manifold X = X(p, q) with a Kirby diagram as in Figure 1D:
see Section 2. Let P (p, q) arise from surgery on a knot K ⊂ S3. Let also
W4q = W4q(K) be the corresponding two–handle cobordism obtained by
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Table 1. P+
q>p, table of P (p, q) with q > p that are realizable; the constraints

on the parameters p, q and r are supressed. See Table 2 for the complete
version.

Type P (p, q)

1A P
(

p, 12(p
2 + 3p+ 4)

)

1B P
(

p, 1
22(p

2 + 3p+ 4)
)

2 P
(

p, 1
|4r+2|(r

2p− 1)
)

3 P
(

p, 1
2r (p− 1)(p− 4)

)

4 P
(

p, 1
2r2

(

(2r + 1)2p− 1
))

5 P
(

p, 1
r2−2r−1(r

2p− 1)
)

Sporadic P (11, 19), P (13, 34)

attaching a two–handle to the four–ball along the knot K with framing
4q. Form the four–manifold Z := X ∪P (p,q) (−W4q). It follows that Z is a
smooth, closed, negative definite four–manifold with b2(Z) = n+ 2 for some
n ≥ 1: see Figure 1D. Now, the celebrated theorem of Donaldson (“The-
orem A”) implies that the intersection pairing on H2(Z) is isomorphic to
−Zn+2 [Don83], the Euclidean integer lattice with the negation of its usual
dot product. This provides a necessary condition for P (p, q) to be positive
integer surgery on a knot; namely, the lattice C(p, q), specified by the neg-
ative of the intersection pairing on H2(X), must embed as a codimension
one sublattice of Zn+2. The key idea we use to sharpen this into a necessary
and sufficient condition is the work of Greene [Gre13], which is built mainly
on the use of the correction terms in Heegaard Floer homology in tandem
with Donaldson’s theorem. In order to state the theorem, we first require a
combinatorial definition.

Definition 1.3. A vector σ = (σ0, σ1, . . . , σn+1) ∈ Zn+2 that satisfies 0 ≤
σ0 ≤ σ1 ≤ · · · ≤ σn+1 is a changemaker vector if for every k, with 0 ≤ k ≤
σ0 + σ1 + · · ·+ σn+1, there exists a subset S ⊂ {0, 1, . . . , n+ 1} such that
k =

∑

i∈S σi.
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Using Lemma 2.6, the following is immediate from [Gre15, Theorem 3.3].

Theorem 1.4. Suppose P (p, q) with q > p arises from positive integer
surgery on a knot in S3. The lattice C(p, q) is isomorphic to the orthog-
onal complement (σ)⊥ of some changemaker vector σ ∈ Zn+2.

By determining the pairs (p, q) which pass the embedding restriction
of Theorem 1.4, we get the list of all prism manifolds P (p, q) with q > p
that can possibly be realized by integer surgery on a knot in S3: again, see
Table 1. We still need to verify that every manifold in our list is indeed
realized by a knot surgery. In fact, this is the case.

Theorem 1.5. Given a pair of relatively prime integers p > 1 and q > p,
C(p, q) ∼= (σ)⊥ for a changemaker vector σ ∈ Zn+2 if and only if P (p, q)
belongs to one of the six families in Table 2. Moreover, in this case, there
exist a knot K ⊂ S3 with S3

4q(K) ∼= P (p, q) and an isomorphism of lattices

φ : (Zn+2, I) → (H2(Z),−QZ),

such that φ(σ) is a generator of H2(−W4q). Here I denotes the standard
inner product on Zn+2 and QZ is the intersection form of Z = X(p, q) ∪
(−W4q).

Remark 1.6. Theorem 1.5, in particular, highlights that the families in
Table 2 are divided so that each changemaker vector corresponds to a unique
family. However, a prism manifold P (p, q) may belong to more than one
family in Table 2. We will address the overlaps between the families of
Table 2 in Section 9: see Table 3.

Table 2 in [BHM+20] gives a conjecturally complete list of prism man-
ifolds P (p, q) with q > 0 that can be obtained by performing surgery on a
knot in S3. Every manifold in [BHM+20, Table 2] is obtained by integral
surgery on a Berge–Kang knot (see [BHM+20, Table 4] and [BK]). Theo-
rem 1.1 proves [BHM+20, Conjecture 1.6] for the case q > p since the man-
ifolds in Table 1 coincide with those in [BHM+20, Table 2] with q > p. In
the present work, we leave open the realization problem for prism manifolds
P (p, q) with 0 < q < p. We address this case in [BNOV18].

1.1. Organization

Section 2 collects the topological background on prism manifolds, and also
reviews the essentials needed to prove our main results. In Section 3, we
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study C–type lattices C(p, q) that are central in the present work. To prove
Theorem 1.5, we begin with a study of the changemaker lattices (Section 4),
i.e. lattices of the form (σ)⊥ ⊂ Zn+2 for some changemaker vector σ ∈ Zn+2.
We then study when a changemaker lattice, with a standard basis, is isomor-
phic to a C–type lattice, with its distinguished vertex basis. The key to an-
swering this combinatorial question is detecting the irreducible elements in
either of the lattices. Indeed, the standard basis elements of a changemaker
lattice are irreducible (Lemma 4.4), as are the vertex basis elements of a
C–type lattice. Furthermore, the classification of the irreducible elements
of C–type lattices is given in Proposition 3.2. We collect many structural
results about these lattices in Sections 3 and 4.

We classify the changemaker C–type lattices based on how x0, the first el-
ement in the ordered basis of a C–type lattice, is written in terms of the stan-
dard orthonormal basis elements of Zn+2. Accordingly, Sections 5, 6, and 7
will enumerate the possible changemaker vectors whose orthogonal com-
plements are C–type lattices. Section 8 tabulates the corresponding prism
manifolds.

Finally, in Section 9, we address the overlaps between the families in
Table 2. More precisely, we provide distinct knots corresponding to distinct
changemakers that result in the same prism manifold. We then proceed with
proving Theorems 1.1 and 1.5.
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2. Preliminaries

For a pair of relatively prime integers p > 1 and q, the prism manifold P (p, q)
is a Seifert fibered space with a surgery description depicted in Figure 1A.
It is shown in [BHM+20] that if P (p, q) is obtained by surgery on a knot in
S3, p must be odd.
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An equivalent surgery description for P (p, q) is depicted in Figure 1D. To
get the coefficients ai, write

2q−p
q−p

in a Hirzebruch–Jung continued fraction

(1)
2q − p

q − p
= a1 −

1

a2 −
1

. . . −
1

an

= [a1, a2, . . . , an]
−.

From this point on in the paper, we assume that q > p. As a result, we have
a1 ≥ 3 in Equation (1). Moreover, each ai ≥ 2.

Definition 2.1. The C-type lattice C(p, q) has a basis

(2) {x0, . . . , xn},

and inner product given by

⟨xi, xj⟩ =































4 i = j = 0

ai i = j > 0

−2 {i, j} = {0, 1}

−1 |i− j| = 1, i > 0, j > 0

0 |i− j| > 1,

where the coefficients ai, for i ∈ {1, . . . , n}, are defined by the continued
fraction (1). We call (2) the vertex basis of C(p, q).

Let X = X(p, q) be the four–manifold, bounded by P (p, q), with a Kirby
diagram as depicted in Figure 1D. The inner product space (H2(X),−QX)
equals C(p, q), where QX denotes the intersection pairing of X: see Figure 2.
Note that b2(X) = n+ 1, where n is defined in (1).

Remark 2.2. When q < 0 in Equation (1), it follows that a1 = 2 and
C(p, q) is indeed isomorphic to a D–type lattice [BHM+20, Definition 2.8].
The prism manifold realization problem is solved in this case [BHM+20].

2.1. The four–manifold X(p, q) revisited

In this subsection, we present a different construction of the four–manifold
X(p, q) as the branched double cover of B4 over a particular surface: see
Figure 3. As a Seifert fibered rational homology sphere, the prism manifold
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2

−2

1

p
p−q

B.

−4

−2q−p
q−p

C.

−2

−2

−1

−p
q

A.

−4

D.

−a1 −an−a2

Figure 1. Surgery presentations of P (p, q). A and B correspond to the
two equivalent choices of Seifert invariants (−1; (2, 1), (2, 1), (p, q)) and
(1; (2, 1), (2,−1), (p, q − p)). To go from B to C, blow down two 1-framed
unknots in sequence: first blow down the middle unknot, changing the fram-
ing on the upper left unknot to 1, and then blow down the upper left unknot.
Finally, to get to D, use slam-dunk moves to expand 2q−p

q−p
in a continued

fraction. The last link gives a negative-definite four–manifold if q < 0 or
q > p.

4 a1 a2 · · · an

Figure 2. A C–type lattice C(p, q) with 2q−p
q−p

= [a1, a2, . . . , an]
−. Note that

a1 ≥ 3 when q > p.

P (p, q) is the branched double cover of S3 branched along a Montesinos
link [Mon73]: choose b1, . . . , bn so that

(3)
p

q − p
= b1 +

1

b2 +
1

. . . +
1

bm

= [b1, b2, . . . , bm]+.
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b1

b2

b3

b4

b2k−1

b2k

b2k+1

Figure 3. A handle decomposition of a surface embedded in S3. The bound-
ary of this surface is an alternating Montesinos link whose branched double
cover is P (p, q), and the branched double cover of B4 over this surface with
its interior pushed into the interior of B4 is X(p, q). Sliding the 1–handles
in this picture along the red arrows and then cancelling all but one of the 0–
handles gives Figure 5. This surface depends on parameters b1, . . . , bm where
m is either 2k + 1 or 2k; if m = 2k omit the band labelled b2k+1.

Since q > p, p
q−p

> 0 and we can choose the bi so that b1 ≥ 0 and bi > 0 for
i > 1. The boundary of the surface Σ drawn in Figure 3 is an alternating
Montesinos link L, and Σ itself is the surface formed by the black regions in
a checkerboard coloring of the alternating diagram. We point out that we
are using the coloring convention as in Figure 4. The branched double cover
of S3 branched along L is P (p, q). Let XΣ be the branched double cover of
B4 over the surface Σ with its interior pushed into the interior of B4. With
this notation in place:

Proposition 2.3. X(p, q) ∼= XΣ.

We first recall the following lemma that will be used in the proof of
Proposition 2.3 and also in Section 8.

Lemma 2.4 (Lemma 9.5 (1) and (3) of [Gre13]). For integers r, s, t ≥
0,
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Figure 4. The coloring convention.

b1 + 3

b2 − 1

b3 + 2
b2k+1 + 1

Figure 5. Another view of the surface shown in Figure 3. From this picture
a Kirby diagram representing the branched double cover of B4 over this
surface (shown in Figure 6) can be read off using the methods of Figure 4
in [AK80]. As before, if m is even omit the band labelled b2k+1.

1. [. . . , r, 2[s], t, . . . ]− = [. . . , r − 1,−(s+ 1), t− 1, . . . ]−, and

2. [. . . , s, 2[t]]− = [. . . , s− 1,−(t+ 1)]−,

where 2[a] means that the entry 2 appears a times.

We now proceed to prove Proposition 2.3. In order to obtain a Kirby di-
agram of branched double covers, we closely follow the treatment of [AK80];
in particular, see [AK80, Figure 4].

Proof of Proposition 2.3. Figure 3 depicts a handle decomposition of the
surface Σ whose branched double cover is XΣ. By sliding the 1–handles
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along the red arrows in Figure 3 and then canceling all but only one of the
0–handles, we obtain the surface in Figure 5: a disc with several bands at-
tached. The odd-numbered b2i+1 with 0 < i < m−1

2 contribute bands with
b2i+1 + 2 half-twists, b1 contributes a band with b1 + 3 half-twists, and bm
contributes a band with bm + 1 half-twists when m is odd. The even-
numbered b2i contribute b2i − 1 bands each, each with 2 half-twists. There-
fore, the coefficients a1, . . . , an of Figure 6 are
(4)

(a1, . . . , an) =

{

(b1 + 3, 2[b2−1], b3 + 2, 2[b4−1], . . . , 2[bm−1−1], bm + 1) m odd,

(b1 + 3, 2[b2−1], b3 + 2, 2[b4−1], . . . , bm−1 + 2, 2[bm−1]) m even.

Using Lemma 2.4,

[a1, . . . , an]
− = [b1 + 2,−b2, b3,−b4, . . . ,±bm]−

= [b1 + 2, b2, . . . , bm]+

=
p

q − p
+ 2

=
2q − p

q − p
.

That is, the ai in Equation (4) are the same as those of Equation (1). The
branched double cover of B4 branched over the surface in Figure 5 is depicted
in Figure 6; comparing it with Figure 1D, the result follows. □

2.2. Input from Heegaard Floer homology

We assume familiarity with Floer homology and only review the essential
input here for completeness. In [OS03], Ozsváth and Szabó defined the cor-
rection term d(Y, t) that associates a rational number to an oriented rational
homology sphere Y equipped with a Spinc structure t. If Y is boundary of
a negative definite four–manifold X, then

(5) c1(s)
2 + b2(X) ≤ 4d(Y, t),

for any s ∈ Spinc(X) that extends t ∈ Spinc(Y ).

Definition 2.5. A smooth, compact, negative definite four–manifold X is
sharp if for every t ∈ Spinc(Y ), there exists some s ∈ Spinc(X) extending t

such that the equality is realized in Equation (5).
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−4

−a1

−a2−a3−an

Figure 6. A Kirby diagram representing the branched double cover of the
surface in Figure 3. This is the same as the diagram defining X(p, q). The
grey box is not part of the link, but is included only to show the relationship
with Figure 5.

Using Proposition 2.3, the following is immediate from [OS05b, Theo-
rem 3.4].

Lemma 2.6. X(p, q) is a sharp four–manifold.

2.3. Alexander polynomials of knots on which surgery yield
P (p, q) with q > p

Using techniques that will be developed in the next sections in tandem with
Theorem 1.4, we will find the classification of all C-type lattices C(p, q)
that are isomorphic to (σ)⊥ for some changemaker vector σ in Zn+2. If the
corresponding prism manifold P (p, q) is indeed arising from surgery on a
knot K ⊂ S3, we are able to compute the Alexander polynomial of K from
the values of the components of σ: let S be the closed surface obtained by
capping off a Seifert surface for K in W4q. It is straightforward to check that
the class [S] generates H2(W4q). It follows from Theorem 1.4 that, under
the embedding H2(X)⊕H2(−W4q) →֒ H2(Z), the homology class [S] gets
mapped to a changemaker vector σ. Let {e0, e1, . . . , en+1} be the standard
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orthonormal basis for Zn+2, and write

σ =

n+1
∑

i=0

σiei.

Also, define the characteristic covectors of Zn+2 to be

Char(Zn+2) =

{

n+1
∑

i=0

ciei

∣

∣

∣

∣

∣

ci odd for all i

}

.

We remind the reader that, writing the Alexander polynomial of K as

(6) ∆K(T ) = b0 +
∑

i>0

bi(T
i + T−i),

the k-th torsion coefficient of K is

tk(K) =
∑

j≥1

jbk+j ,

where k ≥ 0. The following lemma is immediate from [Gre15, Lemma 2.5].

Lemma 2.7. The torsion coefficients satisfy

ti(K) =















min
c

c
2 − n− 2

8
, for each i ∈ {0, 1, . . . , 2q},

0, for i > 2q.

where c is subject to

c ∈ Char(Zn+2), ⟨c, σ⟩+ 4q ≡ 2i (mod 8q).

And for i > 0,

bi = ti−1 − 2ti + ti+1,

and

b0 = 1− 2
∑

i>0

bi,

where the bi are as in (6).



✐

✐

“1-Ni” — 2021/12/29 — 17:01 — page 1291 — #13
✐

✐

✐

✐

✐

✐

The prism manifold realization problem II 1291

3. C-type lattices

This section assembles facts about C-type lattices that will be used in the
classification. We mainly use the notation of [Gre13, BHM+20]. Recall that
we always assume q > p, so a1 ≥ 3: see Figure 2.

Let L be a lattice. Given v ∈ L, let |v| = ⟨v, v⟩ be the norm of v. An ele-
ment ℓ ∈ L is reducible if ℓ = x+ y for some nonzero x, y ∈ L, with ⟨x, y⟩ ≥
0, and irreducible otherwise. An element ℓ ∈ L is breakable if ℓ = x+ y with
|x|, |y| ≥ 3 and ⟨x, y⟩ = −1, and unbreakable otherwise.

Among the irreducible elements of a lattice, intervals are the most con-
venient for us:

Definition 3.1. In a C-type lattice, if I is any subset of {x0, x1, . . . , xn}
then write [I] =

∑

x∈A x. An interval is an element of the form [I] with
I = {xa, xa+1, . . . , xb} for 0 ≤ a ≤ b ≤ n. We say that a is the left endpoint
of the interval, and b is the right endpoint of the interval. Say that [I]
contains xi if I does.

Given the fact that a1 ≥ 3, the following is immediate from [Gre13,
Proposition 3.3]. We point out that every C-type lattice is a graph lattice:
see [Gre13, Definition 3.1]. The graphG has vertice set V = {r, x0, x1, . . . , xn}
with r being the root. There are two edges between x0 and x1, and one edge
between xi and xi+1 when i > 0. There are two edges between r and x0, and
ai − 2 edges between r and xi when i > 0.

Proposition 3.2. If v ∈ C(p, q) is irreducible, v = ϵ[I] for some ϵ = ±1
and [I] an interval. Also, every vertex basis element of a C-type lattice is
irreducible.

Definition 3.3. Given a lattice L and a subset V ⊂ L, the pairing graph
is Ĝ(V ) = (V,E), where e = (vi, vj) ∈ E if ⟨vi, vj⟩ ̸= 0.

Corollary 3.4. The lattice C(p, q) is indecomposable; that is, C(p, q) is not
the direct sum of two nontrivial lattices.

Proof. Suppose that C(p, q) ∼= L1 ⊕ L2. Then each xi, being irreducible
(Proposition 3.2), must be in either L1 or L2. However, any element of L1 has
zero pairing with any element of L2. Since ⟨xi, xi+1⟩ ̸= 0, Ĝ({x0, . . . , xn})
is connected. This means that all of the xi are in the same part of the
decomposition, and the other is trivial. □
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In a C-type lattice, we have that |⟨x0, x1⟩| = 2. It turns out that the
inner product of x0 with any other element in the C-type lattice lives in 2Z.
The following lemma is straightforward to prove.

Lemma 3.5. For any v ∈ C(p, q), ⟨x0, v⟩ is even.

Definition 3.6. A vertex xi has high weight if i > 0 and |xi| = ai > 2.

Proposition 3.7. Suppose that I ̸= {x0} is an interval. An element ϵ[I] ∈
C(p, q) with ϵ ∈ {±1} is unbreakable if and only if [I] contains at most one
element of high weight.

Proof. The proof is similar to [Gre13, Corollary 3.5 (4)]. If [I] contains more
than two elements of high weight, we can break I into two consecutive
intervals I1, I2 with |[I1]|, |[I2]| ≥ 3 and ⟨[I1], [I2]⟩ = −1, so [I] is breakable.

Coversely, if [I] is breakable, let G be the graph described before Propo-
sition 3.2, we can apply [Gre13, Proposition 3.4]. Then either G|I contains
a cut edge e or G|(V − I) contains a cut edge e. If G|I contains a cut edge
e, then I − e = I1 ∪ I2, and |[I1]|, |[I2]| ≥ 3. It follows that each of I1, I2 con-
tains an element of high weight. If G|(V − I) contains a cut edge e, then
G|(V − I − e) = I1 ∪ I2 with I2 containing r, and [I] = [I ∪ I1] + (−[I1])
with |[I ∪ I1]|, |[I1]| ≥ 3 and ⟨[I ∪ I1],−[I1]⟩ = −1. Note that I1 is always
an interval not containing x0, so ⟨[I ∪ I1],−[I1]⟩ = −|[I1]| − ⟨[I], [I1]⟩ ≤ −2,
a contradiction. □

Definition 3.8. Consider the graph C on vertex set {x0, . . . , xn} that has
two edges between x0 and x1 and one edge between xi and xi+1 for 0 < i < n.
Given two intervals [I] and [J ], say that an edge of C is dangling if one of
its ends is in I, the other is in J , and at least one of the ends is not in I ∩ J .
Write δ([I], [J ]) for the number of dangling edges.

Lemma 3.9. For two intervals [I], [J ], ⟨[I], [J ]⟩ = |[I ∩ J ]| − δ([I], [J ]).

Proof. Suppose I = {xa, . . . , xb} and J = {xc, . . . , xd}. Then we can express

⟨[I], [J ]⟩ =
b

∑

i=a

d
∑

j=c

⟨xi, xj⟩

Terms in this sum with |i− j| > 1 vanish. The remaining terms either have
xi and xj in I ∩ J , so occur as terms in the expansion of |[I ∩ J ]|, or have
at least one of xi or xj not in I ∩ J , so contribute to δ([I], [J ]). □
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We frequently use the following lemma, which is stated without proof.

Lemma 3.10. Let I ̸= {x0} be an interval. Then

|[I]| = 2 +
∑

xi∈I\{x0}

(|xi| − 2).

Given the structure of a C-type lattice, the following is immediate.

Lemma 3.11. For any intervals I, J , δ([I], [J ]) is 0, 1, 2, or 3. If δ([I], [J ]) =
3, then ⟨x0, [I]⟩ = −⟨x0, [J ]⟩ = ±2.

To more precisely describe the value δ([I], [J ]), it will be convenient to
use some terminology from [Gre13]:

Definition 3.12. For two intervals [I] and [J ] with left endpoints i0, j0 and
right endpoints i1, j1, say that [I] and [J ] are distant if either i1 + 1 < j0 or
j1 + 1 < i0, that [I] and [J ] share a common end if i0 = j0 or i1 = j1, and
that [I] and [J ] are consecutive if i1 + 1 = j0 or j1 + 1 = i0. Write [I] ≺
[J ] if I ⊂ J and [I] and [J ] share a common end, and [I] † [J ] if they are
consecutive. If [I] and [J ] are either consecutive or share a common end, say
that they abut. If I ∩ J is nonempty and [I] and [J ] do not share a common
end, write [I] ⋔ [J ].

Remark 3.13. If ⟨[I], x0⟩ = ⟨[J ], x0⟩ or if either ⟨[I], x0⟩ or ⟨[J ], x0⟩ is zero,
then δ([I], [J ]) is 0 if [I] and [J ] are distant, 1 if [I] and [J ] abut, and 2 if
[I] ⋔ [J ]. If ⟨[I], x0⟩ ̸= ⟨[J ], x0⟩ and both are nonzero, δ([I], [J ]) is 2 if [I] and
[J ] abut, and 3 if [I] ⋔ [J ]. In the latter case, [I] and [J ] are never distant.

Definition 3.14. For an unbreakable interval [Ij ] ∈ C(p, q) with |[Ij ]| ≥ 3,
let xzj be the unique element with |xzj | ≥ 3.

We end this section by determining when two C-type lattices are iso-
morphic.

Proposition 3.15. If C(p, q) ∼= C(p′, q′), then p = p′ and q = q′.

Proof. If L is a lattice isomorphic to C(p, q), then to recover p and q from L
it suffices to recover the ordered sequence of norms ν = (|x1|, |x2|, . . . , |xn|).
To do this, we will first identify the elements of this sequence that are at
least 3, and then fill in the 2’s.
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We claim that unless ν = (4) or ν = (3, 2[t], 3) for t ≥ 0, there is a unique
(up to sign) irreducible element y such that

(7) |y| = 4 and ⟨y, v⟩ is even for all v in L.

(This y is ±x0.) Let I ̸= {x0} be any interval representing an irreducible
element with norm 4. Suppose I = {xa, xa+1, . . . , xb}. If a > 1, then
⟨[I], xa−1⟩ = −1 is odd. If b < n, then ⟨[I], xb+1⟩ = −1 is odd. So we assume
a = 0 or 1, and b = n. If |x1| = 2, then ⟨[I], x1⟩ = ±1 is odd. If |xn| = 2, then
⟨[I], xn⟩ = 1 is odd. So we have |x1| ≥ 3, |xn| ≥ 3. Since |[I]| = 4, either I
contains a unique high-weight vertex with norm 4, or I contains exactly two
high-weight vertices such that both have norm 3. Our claim holds.

If there are at least two (up to sign) irreducible elements y satisfying
(7), ν is (4) or (3, 2[t], 3) by the previous claim. We can determine ν from
the rank of the lattice. From (1) we can get (p, q).

From now on, we assume y = x0 is the unique (up to sign) irreducible
element satisfying (7). Let R be the sublattice of L generated by x0 and all
vectors of norm 2. Since L contains no vectors of norm 1, any vector of norm
2 in L is irreducible. By Lemma 3.10, then, R is generated by x0 and the xi
with |xi| = 2.

Now, let V0 be the set of irreducible, unbreakable elements of L \ {±x0}
with norm at least 3, and let V be the quotient of V0 by the relation v ∼ u
whenever either v − u ∈ R or v + u ∈ R. Every element of V0 corresponds
to an interval containing a unique high-weight vertex, and v ∼ u if and only
if these high-weight vertices are the same. Therefore, V consists of precisely
the equivalence classes of the xi with |xi| ≥ 3, i > 0, and if v ∈ V0 with
v ∼ xi we have |v| = |xi|.

Finally, let W be the set of indecomposable components of R, so each
element ofW corresponds to either x0 or a run of 2’s in the sequence of norms
(|x1|, |x2|, . . . , |xn|). Let B be the bipartite graph with vertex set V ∪W , and
an edge between v ∈ V and w ∈ W if there is a representative ṽ ∈ L of v
and an element w̃ ∈ W such that ⟨ṽ, w̃⟩ = −1, or w corresponds to x0 and
⟨ṽ, x0⟩ = −2. Then v and w neighbor in B if and only if the element xi
representing v is adjacent to x0 or the run of 2’s corresponding to w, so
B is in fact a path. Furthermore, there is a unique element w0 ∈ W that
contains x0, and w0 must be one of the ends of the path B. We can now
recover (|x1|, |x2|, . . . , |xn|) as follows: The vertex w0 neighbors a unique
element v ∈ V in B. The rest of the sequence is completed in the following
way - as we travel down the path B, when we encounter an element w ∈ W ,
an indecomposable component of R, we add as many 2’s to the sequence as
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the rank of w, and when we encounter an element v ∈ V we add |ṽ| to the
sequence for ṽ a representative of v. □

4. Changemaker lattices

A lattice is called a changemaker lattice if it is isomorphic to the orthogonal
complement of a changemaker vector. Whenever P (p, q), with q > p, comes
from positive integer surgery on a knot, C(p, q) is isomorphic to a change-
maker lattice (σ)⊥ ⊂ Zn+2. In this section, we will assemble some basic
structural results about C-type lattices that are isomorphic to changemaker
lattices.

Write (e0, e1, . . . , en+1) for the orthonormal basis of Zn+2, and write σ =
∑

i σiei. Since C(p, q) is indecomposable (Corollary 3.4), σ0 ̸= 0, otherwise
(σ)⊥ would have a direct summand Z. So σ0 = 1.

We will need several results from [Gre13, Section 3] about changemaker
lattices:

Definition 4.1. The standard basis of (σ)⊥ is the collection S =
{v1, . . . , vn}, where

vj =

(

2e0 +

j−1
∑

i=1

ei

)

− ej

whenever σj = 1 + σ0 + · · ·+ σj−1, and

vj =

(

∑

i∈A

ei

)

− ej

whenever σj =
∑

i∈A σi, with A ⊂ {0, . . . , j − 1} chosen to maximize the
quantity

∑

i∈A 2i. A vector vj ∈ S is called tight in the first case, just right
in the second case as long as i < j − 1 and i ∈ A implies that i+ 1 ∈ A, and
gappy if there is some index i with i ∈ A, i < j − 1, and i+ 1 ̸∈ A. Such an
index, i, is a gappy index for vj .

The standard basis S is in fact a basis of C(p, q).

Definition 4.2. For v ∈ Zn+2, supp v = {i| ⟨ei, v⟩ ̸= 0} and supp+ v =
{i| ⟨ei, v⟩ > 0}.

Lemma 4.3 (Lemma 3.12 (3) in [Gre13]). If |vk+1| = 2, then k is not
a gappy index for any vj with j ∈ {1, · · · , n+ 1}.
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Lemma 4.4 (Lemma 3.13 in [Gre13]). Each vj ∈ S is irreducible.

Lemma 4.5 (Lemma 3.15 in [Gre13]). If vj ∈ S is breakable, then it is
tight.

Lemma 4.6 (Lemma 3.14 (2) (3) in [Gre13]). Suppose that vt ∈ S is
tight.
(1) If vj = et + ej−1 − ej, j > t, then vt + vj is irreducible.
(2) If vt+1 = e0 + e1 + · · ·+ et − et+1, then vt+1 − vt is irreducible.

Lemma 4.7 (Lemma 4.9 in [BHM+20]). For any vj ∈ S, we have j −
1 ∈ supp vj.

For the rest of this section, suppose σ = (σ0, σ1, . . . , σn+1) ∈ Zn+2 is
a changemaker vector such that (σ)⊥ is isomorphic to a C-type lattice
C(p, q) with q > p. Also, let x0, . . . , xn be the vertex basis of C(p, q), and let
S = (v1, . . . , vn+1) be the standard basis of (σ)⊥. Each vi is an irreducible
element in a C-type lattice (Lemma 4.4), so corresponds to some interval
(Proposition 3.2). By a slight abuse of notation, denote [vi] for the interval
corresponding to vi. Let ϵi ∈ {±1} satisfy vi = ϵi[vi].

The C-type lattice C(p, q) contains an element x0 with |x0| = 4, and any
vector of norm 4 in Zn+2 is of the form either ±2ek or ±ek0

± ek1
± ek2

± ek3

for distinct indices ki. Vectors of the first form cannot be in (σ)⊥ since
σ0 ̸= 0, so x0 must be of the second form. In fact, we can say a little bit
more about how x0 can be written in terms of the ei. We start by the
following lemma.

Lemma 4.8. There is no element v ∈ C(p, q) with ⟨v, x0⟩ ̸= 0 and |v| = 2.

Proof. Since C(p, q) is indecomposable, it contains no x with |x| = 1 (such
an x would generate a Z-summand of C(p, q)). Therefore, if v ∈ C(p, q) with
|v| = 2, it must be irreducible, so v = ±[I] for [I] an interval. By Lemma 3.10,
[I] contains only x0 or elements of norm 2. In particular, [I] does not contain
x1, since a1 ≥ 3. This means that [I] also cannot contain x0, since then
[I] = x0 and |v| = 4. Therefore, ⟨[I], x0⟩ = 0, and so ⟨v, x0⟩ = 0. □

Proposition 4.9. For some indices k1 < k2 < k3, x0 is equal to one of
e0 + ek1

+ ek2
− ek3

or e0 − ek1
− ek2

+ ek3
, possibly after a global sign change

in the isomorphism between (σ)⊥ and C(p, q).
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Proof. Since |x0| = 4 and x0 ∈ (σ)⊥,

x0 = δ0ek0
+ δ1ek1

+ δ2ek2
+ δ2ek3

for indices k0 < k1 < k2 < k3 and signs δi such that
∑

i δiσi = 0. By a global
sign change, we might as well assume that δ0 = 1. If k0 > 0, ⟨x0, vk0

⟩ = −1
is odd, violating Lemma 3.5. So k0 = 0.

We claim that if σki
= σkj

, then δi = δj . Otherwise v = δieki
+ δjekj

would be in (σ)⊥ with |v| = 2 and ⟨v, x0⟩ = 2, which contradicts Lemma 4.8.
Therefore, if δ1 = −1 then σ1 > σ0, and so δ0σ0 + δ1σ1 < 0. Therefore, δ2σ2 +
δ3σ3 > 0. Since σ2 ≤ σ3, this means that δ3 = 1, and then δ2 = −1 since σ1 <
σ0 + σ2 + σ3. In the other case, if δ1 = 1 then δ0σ0 + δ1σ1 > 0, so δ2σ2 +
δ3σ3 < 0 and δ3 = −1. If also δ2 = −1, then

σ0 + σ1 = σ2 + σ3.

Since σ0 ≤ σ1 ≤ σ2 ≤ σ3, this can only happen if all of the σi are equal,
again contradicting the fact that if σi = σj we must have δi = δj . □

Corollary 4.10. The vector v1 is equal to 2e0 − e1 if k1 > 1, and e0 − e1
otherwise. If x0 = e0 − ek1

− ek2
+ ek3

, the first of these occurs.

Proof. Note that v1 is always either e0 − e1 or 2e0 − e1. Using Lemma 3.5,
the first statement of the lemma follows. For the second statement, if k1 = 1
and v1 = e1 − e0, then if x0 = e0 − ek1

− ek2
+ ek3

we have that ⟨v1, x0⟩ = 2
and |v1| = 2, contradicting Lemma 4.8. □

Lemma 4.11. If k1 > 1, v1 is the only tight vector. If k1 = 1, vk2
can be

tight but there is no other tight vector.

Proof. We claim that if vt is tight, then either t < k1 or t = k2. Using
Lemma 3.5, we must have that either k2 ≤ t < k3 or t < k1 as otherwise
vt will have odd pairing with x0. If k2 < t < k3, then

σt = 1 + σ0 + σ1 + · · ·+ σt−1 ≥ 1 + σ0 + σk1
+ σk2

.

However, by Proposition 4.9, the fact that ⟨x0, σ⟩ = 0 implies that

σk3
= σk2

+ σk1
± σ0 ≤ σk2

+ σk1
+ σ0 < σt,

contradicting the fact that t < k3. The claim follows.
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If k1 = 1, it is only possible that t = k2, so the second statement of the
lemma follows. Suppose now that k1 > 1. We have that v1 = 2e0 − e1 by
Corollary 4.10. So if vt is tight with t > 1, we get that ⟨v1, vt⟩ = 3 and
|vt| > |v1| = 5. Also, since either t < k1 or t = k2, ⟨vt, x0⟩ = ⟨v1, x0⟩ = 2.
Therefore, either ϵ1 = −1 and [v1] has left endpoint 1, or ϵ1 = 1 and [v1]
has left endpoint 0, and the same holds for ϵt and [vt]. By Lemma 3.9,

3 = ⟨v1, vt⟩ = ϵ1ϵt(|[v1 ∩ vt]| − δ([v1], [vt])),

|[v1 ∩ vt]| ≥ 2 and δ([v1], [vt]) ≤ 3, so if ϵ1 ̸= ϵt, the right hand side of this
equation is at most 1. Therefore, ϵ1 = ϵt, and the left endpoints of [v1] and
[vt] are equal. Since |vt| > |v1|, the right endpoint of [vt] is to the right of
the right endpoint of [v1]. This means that δ([v1], [vt]) = 1 and v1 ∩ vt = v1,
so

⟨v1, vt⟩ = ϵ1ϵt(|[v1 ∩ vt]| − δ([v1], [vt])) = |[v1]| − 1 = 4 ̸= 3.

Therefore, v1 is the only tight vector. □

Lemma 4.12. For j ̸= k3, ⟨vj , x0⟩ ≥ 0.

Proof. Using Proposition 4.9, either x0 = e0 + ek1
+ ek2

− ek3
or x0 = e0 −

ek1
− ek2

+ ek3
. If x0 = e0 + ek1

+ ek2
− ek3

, it would only be possible to
have ⟨vj , x0⟩ < 0 for j = k1 or j = k2. However, in these cases one has
⟨vj , x0⟩ ≥ −1, and since ⟨vj , x0⟩ is even, it follows that ⟨vj , x0⟩ ≥ 0. If x0 =
e0 − ek1

− ek2
+ ek3

, then ⟨vj , x0⟩ is always at least −3, since ⟨vj , e0⟩ ≥ 0.
Therefore, since it is even, ⟨vj , x0⟩ ≥ −2. Given that j ̸= k3, the only possible
way to have ⟨vj , x0⟩ = −2 is that k1, k2 ∈ supp+(vj), and 0, k3 ̸∈ supp+(vj).
Observe that this cannot happen since then vj + x0 is still of the form
−ej +

∑

i∈A′ ei for some A′ ⊂ {0, . . . , j − 1}, but A′ is lexicographically after
supp+ vj , contradicting the maximality criterion in Definition 4.1. □

Lemma 4.13. If vi and vj are two unbreakable standard basis vectors with
i, j ̸= k3, then it cannot be the case that [vi] contains x0 and [vj ] contains
x1 but not x0. In particular, δ([vi], [vj ]) ≤ 2.

Proof. Assume the contrary. Since i, j ̸= k3, and k3 = max supp(x0), neither
vi nor vj is equal to ±x0, and by Lemma 4.12, ⟨vi, x0⟩ and ⟨vj , x0⟩ are both
nonnegative. Therefore, ⟨vi, x0⟩ = ⟨vj , x0⟩ = 2. Since x0 is contained in [vi],
the left endpoint of [vi] is 0 and ϵi = 1. Similarly, [vj ] has left endpoint 1
and ϵj = −1. Therefore, δ([vi], [vj ]) is either 2 or 3, and since vi and vj are
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unbreakable and a1 ≥ 3, zi = zj = 1 (see Definition 3.14) and |[vi ∩ vj ]| =
|vi| = |vj | = a1. This means that

⟨vi, vj⟩ = ϵiϵj (|[vi ∩ vj ]| − δ([vi], [vj ]))(8)

= −|vi|+ δ([vi], [vj ]) = −|vj |+ δ([vi], [vj ])

Since vi and vj are standard basis vectors, ⟨vi, vj⟩ ≥ −1. Since |vi| ≥ 3 and
δ([vi], [vj ]) is either 2 or 3, |vi| is either 3 or 4. That is, using Equation (8),
⟨vi, vj⟩ is equal to −1 if |vi| = 4 and either 0 or −1 if |vi| = 3. In particular,

(9) ⟨vi, vj⟩ ≤ 0.

Using Proposition 4.9, suppose first that x0 = e0 + ek1
+ ek2

− ek3
. Then

since ⟨vi, x0⟩ = ⟨vj , x0⟩ = 2 and i, j ̸= k3, each of supp+(vi) and supp+(vj)
contains at least two of 0, k1, and k2, and i, j /∈ {k1, k2}. In particular,
supp+(vi) and supp+(vj) intersect, so ⟨vi, vj⟩ ≥ 0. Therefore, using Equa-
tion (8) and the earlier discussion, we must have |vi| = |vj | = 3, so supp+(vi)
and supp+(vj) in fact contain no elements outside of {0, k1, k2}. In particu-
lar, supp+(vi) does not contain j, and vice versa, supp+(vj) does not contain
i. Therefore, we get that ⟨vi, vj⟩ ≥ 1 which is a contradiction to (9).

If now x0 = e0 − ek1
− ek2

+ ek3
, then since ⟨vi, x0⟩ = 2 and i ̸= k3, there

are two cases: Case 1 is that supp+(vi) contains 0 and k3 but not k1 and
k2, and Case 2 is that i = k2 or k1, supp

+(vi) contains 0, and (if i = k2),
supp+(vi) does not contain k1. The same holds for vj . If one of vi and vj is
in Case 1, then ⟨vi, vj⟩ ≥ 1, a contradiction to (9). If both vi and vj are in
Case 2, we may assume i = k1 and j = k2, and we still have ⟨vi, vj⟩ ≥ 1, a
contradiction. □

Corollary 4.14. If vi and vj are two unbreakable standard basis vectors
with i ̸= j and i, j ̸= k3, then | ⟨vi, vj⟩ | ≤ 1, with equality if only if [vi] abuts
[vj ].

Proof. If neither [vi] nor [vj ] contains x0, then both vi and vj are contained
in a linear sublattice of C(p, q) and this reduces to [Gre13, Lemma 4.4].
Similarly, if one of [vi] or [vj ] contains x0 and the other contains neither x0
nor x1, or if both [vi] and [vj ] contain x0, then reflecting both vi and vj about
x⊥0 puts both of them in a linear sublattice of C(p, q). Using Lemma 4.13,
these are the only possibilities. □

Corollary 4.15. If vi and vj are unbreakable with |vi|, |vj | ≥ 3, i ̸= j and
i, j ̸= k3, then zi ̸= zj, where zi and zj are defined in Definition 3.14.
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Proof. Suppose for contradiction xzi = xzj . By Lemma 4.13, δ([vi], [vj ]) ≤ 2.
Therefore, using Lemmas 3.9 and 3.10,

(10) ⟨[vi], [vj ]⟩ = |[vi ∩ vj ]| − δ([vi], [vj ]) = |xzi | − δ([vi], [vj ]) ≥ 3− 2 = 1,

By Corollary 4.14, ⟨[vi], [vj ]⟩ = 1 and [vi] abuts [vj ]. We would then have
δ = 1, so the equality in (10) cannot be attained, a contradiction. □

Corollary 4.16. There is at most one j ̸= k3 for which vj is unbreakable
and ⟨vj , x0⟩ is nonzero.

Proof. Since a1 ≥ 3, if there exists an unbreakable standard basis element vj
for which ⟨vj , x0⟩ ̸= 0, j ̸= k3, then xzj = x1. It follows from Corollary 4.15
that there exists at most one such j. □

Since the pairings of vk3
with other standard basis vectors are difficult to

control, and since Corollary 4.16 gives good control on the pairings between
x0 and the other standard basis vectors, it will be easier in what follows if
we replace S with the modified basis

(11) S′ = (S \ {vk3
}) ∪ {x0}.

The set S′ is still a basis of (σ)⊥ because ⟨x0, ek3
⟩ = ±1 but ⟨x0, ej⟩ = 0

for j > k3, so if we write x0 as a linear combination of elements of S, the
coefficient of vk3

will be ±1.
Using Corollaries 4.14 and 4.16, we can relate the pairings between el-

ements of S′ very closely to the geometry of the intervals. It will be con-
venient to use two graphs associated to a C-type lattice. Recall that the
pairing graph Ĝ(V ) for a subset V of a lattice L has vertex set V and an
edge (vi, vj) whenever ⟨vi, vj⟩ ̸= 0 (Definition 3.3).

Definition 4.17. If T is a set of irreducible vectors in a C-type lattice
C(p, q), the intersection graph G(T ) has vertex set T , and an edge between
v and w if the intervals corresponding to v and w abut. We write v ∼ w if
v and w are connected in G(T ).

Lemma 4.18. If the intervals corresponding to v and w abut, then
⟨v, w⟩ ̸= 0.

Proof. If one of v, w is x0, ⟨v, w⟩ = ±2 ̸= 0. If none of v, w is x0, then
δ([v], [w]) = 1, our conclusion follows from Lemma 3.9. □
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The following is immediate from Corollary 4.14 and Lemma 4.18:

Proposition 4.19. For T ⊂ S′, G(T ) is obtained from Ĝ(T ) by removing
some edges incident to breakable vectors.

In particular, if we write S̄′ for the set of unbreakable elements of S′,
G(S̄′) = Ĝ(S̄′). The main use we have for this result is the following struc-
tural facts about the intersection graph.

Definition 4.20. A claw in a graph G is a quadruple (v, w1, w2, w3) of
vertices such that v neighbors all the wi, but no two of the wi neighbor each
other.

If [vi] abuts three intervals [vj ], [vk], [vl], then it abuts two of the three
at the same end, and so those two abut. That is, using Lemma 4.18, the
corresponding vertices pair nonzero. The following is then immediate. Recall
that T is a set of irreducible elements in a given C-type lattice.

Lemma 4.21 (Lemma 4.8 of [Gre13]). The intersection graph G(T )
has no claws.

Definition 4.22. Given a set T of unbreakable elements in a C-type lattice
and v1, v2, v3 ∈ T , (v1, v2, v3) is a heavy triple if |vi| ≥ 3 and vi ̸= ±x0 for each
i, and if each pair among the vi is connected by a path in G(T ) disjoint from
the third.

Lemma 4.23 (Based on Lemma 4.10 of [Gre13]). G(S̄′) has no heavy
triples.

Proof. If vi, vj , and vk are unbreakable and have norm at least 3, and none
of them is ±x0, then by Corollary 4.15 we might as well assume zi < zj < zk.
Then any path from vi to vk in G(S̄′) includes some vℓ ∈ S̄′ such that [vℓ]
contains xzj , where S̄

′ is defined in (11). But then ℓ = j, so (vi, vj , vk) is not
heavy. □

The proof of the following lemma is identical to [Gre13, Lemma 3.8].
Again, T is a set of irreducible elements in a given C-type lattice.

Lemma 4.24. If the elements of T are linearly independent, any cycle in
G(T ) induces a complete subgraph.

Corollary 4.25 (Based on Lemma 4.11 of [Gre13]). Any cycle in
G(S̄′) has length three.
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Proof. By Corollary 4.16, any cycle in G(S̄′) does not contain x0. Using
Lemma 4.24, the cycle will contain at most two vertices of norm > 2 to
avoid producing a heavy triple. (See Definition 3.6.) If it had two vertices
of norm 2, using Lemma 4.24, they would have nonzero inner product, so
must be of the form vi = ei−1 − ei and vi+1 = ei − ei+1 for some i. But for
any other j (j ̸= i, i+ 1), Lemma 4.3 implies that supp(vj) ∩ {i− 1, i, i+ 1}
is one of ∅, {i+ 1}, {i, i+ 1}, or {i− 1, i, i+ 1}. In none of these cases does
vj have nonzero inner product with both vi and vi+1, a criterion that must
be fulfilled by Lemma 4.24. That is, any cycle in G(S̄′) must be of length
three. □

Lemma 4.26. Let m < N be two possitive integers satisfying k3 /∈ [m,N ].
Suppose that vm is unbreakable and it neighbors either x0 or some unbreak-
able vj with j < m. Suppose that for any index i satisfying m < i ≤ N , we
have min supp(vi) ≥ m, and vi is unbreakable. Then |vi| = 2 for any i satis-
fying m < i ≤ N .

Proof. When i = m+ 1, we clearly have |vi| = 2. Now assume |vi| = 2 for
any i satisfying m < i < l ≤ N , we want to prove |vl| = 2. Let t =
min supp(vl) ≥ m, then vl is just right by Lemmas 4.3 and 4.7. If m < t <
l − 1, we would have a claw (vt, vl, vt−1, vt+1). If t = m and vm neighbors x0
in G(S̄′), we would have a claw (vm, vl, x0, vm+1) by Corollary 4.16. If t = m
and, for an unbreakable vj with j < m, vm neighbors vj in G(S̄′), we would
have a claw (vm, vl, vj , vm+1). So t = l − 1 and |vl| = 2. □

5. The case k1 = 1, k2 > 2

In this section we consider, in the notation of Proposition 4.9, the case where
k1 = 1 and k2 > 2. Using Corollary 4.10, one has

(12) x0 = e0 + e1 + ek2
− ek3

,

where k2 > 2. Also, we have that v1 = e0 − e1. So

(13) σ0 = σ1 = 1.

By Lemmas 4.5 and 4.11, the only possible breakable vector is vk2
. In what

follows we classify all changemaker vectors whose orthogonal complements
are isomorphic to C-type lattices with x0 as given in (12) and k2 > 2. We
start by determining the first k3 + 1 components of such changemaker vec-
tors.



✐

✐

“1-Ni” — 2021/12/29 — 17:01 — page 1303 — #25
✐

✐

✐

✐

✐

✐

The prism manifold realization problem II 1303

Proposition 5.1. If k1 = 1 and k2 > 2, the initial segment (σ0, σ1, . . . , σk3
)

of σ is equal to (1, 1, 2[s], σk2
, σk2

+ 2) for some s > 0.

Proof. We start by observing that, using Lemma 3.5, we must have v2 = e0 +
e1 − e2. So σ2 = 2. By Corollary 4.16, min supp(vi) ≥ 2 for all 2 < i < k2. It
follows from Lemma 4.26 that |vi| = 2 for all 2 < i < k2. So σi = 2 for 2 ≤
i < k2. Now, using (12) and (13) together with the fact that ⟨σ, x0⟩ = 0, we
get that σk3

= σk2
+ 2. We claim that k3 = k2 + 1. Suppose for contradiction

that k3 ̸= k2 + 1. The component σk2+1 must be between σk2
and σk2

+ 2 =
σk3

. If σk2+1 is equal to either σk2
or σk3

, there will be an element v ∈ (σ)⊥

with ⟨v, x0⟩ = 1, contradicting Lemma 3.5. If σk2+1 = σk2
+ 1, then vk2+1 =

e1 + ek2
− ek2+1. But then ⟨vk2+1, x0⟩ = 2 ̸= 0, contradicting Corollary 4.16

since ⟨v2, x0⟩ = 2. This finishes the proof. □

Corollary 5.2. In the situation of Proposition 5.1, the component σk2
of

the changemaker vector is one of 2s− 1, 2s+ 1, or 2s+ 3. These correspond
to vk2

being gappy, just right, or tight, respectively.

Proof. If vk2
is tight, the third of these possibilities occurs. If not, using

Corollary 4.16, we get that ⟨vk2
, x0⟩ = 0. (Note that ⟨v2, x0⟩ = 2.) So 1 ∈

supp+(vk2
) and 0 ̸∈ supp+(vk2

). Since |vj | = 2 for 2 < j < k2, Lemma 4.3
implies that the only possible gappy index for vk2

is 1, so

vk2
= e1 + ej + ej+1 + · · ·+ ek2−1 − ek2

,

for some 1 < j < k2. If j > 3, the pairing graph will have a cycle on v2, . . . ,
vj , vk2

of length larger than 3, contradicting Corollary 4.25. In particular, if
1 is indeed a gappy index for vk2

, then j = 3, and σk2
= 2s− 1. Otherwise

one has j = 2, and therefore σk2
= 2s+ 1. □

It turns out that the classification will highly depend on the type of the
vector vk2

: whether it is tight, just right, or gappy. For j > k3, let

(14) Sj = supp(vj) ∩ {0, 1, . . . , k3},

and let

(15) S′
j = supp(vj) ∩ {0, 1, k2, k3}.

Given that ⟨v2, x0⟩ = 2 and, using Corollary 4.16, we must have ⟨vj , x0⟩ = 0,
and that S′

j is one of ∅, {1, k3}, or {k2, k3} by Lemma 4.3. Figure 7 depicts
the paring graphs of the possible changemaker C-type lattices on their first
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Figure 7. Pairing graphs of the standard basis when vk2
is just right (left),

tight (center), and gappy (right). Superscripts give the norm of the basis
vector, the number of edges gives the absolute value of the inner product,
and an edge is labelled with + if the inner product is positive.

k3 vectors of the basis S′, defined in (11), depending on the type of vk2
. For

simplicity of notation, we often refer to x0 as vk3
for the rest of the section.

With the notation of this section in place:

Lemma 5.3. If S′
j = ∅, Sj is either ∅ or {k2 − 1}. In the second case, vk2

is not gappy.

Proof. Set i = minSj . Suppose for contradiction that Sj is nonempty and
i < k2 − 1. If i > 2, then there will be a claw on vi, vi+1, vi−1, vj . If i = 2
there will be a claw (v2, v3, x0, vj). Therefore, i = k2 − 1, and so the first
statement follows. If Sj = {k2 − 1}, then ⟨vj , vk2−1⟩ = −1, ⟨vj , vk2

⟩ = 1, and
⟨vj , vi⟩ = 0 for all other i ≤ k3, so if vk2

is gappy there is a claw (vk2
, v1, v2, vj)

(see Figure 7). □

Lemma 5.4. If S′
j = {k2, k3}, Sj is either {k2, k3} or {k2 − 1, k2, k3}. In

either case, vk2
is not gappy.

Proof. Again, set i = minSj . If i < k2 − 1, there will be a claw on either
vi, vi+1, vi−1, vj or v2, v3, x0, vj , depending on whether i > 2 or i = 2. So
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the first statement follows. Corresponding to the two possibilities for Sj ,
the vector vj will have nonzero inner product with either vk2

or vk2−1, but
no other vi with i ≤ k3. If vk2

is gappy, this creates a claw (vk2
, v1, v2, vj)

in the first case, and a heavy triple (v2, vk2
, vj) in the second: again, see

Figure 7. □

Lemma 5.5. If S′
j = {1, k3}, either Sj is one of {1, 2, 3, . . . , k2 − 1, k3} and

{1, 3, . . . , k2 − 1, k3} and vk2
is tight, or Sj = {1, k3}, s = 1, and vk2

is not
gappy.

Proof. Using Lemma 4.3, none of 2, . . . , k2 − 2 can be a gappy index for vj .
Thus, we must have either Sj = {1, k3} or Sj = {1, k, k + 1, . . . , k2 − 1, k3}
for some 1 < k < k2.

In the first case, vj will have nonzero inner product with just v1, v2, and
vk2

. If vk2
is gappy, this creates a heavy triple (v2, vk2

, vj). If vk2
is just right

or tight, this creates a claw (v2, vj , x0, v3), unless s = 1: see Figure 7.
In the second case, to avoid a cycle (v2, v3, . . . , vk, vj) of length longer

than 3 (Corollary 4.25) we must have k equal to 2 or 3. Then ⟨vj , vk2
⟩ is either

s or s+ 1, and unless vk2
is tight this must be at most 1 (Corollary 4.14).

Since s ≥ 1, if vk2
is not tight, we must have ⟨vj , vk2

⟩ = s = 1. Note that in
this case k3 = 4, k2 = 3, vk2

= e1 + e2 − e3, and Sj = {1, 2, 4}. Consequently,
⟨vj , v3⟩ = 2, again contradicting Corollary 4.14. □

Proposition 5.6. If vk2
is gappy, then s ≥ 2 and n+ 1 = k3. The corre-

sponding changemaker vectors are

(1, 1, 2[s], 2s− 1, 2s+ 1), s ≥ 2.

Proof. By Corollary 5.2, σk2
= 2s− 1 ≥ 2, so s ≥ 2. By Lemmas 5.5, 5.4,

and 5.3, we get that Sj = ∅ for all j > k3. If vk3+1 existed it would have
k3 ∈ Sk3+1. □

Proposition 5.7. If vk2
is just right, then one of the following holds:

1) vk3+1 = ek2
+ ek3

− ek3+1, vk3+2 = ek2−1 + ek2
+ ek3

+ ek3+1 − ek3+2,
and k3 + 2 = n+ 1.

2) vk3+1 = ek2−1 + ek2
+ ek3

− ek3+1, vk3+2 = ek2
+ ek3

+ ek3+1 − ek3+2,
and k3 + 2 = n+ 1.

3) s = 1, so k2 = 3. v5 = e3 + e4 − e5, |vi| = 2 for 5 < i < ℓ, vℓ = e1 +
e4 + e5 + · · ·+ eℓ−1 − eℓ, and either vℓ+1 = eℓ−1 + eℓ − eℓ+1 and |vi| =
2 for i > ℓ+ 1, or ℓ = n+ 1.
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4) s = 1, so k2 = 3. v5 = e1 + e4 − e5, and either v6 = e3 + e4 + e5 − e6
and |vi| = 2 for i > 6 or 5 = n+ 1.

The distinct changemaker vectors are

1) (1, 1, 2[s], 2s+ 1, 2s+ 3, 4s+ 4, 8s+ 10), s ≥ 1.

2) (1, 1, 2[s], 2s+ 1, 2s+ 3, 4s+ 6, 8s+ 10), s ≥ 1.

3) (1, 1, 2, 3, 5, 8[s], 8s+ 6, 8s+ 14[t]), s, t ≥ 0, (the parameter s in this fam-
ily is not the previous s.)

Proof. We divide the proof into two cases, based on whether or not there
is some ℓ with Sℓ = {1, k3}. If there is no such ℓ, then by Lemmas 5.5, 5.4,
and 5.3, for any j > k3, Sj is either empty or one of the three possibili-
ties: {k2 − 1}, {k2, k3}, or {k2 − 1, k2, k3}. If Sj = {k2 − 1}, ⟨vj , vk2−1⟩ and
⟨vj , vk2

⟩ are both nonzero, but ⟨vj , vi⟩ = 0 for all other i ≤ k3. If Sj = {k2, k3},
⟨vj , vk2

⟩ is nonzero but ⟨vj , vi⟩ = 0 for all other i ≤ k3, and if Sj = {k2 −
1, k2, k3} only ⟨vj , vk2−1⟩ is nonzero. In particular, no vj with j ≤ k3 except
for vk2

and vk2−1 can have nonzero pairing with vi for some i > k3. Further-
more, for j equal to either k2 or k2 − 1, we claim that there can be at most
one i > k3 with ⟨vj , vi⟩ nonzero: if there were two, there would be either a
claw if they did not neighbor each other, or a heavy triple if they did. See
Figure 7. (For instance, if vr and vt, with r, t > k3, both have nonzero pair-
ing with vk2−1, and also if vr and vt pair with each other, then there will be
a heavy triple (vr, vt, v2).) Since the pairing graph of a basis must be con-
nected, there in fact must be some j > k3 with ⟨vj , vk2

⟩ nonzero, and some
j > k3 with ⟨vj , vk2−1⟩ nonzero. This has two implications. First that the
vector vk3+1 exists, and either Sk3+1 = {k2, k3} or Sk3+1 = {k2 − 1, k2, k3}.
Second, there is another index j′ > k3 + 1 with Sj′ equal to the other of
these two possibilities of Sk3+1.

It remains only to show that j′ = k3 + 2, and that there is no fur-
ther standard basis vector. Since Sk3+1 ∩ Sj′ = {k2, k3}, in order to keep
⟨vk3+1, vj′⟩ ≤ 1 (Corollary 4.14), it must be the case that k3 + 1 ∈ supp+(vj′),
and in this case ⟨vk3+1, vj′⟩ = 1. Therefore, vk3+1 and vj′ are adjacent in
the intersection graph. If j′ > k3 + 2, then since Sk3+2 = ∅, we get that
|vk3+2| = 2. Therefore, using Lemma 4.3, k3 + 1 cannot be a gappy index
for vj′ , so k3 + 2 ∈ supp+(vj′). This means that ⟨vj′ , vk3+2⟩ = 0, so there is
a claw on either vk3+1, vk2

, vk3+2, vj′ or vk3+1, vk2−1, vk3+2, vj′ , depending on
the possibilities for Sk3+1. Therefore, j

′ = k3 + 2.
Finally, if vk3+3 existed, it would have Sk3+3 = ∅, so would equal either

ek3+1 + ek3+2 − ek3+3 or ek3+2 − ek3+3. Therefore, vk3+3 would have nonzero
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inner product with either vk3+1 or vk3+2 but not both, hence we get a claw
centered at either vk3+1 or vk3+2.

If there is some ℓ with Sℓ = {1, k3}, then s = 1 by Lemma 5.5. In this
case, ⟨vℓ, v1⟩ = −1, ⟨vℓ, v2⟩ = 1, k2 = 3, and ⟨vℓ, vk2

⟩ = 1. If, for any i > k3
with i ̸= ℓ, we had ⟨vi, v2⟩ ̸= 0, there would be either a claw (v2, x0, vi, vℓ)
or a heavy triple (v2, vi, vℓ) depending on whether or not [vi] and [vℓ] abut.
Since we must have ⟨vi, v2⟩ = 0 for all i > k3 with i ̸= ℓ, the set Si cannot
be {1, k3}, {k2 − 1} or {k2 − 1, k2, k3}, so by Lemmas 5.3 5.4 and 5.5,

(16) Si = ∅ or {k2, k3}.

Also, we have

(17) ⟨vi, vℓ⟩ = 0, for any i > k3 with i ̸= ℓ.

Otherwise, either Si = ∅ in which case there would be a claw (vℓ, v1, v2, vi),
or Si = {k2, k3} and there would be a heavy triple (vi, vℓ, vk2

).
Now, k3 ∈ Sk3+1 (Lemma 4.7), so S′

k3+1 is either {1, k3} or {k2, k3}. It
follows from Lemmas 5.4 and 5.5 and (16) that Sk3+1 = S′

k3+1. If Sk3+1 =
{1, k3}, from (17) we get that ⟨vk3+2, vk3+1⟩ = 0 if n+ 1 ≥ k3 + 2, and there-
fore by (16), Sk3+2 = {k2, k3}. We claim that Si = ∅ for i > k3 + 2, and also
k3 + 1 ̸∈ supp(vi). Note that from (16) if Si ̸= ∅, one necessarily has Si =
{k2, k3}. Also, to avoid pairing with vk3+1, it must be the case that k3 + 1 ∈
supp+(vi), but this would imply supp+(vi) ∩ supp+(vk3+2) = {k2, k3, k3 + 1}
hence ⟨vi, vk3+2⟩ ≥ 2, contradicting Corollary 4.14. So Si = ∅, hence k3 + 1 ̸∈
supp(vi) by (17). This justifies the claim. It follows from Lemma 4.26 that
|vi| = 2 for i > k3 + 2. This is the last of the possibilities listed in the state-
ment of the proposition.

Lastly, suppose that Sk3+1 = {k2, k3} (note that Sℓ = {1, k3}). When i >
k3 + 1 and i ̸= ℓ, Si ̸= {k2, k3}, otherwise we get a heavy triple (vi, vk2

, vk3+1).
So Si = ∅ by (16). By Lemma 4.26, |vi| = 2 for k3 + 1 < i < ℓ. By (17), vℓ
is orthogonal to all of vk3+1, . . . , vℓ−1, so all of k3 + 1, . . . , ℓ− 1 are mem-
bers of supp vℓ, forcing vℓ to be of the listed form. If n+ 1 ≥ l + 1, vℓ+1

is also orthogonal to vℓ, so supp vℓ+1 ∩ {k3 + 1, . . . , ℓ− 1} contains exactly
one element, which must be ℓ− 1 by Lemma 4.3. It follows that vℓ+1 =
eℓ−1 + eℓ − eℓ+1, as desired. If, for some i > ℓ+ 1, ⟨vi, vℓ−1⟩ is nonzero,
then ℓ− 1 ∈ supp(vi), and ℓ ∈ supp(vi) by (17), so ⟨vi, vℓ+1⟩ ̸= 0 and hence
(vk3+1, vℓ+1, vi) is a heavy triple. Therefore, vi is orthogonal to both vℓ−1 and
vℓ for i > ℓ+ 1, so by Lemma 4.3 min supp vi ≥ ℓ+ 1. Then Lemma 4.26 im-
plies that |vi| = 2 for i > ℓ+ 1, so we are in the third listed situation. □
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Lemma 5.8. If vk2
is tight, Sj is one of ∅, {k2 − 1}, or {1, 2, 3, . . . , k2 −

1, k3} for each j > k3.

Proof. By Lemmas 5.5, 5.4, and 5.3, it suffices to show that Sj cannot be
{k2, k3}, {k2 − 1, k2, k3}, {1, 3, . . . , k2 − 1, k3}, or {1, k3}. In the first case,
⟨vj , vk2

⟩ = −1 and ⟨vj , vi⟩ = 0 for all other i ≤ k3. In particular since vj is
orthogonal to v1 and v2, vj cannot neighbor vk2

in the intersection graph
without creating a claw. Therefore, [vj ] ⋔ [vk2

], and so δ([vj ], [vk2
]) = 2. In

order to have ⟨vj , vk2
⟩ = −1, then, we must have |vj | = |[vj ∩ vk2

]| = 3 and
ϵj = −ϵk2

. Since ϵj = −ϵk2
and [vj ] ⋔ [vk2

], vj + vk2
is the sum of two distant

intervals, so is reducible. However, since |vj | = 3, j = k3 + 1 and vj = ek2
+

ek3
− ek3+1, and so vk2

+ vj is irreducible by Lemma 4.6.
In the second case, ⟨vj , vk2−1⟩ = −1 and all other ⟨vj , vi⟩ with i ≤ k3 are

zero. Since ⟨v2, x0⟩ ̸= 0, [v2] contains x1, so 3 = |v2| = |x1|. Since |vk2
| > 3,

[vk2
] contains high weight elements other than x1. Since [v2] contains x1 and

vk2−1 is connected by a path of norm-two vectors to v2, the unique high
weight element xzj of [vj ] is contained in [vk2

]. This implies that ⟨vj , vk2
⟩

must be nonzero, a contradiction.
In the last two cases, vj has nonzero inner product with both v1 and

v2, so [vj ] abuts both [v1] and [v2]. Since [v1] and [v2] abut [vk2
] at opposite

ends, [vk2
] must be contained in the union of [v1], [v2], and [vj ]. However,

⟨vj , vk2
⟩ ≤ s, so |vj | ≤ s+ δ([vk2

], [vj ]) ≤ s+ 2. This means that there are
only two high weight elements in [vk2

], with one being x1 and the other
having norm at most s+ 2, so by Lemma 3.10, |vk2

| ≤ s+ 3. This contradicts
the fact that |vk2

| = s+ 6. □

Proposition 5.9. If vk2
is tight, vk3+1 = e1+e2+· · ·+ek2−1+ek3

−ek3+1,
vk3+2 is either ek3+1 − ek3+2 or ek2−1 + ek3+1 − ek3+2, and |vj | = 2 for all
j > k3 + 2. (None of the vectors past vk3

are necessary to make the lattice
C-type — n+ 1 could be k3 or anything larger.)

The corresponding changemaker vectors are

1) (1, 1, 2[s], 2s+ 3, 2s+ 5, 4s+ 6[t]), s ≥ 1, t ≥ 0.

2) (1, 1, 2[s], 2s+ 3, 2s+ 5, 4s+ 6, 4s+ 8[t]), s ≥ 1, t ≥ 1.

Proof. Since k3 ∈ supp(vk3+1), Sk3+1 is necessarily equal to {1, 2, 3, . . . , k2 −
1, k3} by Lemma 5.8, and so vk3+1 = e1 + e2 + · · ·+ ek2−1 + ek3

− ek3+1. For
any other j with Sj = Sk3+1, we get that ⟨vj , vk3+1⟩ ≥ k2 − 1 ≥ 2, contra-
dicting Corollary 4.14. Therefore, for j > k3 + 1, Sj is either ∅ or {k2 − 1}.
Suppose for some j > k3 + 1 we have Sj = {k2 − 1}. Then ⟨vj , vk2

⟩ = 1 while
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vj is orthogonal to both x0 and v1. Since ⟨vk2
, v1⟩ = 1 and ⟨x0, v1⟩ = 0,

[v1] abuts the right endpoint of [vk2
]. Hence xzj ∈ [vk2

]. By Lemma 3.9,
we get that |vj | = 3, and ϵj = ϵk2

. Since also ⟨vk3+1, vk2
⟩ = s+ 1, ϵk3+1 =

ϵk2
= ϵj , so ⟨vj , vk3+1⟩ is either −1 or 0 depending on whether their inter-

vals abut. However, since |vj | = 3, vj = ek2−1 + ej−1 − ej , so ⟨vj , vk3+1⟩ is
1 if j > k3 + 2 and 0 if j = k3 + 2. Therefore, j = k3 + 2 and Si = ∅ for
i > k3 + 2. For any i > k3 + 2, if min supp(vi) = k3 + 1, vi ∼ vk3+1. Since
vk3+1 ∼ v1, ⟨vk3+1, vk2

⟩ ̸= 0 and [v1] abuts the right endpoint of [vk2
], xzk3+1

is the rightmost high weight vertex in [vk2
] and [v1] abuts the right endpoint

of [vk3+1]. As ⟨vi, vk2
⟩ = 0, [vi] must abut the right endpoint of [vk3+1]. We

then conclude that [v1] and [vi] abut, which is impossible. So min supp(vi) >
k3 + 1 when i > k3 + 2. Using Lemma 4.26, we conclude that |vi| = 2 for
i > k3 + 2. □

6. The case k1 = 1, k2 = 2

In this section we consider the case where k1 = 1 and k2 = 2. Using Corol-
lary 4.10, we get that

(18) x0 = e0 + e1 + e2 − ek3
.

Also, we have that v1 = e0 − e1. So

(19) σ0 = σ1 = 1.

By Lemma 4.11, the only possible tight vector is v2. In what follows we
classify all the changemaker vectors whose orthogonal complements are iso-
morphic to C-type lattices with x0 as given in (18). As in the previous
section, we start by determining the first k3 + 1 components of such change-
maker vectors. It turns out that the initial segment of σ depends on whether
or not v2 is tight.

Lemma 6.1. If v2 is tight, the initial segment (σ0, σ1, . . . , σk3
) of σ is equal

to (1, 1, 3, 5).

Proof. By assumption, v2 = 2e0 + e1 − e2, so σ2 = 3 and |v2| = 6. This to-
gether with (18) and (19), yields σk3

= 5. We claim that k3 = k2 + 1 = 3.
Suppose for contradiction that k3 ̸= k2 + 1. Recall from Lemma 4.11 that
vk2+1 cannot be tight. By combining this together with Lemma 3.5, it can
only be the case that σk2+1 = 4 and v3 = e1 + e2 − e3. Note that ⟨v2, x0⟩ = 2,
⟨v1, x0⟩ = 0, and ⟨v1, v2⟩ = 1. Therefore, [v1] abuts the right endpoint of [v2].
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Given that [v3] abuts both x0 and [v1], it follows that the only high weight
vertex of [v2] is that of [v3] (see Definition 3.6 and Proposition 3.7). This
implies that |[v2]| = |[v3]| = 3 which is a contradiction. Hence k3 = 3 and
v3 = e0 + e1 + e2 − e3. □

Lemma 6.2. If v2 is not tight, the initial segment (σ0, σ1, . . . , σk3
) of σ is

equal to either (1, 1, 1, 3) or (1, 1, 1, 2, 3).

Proof. When v2 is not tight, using Lemma 3.5 together with the fact that
k2 = 2, we get that v2 = e1 − e2, so σ2 = 1. This together with (18) and (19),
gives us that σk3

= 3. Either k3 = 3 and we get the first possibility stated
in the lemma, or k3 > 3. In the latter case, using Lemmas 3.5 and 4.7, we
must have that v3 = e1 + e2 − e3, so σ3 = 2. We claim that, if k3 > 3, then
k3 = 4. If k3 ̸= 4, then we must have v4 = e3 − e4. That will produce a claw
on (v3, v4, x0, v1). This gives the second stated possibility. □

We use the notation of Equations (14) and (15) in Section 5. Again,
we use the basis S′, defined in (11). Note that in this section, vk3

= x0.
Moreover, if k3 = 3, then Sj = S′

j .

Proposition 6.3. If v2 is tight, then one of the following is true:

1) |v3| = 4, v4 = e1 + e3 − e4, and |vj | = 2 for all 5 ≤ j ≤ 4 + t, t ≥ 0.

2) |v3| = 4, v4 = e1 + e3 − e4, v5 = e0 + e1 + e4 − e5, and |vj | = 2 for all
6 ≤ j ≤ 5 + t, t ≥ 0.

The corresponding changemaker vectors are:

1) (1, 1, 3, 5, 6[t])

2) (1, 1, 3, 5, 6, 8[t+1])

Proof. When v2 is tight, using Lemma 6.1, the initial segment (σ0, . . . , σk3
)

of σ is (1, 1, 3, 5). For any j > 3, Sj will be one of ∅, {1, 2}, {2, 3}, {1, 3},
{0, 1}, or {0, 1, 2, 3} by Lemma 3.5 and Lemma 4.3. We will first show
that {1, 2}, {2, 3} and {0, 1, 2, 3} do not occur. If Sj = {1, 2} for some
j > 4, then ⟨vj , v1⟩ = −1, ⟨vj , x0⟩ = 2, and ⟨vj , v2⟩ = 0. Since [x0] and [v1]
abut [v2] on opposite ends, and [vj ] abuts both [x0] and [v1], the interval
[v2] is contained in the union of [x0], [vj ], and [v1]. Therefore, |[v2 ∩ vj ]| =
|v2| = 6, so | ⟨vj , v2⟩ | = 6− δ([vj ], [v2]) ≥ 3, a contradiction. If Sj = {2, 3},
then ⟨vj , v2⟩ = −1 but ⟨vj , v1⟩ = ⟨vj , x0⟩ = 0. To avoid a claw (v2, v1, x0, vj),
then, we must have [v2] ⋔ [vj ]. Since vj is orthogonal to x0, this means
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that δ([v2], [vj ]) = 2, so |vj | = |[vj ∩ v2]| = 3 and ϵ2 ̸= ϵj . Therefore, vj + v2
is reducible. Since j − 1 ∈ supp+(vj), the only way to have |vj | = 3 is to
have j = 4, but then vj + v2 is irreducible by Lemma 4.6. If Sj = {0, 1, 2, 3},
⟨vj , v2⟩ = 2, ⟨vj , x0⟩ = 2, and ⟨vj , v1⟩ = 0. Also, |[v2 ∩ vj ]| = |vj | ≥ 5, so in
order to have ⟨vj , v2⟩ = 2 we must have ϵj = ϵ2 and δ([v2], [vj ]) = 3. By
Lemma 3.11, ⟨vj , x0⟩ = −⟨v2, x0⟩ = ±2, a contradiction. Therefore, for each
j > 3, Sj is one of ∅, {0, 1} and {1, 3}. Furthermore, if Sj = {0, 1}, then
⟨vj , x0⟩ ̸= 0, so by Corollary 4.16 there is at most one j with Sj = {0, 1}.

If the index 4 exists, 3 ∈ S4, so S4 = {1, 3}, v4 = e1 + e3 − e4, and σ4 =
6. If, for some j > 4, Sj = {1, 3}, then also 4 ∈ supp+(vj) by Corollary 4.14.
Therefore, |vj | ≥ 4 and ⟨vj , v4⟩ = 1, so [v4] abuts [vj ]. Since vj is orthogo-
nal to x0, δ([v2], [vj ]) ≤ 2, so since |vj | ≥ 4 and ⟨vj , v2⟩ = 1 we must have
[v2] † [vj ]. Therefore, using Corollary 4.15, either [v2] and [v4] are distant or
they share a common end, but in either case we cannot have ⟨v2, v4⟩ = 1.
Therefore, there is at most one j > 4 with Sj = {0, 1}, and for all other
i we have Si = ∅. Suppose that for some j we have Sj = {0, 1}. It fol-
lows from Lemma 4.26 that |vi| = 2 when 4 < i < j. By Lemma 4.3, vj =
e0 + e1 + ek + ek+1 + · · ·+ ej−1 − ej for some 4 ≤ k < j, and to avoid a
claw (vj , v1, x0, vk) we must have k = 4. Therefore, |vj | = j − 1 ≥ 4. Since
⟨vj , v2⟩ = 3, we must have ϵj = ϵ2, and since ⟨vj , x0⟩ = ⟨v2, x0⟩ = 2 this means
that δ([v2], [vj ]) = 1. Therefore, |vj | = ⟨vj , v2⟩+ 1 = 4, so j = 5. This means
that S5 is either ∅ or {0, 1}, and Si = ∅ for i > 5.

If S5 = ∅, by Lemma 4.26, |vi| = 2 when i ≥ 5. If S5 = {0, 1}, we will
show that min supp vi ≥ 5 when i > 5.

We first claim that xz4 ∈ [v2]. Otherwise, as ⟨v4, v2⟩ = 1, we get [v2] † [v4]
and ϵ2 = −ϵ4. We also have ⟨v2, v1⟩ = −⟨v4, v1⟩ = 1. Thus we have either
[v1] ≺ [v2] or [v1] ≺ [v4]. If [v1] ≺ [v2], then ϵ1 = ϵ2 and ϵ1 = ϵ4, a contra-
diction to ϵ2 = −ϵ4. Similarly, we can rule out [v1] ≺ [v4]. This proves the
claim.

Note that σ0 = σ1 are the only two 1’s in the coordinates of σ, so there
does not exist any norm 2 vector y ∈ (σ)⊥ such that ⟨y, v1⟩ = −1. Thus [v1]
contains only one vertex which does not neighbor any norm 2 vertex. Since
v1 ∼ v2 and ⟨v1, x0⟩ = 0, [v1] abuts the right end of [v2]. As xz4 ∈ [v2] and
v4 ∼ v1, xz4 is the rightmost high weight vertex in [v2]. If min supp vi = 4
for some i > 5, then vi ∼ v4 and |vi| ≥ 3. As ⟨vi, v2⟩ = 0, xzi is the leftmost
high weight vertex to the right of [v2]. So [v1] is the unique vertex between
xz4 and xzi . We then see that [v1] and [vi] abut, which is not possible as
⟨v1, vi⟩ = 0. This proves that min supp vi ≥ 5 when i > 5. By Lemma 4.26,
|vi| = 2 when i > 5. □
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Proposition 6.4. If v2 is not tight and (σ0, . . . , σk3
) ̸= (1, 1, 1, 2, 3), then

one of the following is true (if only the norm of a standard basis vector is
given, it is just right):

1) |v3| = 4, |v4| = 3, |vj | = 2 for 5 ≤ j ≤ 4 + t, v5+t = e1 + e2 + e4 + e5 +
· · ·+ e4+t − e5+t, |v6+t| = 3, and |vj | = 2 for j > 6 + t (t ≥ 0).

2) |v3| = 4, |v4| = 3, and |v5| = 6.

3) |v3| = 4, |v4| = 5, and |v5| = 4.

with corresponding changemaker vectors:

1) (1, 1, 1, 3, 4, 4[t], 4t+ 6, (4t+ 10)[s]), s, t ≥ 0

2) (1, 1, 1, 3, 4, 10)

3) (1, 1, 1, 3, 6, 10)

Proof. If v2 is not tight and (σ0, . . . , σk3
) ̸= (1, 1, 1, 2, 3), using Lemma 6.2, it

follows that (σ0, . . . , σk3
) is (1, 1, 1, 3). Note that, using Lemmas 3.5

and 4.3,

(20) Si = ∅, {1, 2}, {2, 3}, or {0, 1, 2, 3}, when i ≥ 4.

Using Lemma 4.7, we get that S4 is either {2, 3} or {0, 1, 2, 3}, that is, σ4 is
either 4 or 6.

When σ4 = 6, v4 = e0 + e1 + e2 + e3 − e4. Since ⟨v4, x0⟩ = 2, using Corol-
lary 4.16 and (20),

(21) Si = ∅ or {2, 3} when i > 4.

Since the intersection graph must be connected, there will be some index
j for which Sj = {2, 3}. Additionally, using Corollary 4.14, we get that 4 ∈
supp+ vj , as otherwise ⟨vj , v4⟩ = 2. It turns out that there is only one such
j. In fact, if there were two such indices j1, j2, then {2, 3, 4} ⊂ Sj1 ∩ Sj2 , we
would have ⟨vj1 , vj2⟩ ≥ 2, a contradiction. We claim that j = 5. If j ̸= 5, then
S5 = ∅ by (21). Therefore, |v5| = 2, so, by Lemma 4.3, 4 cannot be a gappy
index for vj . This will give us a claw (v4, x0, v5, vj). This justifies the claim;
in particular, σ5 = 10. If the index 6 existed, by (21) we must have S6 = ∅.
Thus, v6 is either e4 + e5 − e6 or e5 − e6. In the first case, there will be a
claw (v4, v5, v6, x0) and in the second case there will be a claw (v5, v4, v6, v2).
So the index 6 does not exist, and we get the third possibility listed in the
proposition.
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Now, suppose that σ4 = 4. If σ5 ̸= 4, 6, by Lemma 4.7 and (20), S5 is
either {0, 1, 2, 3} or {2, 3}. If Si = {0, 1, 2, 3} or {2, 3} for some i > 5, we will
get a heavy triple (v4, v5, vi). So Si = ∅ or {1, 2} when i > 5.

If S5 = {2, 3}, then e5 = e2 + e3 + e4 − e5. Since the pairing graph is
connected, there exists an index i > 5 such that Si = {1, 2}. Using the path
vi ∼ v1 ∼ v2, we will get a heavy triple (v4, v5, vi).

If S5 = {0, 1, 2, 3}, σ5 = 10. If the index 6 does exist, using Corollary 4.16,
S6 = ∅. We will have a claw (v4, v2, v5, v6) or (v5, x0, v4, v6), depending on
whether or not 4 ∈ supp+(v6). So we get the second possibility listed in the
proposition.

If σ5 = 6, since ⟨v5, x0⟩ = 2, by Corollary 4.16 and (20) we have Si = ∅
or {2, 3} when i > 5. Assume that there exists i > 5 such that Si = {2, 3}.
Since ⟨vi, v4⟩ ≤ 1, 4 ∈ supp(vi). Since ⟨vi, v5⟩ ≤ 1, 5 ∈ supp(vi). We would
then have a heavy triple (v4, v5, vi). So Si = ∅ whenever i > 5. If |v6| = 2,
there will be a claw (v5, v1, x0, v6). So v6 = e4 + e5 − e6. Since ⟨v5, x0⟩ =
2, xz5 = x1. Since v5 is connected to v4 by a path of norm 2 vectors, xz4
is the leftmost high weight vertex to the right of xz5 . Since v4 ∼ v6, by
Corollary 4.15, ⟨vi, v5⟩ = ⟨vi, v4⟩ = 0, whenever i > 6. We then conclude that
min supp(vi) ≥ 6 when i > 6. Using Lemma 4.26, we get |vi| = 2 when i > 6.
This gives us the case t = 0 in the first possibility listed in the proposition.

If σ5 = 4, since the pairing graph is connected, there must be a unique
index j > 4 for which ⟨vj , x0⟩ = 2. Then σj > 4, and Sj is either {0, 1, 2, 3}
or {1, 2} by (20). Let t+ 5 be the index such that σt+4 = 4 < σt+5.

If Sj = {0, 1, 2, 3}, then in order to avoid ⟨vj , v4⟩ = 2 (which contradicts
Corollary 4.14) we must have 4 ∈ supp+(vj). Moreover, using Lemma 4.3,
neither of 4, 5, . . . , t+ 3 can be a gappy index for vj . Hence we get a claw
(v4, v2, vj , v5) as j > t+ 4 ≥ 5. That is, we must have Sj = {1, 2}.

We claim that j = t+ 5. Suppose for contradiction that j ̸= t+ 5. Then,
using Corollary 4.16 and (20), St+5 is either ∅ or {2, 3}. If St+5 = {2, 3},
then there will be a heavy triple (v4, vt+5, vj), where the paths connecting
the three high norm vertices are through v1 and/or v2. If St+5 = ∅, set
i = min supp(vt+5). Using Lemma 4.3, none of 4, . . . , t+ 3 can be a gappy
index for vt+5. Then there will be a claw on either (vi, vi−1, vt+5, vi+1) or
(v4, v2, vt+5, v5), depending on whether 4 < i < t+ 4 or i = 4. (Note that
i ̸= t+ 4 since σt+5 > 4.) This finishes the proof of the claim, that is, j =
t+ 5 and St+5 = {1, 2}.

To avoid a cycle vt+5 ∼ v4 ∼ v2 ∼ v1 ∼ vt+5 of length bigger than 3
(which violates Corollary 4.25), we must have 4 ∈ supp+(vt+5). Further-
more, using Lemmas 4.3 and 4.7, all the indices 5, . . . , t+ 4 ∈ supp(vt+5),
so σt+5 = 4t+ 6. For i > t+ 5, using Corollary 4.16 and (20), the set Si is
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either ∅ or {2, 3}. If Si = {2, 3}, we will get a heavy triple (vi, v4, vt+5). This
proves that Si = ∅ whenever i > t+ 5. Set ℓ = min supp(vi). If ℓ = t+ 5,
there will be a claw (vt+5, x0, vi, v1). If 4 < ℓ < t+ 4, there will be a claw
(vℓ, vℓ−1, vi, vℓ+1), and if ℓ = 4 the claw will be on v4, v2, vi, v5. Therefore
ℓ = t+ 4 or ℓ ≥ t+ 6. In particular, et+6 = et+4 + et+5 − et+6 and σt+6 =
4t+ 10. When i > t+ 6, if ℓ = t+ 4, we get a heavy triple (vi, v4, vt+6). So
ℓ ≥ t+ 6 when i > t+ 6. Now we can apply Lemma 4.26 to conclude that
|vi| = 2 whenever i > t+ 6, and we will get the first possibility listed in the
proposition. □

Proposition 6.5. If (σ0, . . . , σk3
) = (1, 1, 1, 2, 3), v5 = e2 + e3 + e4 − e5,

and |vj | = 2 for j > 5. In this case, σ = (1, 1, 1, 2, 3, 6[t]), t ≥ 1.

Proof. Since 4 ∈ S′
5, S

′
5 = {2, 4} by Lemma 3.5 and Corollary 4.16, so the

set S5 is equal to either {2, 4} or {2, 3, 4}. If S5 = {2, 4}, then there will be a
cycle of length 4 on (v3, v1, v2, v5). Therefore, S5 = {2, 3, 4}, and so, σ5 = 6.
There is a path v3 ∼ v1 ∼ v2 ∼ v5. For any i > 5, to avoid a heavy triple
(vi, v3, v5), vi cannot neighbor v1 or v2. Combined with Lemmas 4.3 and 3.5
and Corollary 4.16, we must have S′

i = ∅. If 3 ∈ Si, we would have a claw
(v3, vi, v1, x0). So Si = ∅. By Lemma 4.26, we have |vi| = 2 whenever i > 5.

Now σ = (1, 1, 1, 2, 3, 6[t]), t ≥ 0. If t = 0, then p = 1, (see Section 8.) So
we must have t ≥ 1. □

7. The case k1 > 1

In the present section we classify all the changemaker C-type lattices that
have

x0 = e0 ± ek1
± ek2

± ek3
,

where k1 > 1. Using Lemma 3.5, we know that

(22) v1 = 2e0 − e1,

and therefore, σ1 = 2 and |v1| = 5. We remind the reader that, by
Lemma 4.11, v1 is the only tight vector in the C-type lattices that concern
us in this section. We also note that

(23) 0 ∈ supp(vk1
)

by Lemma 3.5. Compared to Sections 5 and 6, it will take longer to determine
the initial segment (σ0, . . . , σk3

) of σ. We start by specifying the positive
integer k1.
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Lemma 7.1. The segment (σ0, . . . , σk1
) is either (1, 2, 3) or (1, 2, 2, 3). In

particular, k1 = 2 or 3, and σk1
= 3.

Proof. Using Lemma 4.11, we get that v2 is either e0 + e1 − e2 or e1 − e2.
In the former case, using Lemma 3.5, we get that k1 = 2, and so σk1

= 3.
Now suppose that v2 = e1 − e2. More generally, suppose that there exists

t ≥ 1 such that (σ0, σ1, . . . , σt+1) = (1, 2, 2[t]), and that |vt+2| > 2. We will
show that t = 1, k1 = 3, and that σt+2 (or simply σ3) is 3.

Set j = min supp(vt+2). We argue that j = 0. (Note that, by Lemma 4.3,
none of 1, 2, . . . , t is a gappy index for vt+2.) If 1 < j < t+ 1, there will be
a claw on vj , vj−1, vt+2, vj+1. If j = 1, then ⟨vt+2, v1⟩ = −1 and vt+2 will
be orthogonal to v2. Then k1 > t+ 2 by (23). There will be a claw on
v1, x0, vt+2, v2, unless [vt+2] ⋔ [v1], |[v1 ∩ vt+2]| = |vt+2| = 3, and ϵt+2 = −ϵ1.
Thus v1 + vt+2 is the sum of two distant intervals and so is reducible.
Since |vt+2| = 3, vt+2 = e1 + et+1 − et+2, and so v1 + vt+2 is irreducible by
Lemma 4.6, a contradiction. That is, j = 0, and that,

(24) vt+2 = e0 + ei + ei+1 + · · ·+ et+1 − et+2,

with i ≥ 1.
Since 0 ∈ supp+(vt+2), using Lemma 3.5, we get that k1 = t+ 2. Fur-

thermore, we claim that x0 = e0 + et+2 + ek2
− ek3

. See Proposition 4.9. If
x0 = e0 − et+2 − ek2

+ ek3
, then ⟨vt+2, x0⟩ = 2. Observe that ⟨vt+2, v1⟩ = 1

or 2 depending on whether or not i = 1 in (24); in particular, ⟨vt+2, v1⟩ > 0.
Since |vt+2 ∩ v1| = |vt+2| ≥ 3 and δ([v1], [vt+2]) ≤ 3, using Lemma 3.9, it
must be that ϵ1 = ϵt+2. Since ⟨v1, x0⟩ = ⟨vt+2, x0⟩ = 2, [v1] and [vt+2] share
their left endpoint, and δ([vt+2], [v1]) = 1. Moreover, we must have |vt+2| =
3 (as otherwise ⟨vt+2, v1⟩ > 2). That is, vt+2 = e0 + et+1 − et+2. We have
⟨v2, v1⟩ = −1 and ⟨v2, x0⟩ = 0, so [v2] abuts the right end of [v1]. Since also
vt+2 ∼ vt+1, |vi| = 2 for i ∈ {2, . . . , t+ 1},

v2 ∼ v3 ∼ · · · ∼ vt+1,

the interval [v1] is a subset of the union of the [vj ] for j ∈ {2, . . . , t+ 2},
which in turn implies that |v1| = |vt+2| = 3, a contradiction. This shows
that

x0 = e0 + et+2 + ek2
− ek3

.

We now argue that 1 ̸∈ supp(vt+2). Suppose for contradiction that 1 ∈
supp(vt+2). Using (24), we get that |vt+2| ≥ 4, ⟨v1, vt+2⟩ = 1 and ⟨v2, vt+2⟩ =
0. To avoid a claw on v1, x0, vt+2, v2, we must have [vt+2] ⋔ [v1]. This implies
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that δ([v1], [vt+2]) = 2. Using Lemma 3.9 and that |vt+2| ≥ 4, we see that
| ⟨v1, vt+2⟩ | ≥ 2, a contradiction. That is, in (24), we must have i > 1.

We claim that i = 2. If 2 < i < t+ 1, there will be a claw on vi, vi−1,
vt+2, vi+1. If i = t+ 1 (and i > 2), to avoid a claw on v1, x0, vt+2, v2, it must
be that [vt+2] ⋔ [v1], and so δ([vt+2], [v1]) = 2. To get ⟨vt+2, v1⟩ = 2, however,
it must be |vt+2| = 4 which contradicts i = t+ 1. Therefore, in (24), we have
i = 2. In particular, v2 ∼ vt+2.

Finally, we argue that t = 1. If t > 1, we must have v1 ∼ vt+2 as otherwise
we get a claw (v2, v1, vt+2, v3). That is, [vt+2] abuts [v1]. Therefore, to fulfill
⟨vt+2, v1⟩ = 2, [vt+2] ≺ [v1], and that |vt+2| = 3, which contradicts t > 1 and
(24). So t = 1 as desired. □

As part of the proof of Lemma 7.1, we showed that x0 = e0 + ek1
+ ek2

−
ek3

when k1 = 3. Indeed, this is the case also when k1 = 2.

Lemma 7.2. Let k1 > 1. Then x0 = e0 + ek1
+ ek2

− ek3
.

Proof. We only need to show this for k1 = 2. Suppose for contradiction
x0 = e0 − e2 − ek2

+ ek3
(see Proposition 4.9). Note that v2 = e0 + e1 − e2,

and therefore, ⟨v2, x0⟩ = 2 = ⟨v1, x0⟩, and ⟨v2, v1⟩ = 1. Since |v2| = 3, us-
ing Lemma 3.9, we see that ϵ1 = ϵ2 and δ([v1], [v2]) = 2. Since ⟨[v2], x0⟩ =
⟨[v1], x0⟩ = ±2, [v1], [v2] share their left end point, so we cannot have
δ([v1], [v2]) = 2, a contradiction. □

Now we proceed to determine the changemaker vectors. As in Section 5,
we use the notation of (14) and (15). Also, we use the basis S′, defined
in (11), where vk3

is replaced by x0.

7.1. k1 = 2

This subsection is devoted to classifying the changemaker C-type lattices
with

(25) x0 = e0 + e2 + ek2
− ek3

.

Recall that the changemaker starts with (1, 2, 3). We have

(26) ⟨v1, v2⟩ = 1, ⟨v2, x0⟩ = 0.

Lemma 7.3. The intervals [v2] and [v1] are consecutive with ϵ2 = −ϵ1.
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Proof. Using (26) and Lemma 3.9, either [v2] ⋔ [v1], |[v2] ∩ [v1]| = |[v2]| = 3,
δ([v2], [v1]) = 2, and ϵ2 = ϵ1, or [v2] † [v1], and ϵ2 = −ϵ1. In the former case,
v2 − v1 is the sum of two distant intervals, and so is reducible. However, we
have v2 = e0 + e1 − e2, and so v2 − v1 is irreducible by Lemma 4.6 (2). □

Lemma 7.4. There does not exist an index j > 3, j ̸= k3, such that
supp(vj) ∩ {0, 1, 2} = {1}.

Proof. Otherwise, we will have ⟨vj , v1⟩ = −⟨vj , v2⟩ = −1. We also have
⟨vj , x0⟩ = 0 by Lemma 3.5. By Lemma 7.3, [vj ] and [v1] share their right
endpoint, so δ([vj ], [v1]) = 1. By Lemma 3.9, | ⟨v1, vj⟩ | = |vj | − 1 > 1, a con-
tradiction. □

Lemma 7.5. σ3 ∈ {3, 4}. Furthermore, if σ3 = 4 then [v3] and [v1] share
their left endpoint, and that ϵ3 = ϵ1.

Proof. All the possibilities for σ3 lie in {3, 4, 5, 6}. If σ3 = 5, we get that
v3 = e1 + e2 − e3. So ⟨v3, v1⟩ = −1 and v3 is orthogonal to v2. By Lemma 3.5,
k2 = 3 and ⟨v3, x0⟩ = 0. Using Lemma 7.3, we know that [v2] abuts [v1], and
therefore, there will be a claw on v1, x0, v3, v2, unless [v3] ⋔ [v1], |[v1] ∩ [v3]| =
|v3| = 3, and ϵ3 = −ϵ1. Thus v1 + v3 is the sum of two distant intervals and so
is reducible. However, v3 + v1 is irreducible by Lemma 4.6, a contradiction. If
σ3 = 6, we see that v3 = e0 + e1 + e2 − e3 (and, in particular, |v3| = 4). This
implies that ⟨v3, x0⟩ = 2 and ⟨v1, v3⟩ = 1. The latter will only be possible if
both δ([v1], [v3]) = 3 and ϵ1 = ϵ3, a contradiction to Lemma 3.11.

If σ3 = 4, we have v3 = e0 + e2 − e3. Using Lemma 3.9, the second state-
ment of the lemma is immediate because ⟨v3, v1⟩ = ⟨v3, x0⟩ = ⟨v1, x0⟩ = 2
and |v3| = 3. □

Lemma 7.6. If 0 ∈ supp(vj) and 2 /∈ supp(vj) for some j > 3 and j ̸= k3,
then [vj ], [v1] share their right endpoint, and vj = e0 + ej−1 − ej. Moreover,
there exists at most one such j.

Proof. We have 1 ̸∈ supp(vj), otherwise ⟨v2, vj⟩ = 2, a contradiction to Corol-
lary 4.14. So ⟨v1, vj⟩ = 2. Since ⟨vj , v2⟩ = 1, [vj ] and [v2] are consecutive by
Corollary 4.15. It follows from Lemma 7.3 that [vj ] and [v1] share their right
endpoint, and so δ([vj ], [v1]) = 1. Then, to get ⟨v1, vj⟩ = 2, we must have
|vj | = 3 and vj = e0 + ej−1 − ej . Lastly, there exists at most one such j by
Corollary 4.15. □

Proposition 7.7. If σ3 = 3, the initial segment (σ0, . . . , σk3
) of σ is

(1, 2, 3, 3, 7).
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Proof. Suppose that σ3 = 3 (see Lemma 7.5). This implies that k2 = 3
(Lemma 3.5). Using Equation (25), we see that σk3

= 7. We claim that k3 =
k2 + 1 = 4. If k3 ̸= 4, by Lemma 3.5, σ4 ∈ {4, 6}. Suppose σ4 = 4, or equiva-
lently, v4 = e0 + e3 − e4. This gives us that ⟨v4, x0⟩ = 2 and ⟨v4, v2⟩ = 1. By
Lemma 7.3, the interval [v1] will be a subset of [v4] ∪ {x0}, which implies that
|v1| = 3, a contradiction. Suppose σ4 = 6, or equivalently, v4 = e2 + e3 − e4.
Then there will be a claw (v2, v1, v4, v3). This justifies the claim, that is,
σ4 = 7 and k3 = 4. □

Proposition 7.8. If σ3 = 4, the initial segment (σ0, . . . , σk3
) of σ is either

(1, 2, 3, 4, 5, 9) or (1, 2, 3, 4[s], 4s+ 3, 4s+ 7), s ≥ 1.

Proof. All the possibilities for σ4 lie in {4, 5, 6, 7, 8, 9, 10}. We first argue
that σ4 ̸∈ {6, 8, 9, 10}. Suppose σ4 = 6, then v4 = e1 + e3 − e4, contradicting
Lemma 7.4. If σ4 = 10, then v4 will have nonzero inner product with v2
and v3. Using Lemmas 7.5 and 7.3, the interval [v1] equals the union of
[v3] and [v4], that is, |v1| = 6, a contradiction. If σ4 = 8, then both the
unbreakable vectors v3 and v4 will have nonzero inner product with x0,
contradicting Corollary 4.16. When σ4 = 9, v4 = e1 + e2 + e3 − e4. Notice
that ⟨v4, v1⟩ = −1 while v4 is orthogonal to x0. The latter gives us that
δ([v4], [v1]) ≤ 2. Therefore, given that |v4| = 4, we must have [v4] and [v2]
share their left endpoint by Lemma 7.3, a contradiction to Corollary 4.15.
Therefore σ4 ∈ {4, 5, 7}.

Suppose that σ4 = 5, that is, v4 = e0 + e3 − e4. Using Lemma 3.5, k2 =
4, and so σk3

= 9 by Equation (25). Since ⟨v3, x0⟩ = 2, ⟨v5, x0⟩ = 0 by Corol-
lary 4.16, unless k3 = 5. Since 4 ∈ supp(v5), we get that k3 = 5.

Let s ≥ 1 be the integer satisfying that σ3 = · · · = σs+2 = 4, and that
σs+3 > 4. By Lemma 3.5, k2 ≥ s+ 3. Set j = min supp(vs+3) < s+ 2. If
3 < j < s+ 2, there will be a claw (vj , vj−1, vs+3, vj+1), and if j = 3, the
claw will be (v3, x0, vs+3, v4). If j = 1, then 2 ∈ supp(vs+3) by Lemma 7.4.
Thus |vs+3| ≥ 4. Since ⟨vs+3, x0⟩ = 0, δ([vs+3], [v1]) ≤ 2. Then

| ⟨vs+3, v1⟩ | ≥ 4− 2 ≥ 2,

a contradiction. Lastly, suppose j = 0. By Corollary 4.16, ⟨vs+3, x0⟩ = 0, it
must be the case that 2 ̸∈ supp(vs+3). By Lemma 7.6, vs+3 = e0 + es+2 −
es+3. If s = 1 and σ4 = 5, this case was discussed in the previous paragraph.
However, if s > 1, then ⟨vs+3, v3⟩ = 1, and so [v1] will be the union of [v3]
and [vs+3] by Lemma 7.5 and Lemma 7.6. Since |v3| = 3, to get |v1| = 5, it
must be that |vs+3| = 4, a contradiction. So we are left with the case j = 2.



✐

✐

“1-Ni” — 2021/12/29 — 17:01 — page 1319 — #41
✐

✐

✐

✐

✐

✐

The prism manifold realization problem II 1319

Note that ⟨vs+3, v2⟩ = −1, and vs+3 is orthogonal to v1 and x0, so [vs+3]
is distant from [v1] by Lemma 7.3. Using Lemma 7.5, we get that vs+3

is orthogonal to v3, and so 3 ∈ supp(vs+3). By Lemma 4.3, we get that
4, . . . , s+ 1 ∈ supp(vs+3). That is, σs+3 = 4s+ 3, and that k2 = s+ 3. Using
Equation (25), we get that σk3

= 4s+ 7. With the same argument as in the
case σ4 = 5, we get that k3 = k2 + 1 = s+ 4. This recovers the case σ4 = 7
when s = 1. □

Proposition 7.9. If (σ0, . . . , σk3
) = (1, 2, 3, 4, 5, 9), then n+ 1 = k3 (i.e.

vk3
is the last standard basis vector).

Proof. We claim that the index 6 does not exist. Suppose for contradiction
that it exists. Since 5 ∈ S′

6, then S′
6 must be one of {4, 5}, {2, 5}, or {0, 5}

(Lemma 3.5 and Corollary 4.16).
By Lemma 7.6, the intervals [v4] and [v1] share their right endpoint, and

S′
6 ̸= {0, 5}.

Suppose that S′
6 = {4, 5} or {2, 5}, then ⟨v6, x0⟩ = 0. We have that one

of ⟨v6, v4⟩ and ⟨v6, v3⟩ is zero and the other one is nonzero, depending on
whether or not 3 ∈ S6. By Lemma 7.3 and Corollary 4.15, [v6] and [v1] are
not consecutive. Using Lemma 7.5 and the fact that [v4] and [v1] share
their right endpoint, we conclude that [v6] ⊂ [v1] and δ([v6], [v1]) ≤ 2. Since
|v6| ≥ 3, we must have ⟨v6, v1⟩ ̸= 0. That is, 1 ∈ supp(v6), and so |v6| ≥ 4.
Using Lemmas 7.3, 7.5 and Corollary 4.15, [v1] will have all the high weight
vertices of [v3], [v6], and [v4], and so, |v1| ≥ 6, a contradiction. This proves
the claim. □

Proposition 7.10. When (σ0, . . . , σk3
) = (1, 2, 3, 3, 7), there exists s ≥ 0,

such that vs+5 = e3 + · · ·+ es+4 − es+5, v5 = e0 + e4 − e5 if s > 0, and
|vj | = 2 for 5 < j < s+ 5 and j > s+ 5. In this case, σ = (1, 2, 3, 3, 7, 8[s],
8s+ 10[t]) (s, t ≥ 0).

Proof. First suppose that σ5 ̸= 10. Since k3 = 4 ∈ S′
5, the set S′

5 is either
{0, 4}, {3, 4}, or {0, 2, 3, 4} (Lemmas 3.5 and 4.3). If S′

5 = {3, 4}, as σ5 ̸= 10,
we must have 1 ∈ S5, a contradiction to Lemma 7.4. If S′

5 = {0, 2, 3, 4},
then ⟨v1, v5⟩ > 0. Since |v5| ≥ 5 and δ([v1], [v5]) ≤ 3, we have ϵ1 = ϵ5. Since
⟨v1, v5⟩ ≤ 2, and that |v5| ≥ 5, we must have δ([v5], [v1]) = 3. Since ϵ1 = ϵ5,
by Lemma 3.11, ⟨v5, x0⟩ = −⟨v1, x0⟩ = ±2, which is not true. Therefore,
S′
5 = {0, 4} and v5 = e0 − e4 + e5 by Lemma 7.6.

We claim that if Sj ̸= ∅ for some j > 5, then Sj = {3, 4}. Assume that
Sj ̸= ∅. By Lemmas 3.5 and 4.3, S′

j is one of ∅, {0, 3}, {0, 4}, {2, 3}, {3, 4},
and {0, 2, 3, 4}. If S′

j = ∅, then Sj = {1}, contradicting Lemma 7.4. Since
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S′
5 = {0, 4}, S′

j ̸= {0, 3} or {0, 4} by Lemma 7.6. If S′
j = {2, 3}, then

⟨vj , x0⟩ = 2. Since δ([vj ], [v1]) ≤ 3, |vj | ≥ 4, we have ⟨vj , v1⟩ ̸= 0. Since 0 /∈
supp(vj), we must have 1 ∈ supp(vj), and so |vj | ≥ 5. Using Lemma 3.9, we
get | ⟨vj , v1⟩ | > 1, contradicting the fact that ⟨v1, vj⟩ = −1. If S′

j =
{0, 2, 3, 4}, then we have ⟨vj , x0⟩ = 2 and |vj | ≥ 6. Thus x1 = xzj is con-
tained in [v1]. However, |v1| = 5 < 6 = |vj |, a contradiction. So S′

j = {3, 4}.
Using Lemma 7.4, we conclude that 1 /∈ Sj . So Sj = {3, 4}.

If Sj = ∅ for all j > 5, it follows from Lemma 4.26 that |vj | = 2 whenever
j > 5. Now assume that Sj ̸= ∅ for some j > 5. Let s+ 5 be the smallest such
j. Then Ss+5 = {3, 4} by the earlier discussion. We also know that |vi| = 2 for
any 5 < i < s+ 5 by Lemma 4.26. If 5 ̸∈ supp(vs+5), then ⟨vs+5, v5⟩ ̸= 0 and
⟨vs+5, v3⟩ ̸= 0, and so there will be a cycle (vs+5, v3, v2, v5) of length bigger
than 3: see Figure 8. Thus 5 ∈ supp(vs+5), and as a result 6, . . . , s+ 4 ∈
supp(vs+5) by Lemma 4.3. Therefore, σs+5 = 8s+ 10.

Note that, Sj = ∅ when j > s+ 5. Otherwise, by the earlier discussion,
Sj = {3, 4}, and we would have a heavy triple (vj , vs+5, v2). Given j > s+ 5,
let ℓ = min supp(vj) ≥ 5. Note that

v5 ∼ v6 ∼ · · · ∼ vs+4,

[v5] and [v1] share their right endpoint, ⟨vi, v1⟩ = 0 and |vi| = 2 when 5 <
i < s+ 5, so [vi] ⊂ [v1] when 5 ≤ i < s+ 5. If ℓ ≤ s+ 4, then ⟨vj , vℓ⟩ ̸= 0.
Thus [vj ] ∩ [v1] ̸= ∅. Note also that δ([vj ], [v1]) ≤ 2 since vj is orthogonal to
x0. Since |vj | ≥ 3, we get that | ⟨vj , v1⟩ | > 0, a contradiction. Thus we have
proved that min supp(vj) ≥ s+ 5 when j > s+ 5. It follows from Lemma 4.26
that |vj | = 2 when j > s+ 5.

Finally suppose that σ5 = 10. Assume that there exists ℓ > 5 such that
Sℓ ̸= ∅. By Lemmas 3.5 and 4.3, S′

ℓ is one of ∅, {0, 3}, {0, 4}, {2, 3}, {3, 4},
and {0, 2, 3, 4}. If S′

ℓ = ∅, then Sℓ = {1}, contradicting Lemma 7.4. By
Lemma 7.6, S′

ℓ ̸= {0, 3} or {0, 4}. Suppose S′
ℓ = {2, 3}. If 1 ̸∈ supp(vℓ), there

will be a claw (v2, v1, vℓ, v3). If 1 ∈ supp(vℓ), then | ⟨vℓ, v1⟩ | = 1. By
Lemma 7.3, [vℓ] and [v1] are not consecutive. Since δ([vℓ], [v1]) ≤ 3 and
|vℓ| ≥ 5, we get | ⟨vℓ, v1⟩ | ≥ 2, a contradiction. If S′

ℓ = {3, 4}, there will be a
heavy triple (v5, vℓ, v2). If S

′
ℓ = {0, 2, 3, 4}, then |vℓ| ≥ 6 and ⟨vℓ, x0⟩ = 2, so

xzℓ = x1. Thus |[v1]| ≥ |[vℓ]| ≥ 6, a contradiction. So we proved that Sℓ = ∅
whenever ℓ > 5. It follows from Lemma 4.26 that |vj | = 2 when j > 5. □

Proposition 7.11. If (σ0, . . . , σk3
) = (1, 2, 3, 4[s], 4s+ 3, 4s+ 7), s > 0,

then vs+5 = es+3 + es+4 − es+5, and |vj | = 2 for j > s+ 5. In this case, σ =
(1, 2, 3, 4[s], 4s+ 3, 4s+ 7, (8s+ 10)[t]) (s > 0, t ≥ 0).
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Figure 8. Pairing graphs when (σ0, . . . , σk3
) is (1, 2, 3, 4, 5, 9) (left),

(1, 2, 3, 4[s], 4s+ 3, 4s+ 7) (center), or (1, 2, 3, 3, 7) (right).

Proof. Suppose that ℓ > s+ 4 is an index such that Sℓ ̸= ∅. We will prove
that ℓ = s+ 5 and vs+5 = es+3 + es+4 − es+5. Our conclusion then follows
from Lemma 4.26.

Step 1. S′
ℓ must be either ∅ or {s+ 3, s+ 4}.

Using Lemma 4.3 and Corollary 4.16, S′
ℓ is either ∅, {0, s+ 4}, {2, s+ 4},

or {s+ 3, s+ 4}. Suppose S′
ℓ = {0, s+ 4}, by Lemma 7.6, vℓ = e0 + es+4 −

es+5, [vℓ] and [v1] share their right endpoint. As ⟨vℓ, v3⟩ ̸= 0, [v1] equals
the union of [v3] and [vℓ] by Lemma 7.5, i.e. |v1| = 4, a contradiction. Sup-
pose S′

ℓ = {2, s+ 4}. If 1 ̸∈ Sℓ, as s+ 3 ̸∈ Sℓ, ⟨vell, vs+3⟩ ̸= 0, there will be a
heavy triple (vℓ, vs+3, v2). If 1 ∈ Sℓ (and consequently, |vℓ| ≥ 4), then there
will be a claw (v1, x0, vℓ, v2), unless [vℓ] ⋔ [v1]. If [vℓ] ⋔ [v1], however, we
get δ([vℓ], [v1]) = 2, and so | ⟨vℓ, v1⟩ | ≥ 2, a contradiction to the fact that
⟨vℓ, v1⟩ = −1.

Step 2. If S′
ℓ = ∅ or {s+ 3, s+ 4}, then Sℓ = S′

ℓ. In particular, Ss+5 = {s+
3, s+ 4}.

Suppose that S′
ℓ = ∅ or {s+ 3, s+ 4}. Let i = min supp(vℓ). By

Lemma 7.4, i ̸= 1. That is, ⟨vℓ, v1⟩ = 0. Also, note that vℓ is orthogonal to x0,
and so δ([vℓ], [v1]) ≤ 2. If 3 ≤ i ≤ s+ 2, since v3 ∼ v4 ∼ · · · ∼ vi ∼ vℓ, using
Lemmas 7.5 and 7.3, xzℓ ∈ [v1]. Therefore, ⟨v1, vℓ⟩ ̸= 0, a contradiction. So
i ≥ s+ 3 and hence Sℓ = S′

ℓ. Clearly, Ss+5 = {s+ 3, s+ 4} by Lemma 4.7.

Step 3. If Sℓ = {s+ 3, s+ 4}, then ℓ = s+ 5.
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Assume that ℓ > s+ 5 and Sℓ = {s+ 3, s+ 4}, then we have a heavy
triple (vs+3, vs+5, vℓ). □

7.2. k1 = 3

In this subsection we focus on the changemaker C-type lattices with

(27) x0 = e0 + e3 + ek2
− ek3

.

Recall that the changemaker starts with (1, 2, 2, 3).

Lemma 7.12. The intervals [v3] and [v1] share their right endpoint and
ϵ3 = ϵ1. Moreover, [v2] abuts the right endpoint of [v1] and [v3].

Proof. Since |v3| = 3 and ⟨v1, v3⟩ = 2, from Lemma 3.9, it must be the case
that ϵ1 = ϵ3 and δ([v1], [v3]) = 1. The first statement of the lemma is now
immediate because v3 is orthogonal to x0. Since ⟨v2, v1⟩ ̸= 0 and ⟨v2, x0⟩ = 0,
[v2] abuts the right endpoint of [v1]. □

Corollary 7.13. Suppose that there exists a vector vj such that j > 3,
j ̸= k3, and ⟨vj , v1⟩ = 2. Then j = 4, and that v4 = e0 + e3 − e4.

Proof. Suppose that j is such an index. Therefore, 0 ∈ supp+(vj) and 1 ̸∈
supp+(vj). (This, in particular, implies that |vj | ≥ 3). We claim that
⟨vj , x0⟩ ̸= 0. Otherwise, assume ⟨vj , x0⟩ = 0. Since ⟨vj , v1⟩ = 2, xzj ∈ [v1].
Using Lemma 7.12 and Corollary 4.15, [v1] contains at least 3 high weight
vertices x1, xzj , xz3 , and δ([vj ], [v1]) = 2. Since |v1| = 5, we have |xzj | = 3,
so by Lemma 3.9 we have | ⟨vj , v1⟩ | = 1, a contradiction. This justifies the
claim, and therefore, ⟨vj , x0⟩ = 2. Since |vj | ≥ 3 and δ([v1], [vj ]) ≤ 3, to get
⟨vj , v1⟩ = 2, we must have ϵ1 = ϵj . Thus, δ([vj ], [v1]) = 1 and |vj | = 3. That
is, vj = e0 + ej−1 − ej . We now argue that j = 4. Suppose for contradiction
that j > 4. Thus ⟨vj , v3⟩ = 1. Using Lemma 7.12, we get that the interval [v1]
equals the union of [vj ] and [v3]. Since |vj | = |v3| = 3, we get that |v1| = 4,
which is a contradiction. □

Lemma 7.14. Let vj be a vector such that j > 3, j ̸= k3. Then ⟨vj , v1⟩ ∈
{0, 2}. As a result, min supp(vj) ≥ 2 unless j = 4 and v4 = e0 + e3 − e4.

Proof. Assume that ⟨vj , v1⟩ /∈ {0, 2}, then supp(vj) ∩ {0, 1} = {1} or {0, 1}.
By Lemma 4.3, 2 ∈ supp(vj). If 0 ∈ supp(vj), since | ⟨vj , v3⟩ | ≤ 1 by Corol-
lary 4.14, we have 3 ∈ supp(vj). Thus |vj | ≥ 5. Since ⟨x0, vj⟩ = 2, xzj = x1.
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By Corollary 4.15 and Lemma 7.12, xzj ̸= xz3 . So

5 = |v1| ≥ |xzj |+ |xz3 | − 2 ≥ 5 + 1,

a contradiction.
We have shown that 0 /∈ supp(vj). If 3 /∈ supp(vj), then j > 4 and |vj | ≥

4. As ⟨vj , v3⟩ = 1, using Corollary 4.15, [vj ] and [v3] are consecutive. By
Lemma 7.12 and the fact that ⟨vj , v2⟩ = 0 we conclude that [vj ] ⊂ [v1]. Since
⟨vj , x0⟩ = 0, [v1] contains at least three high weight vertices: x1, xzj , xz3 . This
is impossible as |v1| = 5 and |vj | ≥ 4.

Now we have supp(vj) ∩ {0, 1, 2, 3} = {1, 2, 3}, so ⟨vj , v3⟩ = 0. By
Lemma 4.7, |vj | ≥ 5 unless j = 4. By Lemma 7.12 and the fact that ⟨vj , v1⟩ ̸=
0 we conclude that [vj ] ⊂ [v1]. So [v1] contains at least two high weight ver-
tices: xzj , xz3 . It follows that |vj | ≤ 4. So j = 4 and |v4| = e1 + e2 + e3 − e4.
Since |v4| = 4, [v1] contains exactly two high weight vertices, so x1 must be
xz4 . So ⟨v4, x0⟩ ̸= 0, which is not possible. This shows that ⟨vj , v1⟩ ∈ {0, 2}.

If min supp(vj) < 2, then ⟨vj , v1⟩ ̸= 0. We must have ⟨vj , v1⟩ = 2, so j =
4 and v4 = e0 + e3 − e4 by Corollary 7.13. □

Lemma 7.15. Let vj be a vector such that j > 4, j ̸= k3. Then supp(vj) ∩
{0, 1, 2, 3} ̸= {2} or {3}.

Proof. Assume that supp(vj) ∩ {0, 1, 2, 3} contains only one element which
is 2 or 3. Then |vj | ≥ 3, ⟨vj , v3⟩ ̸= 0 while ⟨vj , v1⟩ = 0. By Lemma 7.12, [vj ]
abuts the left endpoint of [v3], so [vj ] ⊂ [v1]. Since |vj | ≥ 3 and δ([vj ], [v1]) ≤
3, using Lemma 3.9, we get that ⟨vj , v1⟩ ̸= 0 unless |vj | = δ([vj ], [v1]) = 3.
However, if δ([vj ], [v1]) = 3, [v1] is contained in the union of [vj ], [v3] and
{x0}. Since |vj | = |v3| = 3, we have |v1| = 4, a contradiction. □

Lemma 7.16. σ4 ∈ {3, 4, 5}. Furthermore, if σ4 = 3 then [v4] abuts the left
endpoint of [v3]. If σ4 = 4 then [v4] and [v1] share their left endpoint.

Proof. If min supp(v4) < 2, using Lemma 7.14, σ4 = 4. By Lemma 4.7, if
min supp(v4) ≥ 2, v4 = e2 + e3 − e4 or e3 − e4. So σ4 = 5 or 3.

When σ4 = 3, [v4] abuts [v3] and ⟨v4, v1⟩ = 0. By Lemma 7.12, [v4]
abuts the left endpoint of [v3]. When σ4 = 4, ⟨v4, v1⟩ = 2 = ⟨v4, x0⟩. So
δ([v4], [v1]) = 1 by Lemma 3.9. Thus [v4] and [v1] share their left endpoint
by Lemma 7.12. □

Proposition 7.17. If σ4 = 3, the initial segment (σ0, . . . , σk3
) of σ is

(1, 2, 2, 3, 3, 7).
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Proof. Suppose that σ4 = 3 (see Lemma 7.16). This implies that k2 = 4
(Lemma 3.5). Using Equation (27), we get that σk3

= 7. If k3 ̸= 5, using
Lemma 3.5 and Lemma 7.14, we must have S5 ⊃ {3, 4}. By Lemma 7.15, we
have 2 ∈ S5, so ⟨v5, x0⟩ = 2 and v5 ∼ v2. By Lemma 7.12, [v1] is contained
in the union of x0, [v5], [v2]. So |v1| = |v5| = 4, which is not possible. □

Proposition 7.18. If σ4 ̸= 3, the initial segment (σ0, . . . , σk3
) of σ is

(1, 2, 2, 3, 4[s], 4s+ 5, 4s+ 9), s ≥ 0.

Proof. Suppose that σ4 ̸= 3 (see Lemma 7.16). Furthermore, let s ≥ 0 satisfy
that σi = 4 for any 4 ≤ i < s+ 4, and that σs+4 > 4. We have k2 ≥ s+ 4 by
Lemma 3.5. Set j = min supp(vs+4) < s+ 3. Then j ≥ 2 by Lemma 7.14.
Also, j ̸= 3 by Lemma 7.15. If 4 < j < s+ 3, we will get a claw (vj , vj−1,
vs+4, vj+1), and if j = 4, the claw will be on v4, x0, vs+4, v5. This proves that
j = 2. By Lemma 7.15, 3 ∈ supp(vs+4).

We will show that σs+4 = 4s+ 5. If s = 0, v4 = e2 + e3 − e4, and we
are done. If s > 0, since 2, 3 ∈ supp(vs+4), |vs+4| ≥ 4. Also, vs+4 must be
orthogonal to v4, as otherwise, using Lemmas 7.16 and 7.12, all the three
intervals [v4], [vs+4], and [v3] will be subsets of [v1], which implies that |v1| ≥
6, a contradiction. That is, 4 ∈ supp(vs+4). Using Lemma 4.3, vs+4 is just
right and σs+4 = 4s+ 5.

Using Lemma 3.5, we see that k2 = s+ 4. By Equation (27), we have
σk3

= 4s+ 9. Note that k2 ∈ supp(vk2+1). Since the unbreakable vector v4
has nonzero inner product with x0, using Corollary 4.16, we get that k3 =
k2 + 1. □

Proposition 7.19. If (σ0, . . . , σk3
) = (1, 2, 2, 3, 3, 7), then n+ 1 = k3 (i.e.

vk3
is the last standard basis vector).

Proof. We claim that the index k3 + 1 (that is, 6) does not exist. Using
Lemmas 3.5, 4.7, 4.3, and 7.14, S′

6 = {4, 5}. Then ⟨v6, v4⟩ ̸= 0, and also v6
is orthogonal to x0. Using Lemmas 7.16 and 7.12, we must have [v6] ⊂ [v1]
which implies that ⟨v6, v1⟩ ̸= 0 since |v6| ≥ 3. This contradicts Lemma 7.14.

□

Proposition 7.20. If (σ0, . . . , σk3
) = (1, 2, 2, 3, 4[s], 4s+ 5, 4s+ 9), s ≥ 0,

then vs+6 = es+4 + es+5 − es+6 if it exists, and |vi| = 2 for i > s+ 6. In this
case, σ = (1, 2, 2, 3, 4[s], 4s+ 5, 4s+ 9, (8s+ 14)[t]), t ≥ 0.
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Figure 9. Pairing graphs when (σ0, . . . , σk3
) is (1, 2, 2, 3, 3, 7) (left) or

(1, 2, 2, 3, 4[s], 4s+ 5, 4s+ 9), s > 0 (right).

Proof. Suppose that ℓ > k3 = s+ 5 is an index such that Sℓ ̸= ∅. We will
prove that ℓ = s+ 6 and Sℓ = {s+ 4, s+ 5}. This, together with Lemma 4.26,
will imply our desired result.

By Lemmas 3.5, 7.14, and Corollary 4.16, S′
ℓ is one of ∅, {3, 4}, {3, 5}

and {4, 5} if s = 0, and one of ∅, {3, s+ 5}, and {s+ 4, s+ 5} if s > 0. Let
j = min supp(vℓ), then j ≥ 2 by Lemma 7.14. Also, j ̸= 3 by Lemma 7.15.

If s = 0 and S′
ℓ = {3, 4}, we have ⟨vℓ, x0⟩ = 2 and |vℓ| ≥ 4, so x1 ∈ [vℓ].

Using Lemma 3.9, we get ⟨vℓ, v1⟩ ̸= 0, a contradiction.
If S′

ℓ = {3, s+ 5}, to avoid ⟨vℓ, vs+4⟩ > 1, 2 /∈ supp(vℓ). Thus, j = 3,
which is impossible.

Having proved S′
ℓ = ∅ or {s+ 4, s+ 5}, we claim that Sℓ = S′

ℓ. First,
j ̸= 2 by Lemma 7.15. So our claim holds when s = 0. When s > 0, if
4 ≤ j < s+ 3, we have a claw (vj , vj−1, vj+1, vℓ). If j = s+ 3, ⟨vℓ, vs+3⟩ ̸= 0.
By Lemma 7.16, [v4] and [v1] share their left endpoint. Since |v5| = · · · =
|vs+3| = 2 and v4 ∼ v5 ∼ · · · ∼ vs+3, we have [vℓ] ⊂ [v1] by Lemma 7.12.
Thus ⟨vℓ, v1⟩ ̸= 0 by Lemma 3.9, a contradiction. So our claim is proved.

Now by Lemma 4.7, s+ 5 ∈ Ss+6. So Ss+6 = {s+ 4, s+ 5} by the results
in the previous two paragraphs. If there was ℓ > s+ 6 satisfying Sℓ = {s+
4, s+ 5}, we would have a heavy triple (vs+4, vs+6, vℓ). Thus Sℓ = ∅ whenever
ℓ > s+ 6. □
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8. Determining p and q

Table 2. P+
q>p, table of P (p, q) that are realizable, q > p

Type P (p, q)
Range of parameters
(p and r are always odd, p > 1)

1A P
(

p, 12(p
2 + 3p+ 4)

)

1B P
(

p, 1
22(p

2 + 3p+ 4)
) p ≡ 5 or 3 (mod 22)

p ̸= 3, 5

2 P
(

p, 1
|4r+2|(r

2p− 1)
)

r ≡ −1 (mod 4)
p ≡ −2r + 3 (mod 4r + 2)
r ̸= −5,−1, 3

3A P
(

p, 1
2r (p− 1)(p− 4)

)

p ≡ 1 (mod 2r)
p ̸= 2r + 1
r ≥ 5

3B P
(

p, 1
2r (p− 1)(p− 4)

)

p ≡ r + 4 (mod 2r)
p > r + 4
r ≥ 1

4 P
(

p, 1
2r2

(

(2r + 1)2p− 1
)) p ≡ −4r + 1 (mod 2r2)

r ̸= 1,−1

5 P
(

p, 1
r2−2r−1(r

2p− 1)
) r > 1

p ≡ −2r + 5 (mod r2 − 2r − 1)

Sporadic P (11, 19), P (13, 34)
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In Sections 5, 6, and 7, we have classfied all the (n+ 1)–dimensional C-
type lattices that are isomorphic to changemaker lattices. In the present sec-
tion, we list all the corresponding prism manifolds P (p, q). To do so, we start
with the refined basis S′ = {v1, . . . , vn+1} \ {vk3

} ∪ {x0} as defined in (11).
The first step is changing the basis into the vertex basis {x0, x1, . . . , xn}.
We then recover the ai from the norms of vertex basis elements. By using
Equation (1), we obtain p and q.

Example 8.1. We present an example that clarifies how (p, q) is computed
in Proposition 5.6. The changemaker is

(1, 1, 2[s], 2s− 1, 2s+ 1), s = n− 2 ≥ 2.

Let S′ denote the modified standard basis for the changemaker lattice L =
(σ)⊥. It is straightforward to check that

{x0} ∪ {−v2, . . . ,−vs+1, v3 + · · ·+ vs+2, v1}

forms the vertex basis S∗. Also, the vertex norms are

{3, 2[s−1], s+ 1, 2}.

Using Lemma 2.4 together with Equation (1), we have

2q − p

q − p
= [3, 2[s−1], s+ 1, 2] =

4s2 + 3

2s2 − s+ 2
.

In particular, p = 2s− 1 and q = 2s2 + s+ 1. We see that q = 1
2(p

2 + 3p+
4), p ≥ 3.

Similar computations give prism manifolds P (p, q), with q > p, so that
each falls into one of the families in Table 2. We denote the set of such prism
manifolds P+

q>p. Here we divide the families so that each changemaker vector
corresponds to a unique family. In some cases there are prism manifolds
that correspond to more than one family in Table 2. For instance, it is
straightforward to check that P (5, 22) belongs to both Families 5 and 1A.
The detailed correspondence between the changemaker vectors and P (p, q)
can be found in Table 4. Note that the positive integer p is always odd.

9. Prism manifolds realizable by surgery on knots in S3

Table 2 gives a list of all prism manifolds P (p, q), with q > p, that can
possibly be realized by surgery on knots in S3. In [BHM+20, Table 2], a list of
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realizable prism manifolds P (p, q) with q > 0 is provided. See also [Shang19]
for an explicit list of the knots realizing the corresponding surgeries. It is
straightforward to verify that the manifolds in Table 2 coincide with those
of [BHM+20, Table 2] with q > p. That is, Table 2 is a complete list of prism
manifolds P (p, q), with q > p, arising from surgery on knots in S3.

9.1. Prism manifolds corresponding to more than one
changemaker vector

As we pointed out in Section 8, some of the prism manifolds in Table 2
correspond to distinct changemaker vectors. In this subsection, we address
this by providing distinct knots corresponding to such prism manifolds. Our
strategy is as follows: let σ be a changemaker vector whose orthogonal com-
plement is isomorphic to C(p, q) for some p and q. Let σ correspond to a
knot K in S3 on which surgery results in P (p, q). Using Lemma 2.7, we com-
pute the Alexander polynomial ∆K(T ). Then we exhibit a P/SF knot Kσ

that admits a surgery to P (p, q). By directly computing ∆Kσ
(T ) we show

that the two Alexander polynomials coincide. That is, Kσ matches with σ.
See [BHM+20, Section 13.2]. The parameters beneath the P/SF knots in
Table 3 are explained in the arXiv version of [BHM+20].

9.2. Proof of the main results

Proof of Theorem 1.5. If C(p, q) is isomorphic to a changemaker lattice L,
then it belongs to one of the families enumerated in Sections 5, 6, and 7.
Following Section 8, we can find a pair (p′, q′) such that L is isomorphic to
C(p′, q′), and P (p′, q′) ∈ P+

q>p. Now, Proposition 3.15 finishes the proof. □

Proof of Theorem 1.1. Suppose P (p, q) ∼= S3
4q(K), it follows from Theorem

1.4 and Theorem 1.5 that P (p, q) belongs to one of the six families in Ta-
ble 2 and P (p, q) ∼= S3

4q(K0) for some Berge–Kang knot K0. To get the re-

sult about ĤFK, we note that K and K0 correspond to the same change-
maker vector. Using Lemma 2.7, we know that ∆K = ∆K0

, so ĤFK(K) ∼=
ĤFK(K0) by [OS05a, Theorem 1.2]. □
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Table 3. Prism manifolds P (p, q) corresponding to more than one change-
maker

Prism manifold Type Changemaker P/SF knot Braid word

4 (1, 2, 3, 3, 7, 8[s])

KIST IV, s > 0

(2,−3,−1, 0, s+ 2)

KIST I, s = 0

(1, 3, 4,−2,−3)

(σ7 · · ·σ1)
8s+23(σ13 · · ·σ1)

−8

P (8s+ 13, 16s+ 18)

3A, s > 0

3B, s = 0
(1, 1, 3, 5, 6, 8[s])

OPT II

(2, 3, 0, 1, s+ 1)
(σ7 · · ·σ1)

8s+11(σ1 · · ·σ7)
−2

5, s = 3 (1, 1, 1, 3, 4, 6, 10, 10)
KIST IV

(2, 1, 1,−3, 2)
(σ1 · · ·σ25)

10σ3σ2σ1

5 (1, 1, 1, 2, 3, 6, 6)
KIST IV

(2, 1, 1,−3, 1)
(29, 3)–cable of T (5, 2)

P (5, 22)

1A (1, 1, 2, 2, 2, 5, 7)
TKM II

(1, 2,−1, 2, 2)
(σ1 · · ·σ11)

7σ2
1

3B (1, 1, 3, 5, 6, 6, 6)
OPT III

(2, 3, 0, 1, 2)
(σ1 · · ·σ22)

6σ2σ3σ4σ1σ2σ3

P (25, 36)

5 (1, 1, 1, 3, 4, 4, 10)
KIST IV

(2, 1, 1,−1, 3)
(σ1 · · ·σ13)

10σ1σ2σ3

3A (1, 1, 2, 5, 7, 10, 12, 12)
OPT II

(2, 5, 0, 1, 3)
(σ1 · · ·σ40)

12 (σ1 · · ·σ11)
−2

P (43, 117)

4 (1, 1, 2, 3, 5, 6, 14, 14)
KIST IV

(2,−3, 1,−3, 1)
(σ1 · · ·σ33)

14 (σ7 · · ·σ1)
−1
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Table 4. C–type changemakers and the corresponding prism manifolds,
Part I

Prop. Changemaker vector Vertex basis (with x0 omitted) {x1, . . . , xn}

5.6
(1, 1, 2[s], 2s− 1, 2s+ 1)
s ≥ 2

{−v2, . . . ,−vs+1, v[3,s+2], v1}

(1, 1, 2[s], 2s+ 1, 2s+ 3, 4s+ 4, 8s+ 10)
s ≥ 1

{−v2, . . . ,−vs+1,−vs+5, vs+4, vs+2, v1}

5.7
(1, 1, 2[s], 2s+ 1, 2s+ 3, 4s+ 6, 8s+ 10)
s ≥ 1

{−v2, . . . ,−vs+1,−vs+4, vs+5, vs+2, v1}

(1, 1, 2, 3, 5, 8[s], 8s+ 6, (8s+ 14)[t])
s ≥ 1

{−v2, vs+5, v1,−v3 − v1,−v5, . . . ,−vs+4,−vs+6, . . . ,−vs+t+5}

(1, 1, 2, 3, 5, 6, 14[t]) {−v2, v1 + v5,−v1,−v3,−v6, . . . ,−vt+5}

(1, 1, 2[s], 2s+ 3, 2s+ 5, (4s+ 6)[t])
s, t ≥ 1

{−v2, . . . ,−vs+1, v[1,s+1] + v[s+4,s+t+3] − vs+2,−vs+t+3, . . . ,−vs+4,−v1}

5.9
(1, 1, 2[s], 2s+ 3, 2s+ 5)
s ≥ 1

{−v2, . . . ,−vs+1, v[1,s+1] − vs+2,−v1}

(1, 1, 2[s], 2s+ 3, 2s+ 5, 4s+ 6, (4s+ 8)[t])
s, t ≥ 1

{−v2, . . . ,−vs+1,−vs+5, . . . ,−vs+t+4, v[1,s+1] + v[s+4,s+t+4] − vs+2,−vs+4,−v1}

(1, 1, 3, 5, 6[t])
t ≥ 1

{v1 + v[4,t+3] − v2,−vt+3, . . . ,−v4,−v1}

6.3 (1, 1, 3, 5) {−v2, v1}

(1, 1, 3, 5, 6, 8[t+1]) {−v5, . . . ,−vt+5, v1 + v[4,t+5] − v2,−v4,−v1}

(1, 1, 1, 3, 4, 4[t], 4t+ 6, (4t+ 10)[s]) {−vt+5,−v1,−v2,−v4, . . . ,−vt+4,−vt+6, . . . ,−vt+s+5}

6.4 (1, 1, 1, 3, 4, 10) {−v5, v4, v2, v1}

(1, 1, 1, 3, 6, 10) {−v4, v5, v2, v1}

6.5
(1, 1, 1, 2, 3, 6[t])
t ≥ 1

{−v3,−v1,−v2,−v5, . . . ,−vt+4}

7.9 (1, 2, 3, 4, 5, 9) {−v3, v[3,4] − v1,−v4, v2}

7.10
(1, 2, 3, 3, 7, 8[s], (8s+ 10)[t])
s ≥ 1

{v[5,s+4] − v1,−vs+4, . . . ,−v5, v2, v3, vs+5, . . . , vs+t+4}

(1, 2, 3, 3, 7, 10[t]) {−v1, v2, v3, v5, . . . , vt+4}

7.11
(1, 2, 3, 4[s], 4s+ 3, 4s+ 7, (8s+ 10)[t])
s ≥ 1

{−v3, . . . ,−vs+2, v[3,s+2] − v1, v2, vs+3, vs+5, . . . , vs+t+4}

7.19 (1, 2, 2, 3, 3, 7) {v[3,4] − v1,−v4,−v3,−v2}

7.20
(1, 2, 2, 3, 4[s], 4s+ 5, 4s+ 9, (8s+ 14)[t])
s ≥ 1

{−v4, . . . ,−vs+3, v[3,s+3] − v1,−v3,−v2,−vs+4,−vs+6, . . . ,−vs+t+5}

(1, 2, 2, 3, 5, 9, 14[t]) {v3 − v1,−v3,−v2,−v4,−v6, . . . ,−vt+5}
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Table 4. C–type changemakers and the corresponding prism manifolds,
Part II

Prop. Vertex norms {a1, . . . , an} Prism manifold parameters P+
q>p type

5.6 {3, 2[s−1], s+ 1, 2}
p = 2s− 1
q = 2s2 + s+ 1

1A

{3, 2[s−1], 5, 3, s+ 2, 2}
p = 22s+ 25
q = 22s2 + 53s+ 32

1B

5.7 {3, 2[s−1], 4, 4, s+ 2, 2}
p = 22s+ 27
q = 22s2 + 57s+ 37

1B

{3, s+ 3, 2, 3, 3, 2[s−1], 3, 2[t−1]}
r = 2s+ 3
p = 2r2(t+ 1)− 4r + 1
q = (2r + 1)2(t+ 1)− 8r − 6

4

{3, 3, 2, 3, 4, 2[t−1]}
r = 3
p = 18t+ 7
q = 49t+ 19

4

{3, 2[s−1], 4, 2[t−1], s+ 3, 2}
r = 2t+ 1
p = 2r(s+ 1) + r + 4
q = 1

2
(2rs+ 3(r + 1))(2s+ 3)

3B

5.9 {3, 2[s−1], s+ 5, 2}
r = 1
p = 2s+ 7
q = (s+ 3)(2s+ 3)

3B

{3, 2[s−1], 3, 2[t−1], 3, s+ 3, 2}
r = 2t+ 3
p = 2r(s+ 2) + 1
q = (s+ 2)(2r(s+ 2)− 3)

3A

{5, 2[t−1], 3, 2}
r = 2t+ 1
p = 6t+ 7
q = 9t+ 9

3B

6.3 {6, 2}
r = 1
p = 7
q = 9

3B

{4, 2[t], 3, 3, 2}
r = 2t+ 5
p = 8t+ 21
q = 16t+ 34

3A
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Table 4. C–type changemakers and the corresponding prism manifolds,
Part III

Prop. Vertex norms {a1, . . . , an} Prism manifold parameters P+
q>p type

{t+ 4, 2, 2, 3, 2[t], 3, 2[s−1]}
r = 2t+ 5
p = (r2 − 2r − 1)(s+ 1)− 2r + 5
q = r2(s+ 1)− 2r + 1

5

6.4 {6, 3, 2, 2}
p = 25
q = 32

1B

{5, 4, 2, 2}
p = 27
q = 37

1B

6.5 {3, 2, 2, 4, 2[t−1]}
r = 3
p = 2t+ 1
q = 9t+ 4

5

7.9 {3, 3, 3, 3}
p = 13
q = 34

Sporadic

7.10 {4, 2[s−1], 3, 3, 2, s+ 3, 2[t−1]}
r = −3− 2s
p = 2r2t− 4r + 1
q = t(2r + 1)2 − 8r − 6

4

{5, 3, 2, 3, 2[t−1]}
r = −3
p = 18t+ 13
q = 25t+ 18

4

7.11 {3, 2[s−1], 4, 3, s+ 2, 3, 2[t−1]}
r = −5− 4s
p = (−4r − 2)t− 2r + 3
q = r2t+ 1

2
(r2 − 2r + 1)

2

7.19 {4, 2, 3, 2}
p = 11
q = 19

Sporadic

7.20 {3, 2[s−1], 3, 3, 2, s+ 3, 3, 2[t−1]}
r = 7 + 4s
p = (4r + 2)t+ 2r + 5
q = r2t+ 1

2
(r2 + 2r − 1)

2

{4, 3, 2, 3, 3, 2[t−1]}
r = 7
p = 30t+ 19
q = 49t+ 31

2

In this table, v[a,b] means va + va+1 + · · ·+ vb for a < b. All vertex bases
are presented in the form {x1, . . . , xn}. The parameters s, t ≥ 0 unless oth-
erwise stated. A superscript [−1] at an element in the sequence of vertex
norms means that the sequence is truncated at this element and the ele-
ment preceding it. For example, the sequence {3, 2[s−1], 4, 3, s+ 2, 3, 2[t−1]}
becomes {3, 2[s−1], 4, 3, s+ 2} when t = 0.
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