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TUMOR METASTASIS

Fishing for drugs

Screening for drugs that disrupt embryonic development in zebrafish

can help identify treatments that suppress metastasis.
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bout 90% of all cancer-related deaths
Aare caused by metastasis, which is when

cancer cells spread to other parts of the
body to form new tumors (Chaffer and Wein-
berg, 2011, Suhail et al., 2019). Yet, the majority
of currently available therapeutics do not inhibit
metastasis, and only target the primary tumor
where the cancer initially arises from.

To screen anti-cancer drugs, researchers often
carry out experiments on mice or cells grown in
the laboratory. While these model systems have
led to effective treatments, they have limitations
when it comes to testing drugs that block metas-
tasis. For instance, cells cultured in the laboratory
cannot accurately replicate tumor progression in
humans (Katt et al., 2016), and metastasis can
take at least several weeks to appear in mouse
models, which are expensive to create and main-
tain (Simons and Brayton, 2017). Now, in elife,
Joji Nakayama, Zhiyuan Gong and co-workers
report an innovative zebrafish model for screening
anti-metastasis drugs (Nakayama et al., 2021).

The zebrafish was introduced to the research
field in 1972, and has become a powerful model
system for cancer research, due to its rela-
tive transparency, high reproduction rates, and
genetic similarity to humans (Brown et al., 2017,
Chen et al., 2021; Fazio et al., 2020; Gamble

et al., 2021, Hason and Bartinék, 2019). Early
in development, cells in the zebrafish embryo
undergo a morphological change and migrate
inwards via a process called epiboly (Bruce and
Heisenberg, 2020). The way these healthy cells
move is similar to how cancer cells travel across
tissues during metastasis. Hence, Nakayama et
al. proposed that small-molecule inhibitors that
interrupt epiboly may also suppress metastasis.

The team (who are based at the National
University of Singapore, the National Cancer
Center in Japan and other institutes in Singa-
pore and Japan) found that some of the genes
expressed during zebrafish epiboly are also
activated during tumor metastasis. This finding
provides the experimental support that zebrafish
epiboly can serve as a model for tumor cell
movement. So, Nakayama et al. developed a
zebrafish screening platform, which they used to
test 1,280 drugs that had already been approved
by a government agency, such as the US Food
and Drug Administration (FDA) or the European
Medicines Agency (EMA).

The screen was carried out on zebrafish
embryos exposed to a specific drug at four hours
post-fertilization (Figure 1A). Nakayama et al.
found that 132 of the drugs tested induced a
delay in epiboly after five hours of treatment.
Several of these drugs had previously been
reported to inhibit molecular mechanisms associ-
ated with metastasis (Liu et al., 2013; Nakayama
et al., 2020).

Nakayama et al. then used cell-based assays to
test whether 62 of these 132 ‘positive hits’ (which
also delay epiboly in vitro) can suppress the
migration of cancer cells (Figure 1B). The tumor
cells were placed in a chamber with or without
the drug, and the team recorded how many could
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Figure 1. New approach for screening anti-metastasis drugs. (A) Zebrafish were bred and their embryos were
collected and plated into individual wells. Each embryo was treated four hours post-fertilization (hpf) with either
the vehicle (an inactive substance that the drug is mixed with to facilitate administration) or a drug that had

been approved by the FDA, EMA, or another government agency for cancer treatment: two concentrations were
administered (10 pm and 50 pm). Out of the 1,280 drugs tested, 132 interrupted or delayed epiboly five hours after
the drug was administered. (B) 62 of these positive hits were then tested on tumor cells cultured in the laboratory.
This revealed that 20 of these drugs also impeded the migration of cancer cells, in addition to disrupting epiboly
in zebrafish. One of the identified drugs, called Pizotifen, was then administered to zebrafish and mice models
that had been injected with fluorescently labelled human cancer cells (commonly referred to as xenografts). This

showed that the drug can also suppress metastasis in vivo.

Image credit: Emily Hill; the 6-well plate is adapted from an image by DataBase Center for Life Science (DBCLS; CC BY 4.0).

crawl into the neighboring compartment after a
few hours of treatment. This revealed that 20 of
the drugs that disrupted epiboly also impeded
the movement of human cancer cells.

Finally, Nakayama et al. tested if one of the
epiboly-interrupting drugs called Pizotifen could
also impair tumor cell movement in living animals:
this drug was selected because its primary target
(serotonin receptor 2C) is highly expressed in
human cancer cells during metastasis. To do
this, they injected fluorescently labelled cancer
cells into zebrafish embryos, and found that fish
exposed to Pizotifen experienced significantly
less metastasis than fish treated with a placebo.
Similar observations were made in mice that had

cancer cells injected into their breast-like tissue,
half of which were treated with a daily dose of
Pizotifen, and half of which received a placebo
(Figure 1B).

The screening platform created by Nakayama
et al. makes it easy to rapidly find new drugs
that suppress metastasis, while circumventing
the limitations of cell culture and mouse model
systems. In addition, zebrafish injected with
human cancer cells can serve as an additional
means for narrowing down which drugs to test
in mouse models. Having zebrafish join the drug
discovery platform will hopefully result in more
and better treatments for patients with meta-
static cancers.
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