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ABSTRACT

This paper introduces MGX, a near-zero overhead memory protec-
tion scheme for hardware accelerators. MGX minimizes the per-
formance overhead of off-chip memory encryption and integrity
verification by exploiting the application-specific properties of the
accelerator execution. In particular, accelerators tend to explicitly
manage data movement between on-chip and off-chip memories.
Therefore, the general memory access pattern of an accelerator
can largely be determined for a given application. Exploiting these
characteristics, MGX generates version numbers used in memory
encryption and integrity verification using on-chip accelerator state
rather than storing them in the off-chip memory; it also customizes
the granularity of the memory protection to match the granularity
used by the accelerator. To demonstrate the efficacy of MGX, we
present an in-depth study of MGX for DNN and graph algorithms.
Experimental results show that on average, MGX lowers the per-
formance overhead of memory protection from 28% and 33% to 4%
and 5% for DNN and graph processing accelerators in a wide range
of benchmarks, respectively.
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1 INTRODUCTION

As the technology scaling slows down, computing systems are
increasingly relying on hardware accelerators to improve perfor-
mance and energy efficiency. For example, modern machine learn-
ing (ML) models such as deep neural networks (DNNs) are often
quite compute-intensive and increasingly run on hardware acceler-
ators [13, 40] for both performance and energy efficiency. Similarly,
hardware accelerators are widely used for other compute-intensive
workloads such as video decoding, signal processing, cryptographic
operations, genome assembly, etc. This paper proposes a novel off-
chip memory protection scheme for hardware accelerators, named
MGX (Memory Guard for Xelerators), using secure acceleration of
DNN and graph algorithms as the primary applications.

In many applications, the hardware accelerators may process
private or sensitive data, which need strong security protection.
For example, ML algorithms often require collecting, storing, and
processing a large amount of personal and potentially private data
from users to train a model. Moreover, due to its high computational
demand, both training and inference are often performed on a
remote server rather than a client device such as a smartphone,
implying that the private data and ML models may be exposed if
the server is compromised or malicious.

A promising approach to providing strong confidentiality and
integrity guarantees under untrusted environments is to create
a hardware-protected trusted execution environment (TEE), also
called an enclave as in Intel SGX [59]. The cryptographic protection
of off-chip memory represents an essential technology to enable
the hardware-protected TEE. The off-chip memory protection also
represents the main source of performance overhead in the tradi-
tional secure processor designs. For a general-purpose processor,
the memory protection schemes need to be able to handle any se-
quence of memory accesses to arbitrary memory locations, and
typically protect memory accesses at a cache-block granularity. In
secure processors, the counter-mode encryption is used to hide
decryption latency, where the counter value is typically a concate-
nation of the memory address and a version number (VN). The
version number is stored in memory and incremented on each
write of an encrypted block. To protect integrity of off-chip mem-
ory, a message authentication code (MAC) needs to be attached to
each cache block in memory. Moreover, the integrity verification re-
quires a tree of MACs to prevent replay attacks. Unfortunately, the
VN and MAC accesses can lead to non-trivial performance overhead
for memory-intensive workloads. In order to extend the TEE to
application-specific accelerators, we need a more efficient memory
protection scheme that can protect memory-intensive workloads
with low overhead.
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In this paper, we show that memory encryption and integrity ver-
ification can be performed with almost no performance overhead
for an accelerator by customizing protection to the accelerator-
specific memory access pattern. We make key observations that
the application-specific accelerators explicitly move data between
on- and off-chip memories following a relatively simple pattern
that is specific to an application, and that the off-chip data move-
ments usually use a granularity that is larger than a cache block.
The relatively simple and static memory access patterns imply that
version numbers can often be calculated from the on-chip state
without storing them in off-chip memory. The coarse-granularity
data movement suggests that the version numbers for memory en-
cryption and the MACs for integrity verification can be maintained
at a coarse granularity to reduce the overhead.

We study the memory access behaviors of DNN inference and
training as well as two representative graph algorithms, and show
how to determine the version numbers using the scheduling and the
state of the accelerator. By generating version numbers on-chip and
performing protection at an application-specific granularity, MGX
can eliminate most of overhead for off-chip memory protection; no
version number is stored in the off-chip memory, no integrity tree
is needed, and each MAC protects a large amount of data instead
of one cache block.

To evaluate the effectiveness of MGX for DNN accelerators,
we performed extensive experiments using cycle-level simulations
based on SCALE-Sim [69], an open-source DNN accelerator simu-
lator from ARM research. The overhead of applying MGX to both
DNN inference and training is less than 5% on the state-of-the-art
DNN models. For graph accelerator, we performed the experiments
using a combination of RTL and cycle-level simulations based on an
open-source graph accelerator [33]. The simulation results on two
important graph algorithms, PageRank and Breadth-first Search
(BFS), show that MGX can provide both memory encryption and
integrity verification with very low overhead.

This paper makes the following major contributions:

e We propose MGX, a near-zero overhead memory protec-
tion scheme for accelerators. MGX minimizes the perfor-
mance overhead of memory protection by assigning counter
values for data using on-chip state and performing coarse-
grained memory protection.

e We demonstrate the applicability of MGX by showing a
concrete implementation of MGX for DNNs and graph al-
gorithms and detailed analyses of a genome sequence align-
ment accelerator and an H.264 video decoder accelerator.

e We evaluate the secure accelerators with MGX and show
that the overhead is 3.2% and 4.7% for DNN inference and
training, and 5.1% and 4.9% for PageRank and BFS.

2 SECURE ACCELERATOR ARCHITECTURE

The goal of a secure accelerator is to protect the confidentiality
and the integrity of the state and data of the accelerator even in an
untrusted environment where the host software and the off-chip
memory cannot be trusted. For example, the secure DNN accelerator
aims to protect inputs, outputs, weights, and all intermediate results.

Figure 1 shows the threat model of the secure accelerator and
Table 1 summarizes the potential threats and the corresponding
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Figure 1: Secure accelerator architecture overview — The green
and red boxes represent trusted and untrusted components, respec-
tively.

Table 1: Threats and defense in the secure accelerator.

Threats Defense Mechanism

Unauthorized access by

privileged process on host CPU CPU Enclave

Isolation using a CPU TEE

Shared access to Off-chip Mem. Memory encryption and integrity

the off-chip memory Protection verification with MGX

Side-channel attacks / Not considered

Corrupt the kernels running in . Kernels are attested and running
Attestation

the accelerator on the on-chip control processor

Communication channel between
the host and the accelerator Key Exchange DHE key-exchange protocol

protection mechanisms. As shown in the figure, the hardware TCB
mainly includes the CPU TEE and the accelerator. The host proces-
sor is assumed to have a trustworthy TEE with a secure commu-
nication channel to the accelerator as in recent proposals for GPU
TEEs [82]. Following the typical threat model for secure processors,
we assume that the internal operations and state of an accelerator
cannot be directly observed or modified by an adversary through
physical attacks. The off-chip memory is assumed untrusted; the
secure accelerator needs memory protection to encrypt confidential
data and detect unauthorized changes in values stored in DRAM. We
do not consider side-channel attacks such as the memory address,
timing, and power side channels.

The accelerator-specific kernels are attested and then executed
on the trusted control processor of the accelerator. For external
communications, the accelerator needs to support a secure key-
exchange protocol to establish trust and securely communicate with
a remote user or a TEE. Specifically, the secure accelerator includes
a unique private key (SKaccel), embedded by a manufacturer. We
assume that a user obtains the corresponding public key using
a private key infrastructure as in Intel SGX or Trusted Platform
Modules (TPMs). The accelerator also provides remote attestation
using its private key so that a user can authenticate hardware, the
hash of firmware/configuration of the accelerator, the hash of the
application kernel, and the hash of the input and output data.

Our threat model is representative of the typical TEE threat
model and common for both the baseline memory protection and
MGX. In MGX, both a memory protection unit and an application
kernel that issues commands to the accelerator need to be trusted
for memory protection. The kernel also needs to be included in
remote attestation and protected by running on a control processor
inside an accelerator using on-chip memory. Note that software
inside a TEE such as the application kernel is already inside the
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Figure 2: Memory encryption and integrity verification.

TCB of a typical TEE; software inside the TEE is allowed to output
a secret.

To use the secure accelerator, a user sends a command to initiate
a new session, which will have the accelerator clear its internal
state, set a pair of new symmetric keys for encryption and integrity
verification, enable protection mechanisms, and establish a secure
(encrypted and authenticated) communication channel with the
user using a standard protocol such as an TLS. After initializa-
tion, a user sends an application kernel and user data through the
encrypted channel. The accelerator loads the data by decrypting
it with the communication key, and placing it in protected mem-
ory that is encrypted with the memory encryption key. Once the
execution is finished, the accelerator returns the encrypted results.

3 MGX: NEAR-ZERO OVERHEAD MEMORY
PROTECTION FOR ACCELERATOR

This section first describes state-of-the-art memory protection
scheme (i.e., memory encryption and integrity verification). Then,
we introduce the MGX scheme, which provides secure and low-
overhead memory protection by leveraging the regular and mostly
static memory access patterns of specialized accelerators. Finally,
we provide an example on tiled matrix multiplication to better
explain the proposed MGX scheme.

3.1 Memory Protection Basics

Memory Encryption. As shown in Figure 2(a), existing tech-
niques [25, 30, 72] typically use the counter-mode encryption (AES-
CTR) to hide AES latency. AES-CTR requires a non-repeating counter
value for each encryption under the same AES key. In a secure pro-
cessor, the counter value often consists of the physical memory
address (PA) of the data block that will be encrypted and a (per-
block) version number (VN) that is incremented on each memory
write. When a data block is written, the encryption engine incre-
ments the VN and then encrypts the data. When a data block is
read, the encryption engine retrieves the VN used for encryption
and then decrypts the block. Let Ky, U, V be the AES encryption
key, plaintext, and ciphertext, respectively. The AES encryption
can be formulated as V = U ® AESk, (PA||VN), where || and &
represent bit-field concatenation and XOR, respectively.

As general-purpose processors can have an arbitrary memory
access pattern, the VN for each cache block can be any value at a
given time. In order to determine the VN for a later read, a secure
processor needs to store the VNs in DRAM. To avoid re-using the
same counter value, the AES key needs to change once the VN
reaches its maximum, which implies that the size of the VN needs

ISCA 22, June 18-22, 2022, New York, NY, USA

to be large enough to avoid frequent re-encryption. For example,
Intel SGX [25] uses a 56-bit VN for each 64-byte data block, which
introduces 11% storage and bandwidth overhead. In general, the
VNs cannot fit on-chip and are stored in DRAM. As the VNs are
stored in the off-chip memory, the integrity and freshness of VNs
also need to be protected with MACs to ensure the confidentiality.

Integrity Verification. To prevent off-chip data from being al-
tered by an attacker, integrity verification cryptographically checks
if the value from DRAM is the most recent value written to the
address by the processor. For this purpose, a MAC of the data value,
the memory address, and the VN is computed and stored for each
data block on a write, and checked on a read from DRAM. How-
ever, only checking the MAC cannot guarantee the freshness of the
data; a replay attack can replace the data and the corresponding
VN and MAC in memory with stale values without being detected.
To defeat the replay attack, a Merkle tree (i.e., hash tree) [24] is
used to verify the MACs hierarchically in a way that the root of the
tree is stored on-chip. As shown in Figure 2(a), a state-of-the-art
method [66] uses a Merkle tree to protect the integrity of the VNs in
memory, and includes a VN in a MAC to ensure the freshness of
data. Let us denote the key, plaintext, and ciphertext as Kry, U, V,
respectively. The MAC of an encrypted data block can be calculated
as MAC = Hg,, (V||PA||VN). The overhead of integrity verifica-
tion is nontrivial as it requires traversing the tree stored in DRAM.
To mitigate this overhead, recently verified MACs are stored in a
cache. However, caching is often not effective for data-intensive
applications such as large ML models. Moreover, the Merkle tree
poses a scalability challenge because its depth needs to increase
with the size of the protected memory.

Figure 3 shows the memory traffic overhead of applying the
traditional memory protection for DNN inference and training,
PageRank, and BFS. For all applications, the number of memory
accesses increases by at least 23.1% and over 49.2% in the worst case.
The average memory traffic overheads for DNN inference, DNN
training, PageRank, and BFS are 36.1%, 40.4%, 26.3%, and 25.6%.
Among the applications, DNN training is most heavily affected by
off-chip memory protection because it requires access to a large
amount of data. In addition, the memory traffic overhead of access-
ing the VNs can greatly exceed that of accessing the MAC, as it
requires a Merkle tree to verify the integrity of the VNs.

3.2 Intuition

The main overhead of memory protection comes from storing and
accessing VNs and MACs for protecting the confidentiality and
integrity of data and verifying the MACs for VNs hierarchically in
the off-chip memory. Because many accelerators such as DNN and
graph accelerators are often memory-intensive, these additional
meta-data accesses can lead to nontrivial performance overhead. We
propose to significantly reduce the memory protection overhead by
generating VNs without storing them in memory and customizing
the protection granularity based on the application-specific memory
access pattern.

As customized for a particular application domain, specialized
accelerators tend to have more predictable and regular memory
access patterns compared to general-purpose CPUs. In particular,
both DNN inference and training can be scheduled statically based
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Figure 3: Breakdown of the memory traffic overhead intro-
duced by the traditional off-chip memory protection scheme
— MAC and VN represent the overhead incurred by accessing MACs
and VNs, respectively. Inf and Train stand for DNN inference and
training tasks, respectively. PR and BFS stand for PageRank and
Breadth-first Search, respectively.

on the network structure. For example, most popular deep learning
(DL) frameworks such as TensorFlow [3] adopt declarative program-
ming and lazy execution, where the DNN network is represented
as a data-flow graph (DFG). A DL framework (i.e., compiler) first
optimizes the DFG and then generates the scheduling of the com-
putations and the corresponding memory accesses based on the
optimized DFG before execution. Therefore, the DL compiler can
assign a VN for each memory access based on the schedule without
storing the VNs in memory.

Moreover, accelerators may have the same access pattern to a
large chunk of memory because they typically operate on blocks
of memory larger than cache lines. For example, DNNs write the
output feature maps of a layer to DRAM the same number of times
because each output feature map is generated following the same
schedule. As VNs reflect the maximum number of writes to the
corresponding memory block, this regular memory access pattern
means that we only need one VN for all the output features of a
layer or a tile. If a DNN accelerator only writes the output features
to DRAM once per layer (i.e., no tiling), MGX can simply use the
layer number as part of the VN. In addition to DNN accelerators,
most graph accelerators update the attributes associated with each
vertex the same number of times (e.g., mostly once) in each iteration.
In that case, the attribute values of vertices can also share the same
VN value.

3.3 MGX Scheme

A specialized accelerator typically has an on-chip control processor
that receives the statically compiled kernel (i.e., the accelerator-
specific executable/binary) and is responsible for executing the
kernel, orchestrating the functional units of the accelerator, and
keeping track of the state of the accelerator. For example, the BFS
algorithm can be considered as a kernel for graph accelerators. In
our MGX design, as shown in Figure 2(b), the VNs for reading
and writing memory blocks are generated by the kernel running
on the trusted on-chip control processor, rather than being stored
in memory. The application kernel can assign VNs for memory
writes based on the scheduling of compute/memory operations and
accelerator state. We found that the kernel only needs to maintain
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an on-chip state to generate VNs, given an application-specific and
coarse-grained nature of accelerator memory accesses. For memory
writes, the kernel ensures that the VN is greater than the last-used
VN value for the memory location so that the same VN value is
never reused for encrypting a memory block. For memory reads,
the kernel on the control processor regenerates the VN value used
for the most recent write to the same address by using the on-chip
state to ensure proper decryption.

In the DNN accelerator, a kernel on the control processor im-
plements a full DNN model, and VNs are computed inside the
accelerator without any off-chip communications. However, de-
pending on the complexity of the application, an accelerator may
rely more on the host CPU to determine which operations to run.
In such cases, the scheduling software in the host CPU TEE can
provide additional state to determine VNs when issuing commands
to an accelerator control processor. Note that the VN values can
be public because the security of the AES-CTR encryption and the
MAC only depends on the integrity, not the confidentiality, of VNs.

It is worth noting that MGX does not require static or sequential
memory access patterns to generate VNs. Reads do not affect the
VNs no matter how irregular they are. Writes can also happen in an
arbitrary order using one VN value as long as they occur once per
each address. If needed, the control processor can keep additional
state for VNs.

Once the VN is determined, the encryption (Enc) engine can de-
crypt/encrypt each 128-bit data block using the standard AES-CTR
method for memory encryption. As VNs no longer need to be stored
in DRAM, the integrity protection tree for VNs also becomes unnec-
essary, greatly reducing off-chip accesses. For integrity protection,
MAC:s still need to be stored in memory. We propose to further
reduce the overhead by customizing the size of a memory block
that each MAC protects to match the data movement granularity of
the accelerator. For example, the CHaiDNN accelerator [89] from
Xilinx reads a 512-byte chunk from memory at a time. Using a
64-bit MAC for each 512-byte data block significantly reduces the
bandwidth overhead for integrity protection.

Figure 4(a) shows an example of tiled matrix multiplication
(MatMul), where two matrices A and B are blocked into two and
four tiles, respectively. According to the scheduling shown in Algo-
rithm 4(b), the partial results of C; and Cy are first computed; then
the final results are obtained by summing the partial results. We as-
sume that A and B are previously written to off-chip memory with
VN value n. Since A and B are read-only during the computation,
the MatMul kernel uses n as the VN for reading tiles of A and B, as
shown in Figure 4(c). In the first two iterations (i.e., iteration 1 and
2 in Figure 4(a), the accelerator writes the partial results of C; and
Cy to DRAM with an incremented VN value n + 1. The VN value
for C; and Cy needs to be incremented as the memory locations
can be reused. Since C; and Cy occupy different memory locations
in the off-chip memory under this specific scheduling, the MatMul
kernel can assign the same VN value n + 1 for both tiles. For the
last two rounds, the MatMul kernel first reads the partial results
of C; and Cy with VN value n + 1, which is the VN value used to
write them. Then, the kernel increments the VN and write the final
results of C; and Cy with VN value n + 2. The kernel keeps track
of the VN for each matrix (or each tile) in its program state (i.e.,
VN[A], VN[B], VN[C{], and VN[C2].)
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(a) Ilustration of a tiled MatMul be-
tween two matrices A and B — the
input A and B are partitioned into
two (A; and A;) and four (B, ..., Bs)

tiles respectively. final results.

(b) Pseudocode of the tiled MatMul kernel
— the inner loop (i) calculates the partial
results of C; and C; and the outer loop (j)
accumulates the partial results to get the

(c) VN generation scheme for the tiled MatMul kernel —
Red values indicate the VNs for reads whereas orange
values represent the VNs for writes. A and B are pre-
viously written to off-chip memory with VN value n.
Memory reads to A and B are omitted.

Figure 4: Illustration of the VN generation scheme for the tiled MatMul example given a specific scheduling.

3.4 Security Analysis

Encryption — MGX uses the same AES counter-mode encryp-
tion that is used by the traditional memory encryption scheme for
processors. The only difference between MGX and the traditional
scheme is that the VN in MGX is determined/generated by the
scheduler based on the accelerator state, rather than being stored in
off-chip memory. As long as the version number generator guaran-
tees that the VN is unique for each write to a given memory location,
the counter value, which is a concatenation of the memory address
and the version number, is different for each encryption. Therefore,
the security of the memory encryption in MGX can be reduced to
the AES counter-mode encryption, which is one of the approved
modes of operation [19, 55]. Note that using one VN for multiple
memory locations does not sacrifice security because the counter
value to a block cipher in the counter mode includes a memory
address in addition to a VN.

Integrity Verification — MGX uses a MAC to protect the in-
tegrity of data in memory. The MAC includes the address and the
VN in addition to data. This MAC construction is identical to the one
that is used in the traditional integrity verification scheme (shown
in Figure 2(a)), and protects against replay, relocation, and substitu-
tion attacks [60], as long as the version numbers are unique for each
write to a location. In the traditional scheme, the version numbers
need to be protected separately using a Merkle tree because they
are stored in off-chip memory. In MGX, version numbers cannot
be tampered by an attacker because they are generated on-chip.
Also, MGX requires the scheduler to generate VNs in a way that
a VN value is only used at most once for a write to each memory
location. Thus, the integrity protection in MGX can be reduced to
that of the chosen keyed-hash function.

4 MGX FOR DNN ACCELERATION

This section introduces the background on DNNs, the workflow
of DNN acceleration, and discusses how MGX can be applied to
enable efficient memory encryption and integrity verification for
secure DNN computation.

4.1 Background on DNNs

DNNSs mainly consist of convolutional (conv), dense, normalization,
activation, and pooling layers. The DNN inference is usually exe-
cuted in a layer-by-layer fashion, where each layer takes either an
external input (e.g., the first layer) or input features generated by
the previous layer(s) to produce output features for the subsequent
layer(s). For each conv/dense layer, the DNN accelerator fetches
the input features (x) and weights (w) from DRAM, generates the
output features (y) by computing y = w * X, and stores the output
features back to DRAM. The DNN inference finishes after executing
the last layer and generates a prediction.

One iteration of DNN training consists of a forward propaga-
tion and a backpropagation. The forward pass is the same as the
inference except that training requires computing the loss and the
intermediate features need to be saved. After the loss is calculated,
it is propagated in a backward manner through the entire network.
For each layer, the DNN accelerator fetches the gradients from the
subsequent layer (gy), reads input features (x) and weights (w) from
off-chip memory, computes the gradients with respect to (w.r.t) the
input features (gx = gy * x) and weights (gw = gy * W), updates
the weights by calculating w += —« - gy, where « is the learning
rate, and stores gx to the DRAM. The gradients w.r.t the inputs (gx)
are used as the output gradients (gy) for the previous layer. The
backpropagation continues until reaching the first layer.

4.2 Workflow of Secure DNN Acceleration

As depicted in Figure 5, we can break down the workflow of DNN
acceleration into four steps. (D) A user sends the private input and
compiled kernel (i.e., DNN executable for the inference/training
task) to the CPU enclave. We assume that the inference/training
job is statically compiled into an accelerator-specific kernel by the
user in the offline phase using a DNN compiler such as PyTorch
Glow [67] and TVM [11]. Alternatively, the DNN compiler can be
executed within the CPU TEE. Since memory-related optimizations,
such as instruction scheduling and static memory allocation, are
performed at compilation time, all memory accesses are determined
prior to execution. (2) The CPU TEE processes inputs (e.g., data
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Figure 5: The workflow of secure acceleration of DNNs with the proposed MGX scheme.
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Figure 6: Counter construction for DNN features, weights,
and gradients.

augmentation for image data) and then forward the processed data
and the kernel to the DNN accelerator.

® The on-chip control processor executes the kernel. For ac-
celerators that support high-level functions (e.g., convolution and
pooling) such as TPU-v1 [40], TVM-VTA [62], and CHaiDNN [89],
the high-level functions in the kernel can issue multiple low-level in-
structions to functional units. For example, the MatMul instruction
is executed by the matrix multiplication array on the accelerator.
The control processor is also responsible for providing the VN val-
ues for memory reads and writes required by each instruction. For
example, the convolution function in some accelerators is imple-
mented as a nested for loop, where the inner loop computes the
partial results of different tiles of the output features and the outer
loop accumulates the partial results to obtain the final results of the
output features. Similar to the MatMul example discussed in Sec-
tion 3.3, the kernel code provides the VN values for each tile in the
inner loop of the function. (@) Finally, the functional unit performs
the DNN computation specified by the low-level instructions.

4.3 Version Number Generation for DNNs

This subsection describes the MGX scheme for DNN inference and
training, focusing on how VNs can be determined by the DNN
kernel on the control processor. Figure 6 shows how the counter
values are constructed for DNN memory protection in MGX. Each
counter value includes the address of the memory block being
encrypted/decrypted and a 64-bit VN, and is used as the input to
AES-CTR encryption. Note that using one VN for multiple memory
locations does not sacrifice security because the counter value
includes a memory address. The VNs are constructed differently
for accessing three different types of data: features, weights, and
gradients, ensuring that the counter values are unique for each
encryption and are never reused.

DNN Inference — During DNN inference, the accelerator reads
the feature maps of the previous layer as the input, performs the
computation, and then produces the output feature maps of the
current layer. The feature maps of each layer are written to off-chip
memory the same number of times, regardless of the scheduling of
the accelerator. Therefore, we can keep one unique VN value for

the feature maps of each layer (VNg). When writing new feature
maps generated from a DNN layer, the DNN kernel increments the
maximum VNF used before and assign this new value as the VNp
for these feature maps. In the case that the feature maps are written
exactly once at the end of each layer, the DNN kernel can assign
VNF for the feature maps based on the layer number. For example,
the feature maps of the i* h layer have a VNF value of i concatenated
with the input count.

If optimizations such as loop reordering and tiling are employed
in DNN kernels, the output feature maps can be written to DRAM
multiple times within a layer, requiring the VNf increment multiple
times within a layer (e.g., the VN for the output matrix is incre-
mented twice in the tiled MatMul example). In this case, the DNN
kernel can maintain VN in its program state and keeps track of
the VN values associated with the feature maps of each layer in the
network. As the VN used for writing each feature map is generated
by the DNN kernel on the control processor, the DNN kernel can
also provide the VN for reading feature maps based on its program
state. Once the VNF is generated for the feature map, the memory
protection unit receives the VN value from the control processor
and encrypts/decrypts the feature map using the specified value.

As illustrated in Figure 7(a), the DNN kernel can generate VNg
for the output feature maps y, even if y is written to DRAM as many
times as the number of tiles. In this specific case, Algorithm 7(b)
provides the pseudocode of the augmented convolution function
running on the control processor for setting the VNs for memory
reads and writes. The VN for the input feature maps x (VNg[x])
remains constant (e.g., n) as x is read-only within the layer. Here,
n simply represents the VN for the input feature maps at the be-
ginning of a layer. In the first iteration, the kernel assigns n + 1 as
the VN value for the output feature maps y (VNg[y]) and writes y
with that VN value. Then, for the rest of the t — 1 iterations, the
kernel reads y with the current VNg[y] value, increments VNg[y],
and writes the updated y with the new VNg[y] value. Assuming
that y is written to off-chip memory ¢ times, the final VN value
associated with y should be n + t. Similarly, the VNs for feature
maps across different DNN layers can also be determined easily by
the kernel. Figure 8(a) shows the computational graph (i.e., DFG)
of the forward propagation of a residual block, which is a widely
used structure in many modern DNNs [28, 31]. Suppose each conv
layer (L1, Ly, L3) and the element-wise addition layer (Ls) write
their output to DRAM ty, to, t3, and t4 times, respectively. The DNN
kernel can compute the VN for each feature map in the residual
block based on the scheduling as VN [x;] = n+ 22:1 t, where n is
the VN for the input features to the residual block. The VN value of
the output features is incremented for different layers to guarantee
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(a) VNs for a tiled conv layer — As the
input features x are partitioned into ¢
tiles, the output features y needs to be
written to DRAM ¢ times. The control ate VNs for DRAM accesses —
processor sets the VN for input and Read/Write reads and writes

output features based on the schedul- the features using the speci-
ing. fied VN value.

(b) Pseudocode of a conv
layer showing how to gener-

Figure 7: Illustration of the VN generation scheme for a tiled
convolutional layer.

that the same counter value is never reused, even though output
features from different layers can exist in memory at the same time.

The weights are read-only during inference. Therefore, we can
use a constant as the VN for the weights until they are updated.
To allow updating weights, the DNN kernel tracks VN in its
program state and keeps track of the number of updates (writes) to
the weights.

Note that VN and VN are all kept as part of the program

state in the trusted control processor, and there is no VN stored
in external memory. For simplicity, the kernel can maintain one
VNr for the output features of each layer and one VNy for the
entire network. In this implementation, a 127-layer DNN uses 1 KB
on-chip state for VNs. The size of the on-chip state can be reduced
by only tracking the non-consumed features (i.e., the features will
be used as the input to later layers) or leveraging the network
structure statically known to the kernel. For example, the VN for
output features can be determined from one counter that keeps the
number of inputs processed and the layer number. For the 64-bit VN
in our design, an accelerator with a throughput of 1,000 inputs per
second for a 1,000-layer DNN can run for 0.28 million years before
an overflow. If an overflow happens, MGX requires the memory to
be re-encrypted with a new key.
DNN Training — One iteration of training consists of a forward
propagation and a backpropagation. The forward propagation is the
same as inference except that all intermediate features are saved,
and can use the VN generation strategy for inference. Here, we
describe the VN generation for the backpropagation. Each layer
first computes the gradients flowing to the previous layer using
the gradients flowing into current layer and the associated weights.
Then, the layer’s weights are updated using the incoming gradients
and the saved features.

VN are constructed in the same way as in the inference. The
backpropagation only adds additional feature reads and does not
affect the VN generation for features. The VNs for weights still use
VNy as all weights are updated the same number of times. However,
VN are incremented more frequently, where VN tracks the
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Figure 8: The VN generation scheme for the forward and
backward passes of a residual block — Blue values represent
the VN associated with the feature maps (x) and the gradients (g).
Broadcast and element-wise addition operations in forward pass
become the element-wise addition and broadcast operations in back-
propagation after differentiation, respectively.

number of updates to the weights, where the weights are updated
exactly once during backpropagation. Gradients in backward pass
correspond to the feature maps in forward pass. As illustrated in
Figure 8(b), the VNs for gradients can be computed in a way similar
to computing the VNs for feature maps. In addition to VN and
VN, the control processor also needs to keep track of the VN of the
gradients (VNg) associated with each layer. It is worth noting that
broadcast (Ly) and element-wise addition (L4) operations in forward
pass become the element-wise addition and broadcast operations in
backpropagation, respectively. Assuming that the i*” layer writes
its output to DRAM ¢/ times, the VN for each gradient tensor can
be written as shown in Figure 8(b), where m is the VN value for the
input gradients (go) of the residual block.

5 MGX FOR GRAPH PROCESSING

This section provides background on graph processing and dis-
cusses how MGX can be applied to graph accelerators for different
graph algorithms, such as PageRank and Breadth-First Search (BFS).

5.1 Background on Graph Algorithms

Graphs represent a popular way to encode connections in many
important applications including social networks, electrical grid,
circuits, etc. At the same time, processing large graphs requires
high performance. To achieve high performance and low power,
many ASIC/FPGA accelerators are proposed for graph processing.

In this work, we focus on the GraphBLAS formulation [42],
where key graph processing operations (e.g., traversals, shortest
path) are formulated as sparse linear algebra operations such as
sparse-matrix dense-vector multiplications (SpMV). GraphBLAS
extends the expressiveness of linear algebra in representing graph
operations by leveraging the concept of semiring. A semiring is
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Figure 9: Example graph of PageRank algorithm — The sparse
adjacency matrix encodes the graph topology, where each cell rep-
resents the weight between the two connected vertices. The rank
vector represents the current value of the attributes associated with
each vertex whereas the updated rank vector holds the attribute
values for the next iteration.

defined as a 5-tuple (D, ®, &, Ig, Ig), where D is a set, ® is a scalar
multiplication operation, @ is a scalar addition operation, Ig is the
identity of ®, and Ig is the identity of @. The matrix operations
on a semiring can correspond to a step in many different graph
algorithms, depending on specific operators used in that semiring.
For example, PageRank, BFS, and single-source shortest path (SSSP)
can be expressed using the following semirings:

e PageRank: (R, %, +, 1, 0)
e BFS: (Boolean, &, |, 1, 0)
e SSSP: (R U 0, +, min, 0, c0)

Given the expressiveness and the flexibility of GraphBLAS, an
ASIC/FPGA accelerator designed with the GraphBLAS program-
ming interface can be used to execute a rich set of graph algorithms,
whereas many existing graph processing accelerators are designed
to accelerate one specific graph algorithm such as PageRank and
BFS [93, 95]. Therefore, we investigate the applicability of MGX
with a focus on GraphBLAS-based graph processing accelerators.

GraphBLAS represents the topology of a graph (i.e., the con-
nectivity between vertices) as a sparse adjacency matrix and the
attributes associated with vertices as a sparse or dense vector. Fig-
ure 9 provides an example for the presentation of the graph topology
and attribute values (i.e., the ranks of vertices) in PageRank using
GraphBLAS. The graph topology is encoded with the adjacency
matrix, where each non-empty cell represents the weight between
the two connected vertices. The rank vector contains the current
attribute values associated with the vertices. Then, PageRank algo-
rithm can be expressed as an SpMV operation between the sparse
adjacency matrix and the dense rank vector. The resulting updated
rank vector remains in a dense format and will be used as the rank
vector for the next iteration.

5.2 Version Number Generation for GraphBLAS

MGX is also applicable to graph processing accelerators. Here we
discuss how to apply MGX to a GraphBLAS-based accelerator using
the PageRank algorithm as an example. While our discussion mainly
focuses on PageRank, MGX can also be applied to other graph
algorithms supported by GraphBLAS.

PageRank is an iterative algorithm, which computes the rank
of each vertex by calculating the likelihood of that vertex being
reached. There are three main data structures to store a graph in
PageRank — a sparse adjacency matrix, a dense rank vector, and a
dense updated rank vector. The sparse adjacency matrix stores all
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Figure 10: The scheduling of a graph accelerator.

edges in a graph, which is represented as a tuple of the IDs of the
source and destination vertices. Due to the sparsity of the graph, the
adjacency matrix is usually stored in a compressed sparse format
to eliminate redundant memory accesses. Both rank and updated
rank vectors are stored in dense format. Each entry in the three
data structures typically occupies 4 bytes in memory and each data
structure can have several to thousands of millions of entries in
real-world graphs [16, 32, 46].

In each iteration of PageRank, the graph processing accelerator
needs to update the attribute values of all vertices (i.e., calculate
the updated rank vector). GraphBLAS-based accelerators typically
use the scheduling as depicted in Figure 10. The graph processing
accelerator computes the updated rank vector for a subset of ver-
tices (e.g., {A, B, C, D}) at a time and generates the updated rank
vector for all vertices in a sequential manner. When calculating the
updated rank for a subset of destination vertices (e.g., {A, B, C, D}),
the accelerator accesses a tile of the sparse adjacency matrix be-
tween these destination vertices and a subset of source vertices
(e.g., 2" tile) and the corresponding rank vector (e.g., the rank
{E,F, G, H}) to get the partial result of the updated rank vector.
After processing all tiles, the final results of the updated ranks for
the subset of destination vertices are obtained.

In PagePank, the sparse adjacency matrix is read-only and read
sequentially as the adjacency matrix is stored in a sparse format. In
addition, the adjacency matrix remains unchanged across different
iterations of PageRank. Thus, MGX can assign a constant VN value
for the adjacency matrix. However, the size of the sparse adjacency
matrix in each tile differs because each destination vertex may be
connected to an arbitrary set of source vertices. For example, in
Figure 10, the first, second, and third tiles contains six, five, and
four edges, respectively. Because the sparse adjacency matrix needs
to be read with an irregular block size, integrity verification for the
adjacency matrix must be in a fine granularity to avoid unnecessary
memory reads. For example, an accelerator may read/write 64-byte
chunk of the adjacency matrix at a time, and have a MAC for each
chunk.

Instead, MGX can calculate the coarse-grained MAC exploiting
the fixed scheduling of the graph processing accelerator. As the
sparse adjacency matrix remains unchanged, the accelerator parti-
tions the sparse adjacency matrix in the same way across different
iterations. Therefore, MGX can protect the confidentiality and in-
tegrity of the sparse adjacency matrix at the tile level, where all
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Figure 11: The block diagram of the cycle-level simulator for
the secure accelerators.

elements in the same tile can be protected using a single MAC. The
rank vector is also read-only and read sequentially during each
iteration, only requiring one VN per graph. Each tile of the up-
dated rank vector is written sequentially and will be written to the
off-chip memory for the same number of times, which also only
requires one VN per graph. Therefore, the kernel on the control
processor only needs to track the number of executed iterations
(Iter) of PageRank to calculate VNs, thus requiring only 64-bit addi-
tional on-chip state. Specifically, (Iter — 1) is used as the VN when
reading a tile of the rank vector and Iter is used as the VN when
writing a tile of the updated rank vector. With MGX, the VN can
be computed without off-chip memory accesses, eliminating the
overhead of memory encryption. MACs can be calculated at coarse
granularity to reduce the overhead of integrity verification. Since
BFS uses the same SpMV operation as PageRank, the VN generation
scheme remains the same and only one Iter counter is added to the
accelerator state.

In addition to the SpMV operation adopted in PageRank, sparse-
matrix sparse-vector multiplication (SpMSpV) is another important
linear algebra operation in GraphBLAS. Compared with SpMV, the
only difference is that the SpMSpV operation reads the attribute
values associated with the vertices randomly instead of sequen-
tially. MGX can still use the same VN generation scheme for all
data structures and the same MAC granularity for the adjacency
matrix and the vector with updated attribute values, as in SpMV.
However, the vector holding the current attribute values requires a
fine-grained MAC. In this case, MGX can still greatly reduce the
overhead of off-chip memory protection.

6 EVALUATION

6.1 Accelerator and Simulation Setup

For DNN acceleration, we use cycle-level simulations to (1) compare
the performance overhead of multiple memory protection schemes,
(2) study the overhead for a larger class of DNN models, and (3)
evaluate the overhead for DNN inference and training. Specifically,
we use SCALE-Sim [69], an open-source cycle-level DNN acceler-
ator simulator from ARM research. For graph processing, we use
a combination of RTL and cycle-level simulation to compare the
performance overhead of different memory protection schemes.
In particular, we use GraphLily [33], an open-source GraphBLAS
accelerator written in HLS.

As shown in Figure 11, both simulation setups have three main
components — an accelerator, a memory protection simulator, and
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off-chip memory. The DNN accelerators are simulated in a cycle-
level DNN simulator (i.e., SCALE-sim) to generate a trace of compu-
tation and memory events. The HLS graph processing accelerator
(i.e., GraphLily) is first synthesized into RTL design. We then use
RTL simulation to obtain the trace of computation and memory
events. After the memory traces are obtained, a memory protection
simulator uses the event trace to calculate the total execution time
and the bandwidth usage by simulating protection mechanisms and
DRAM accesses. The memory accesses are simulated using Ramu-
lator [44] DDR4 at 2400MHz. The performance of the accelerator is
maximized when the memory bandwidth matches the computation
throughput, which means the accelerator is neither compute nor
memory bounded. Finally, a performance evaluator generates the
final performance based on the timing of computation and new
memory events (including additional memory events from memory
protection).

Accelerator Configurations — To evaluate the MGX for a DNN
accelerator under different use cases, we model a large and a small
configurations, namely Cloud and Edge, for cloud and edge comput-
ing, respectively. Cloud is modeled based on Google TPU-v1 [40]
and Edge uses a similar configuration as the Samsung Neural Pro-
cessing Unit [18]. Specifically, Cloud and Edge contain 64k and
1k processing elements (i.e., MAC units) and 24 MB and 4.5 MB
on-chip memory, running at 700 MHz and 900 MHz, respectively.
To balance computation and memory bandwidth, we simulate one
64-bit DDR channel for Edge and four 64-bit DDR channels for
Cloud. The size of the protected memory is 16 GB. For the graph
accelerator, we simply adopt the original design of the GraphLily
accelerator. The clock frequency of the graph accelerator is assumed
to be 800 MHz. We simulate four 64-bit DDR channels at 2400 MHz
to provide enough bandwidth.

Benchmarks - For the DNN accelerator, we evaluate MGX on a va-
riety of DNN architectures — AlexNet, VGG, GoogleNet, and ResNet
for image classification and BERT (i.e., Transformer encoder) for
language pretraining, and DLRM for personalized recommendation.
For each DNN model, we simulate both inference (forward propa-
gation) and training (forward propagation and backpropagation) of
the network. The weight update during training is not emulated as
no similar operation is available in SCALE-Sim.

For the graph accelerator, we validate the effectiveness of MGX
on two widely-used graph algorithms: PageRank and BFS. Both
algorithms are executed using the SpMV engine in GraphLily. We
perform PageRank and BFS on six existing graph benchmarks, in-
cluding Google-plus, pokec, livejournal, and reddit from the Stan-
ford Network Analysis Project [53] and ogbl-ppa and obgn-products
from the Open Graph Benchmark [32]. Google-plus, pokec and live-
journal are social network graphs. reddit is composed of posts from
the Reddit forum. ogbl-ppa and obgn-products are two large graph
datasets containing 576K and 2449K vertices and 42M and 124M
edges, respectively.

Memory Protection — We implement the recent memory encryp-
tion engine (MEE) design from Intel [25] as the baseline memory
encryption. This baseline uses a multi-level 8-ary Merkle tree with
56-bit VNs and MACs, and works at a 64-byte granularity. Simi-
larly, for integrity verification, we implemented the baseline that
uses one MAC for each 64-byte block. Because the DNN accelera-
tor has a largely streaming memory access pattern, increasing the
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Figure 12: The memory traffic increase of DNN inference and
training.

VN/MAC cache does not help unless it is big enough to capture
temporal locality across layers. In our experiments, we include a
reasonably large (32-KB) on-chip cache for VNs and MACs in the
baseline scheme. The VN/MAC cache uses the LRU replacement
policy with write-back and write-allocate policies. MGX has no
cache for VNs and MACs, and protects the integrity using a MAC
per 512-byte block for most applications, amortizing the overhead
of memory protection over a large chunk of data. It is worth noting
that the MAC granularity of the embedded tables in DLRM is still
64-byte, as fine-grained access to the embedded tables is required.

6.2 Experimental Results

Performance — We compare the accelerator performance for three
different protection schemes: no protection (NP), today’s baseline
memory protection (BP), and MGX. The results for BP and MGX
are normalized to the one with no protection.

Figure 12 compares the memory traffic increase of two DNN
accelerator configurations with MGX and BP — Cloud-MGX, Cloud-
BP, Edge-MGX, Edge-BP. Cloud-BP and Edge-BP introduce 36.0%
and 36.3% more memory accesses on average for inference, respec-
tively. In particular, the inference of the recommendation model
(i.e., DLRM) increases the memory traffic by 55%. For training,
the average increases in memory accesses are 37.8% and 42.9% for
Cloud-BP and Edge-BP. The memory traffic increase is larger for
training because the training process accesses more data and has
more frequent cache evictions in the VN/MAC cache. Cloud-MGX
and Edge-MGX increase the memory traffic by an average of 2.4%
and 2.4% for inference and 2.7% and 3.5% for training, respectively.
The results demonstrate the advantage of the MGX, which removes
VN stored in DRAM and uses a MAC per 512-byte data block to
match the accelerator’s data movement granularity.

Figure 13 shows the performance of the baseline protection and
MGX. Cloud-BP and Edge-BP are 1.24x and 1.32X slower than no
protection on average for inference and training. For the cloud
and edge accelerators, MGX achieves a much smaller performance
overhead than BP; the average overhead is 3.2% for inference and
4.7% for training. To better understand the contribution of each

Weizhe Hua, Muhammad Umar, Zhiru Zhang, G. Edward Suh

[CICloud-MGX I Cloud-MGXy,e [JEdge-MGX [ Edge-MGXyc
[ Cloud-MGX,, I Cloud-BP [CJEdge-MGX,, [ Edge-BP

waddadi i

AlexNet GoogleNet ResNet BERT DLRM

Normalized Exec. Time

(a) Inference.

[ Cloud-MGX [ Cloud-MGX,c [—1Edge-MGX [ Edge-MGXyac

[ Cloud-MGX,, [ Cloud-BP [CJEdge-MGX,,, [ Edge-BP
=
814
X
n]
o
g12
©
E
S 1.0

AlexNet GoogleNet ResNet
(b) Training.

Figure 13: The normalized execution time of the DNN infer-
ence and training on different networks models.

CIPR-MGX [CPR-BP [EEBFS-MGX [ BFS-BP

[

(2]

g 1.4

o

£

£ 1.2

o

=

10

§ google-plus  pokec livejournal reddit ogbl-ppa ogbn-products

(a) Memory traffic increase.

[ PR-MGX I PR-MGXy;,c [1BFS-MGX I BFS-MGXyyac

[ PR-MGX,, B PR-BP CIBFS-MGX, I BFS-BP

14

N

google-plus  pokec livejournal  reddit ogbl-ppaogbn-products

Normalized Exec. Time

(b) Normalized execution time.

Figure 14: The memory traffic increase and the normalized
execution time of PageRank (PR) and BFS.

optimization to the overhead reduction, we include the results of
two MGX variants, MGXyN and MGXpac, which use only one op-
timization: on-chip VN generation or coarse-grained MAC. MGXyN
is 1.08x and 1.12X slower than no protection on average for infer-
ence and training. MGXpac has a higher overhead than MGXyy,
on average 1.16x and 1.20X slower than no protection for inference
and training. This result shows that both on-chip VN generation
and coarse-grained MAC are important in reducing the overhead
of off-chip memory protection.

For the graph accelerator, we compare the memory traffic in-
crease and execution time of PageRank and BFS with MGX and BP
— PageRank-MGX, PageRank-BP, BFS-MGX, and BFS-BP. As shown
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in Figure 14(a), PageRank-BP and BFS-BP introduce 26.3% and 25.6%
more memory accesses on average, respectively. MGX only adds
1.5% and 1.4% additional memory accesses for PageRank and BFS,
respectively. Compared to BP, MGX is able to significantly reduce
the meta-data memory accesses, demonstrating the effectiveness
of VN generation and coarse-grained MAC.

Figure 14(b) compares the performance of the baseline protec-
tion and MGX for PageRank and BFS. BP leads to a significant
slowdown for both PageRank and BFS. For PageRank and BFS, the
maximum slowdown due to BP is 1.42X and 1.39X, respectively. In
contrast, MGX introduces only the maximum overhead of 5.2% for
both graph algorithms. Across all benchmarks, BP and MGX have
average performance overhead of 32.7% and 5.0%. In addition, the
average performance overheads of MGXyN and MGXpac are 9.4%
and 18.0% across all benchmarks.

6.3 Case Study on Existing Accelerators

To show how MGX can be applied to existing DNN accelerators,
we study CHaiDNN [89], which is an open-source DNN accelerator
from Xilinx. CHaiDNN has a relatively simple accelerator interface,
which only supports three high-level operations including Convolu-
tion, Deconvolution, and Pooling. Activation functions are merged
with high-level operations to avoid unnecessary DRAM access and
to maximize performance. Because of the high abstraction level of
CHaiDNN, a deep neural network like AlexNet can be expressed in
less than 20 instructions.

In order to equip CHaiDNN accelerator with MGX, we can im-
plement the MGX scheme using a microcontroller for generating
and managing version numbers. Each CHaiDNN instruction can
be treated as a DNN layer. For each layer, the microcontroller as-
signs a VN value to all output features belonging to that layer
and keeps track of the VN values in the on-chip VN table (i.e.,
the microcontroller’s SRAM memory). The VN table also needs
to have two counters for weights and inputs as described in Sec-
tion 4.3. In addition to the microcontroller, we also need to add
AES Galois/Counter Mode (AES-GCM) cores [52] for both mem-
ory encryption and integrity verification. As the DNN accelerators
typically have large processing element arrays and on-chip buffer,
the overhead of adding microcontroller and AES-GCM cores is
expected to be modest.

7 DISCUSSION

In this section, we discuss two additional cases to show MGX is
also applicable to other accelerators such as genome alignment and
video decoding. In addition, we also show that MGX can be applied
to DNNs with static and even dynamic pruning techniques.

7.1 Applicability of MGX

Genome Alignment — We consider the off-chip memory protec-
tion for Darwin [81], which is an accelerator for genome assembly.

While Darwin also relies on a CPU to perform certain initializa-
tion operations and control the hardware acceleration, we assume
that the CPU and its communications with Darwin are protected
separately with a secure computing technology (e.g., Intel SGX)
and focus on protecting memory accesses for the accelerators in
this discussion.
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Figure 15: Block diagram of Darwin accelerator.
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Figure 16: The normalized execution time of various GACT
workloads.

Figure 15 shows the components and data accesses in Darwin.
Darwin consists of two hardware-accelerated parts, D-SOFT and
GACT, which use five types of data in off-chip memory: reference
sequences, a seed-pointer table, a position table, query sequences
and traceback pointers. During initialization for a reference-assisted
assembly, the reference sequence, the seed-pointer table, and the
position table are loaded (written) into memory once by a CPU;
these are later only read by the accelerator. Therefore, the version
number for these three data structures can be obtained simply from
a counter in the on-chip state of the accelerator, which increments
on each new genome assembly (CTRgenome)-

After initialization, the CPU loads a batch of query sequences
into memory and runs D-SOFT and GACT on the accelerator for
each query in the batch. D-SOFT generates a filtered list of can-
didate positions from seeds in the query that hit in the reference
sequence. These are passed on to GACT arrays as tiles for extension
i.e. alignment. During these processes, the seed pointer & position
tables, and the query & reference sequences are all only read by the
accelerator. The output consists of GACT arrays writing traceback
pointers for each tile sequentially into the memory. Hence, for the
query sequences and traceback pointers, we can keep a counter
in the accelerator state that increments for each new query batch
(CTRquery), and use the concatenation of CTRgenome and CTRquery
as the version number. The traceback pointers are later processed
by the software to construct aligned reads.

The GACT part of Darwin is available as open-source RTL,
whereas D-SOFT is available as software. We evaluate the per-
formance of GACT for reference-guided assembly, using the latest
human genome assembly GRCh38 [14] as reference. For chromo-
somes 1, X & Y, we generate three sets of reads simulating different
sequencers (PacBio, ONT2D, and ONT1D) with varying error pro-
files, as described in [81].
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Figure 17: Block diagram of a typical H.264 decoder — the
Inter-prediction module reads reference frames from the off-chip
memory for constructing predicted frames.

We use the D-SOFT software to generate a list of candidate posi-
tions (or tiles) that are sent to the GACT hardware for alignment.
For each tile, a GACT array loads a chunk of reference and query
sequences from a specified DRAM offset, performs alignment of
that tile, and finally writes the traceback pointers to DRAM. For
the memory accesses of each tile, we obtain the data transfer times
through a memory protection simulator, with four DDR4-2400 chan-
nels. For obtaining the computation time of the tiles, we perform
an RTL simulation of GACT, with the same settings as specified in
[81]. We assume an ASIC configuration with 64 GACT arrays that
can process tiles independently, each containing 64 PEs, running at
800 MHz. As D-SOFT generates calls to GACT for millions of tiles,
we simulated only a subset of the tiles. The memory and computa-
tion times are used to calculate the overall execution time. Because
GACT loads input chunks from effectively random locations in
the reference and non-contiguous locations in the query, and since
the tile size can be variable, we do not use coarse-grained MACs
for GACT, and only simulate the MGXyy mode with on-chip VN
generation and fine-grained MACs.

We first compare the memory traffic increase of the baseline

protection scheme (BP) with MGXyy. The elimination of off-chip
VN leads to a reduction in memory traffic overhead from 34% in BP
to 12.5% in MGXyn, the remaining overhead coming from the fine-
grained MACs. Figure 16 shows the performance overhead of GACT.
The average performance overhead for BP is 14%. The performance
overhead of genome assembly alignment is lower than DNN and
graph algorithms because the Darwin accelerator design is more
compute-bound. MGXyy further reduces the average performance
overhead to only 4%.
H.264 Video Decoding — We studied H.264/AVC video decod-
ing [1] as another candidate for MGX memory protection. Figure
17 shows a typical H.264 decoder architecture, which transforms
an input bitstream into video frames. The input bitstream is typi-
cally encrypted with the standard counter mode [2]. The decoding
process outputs different kinds of frames. Whereas I (intra-coded)
frames are independent, the P (inter-predicted) frames are calcu-
lated using previous frames as a reference. B (bi-directional) frames
use later frames as a reference, leading to out-of-order decoding.
Therefore, multiple decoded frames are kept in off-chip memory
buffers and if needed, are re-read by the inter-prediction stage.

To study how MGX can be applied to a H.264 decoder, we ana-
lyzed an open-source implementation [57]. This decoder stores the
decoded and reference frames in external memory, and supports the
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Figure 19: The memory access pattern of a H.264 decoder —
the writes are non-overlapping.

Main H.264 profile, which can have B frames. The decoder writes an
output frame to an available buffer in external memory, but writes
only once to an address in each frame. When a frame is used as a
reference, it is read-only. Thus we can simply use the frame number
(F) concatenated with the input bitstream number (CTRy) as the
VN when writing an output frame. Both F and CTRy are part of
the program state tracked by the scheduler. CTRyy is incremented
when a new bitstream is loaded for decoding.

The inter-prediction block can generate the VN for reading pre-
viously decoded frames based on the current frame number (F).
For the decoding of the IBPB sequence in Figure 18, a P-frame is
read only from the last I-frame, thus (CTRpy || F — 2) is used as
the VN value. Note that the frame number represents the display
order of the frames, not the order of decoding. For decoding a B
frame, frames from both directions are read; the VNs can be set to
(CTR || F — 1) and (CTRy || F + 1), respectively.

We apply the MGX scheme to the H.264 decoder, performed an
RTL simulation and checked functional correctness. The memory
access pattern is illustrated in Figure 19 where there are three frame
buffers in memory, one for the currently decoded frame and two for
reference frames. The blue dots indicate writes and the pink dots
indicate reads. Because the frame number increments after writing
a frame, our scheme ensures that a version number is different for
each write to a memory location. While not clear from the figure
due to a limited resolution, we verified that each location in the
output buffer is written only once per frame. The figure also shows
that MGX can handle a dynamic and irregular read pattern.

7.2 Static and Dynamic DNN Pruning

Most previous pruning techniques prune a neural network stati-
cally [27, 29, 54, 58], which can simply be seen as a different net-
work that can run on the secure DNN accelerator. Dynamic prun-
ing [4, 5, 36, 37, 63] exploits input-specific characteristics to skip
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redundant computations at run time, and memory access patterns
may vary for different inputs. However, the variations are still lim-
ited; dynamic pruning may skip some of the accesses that exist in
the model, but does not introduce extra accesses. It may appear that
the MGX does not work with dynamic pruning. However, skipping
VNs does not affect the security as long as the VNs are not reused.
The memory protection will be functional as long as a write and
the corresponding reads use the same VN.

To demonstrate the MGX under static and dynamic pruning,
we implemented a variety of pruning techniques in PyTorch and
emulated the MGX in software. For pixel-level dynamic pruning,
we implemented different compression techniques such as Com-
pressed Sparse Row [6], Compressed Sparse Column [27, 74], and
Run-Length Compression [63]. We also tested a dynamic channel
pruning scheme similar to [23]. With dynamic pruning, the number
of memory accesses to the features is input-dependent and deter-
mined at run time. However, we found that the version numbers of
the features with dynamic pruning can still be obtained from the
same VN generation scheme. Figure 20 illustrates the case where
features are dynamically pruned. MGX uses the shared VNF to write
output features, but only unpruned features (e.g., x1, x3, ..., x;) are
written to memory. Then, MGX can read the sparse input features
(e.g., X1, x3, ..., x;) using the same VNFp. Again, only unpruned fea-
tures are read from memory. For pruned features, the VN is simply
not used and skipped.

8 RELATED WORK

Privacy-Preserving Deep Learning — Homomorphic encryp-
tion (HE) and secure multi-party computation (MPC) can provide
stronger protection than TEEs by performing all computations in
an encrypted format. However, DNN tasks in the HE/MPC solu-
tions [17, 41, 45, 56, 61, 64, 78, 83, 84] are still multiple orders of
magnitude slower than the baseline with no protection. A recent
work [65] proposes to reduce the latency of HE-based DNN infer-
ence to hundreds of milliseconds using specialized hardware. Yet,
the overhead in throughput is still quite significant even with an HE
accelerator. A secure accelerator with MGX provides a design point
to offer hardware-based security with much higher performance.
There are many TEEs [7, 9, 10, 12, 15, 21, 22, 47, 49, 59, 72, 75,
717, 86, 92] proposed for CPUs. Recent studies showed that DNNs
can be protected using Intel SGX [43, 50, 79], but with non-trivial
overhead of memory protection in SGX. Today’s processor-based
TEEs are also limited by the performance of a general-purpose
processor. Recent studies [38, 39, 82, 96] proposed to extend today’s
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TEE by including a GPU. The GPU TEE designs enable high perfor-
mance, but require both a CPU and a GPU to be protected inside
a TEE. Also, ASIC accelerators are often far more energy-efficient
compared to GPUs and widely used for high-throughput tasks such
as inference. Outsourcing to untrusted GPUs/accelerators [80] is
another promising approach. However, secure outsourcing intro-
duces significant computation and storage overhead for the offline
phase; for high-throughput applications, performance will still be
limited by CPUs.

Recent work [85, 94, 96] proposes to build FPGA/ASIC TEEs
as accelerators. TNPU [73] is most similar to our work, which
also proposes a tree-free off-chip memory protection by exploit-
ing the DNN-specific memory access patterns. In this work, we
demonstrate that MGX can further reduce the overhead of integrity
verification using coarse-grained MACs and is generally applicable
to other data-intensive accelerators beyond DNN accelerators.

Memory Encryption and Integrity Verification — There is a
large body of work on memory encryption and integrity verifica-
tion for general-purpose CPUs, including the counter-mode encryp-
tion [71], optimizations to reduce the size of VNs [68, 90], counter-
based integrity trees [20, 26, 66, 76], meta-data caching [24, 48], and
predicting VNs or using unverified VNs speculatively [51, 70, 88].
The general-purpose protection schemes all require version num-
bers in off-chip memory, which will pose a challenge for applica-
tions with large data sets and random access patterns as in DLRM.
MGX introduces a new approach to customize memory protection
for a specific application and remove off-chip VNs, which signifi-
cantly reduces the overhead of the state-of-the-art.

Side-channel Attacks and Protection — A variety of side-
channel attacks have been shown against DNN accelerators. Mem-
ory and timing side-channels have been used to infer the network
structure and weights of DNN models [34, 35, 91]. Power and elec-
tromagnetic side-channel attacks have been used to retrieve the
input image [87] or recover the network topology and weights [8].
The side channels are orthogonal to memory encryption and in-
tegrity verification that MGX aims to provide. A secure accelerator
needs to be extended with additional countermeasures to prevent
the side channel attacks.

9 CONCLUSION

In this paper, we propose a novel off-chip memory protection
scheme for hardware accelerators, named MGX. On average, MGX
reduces the performance overhead of memory protection from 28%
and 33% to 4% and 5% for DNN and graph processing accelerators,
respectively. We also show that MGX is generally applicable to
other applications, such as genome assembly alignment and H.264
video decoding.
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