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Abstract

The limiting amplitude principle states that the response of a scatterer to a harmonic light excitation is asymptotically
harmonic with the same pulsation. Depending on the geometry and nature of the scatterer, there might or might not be an
established theoretical proof validating this principle. In this paper, we investigate a case where the theory is missing: we
consider a two-dimensional dispersive Drude structure with corners. In the non lossy case, it is well known that looking
for harmonic solutions leads to an ill-posed problem for a specific range of critical pulsations, characterized by the metal’s
properties and the aperture of the corners. Ill-posedness is then due to highly oscillatory resonances at the corners called
black-hole waves. However, a time-domain formulation with a harmonic excitation is always mathematically valid. Based on
this observation, we conjecture that the limiting amplitude principle might not hold for all pulsations. Using a time-domain
setting, we propose a systematic numerical approach that allows to give numerical evidences of the latter conjecture, and find
clear signature of the critical pulsations. Furthermore, we connect our results to the underlying physical plasmonic resonances
that occur in the lossy physical metallic case.

Published by Elsevier B.V. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Plasmonic structures are commonly made of noble metals (silver, gold, etc.) and dielectrics (air, vacuum, glass).
At optical frequencies, metals can be dispersive, allowing the propagation of localized surface waves at the metal—
dielectric interface called surface plasmons [1]. The field of plasmonics is very active as surface plasmons offer
strong light enhancement, with applications to next-generation sensors, antennas, high-resolution imaging, cloaking
and other [2-7]. Several models are available in the literature to model dispersive materials. In particular, Drude
model [8] is relevant for classical noble materials: in this approximation, the metal is considered as a free electrons
gas (with a static lattice of positive ions). Then interactions of these electrons with the ion lattice manifest through
a collision frequency parameter, representing dissipation in the equations. Over the past decades, new models

* Corresponding author.
E-mail address: ccarvalho3@ucmerced.edu (C. Carvalho).

https://doi.org/10.1016/j.cma.2021.114207
0045-7825/Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.114207
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.114207&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ccarvalho3@ucmerced.edu
https://doi.org/10.1016/j.cma.2021.114207
http://creativecommons.org/licenses/by/4.0/

C. Carvalho, P. Ciarlet Jr. and C. Scheid Computer Methods in Applied Mechanics and Engineering 388 (2022) 114207

have been developed, including the so-called negative-index metamaterial, and interesting ideal cases (negligible
dissipation) have been uncovered.

If the source of incident illumination is monochromatic, one would naturally expect the time dependent
electromagnetic field to evolve asymptotically (in time) to a harmonic state with the corresponding incident
frequency. This asymptotic harmonic behavior is called Limiting amplitude principle and allows to work with the
associated frequency-domain boundary value problem. The limiting amplitude principle has been investigated for a
long time, and is well understood for the wave equation and related classical scattering problems [9—13]. Recently
there has been a new interest in exploring this principle in the context of emerging plasmonic structures [14,15]. In
particular, the specific case of a planar interface with a non lossy Lorentz model has been fully investigated in [15].
However for other configurations, the landscape is different: this is especially not clear for (non lossy) plasmonic
structures with corners.

The limiting amplitude principle is closely related to well-posedness of the corresponding harmonic equation.
Although the time-dependent equations system is mathematically well-posed (in the usual function spaces), the
frequency-domain counterpart has proven to be more challenging [16-22]. A key point lies in the fact that the
Fourier transform of a non lossy metal’s constitutive law can correspond to a real negative permittivity.! The
induced possible change of sign of the permittivity at the interface affects the optical response. If the structure has
corners, the frequency-domain equations system may be mathematically ill-posed for a range of critical frequencies
(corresponding to a critical range of permittivities). In this range of frequencies, hypersingular behaviors arise
at the interface (especially at corners), requiring specific numerical treatments to avoid spurious reflections and
inaccurate predictions. Ill-posedness in frequency-domain corresponds to an unphysical infinite electromagnetic
energy, indicating that the limiting amplitude principle should not hold in that case. This conjecture motivates
our exploration.

In this paper we provide a systematic approach to numerically assess the latter conjecture in non lossy
subwavelength plasmonic structures with corners. We base our strategy on a time-domain framework. From typical
quantities of interest (fields, energy, cross sections, Poynting flux, etc.), we manage to identify a signature of the
underlying critical interval from the frequency-domain, by using time-domain simulations. Our results show a clear
change of behavior at critical frequencies. Additionally, we find this signature also when considering physical
structures (incorporating losses): in other words the limit non lossy case is useful to highlight intrinsic resonances
in physical plasmonic structures.

The paper is organized as follows. Section 2 presents the general context, the model problem along with relevant
quantities of interest. In Section 3, we specify the two-dimensional (or 2D), geometrical, physical and numerical
framework that we precisely consider to explore the limiting amplitude principle. The numerical evidences that
assess our conjecture are detailed in Section 4. Then, in Section 5, we continue our efforts towards a more physical
discussion. Finally Section 6 presents our concluding remarks.

2. General context: plasmonics and limiting amplitude principle

2.1. Drude model in plasmonics

As mentioned in the introduction, plasmonic structures are commonly made of noble metals and dielectrics, where
surface plasmons arise at the interface at optical frequencies. We present below the well-known Drude model and
related equations to model the electromagnetic field in those structures.

Metals at optical frequencies are known to be dispersive: each monochromatic wave travels with different speeds
through the metallic material. To accurately model optical properties of metallic structures, one has thus to rely
on models that take into account the frequency-dependent velocity of the wave. This dispersion phenomenon is
equivalently explained as a delay effect in the reaction of the electrons of the metal to light excitation. In this work,
we will use the well-known Drude model to account for this dispersion phenomenon. It is based on the kinetic
theory of gases [8], considering the metal as a static lattice of positive ions immersed in a free electrons gas. In the
case of scattering by a metallic obstacle, the set of (linearized) equations can be eventually summarized as follows.

The time-dependent electromagnetic field is computed using time-domain Maxwell’s equations with variables
(D, E, B, H)’ where dispersive effects are incorporated through the electric constitutive law. The latter relates the

1 Tt commonly provides some imaginary part for lossy materials.
2 Respectively electric displacement, electric field, magnetic induction, magnetic field.
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electric displacement D and the electric field E and incorporates the possible time history (when dispersive effects
are taken into account) via a time convolution (denoted *;):

D=¢xE, (D
where

&(t, -) = do()eoe, (1) + x (1, ), 2

is the space—time dielectric permittivity, &y the vacuum permittivity, ¢, the relative permittivity and yx is the electric
sensitivity. These quantities are defined in R* and such that causality property holds (see e.g. [23] for a nice review).
Since we do not take any dispersive effects into account in the dielectric, one sets x = O there. However, in the
metallic obstacle, x is non vanishing. If one defines the polarization current J as J := —9;(x *; E), one can rewrite
the whole set of Maxwell’s equations in terms of (E, H, J) variables only. In particular, J verifies a linear differential
equation that is linearly coupled to (E, H) through classical Maxwell’s equations. With this approach, we do not
need the expression of x explicitly. The reason is that Drude model is entirely determined via the variable J (see
below). We will see later that x plays an important role in frequency-domain.

We fix an end time T > 0, and a domain (2, that is an open and connected subset of R? with Lipschitz boundary.
In our model, the domain (2 is the metallic obstacle, and it is immersed in a homogeneous dielectric background.
For the practical choice of the end time 7 in numerical simulations, we refer to Section 3.4. In what follows,
o denotes the permeability of vacuum, &; denotes the dielectric relative permittivity of the dielectric and e, the
relative permittivity (at infinite frequency) of the metallic obstacle {2. We now set

fi R3\ 2
b= |0 OTXERAL 3)
£o0, Tforxe 12,
and we will denote ¢ := gpe,. Thereafter, Drude model in the time-domain writes on [0, 7] as:
oH . 3
MOE = —curlE in R”, (4a)
oE Y
80845 =curlH+ J.,, in R\ {2, (4b)
oE .
£08c0—— = curl H—J + J.., in £2, (4c)
0
8_‘t] = wisoE - y.{ in {2, (4d)
J=0, inR\ 2, (4e)

where ), is the plasma angular frequency, and y the collision frequency (coming from Drude model). Here J.,;
denotes a possible external current that we will use to model volumic source excitation in the following.

Remark 1. Note that the plasma angular frequency characterizes the angular frequency above which an
incident wave can completely penetrate the metal. On the other hand, the strong plasmonic effects induced by
surface plasmons are obtained by an illumination, below the plasma angular frequency, of subwavelength metallic
structures.

We will call this system time-dependent Maxwell-Drude equations in plasmonic structures.

Well-posedness. As commonly done, in order to compute the solution, we will artificially truncate the exterior
domain R? \ 2 and close the system (4) by adding approximate transparent boundary conditions (for E and H),
transmission conditions at 92 (for E and H) and initial conditions (for E, H and J). At the artificial boundary, to
approximate transparent boundary conditions, we will use classical first order Silver—Miiller boundary conditions.
In this setting, using classical semi-group theory, one can prove that system (4) is well posed® (see e.g. [24] for
details).

3 This result is obtained in the natural space CO([0, T, H(curl)) x C°([0, T, H(curl)) x C°([0, T, L?) with L? tangential traces for E
and H.
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Excitation. Several excitations of the scatterer are possible. A physically compliant one consists of using an incident
illumination that we denote (E;,., H;,.). To take this illumination into account in the set of equations, we use the
non homogeneous Silver—Miiller boundary conditions as:

an—nx(/@Hxn)anginm ©)
&0

with gine = Ejpe — ( /&Hinc x n) and n the outward normal to the exterior artificial boundary.
&0

Remark 2. As a result, the total electromagnetic field (E, H) can be decomposed into an incident contribution
(Einc, Hiye) and a scattered one (E;.,, H;c,). The scattered field (E,.,, Hy.,) verifies Maxwell’s equations with
homogeneous radiation condition and a source term J.,;.

Electromagnetic energy, Poynting vector. We define the time-dependent total energy of system (4) by

1 1 1
() = SIVE0EBC, Dllags) + 5 IIVEHC Dl + mnn., DI 25y (6)

The space—time dependent Poynting vector also plays a central role in the study of the energy’s variations, classically
defined as

I =E x H. )
Recalling that we have div(E x H) = H - curl E — E - curl H, formally we get, using Egs. (4)

%(I) = / (div(E(x, 1) x H(x, t)) + Jox: (X, 1) - E(X, 1))dXx
R3

+/J(x, t)-Ex, 1) — EX, 1) JX, t)dx — 4 /J(X, 1) - J(x, t)dx,

0] Sowf, 2

= / div(II(x, 1))dx + f Jexi(x, 1) - E(x, 1)dx — yQ / Jx, 1) - J(x, 1)dx. @®)
R3 R3 0wy, J o

The pointwise version of the equality is the Poynting theorem. From (8), we deduce that if J.,, = 0, div(/I(x,1)) =0
and y = 0, then the energy is preserved. If J.,; = 0 and the quantity div(II(x, ¢)) < 0, then the energy is dissipated.
In the rest of the paper, we focus on the limit case where there is no physical dissipation, i.e. y = 0.

Remark 3. When using first order Silver—Miiller boundary conditions, we introduce artificial dissipation in the
system and as a result div(ZI(x, ¢)) < O if the condition is homogeneous.

Long time asymptotics. If the source is monochromatic, one would naturally expect the solution to evolve
asymptotically (in time) to a harmonic state with the corresponding incident frequency. This asymptotic harmonic
behavior is called Limiting amplitude principle. This principle holds for standard settings and is closely related
to well-posedness of the corresponding harmonic equation. This principle is well-understood in classic dielectric
materials. However in the non lossy case and for objects with corners, the landscape is different and less trodden.

2.2. Limiting amplitude principle

The limiting amplitude principle has been studied for a long time (e.g. [9-13]) and states the following. Given a
source ¢ > e '“'F(.), with F € L>(R?) (and support suppF € R?), a given pulsation » > 0, and a problem of the
form 9?U + LU = ¢~ ''F, with £ a linear differential operator, then after a long time the solution asymptotically
behaves as U = ¢~“'W with W satisfying a problem of the form —w’W + LW =F.

This statement indicates that a periodic regime is asymptotically established and therefore it is natural to consider
the problem in the time-harmonic regime (stationary problem).

Assume for now we can write the external current J,.,(x,t) = NRJ _ (x)e”®), and (E, H, ))(x,1) =

—ext

REe ™, H(x)e ", J(x)e™'*"), with J, . E, H, J denoting complex-valued fields. Then system (4) (with y = 0)
4
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simplifies to

—iwpugH = —curlE in R?, (92)
—iwepd,E = curlH+J,_ in R’ (9b)
with
eq >0, forxeR3\ L2,
& (X, w) = (10)

wZ
em(w) = (800 — w—’;) , forxe (2,

and transmission conditions, plus some radiation condition at infinity. Indeed, J is known, and equal to i @E in
12, respectively 0 in R? \ £2. We will also denote & = goé,. Above gy¢,,(w) represents the non lossy Drude model
permittivity. Let us point out that if 0 < » < T (optical frequency range), then ¢,,(w) < 0. System (9) will be
called the frequency-dependent Maxwell-Drude equations in plasmonic structures.

Remark 4. We make the abuse of terminology to denote w by the terms pulsation, frequency, or angular frequency.
However in numerical experiments, w will be always given in rad s~'.

Well-posedness. Classical theory considers E, H € Hy,.(curl) := {X € L2 (R%)|VE e CLC,’O(R3), £X € H(curl)},

and (9) is equivalent to solve:

loc

curl £, 'curlH — °H = —curl&;'J,_, in R’, (11a)
—iwepé,E = curlH+]J,  in R’ (11b)

with k = w,/ggto. One can also consider the system
—iwpuoH = —curlE in R, (12a)
curlcurlE — k*4,E = —iwpeurlJ,  in R’ (12b)

Note that, if one chooses J, , so that div(J, ) = 0, then (E, H) € Hj(curl )? solution of (12) or (11) also belongs
to Viee(&; curl) x Vi (o; curl), with Vi (¢; curl) := {X € Hjy(curl)| div(¢X) = 0}.

Contrary to the time-domain case, due to the change of sign of & at optical frequencies, the problems
(11)=(12) can be ill-posed in Vioc(&; curl) x Vio.(uo; curl). With the T-coercivity agproach it has been shown

(e.g. [16-18,20,21,25,26]) that there exists two cases depending on the contrast k, = —:
€d
e for contrasts k. far enough from —1, then the problem is well-posed in Vi.(€; curl) x Vi.(uo; curl).
e for contrasts k. close to —1, plasmonic hypersingularities arise at the corners of the interface (if any), and the
problems is ill-posed in Vio.(&; curl) x Vioc(uo; curl).

Those guidelines can be refined for the specific case of Maxwell 2D. In that case the interval of contrasts (acceptable
or not) is explicitly known. For now, let us denote /. this interval. We will provide explicit bounds if needed for
numerical purposes. Let us note that this interval /. corresponds to a critical interval of angular frequencies I,
and that it holds that

@p

V8d+goo

with w;, denoting the surface plasmon angular frequency. The specific case @ = w,, is very peculiar and the
problem is strongly-ill posed. In what follows we will exclude this case.

To sum up, in the frequency-domain, there is a critical range of angular frequencies for which the problem is
then ill-posed, whereas in the time-domain the problem is always mathematically well-posed. This interesting result
questions the validity of the limiting amplitude principle at critical angular frequencies, indicating that

ke = —1 if, and only if, :=aw;, = (13)

o If w & I,: the limiting amplitude principle holds.
e If w € I,: the limiting amplitude should not hold.

Using this conjecture, the rest of the paper is dedicated to provide several approaches and results to find signature
of the critical interval I, in time-domain simulations. To that aim we will need to compute quantities of interest in
frequency-domain.
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Remark 5. The limiting amplitude principle has been studied for Lorentz metamaterials (both permeability and
permittivity can change sign in frequency-domain) for planar interfaces. It has been shown that this principle does
not hold for k., = —1, and that in this case the fields’ amplitude increases linearly with respect to time [15].

Electromagnetic energy, Poynting vector and cross sections. Time-domain quantities such as the electromagnetic
energy and the Poynting vector can be compared to frequency-domain ones if harmonic behavior is achieved. In the
time-domain, we consider a real-valued harmonic excitation of the form J.,,(x,t) = ‘)L(Je . I(x)e"“” ), with w > 0
and J, , a complex-valued field. If we denote (E, H) the solution of (9) with source term J, . then if the solution
of (4) 1s harmonic, it should write as (E(x, ¢), H(x, 1), J(x, 1)) = REX)e ", H(x)e ', J(X)e iot) Then to relate
frequency- and time-domain energy, the adequate quantity to start with is the time average energy

1 to+T (w)

E= T(a)) E(t)dt, (14)

where T (w) is equal to the time period, i.e. T(w) = 2mw™!, and #;, > 0. Using expression (6), the average energy
becomes”

1 to+T (w) \/E . /— 3
15 (Ee B g, + 15— (He ™ + H'e e ams)

=7 2T () ),

1
2IIE(Je*""’ + I N2 g dt (15)

14

1
+
&
1
(”\/_E||L2(R3 + ||\/M—OI-I||L2(R3 ||J||L2(R3 ) )

with V* denoting the complex conjugate of V.

Remark 6. We here point out a very straightforward fact that will be used later in the computations. For the
time-domain fields to have a harmonic behavior, the time average of the energy on an interval of length 7 (w) must
not depend on the chosen interval. This simple remark provides us with a necessary condition for a signal to be
harmonic.

Similarly, we can compute the time average Poynting vector over the time period 7' (w) defined as follows:
I(w) = tﬁT(w)H(t)dt = lg)f(E x H") (16)
T(@)J;, 2T
We will omit to write the space dependence using the abuse of notations Il (w) = II(-, w), II(t) = II(-, 1).
To further exploit information from the Poynting vector, it is natural to introduce physical quantities called cross
sections. As introduced in Remark 2, we separate the contributions from the scattered fields (E,.,, Hy.,) and the

to+T (w)
incident fields (E;,., H;,.): we define I, = E;., x H w) = m / 1. (t)dt, and similarly I1;,,
w

scas Qsca(

using the incident electromagnetic fields. Note that |1, | is independent of the spatial variables.

To quantify the amount of absorbed energy P, and scattered energy P, at a given pulsation, we compute the
fluxes of, respectively, the total Poynting vector II and the scattered Poynting vector II, ., on a closed surface S
enclosing the scatterer:

P (0) = —/Q(w)~nd$, P, (0)= —/‘Qm(a)) nds, a7
s

where n is the outward normal vector to S. If one denotes by V the bounded volume such that § = 9V, one has
obviously P, () = — fv diviI(w)dx. If there is a scatterer in the domain, not all the energy entering the volume
delimited by S will leave it: some energy is absorbed (P, (w) > 0). The cross sections are then defined relative
to the power density (per unit area) of the incident field:

P P
Ca .= _——abs Csca __  Z—sca 18
»= Vi (18)

lnL| 1na|

4 Recall that J =0 in R>\ 2.
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where C,;, denotes the absorption cross section, C,., the scattering cross section.’ These frequency-domain
quantities are widely used to measure the absorption or the scattering features of a given scatterer. For some standard
structures, it is also possible to have their analytical expression (see e.g. [27] and references therein).

3. The two-dimensional case: theoretical and numerical guidelines

We focus on the light scattering by a rod structure with transversal section D. We seek solutions of system (4)
that have an invariance with respect to the direction of the rod’s axis. In this setting the tridimensional Maxwell’s
equations can be recast in two 2D sets of equations defining two transverse modes: TE (Transverse Electric) and
TM (Transverse Magnetic).

In the rest of this paper, we consider that Q is a nletallic roq of bounded section D, 2 = D x R and we
concentrate on the 2D TM polarization. Then (E, , H,, J,), with V| = (V,, Vy)’ , is solution of the corresponding
two-dimensional version of Maxwell’s equations.

3.1. An explicit theoretical critical interval

As mentioned previously, there exists a critical interval [, centered around the surface plasmon frequency
w;p, for which the problem is ill-posed in frequency-domain. In some cases, this interval is explicitly known, and
hypersingular behaviors have been identified in the ill-posed configurations. We will use this framework to assert
if the limiting amplitude principle holds.

According to (11a), in frequency-domain, the problem in H, becomes

A1 2y A-l17 2
curle, curlH, — k"H, = —curle " J, .| in R7,

and similarly for the problem in E | (cf. (12b)). Classical theory considers E e L2 (R?) so that H e HILC(]Rz), and

loc
the bounds of the interval /. depends on the interface’s geometry. Suppose that the interface X' := 9D is polygonal
with 0 < & < 277 the sharpest interior angle in D. We define I, := max (5=%=; Z=%) > 1, then I, := [—Io; —1/1,]
(details about the derivation can be found in [16, Theorem 3.3], [28, Theorem 1]). This gives us

lh<k<-—t i <w< 2
I, <k, < —— — << —,
o & IO! 4/Ia8d+800 800+j_d
(19)
Wp @p

1, =

\/Iagd‘i‘goo \/800—‘1-?—;1
Moreover, we have the following result:
w

p . ®p
Viebd 600" \fooot
this function space guarantees to have a bounded total electromagnetic energy.

elfw¢ : problem in H_ is well-posed in HILC(RZ). Mathematical well-posedness in

o If w € I, \ {ws,}: problem in H_ is ill-posed in HILC(RZ). There exist black-hole waves s ¢ HILC(RZ) that
propagate towards the corners.
Remark 7. Given a polygonal interface Y’ with N corners ¢;, i = 1,..., N, and denoting o;, i = 1,..., N all

the interior angles in D, one can define subintervals
I, =[—1y;—1/1y], and I, C I.,i =1,...N, or equivalently I, € I,,i =1,...N.
This means that, depending on the contrast «, (and therefore depending on the angular frequency w), all black-hole

waves, or only some of them, can be excited. This will play a certain role when interpreting numerical results.

Remark 8. Black-hole waves can be characterized as follows. Given a corner ¢, we denote (r,6) the polar
coordinates centered at ¢, the black-hole wave propagating towards the corner c is of the form s(r, 8) = r* ®(9),
with A € R*, and & a periodic function. Moreover it has been established that (see [20] for details):

5 One can also define Cext, the extinction cross section as Ceyy = Cyps + Cyeq. It will not be used in this work.

7
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ity )

Fig. 1. Representation of black-hole waves near a corner: odd (left), and even (right).

b=p;

Fig. 2. Physical domain and notations. 2D section in the (x, y)-plane of the metallic rod.

Cl)p _ . . _
e lfwe [—m, a)sp>, the black-hole wave is an odd coupled plasmon. This means that the black-hole

wave exhibits two localized oscillating behaviors along the interface that are skew-symmetric with respect to
the angle’s bisector (& is an odd function).

o Ifw e | w,, \/w—Lgd , the black-hole wave is an even coupled plasmon. This means that the black-hole wave
€00 E
exhibits two localized oscillating behaviors along the interface that are symmetric with respect to the angle’s
bisector (@ is an even function).

Fig. 1 represents the two types of black-hole waves near a corner.

Remark 9. The specific case w = w;, is strongly ill-posed, the provided black-hole characterization is valid for
w € I, \ {ws,}. We refer for example to [15,19,29] for more details.

The two-dimensional case is fully characterized in frequency-domain. It provides the adequate framework to
investigate if the limiting amplitude principle holds in plasmonic structures. In particular, we will look for a signature
of this critical interval 7, in time-domain.

3.2. Physical problem

In order to investigate situations with corners, we choose an isosceles triangle of upper aperture %, with
characteristic size (height of longest bisector) equal to 20 nm for the transversal section D (see Fig. 2) and with
area ar ~ 1.07 x 107'® m?. It is tilted so that the edge ab is vertical.

The exterior domain R? \]f)) is filled with vacuum (¢; = 1). The section ID will either consist of

(i) Dielectric: eoo = 3.73, @, = 0 rad s~ .

(ii) Gold: e = 1, ®, = 13.87 x 10" rad s~', with values taken from [30].
(iii) Another Drude material: e, = 3.7362, w, = 13.87 x 10" rad s7'.

We will illuminate the structure at a range of pulsations [wpin, @Wmax] that includes the critical interval I,
associated to both materials® and that is such that wp,, < w,. Therefore the smallest wavelength is greater than

wp

:
Vet 7t

6 Here, if @ € 1,, then & < < wp.
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27!60 ~ .
o 135 nm, with ¢y = —«/W In this regard, the metallic structure is subwavelength for incident illuminations

below the plasma angular frequency w,,.
Some quantities will be visualized at three selected probe points: p; situated at the top vertex a, p, is the middle
of segment [ab] and p; situated at the left bottom vertex b. To investigate the limiting amplitude principle, we use

an incident illumination (£ ;... H, ;,.) (added to radiation conditions). The latter will be

(a) a monochromatic plane wave (solution of Maxwell’s in vacuum), or
(b) a polychromatic Gaussian pulse (Gaussian modulated plane wave).

We choose the vertical direction of propagation —y for the incident plane wave field. By tilting the triangle, we
break the symmetry, allowing us to excite both odd and even coupled plasmons.

3.3. Limiting amplitude principle requirements

The monochromatic case (a) is readily covered by the limiting amplitude principle framework. Indeed, as already
mentioned in Remark 2, the total electromagnetic field can then be decomposed into the_ incident contribution
(Emc 1-H;,..) and the scattered one (_m 12 Hyeo ) As a result, the scattered field (_m‘ 1-Hg, ) verifies
Maxwell’s equations with homogeneous radiation conditions and source term J J oxs. 1 With support in . This source
term expresses the fact that the incident plane wave (E ine.L» Hine o) 18 solution of Maxwell’s equation in vacuum,
but is not solution in the scatterer. Since the incident field is monochromatic, so is the source term. In other words,
our source term is monochromatic, with support € R? and in L2(R?) which fits in the theoretical framework led
by [11,12] to investigate the limiting amplitude principle.

Same procedure can be applied with the Gaussian modulated plane wave (b). However, in this case, the resulting
source term lm | in the scattered field equation is not monochromatic anymore. The latter is in addition attenuated.
This case does not readily fall into the limiting amplitude principle framework. However, such an incident field
allows for the excitation of the scatterer by a whole range of pulsations using one single excitation. Moreover,
using Fourier transform, the spectral response of the scatterer is easily attainable once the time-domain fields are
known. Source (b) provides a practical (but empirical) approach to investigate the problem.

3.4. Numerical framework and strategy

In what follows, we will need to compute a numerical approximation of the solution of the time-domain equations.
To do so, we consider a Discontinuous Galerkin Time Domain (DGTD) framework as developed in [31]. This
numerical framework is particularly adapted to the challenges encountered for scattering problems and has been
assessed on several occasions especially for plasmonic problems (see e.g. [32,33] and references therein). In the
numerical tests, we use a non-dissipative DGTD scheme for the whole system with unknowns (E, H, J). It relies
on a discontinuous Galerkin finite element space discretization (with Lagrange nodal basis) with centered fluxes,
and a leap-frog scheme in time. This scheme has the advantage to be explicit; the price to pay is that one should
choose discretization parameters according to a CFL constraint. Computations are made on an adimensionalized
version of the system, quantities plotted later in the paper have been re-dimensionalized.

We approximate the solution over a sufficiently long physical time T relative to the period of the incident
signal: T represents 100 to 200 times the period of the monochromatic source (a), or the period of the smallest
frequency in the pulse of the polychromatic source (b). This time has been empirically adjusted so that it does not
affect our conclusions with regards to the convergence of the computed quantities. We are able to compute all the
quantities mentioned in Section 2: time evolution of the energy, time evolution of the fields at probe points, and
time averaged quantities. In particular, we compute the discrete time evolution of the total discrete energy (on the
whole computational domain) and in a small domain surrounding each corner. When considering a polychromatic
source (b), we compute cross sections and Poynting fluxes at the end of the simulation, using a Fourier transform
that is computed “on the fly” (done in one simulation run). For illuminations considered in this work, the quantity
|11;,.| that appears in (18) can be computed analytically.

As mentioned previously, the monochromatic source type (a) falls into the exact limiting amplitude principle
setting, and therefore will be used to find a clear indication of a non-harmonic response to the harmonic incident
field. The polychromatic source type (b) will allow to obtain a spectral response and investigate physical quantities

9
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r

Fig. 3. The computational domain is delimited by an artificial boundary I'. A side of I" has a length of 60 nm. The cross sections are
computed on a line S around the scatterer, which is approximately 20 nm away from it. The black-hole fluxes and energy are computed in
small disks centered at each corner.

over the whole spectral band of interest, and in one single run. The two approaches are thus complementary and
are used to thoroughly test our approach.

The scheme has been implemented in a in house 2D Fortran code developed within the Inria Atlantis project
team (Inria Sophia Antipolis, France).” Previous versions of this code have been already exploited in the context
of [34] and [35]. Discretization parameters have been fixed so that we use a discretization fine enough with respect
to the incident wavelength and fulfill the CFL condition. If A¢ denotes the physical time step, and h,,,, the space
discretization parameter, we use At ~ 107'% and A, &~ 1 nm (the mesh is non uniform and is appropriately
refined at the corners of the domain and close to the interface, where the size of the mesh is approximately éhmax).
Unless specified, we use a P, (polynomials of degree less than or equal to 2) basis for our finite element space.
Finally, in Fig. 3 we detail the computational domain and geometrical entities that we use to compute the solution
and quantities of interest. Numerically, one computes Poynting fluxes, called black-hole fluxes for short, around
each corner, for w in the range of pulsations of interest:

Fi(w) = f divil(w)dx, k =/{a,b,c}, 20)
Dy

where (Dy)k=(a,b,c} are (small) disks of radius 2 nm around each corner a, b, c, respectively. Similarly, the energies
at the vicinity of each corner are computed for k = {a, b, c} and t € [0, T] using

1 - 1 1 -
&t = SIVe0er XD 2y + 5 IV HO 2 + mnunniz(m). @21

4. Numerical results

First, we investigate the situation where the limiting amplitude principle (LAP) holds. This is the situation
where one considers for example a dielectric inclusion (case (i) in Section 3.2). We use this simple case as a
benchmark to validate our strategy. Then, we consider situations where the LAP might not hold (cases (ii) and (iii) in
Section 3.2).

7 http://www-sop.inria.fr/atlantis/.
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Fig. 4. Representation of £(¢) (computed via (6)) for different incident fields. The incident field is monochromatic, we vary the pulsation
w and represent the result for v =2 x 10" rad s7!, w =6 x 10" rad s™!, @ =8 x 10!5 rad s™!
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Fig. 5. (Left) Mean energy £ (computed with (15)) with respect to the incident pulsation. For each value of the pulsation w, we compute
the mean of the energy on different time intervals of length 7'(w) over the simulation time duration. (Right) Zoom of the energy mean
where there is a maximum of variations, scaled by a factor 10. Computations show relative variations of order 107°.

4.1. When the limiting amplitude principle holds
We consider here case (i), of a dielectric inclusion.®

4.1.1. Response to monochromatic illumination.

We consider a monochromatic incident field (a) of pulsation w, with @ € [2 x 10'3,13.8 x 10"] rad s~

Study of the energy. Fig. 4 represents the evolution of the electromagnetic energy £ over the last 10% of the total
physical time i.e. t € [0.9T, T'], for some incident pulsations w. Results show that the electromagnetic energy stays
clearly bounded over time and is periodic. Moreover, for each pulsation, we observe that the value of the energy
mean £ (see Fig. 5) varies in the range [2.255 x 10713, 2.285 x 10~3]. Thus, it stays of the same order of magnitude
over pulsations and varies fairly little (relative variation of ~1%).

In the spirit of Remark 6, at each fixed pulsation @, we compute the mean value of the energy over several time
intervals of length T'(w) (these intervals are chosen around the end of the physical simulation time). We observe
only relative variations of maximum 107, that allows us to conclude that (for a fixed pulsation) the mean value
of the energy is numerically independent of the chosen interval: the signal appears to be harmonic at the expected
frequency.

8 To be complete, and for a further validation of the benchmark, the very simple case of vacuum has also been tested. The results are
conclusive and as expected. We choose not to reproduce them here, since the situation is completely straightforward. The results will be
only used sometimes for comparison, to support our reasoning.
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Fig. 6. Left: FFT of H, at first probe points p;. Similar plots are obtained at other probe points and we do not represent them here to ease

the reading. Right: L?-norm of the FFT of the total electromagnetic field on the whole computational domain. Vertical lines represent the
chosen incident w. All obtained peaks match the incident pulsation.

Table 1

Relative errors of the computed main pulsations at the chosen
probe points (via FFT) with the exact pulsation w, with @ €
[2 x 10'%,12 x 10%] rad s~L.

w (rad s71) Error p; Error p> Error p3
2el5 4.6le—3 4.6le—3 4.6le—3
4el5 4.6le—3 4.61le—3 4.61e—3
6el5 4.6le—3 4.6le—3 4.6le—3
8el5 3.23e-3 3.23e—3 3.23e—3
10e15 1.66e—3 1.66e—3 1.66e—3
12el15 6.17e—4 6.17e—4 6.17e—4

Fourier transform. We now compute the Fourier transform (via FFT) of the magnetic field over the range of
frequencies of interest at chosen probe points (see Section 3.2), and compute the relative error between the computed
main pulsation and the chosen incident pulsation w. Fig. 6 (Left) and Table | show that we recover harmonic signals
centered within less than 0.4% of relative error from the incident pulsation. To observe whether these effects are
also visible globally, we also plot in Fig. 6 (right) the L>-norm in space of the Fourier transform (in time) of
the total electromagnetic field. Here again, we recover a (numerical) harmonic behavior. The above observations
can be viewed as strong numerical evidences that the limiting amplitude principle holds, as expected for dielectric
materials.

4.1.2. Response to polychromatic illumination

We also investigate the FFT of the magnetic field for a polychromatic illumination. We choose here to represent
the field H, since this is the field that naturally compares to frequency-domain approach via Eq. (11a), but we
could have also represented the two components of the electric fields (leading to similar conclusions). This allows
to: (i) alleviate any discrepancy in the Fourier signal that may be sensitive to a single pulsation, (ii) test multiple
incident pulsations in one single run. Fig. 7 represents the FFT of the magnetic field at probe points in the case
of propagation of a polychromatic pulse (b). Results show that a Gaussian Fourier signal is recovered without any
discrepancy. Same conclusion holds for the global L?-norm of the Fourier transform, that we do not reproduce
here.

4.2. Breaking the limiting amplitude principle

We now consider a metallic scatterer with parameters from case (ii) or (iii). We will follow the same strategy as
in Section 4.1, but first we make use of results from Section 3.1.

12
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Fig. 7. Modulus of the Fourier transform for various Gaussian pulses at probe points p; (left), p» (middle), p3 (right) for several Gaussian
pulses. We use several central frequencies (4 x 10'3, 7 x 10'5 and 10 x 10 rad s™").

4.2.1. Explicit critical interval of pulsations

In this section we specify I, given in (19) for cases (ii) and (iii). Given the geometry, the critical interval is
associated to corner a with aperture % (then I, = 11). Using Remark 7 we compute the critical subintervals
associated to the other corners b, ¢ to identify when black-hole waves may appear.

e For material (ii) (corresponding to gold) we obtain

w w

Or < Y

V12 B
11

wel, <+—

leading to 1, = [4.0039 x 103, 13.2795 x 10'3] rad s~', and the surface plasmon angular frequency (13) is
equal to
@p 15 -1
wsp i = — ~9.8076 x 10 rad s~ .
14 ﬁ
The other two corners b, ¢ of angle 51—’;, provide 1, = I, = [6.3307 x 10%3, 12.3409 x 10'] rad s~ !.
e For material (iii) we obtain
@p @p

leading to I, = [3.6131 x 10'3,7.0899 x 10'3] rad s~', and the surface plasmon angular frequency (13) is
equal to

wel, <+—

@p 15 -1
Wy = ————— >~ 6.3732 x 10rad s™ .
P V1437362

Further we obtain /,, = I, = [5.0524 x 10'3,6.9355 x 10'%] rad s~'.
Remark 10. In what follows, we will indicate I, in light red, and the subinterval /,, in dark red in the plots.

4.2.2. Response to monochromatic illumination

We consider a monochromatic incident field of pulsation e, with w € [2x 10", 13.8 x 10'%] rad s~'. The covered
pulsation range includes the critical interval /,, associated to both materials. Contrary to the previous case we expect
changes for w € I,,.

Study of the energy. Fig. 8 represents the evolution of the energy for several incident pulsation values for both
cases. Contrary to the previous case, we observe a drastic change of behavior of the energy when the pulsation w
of the monochromatic source belongs to I,: the energy drastically increases by several orders of magnitude (10~'3
compared to 107'%), and does not exhibit a clear periodic behavior. This change is clearly visible when w “enters”
the critical interval. Moreover, at lower pulsations, the energy exhibits a periodic behavior. When w “leaves” the
critical interval, the energy drastically decreases. For case (ii) it is not clear that we recover a periodic signal at
the chosen pulsation (located right outside of the critical interval), however for case (iii) the periodic behavior for
w & 1, is more visible. Fig. 9 represents the means of energy £ with respect to the monochromatic pulsation. For
each incident source, we compute the mean of the energy for different time intervals of length 7' (@) over the final
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Fig. 8. Representation of £(r) (computed via (6)) for different incident fields for case (ii) (top) and for case (iii) (bottom), with zooms at
the long time simulation. The green and blue curves correspond to @ ¢ I,, whereas the warm colored curves correspond to w € I,,. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

part of the simulation time duration. The light blue shadow indicates the variations between those computations (we
report the minimal and maximal values), scaled by a factor 10. As observed before, the energy is considerably more
important at critical pulsations (indicated by the red zones). Additionally the computation of the mean £ is highly
sensitive to the time interval when we choose w € I, indicating that a periodic regime may not be established.
Note that the energy mean is two orders of magnitude stronger than what was observed in Section 4.1. Furthermore,
one can observe that the strongest variations within the means are obtained when all corners are excited (w € I,,,).
Based on the energy observations, one can conclude that there is definitely a change of behavior at critical pulsations,
indicating that the limiting amplitude principle should not hold.

Fourier transform at probe points. Fig. 10 represents the Fourier transform of the magnetic field over the range of
frequencies of interest at probe point p; (see Section 3.2). Similar plots have been obtained for other probe points,
we do not present them here. Fig. 11 represents the L2-norm in space of the Fourier transform (in time) of the
whole electromagnetic field (E‘ 1, Hy).

Results show that we still recover harmonic-like signals centered at the incident pulsation, however the signal is
perturbed for critical pulsations. We can make several observations:

e at each frequency, one main peak occurs at the pulsation of the incident field. The numerical relative error to
the exact value does not exceed the one obtained in Section 4.1,

e for some pulsations inside the critical interval, the main peak is wider and/or stronger in intensity,

e for pulsations inside the critical subinterval, secondary peaks do appear.

The last two items above invalidate the limiting amplitude principle.
In the next section we compute the Fourier transform when considering a Gaussian pulse, where the break of
the harmonic signal is significantly more striking.
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Fig. 9. Mean of energy £ (computed with (15)) with respect to the monochromatic pulsation: for case (ii) (left), for case (iii) (right). The
green zones indicate when @ & I,,, the red zones indicate when w € I,. The darker red zone indicates the critical subinterval w € I,,,. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. (Left) FFT of H, at first probe point pj: for case (ii) (top row), for case (iii) (bottom row). Vertical lines represent the chosen w.
The green zones indicate when o ¢ I,,, the red zones indicate when w € I,,. The darker red zone indicates the critical subinterval w € I, .
(Middle, Right): samples of FFT from the two cases: for o ¢ I, (middle), and for w € I, (right). The orange —x’ curves correspond
to FFT peaks in vacuum (where the response is always harmonic). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.2.3. Response to polychromatic illumination
We now investigate the response of the metallic scatterer to a pulse illumination (b). As before, we investigate
the Fourier transform of the magnetic field.

Fourier transform. Fig. 12 represents the Fourier transform of the magnetic field at the probe points p;, p,, p3 for
a Gaussian pulse centered at 4 x 105, 7 x 10" and 10 x 10" rad s~'. One clearly observes that the Gaussian
signal is recovered for w ¢ I, and completely perturbed when w € I,,. These effects are also observable globally.
In Fig. 13, we plot the L?-norm (in space) of the Fourier transform of the whole electromagnetic field (E 1, H;)
(we here choose to represent only one central frequency 7 x 10'3 rad s~!, the others being similar).
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Fig. 11. L2-norm of FFT of the whole electromagnetic field (left) comparison with vacuum results (right): for case (ii) (top row), for case
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referred to the web version of this article.)
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Fig. 12. FFT of |H,| at probe points p; (left), p, (middle), p3 (right) for several Gaussian pulses centered at 4 x 10'%, 7 x 10" or 10 x 103
rad s~ and two widths: for case (ii) (top row), for case (iii) (bottom row). The green zones indicate when o ¢ I, the red zones indicate
when w € I,. The darker red zone indicates the critical subinterval w € I,,. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the critical subinterval w € I,,. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
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4.2.4. Conclusion

To sum up, through various quantities of interests, we can clearly identify a change of behavior in the spectral
response in the critical interval. This provides numerical evidences about the proposed limiting amplitude principle
conjecture. Moreover, using polychromatic pulse illumination, one is directly able to find precisely traces of the
critical interval. In what follows, we continue our investigation and examine the impact of underlying black-hole
waves on the time-domain simulations.

5. Black-hole waves resonances

Results from previous sections clearly highlight the break of the limiting amplitude principle for critical
pulsations. In this section we investigate its impact on more physical quantities and situations.

5.1. Cross sections and black-hole fluxes

The amount of light diffracted or absorbed by an illuminated tridimensional structure is measured by energy
fluxes. The intrinsic capacity of an object to diffract or absorb light is then measured relative to the power of the
incident light beam excitation. One way to quantify this is to measure the diffraction or absorption cross sections
(defined in (18)). As a matter of fact, these provide the equivalent area of the incident beam that would have to
be used to obtain the same energy than that provided by the illuminated object. Thus when a scatterer absorbs or
scatters light on a much larger area compared to its physical size, it transpires in the absorption and scattering cross
sections as intense peaks, and their location indicates the associated resonance frequency. Cross sections are by
nature positive and in the 2D setting that we consider, cross sections have the dimension of a length and provide an
equivalent perimeter. We now investigate how they vary for cases (ii) and (iii), in the context of a polychromatic
illumination.

Remark 11. We choose a polychromatic source that illuminates the range of interest [1 x 10", 14 x 10"°] rad s,
With these chosen parameters, the range of frequencies at which we illuminate the structure lies in the visible-near
UV range. Furthermore, as mentioned in Section 3.2, the structure used is subwavelength.

Cross sections. Fig. 14 represents the scattering and absorption cross sections obtained with an incident Gaussian
pulse for both Drude materials. It must be emphasized that our interest lies more in finding a clear trace of the critical
interval than in extracting a precise position of resonances. Indeed, results show a clear trace of the critical interval:
strong resonances do appear for w € I,. While C,., remains positive, C,ps presents quite significant unphysical
oscillations and negative values. We observe that the latter is also sensitive to mesh discretization and the chosen
degree of interpolation (even for a refined mesh).

These observations can be explained. Scattering cross section C., tracks the far-field’s response whereas
absorption cross section C,p, is linked to the near-field’s response of the scatterer. The more erratic behavior of
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Fig. 14. (Left): Scattering cross sections C., (computed with (18)) when considering a Gaussian pulse: for case (ii) (top row), for case
(iii) (bottom row). (Right): Absorption cross sections C,ps When considering a Gaussian pulse: for case (ii) (top row), for case (iii) (bottom
row).

C.ps can thus be explained by the difficulties to accurately capture black-hole waves close to the corners, where
discretization has to be fine enough to avoid spurious reflections. This phenomenon has been well characterized
in frequency-domain [20], where an efficient modified finite element method (FEM) approximation with corner
treatments has been developed. Results may indicate that, even for time-domain formulations for which the problem
is mathematically well-posed, the discretization fails to approximate those highly-oscillatory behaviors and would
benefit from a similar specific corner treatment. This will be part of future investigations. As mentioned before,
while the polychromatic illumination does not fit the theoretical LAP framework, it allows to highlight the predicted
phenomena in a single run. This strongly suggests a systematic strategy to numerically identify signatures of a
critical interval on a given structure, even when the theory is not known.

Poynting fluxes. Fig. 15 compares the total Poynting flux to the black-hole fluxes around each corner of the triangle
scatterer. The black-hole fluxes (Fy)i={a,»,¢} are computed in a disk centered at the corner and of radius 2 nm, see
(20) and Fig. 3 for details.

Results show that:

(1) all black-hole fluxes are (almost) equal to zero when w ¢ I, (no black-hole waves are excited) ;
(ii) black-hole fluxes remain small when w € I, \ I, that is when only the black-hole singularities located at the
corner a can be excited ;
(iii) all black-hole fluxes are significant when w € I, (corresponding to all black-hole singularities being excited) ;
in this situation, we also observe that almost all the contributions to the Poynting flux are due to the corners.

All those observations are in accordance with theory from frequency-domain detailed in [20]: this is closely related
to black-hole excitation.

All results above illustrate that strong responses arise when illuminating a polygonal metallic obstacle with a
source swiping critical pulsations w, and those strong behaviors are directly connected to the black-hole waves that
are known to exist in frequency-domain. Here we considered an ideal case without dissipation. In what follows we
compare results with and without dissipation: this allows to identify whether the above observations are degenerate
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Fig. 15. Poynting fluxes when considering a Gaussian pulse illumination, for case (ii) (top row) and for case (iii) (bottom row). We compute
the total Poynting flux (left column), the black-hole fluxes (middle column), and compare the total Poynting flux to the sum of the black-hole
fluxes (right column).

behaviors (i.e. they only occur in the absence of dissipation), or intrinsic behaviors (i.e. they are observable also
with dissipation), of the physical structure.

5.2. Back to physics: the role of dissipation

Metals are always lossy, meaning that in practice one considers y # 0 in Eq. (4d). In this section we study the
impact of introducing dissipation (y # 0) in our computations. Note that adding dissipation changes the asymptotics
of the solution since the solution will be damped (up to vanishing). Moreover, problem (9) in frequency-domain
is always mathematically well-posed in presence of dissipation. This implies that there are actually no critical
pulsations to consider. We explore the question of finding a signature of the limit problem (and consequently limit
behaviors) in lossy cases.

Figs. 16 and 17 present comparisons between previous cross sections and Poynting fluxes, and the ones obtained
when we add dissipation: we now consider models (ii) and (iii) with the physical value y = 4.515 x 10" rad s~
Obtained cross sections for lossy cases remain positive (which is more physically relevant) and less sensitive to
the mesh discretization. However in both configurations (non lossy, lossy), cross sections present similar behaviors:
strong resonances arise at “critical” pulsations. Those resonances have less intensity with dissipation, and dissipation
prevents strong spurious resonances mentioned above in the non lossy case (assuming the mesh is sufficiently
refined at the corners). The fact that intense resonance peaks remain can be explained via the frequency-domain
framework [20,36]. By adding dissipation, the frequency problem becomes well-posed, however strong oscillations
at the corners remain. Dissipation allows to attenuate the black-hole waves, s ¢ H, (R*) being replaced by
sV € HILC(RZ), and selects the outgoing ones (limiting absorption principle), where the outgoing wave is the one
traveling towards the corners (as reference to their names). Observed peaks then correspond to attenuated black-
hole waves going towards the corners. Similarly, Poynting fluxes get smoothed out by dissipation, and most of the
energy fluxes come from the corners at critical pulsations: this corresponds to attenuated black-hole resonances
contributions.

Remark 12. As explained in Section 3.1, the frequency theory also allows to characterize the singularities as
odd or even coupled plasmons depending on the surface plasmon frequency. Due to the chosen non symmetric
configuration, we expect that the excitation of odd plasmons will be favored under the surface plasmon frequency,
whereas the excitation of even plasmons will be favored above the surface plasmon frequency. One can identify a
change of behavior in Cy.,, where the scattering cross section vanishes for v = wy,,.
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Fig. 17. Left: comparison of Poynting fluxes with and without dissipation: case (ii) (top row), case (iii) (bottom row). Right: comparison
of total Poynting fluxes and the sum of the Poynting fluxes at the corners: case (ii) with dissipation (top row), case (iii) with dissipation
(bottom row).
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Fig. 18. Scattering cross sections for a disk made of a Drude material (ii) and (iii) (no dissipation). The 2D section of the cylinder (a disk)
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Fig. 19. Comparison of scattering cross sections for a disk made of a Drude material (ii) with dissipation using the triangular section and
a disk section with same perimeter as the triangle section.

To sum up, studying the limit non lossy models allows to explain underlying resonances from physical lossy
configurations.

5.3. Corner effects

It is well known via Mie theory that dissipative subwavelength cylindrical scatterers exhibit one resonance located
at the surface plasmons frequency wy,. This resonance is called a dipole resonance. This result is in accordance
with the fact that the critical interval reduces to exactly {w;,} for smooth interfaces. We simply provide below
illustrations of the above statement, using the same material properties and for D a disk with same perimeter as
the considered triangle. Fig. 18 shows that only one resonance at wy, is observed. This also allows to additionally
validate our approach by recovering a known result.

On the other hand, from Section 5.2 we identify multiple resonances at critical pulsations, and those resonances
are related to specific surface plasmons (called in the limit case black-hole waves). In other words, this single
subwavelength structure with corners allows to produce multipolar resonances (quadripolar, octopolar, etc...).
Furthermore, the level of intensity of these multiple resonances is equivalent to the level of the dipolar resonance
that could be obtained with a cylinder with equivalent section perimeter (see Fig. 19). The resonance obtained with
a cylinder is however broader. Thus, it is possible to use triangular scatterers rather than circular ones to obtain:
(i) multiple resonances with one single structure, (ii) sharper resonances of equivalent intensity than the single
dipolar resonance of a cylindrical structure of equivalent perimeter. Polygonal interfaces then offer a larger range
of possible light enhancements.
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6. Conclusion

In this paper we provided a systematic numerical approach to identify if the limiting amplitude principle holds in
ideal plasmonic structures that is, non lossy plasmonic structures with corners, and identified the underlying causes
when it does not. Moreover, a study of cross sections and Poynting fluxes revealed that the underlying resonances
appearing at critical pulsations are related to localized surface plasmons at the corners called black-hole waves. We
found that those characterized behaviors are intrinsic to the problem, as being captured with or without dissipation.
Overall, this first work provides an interesting framework to investigate unexplored models and configurations, where
no theory is available. One can for example now investigate the fully three-dimensional case, where the associated
critical interval is not explicitly known in general, and test other plasmonic models such as Drude—Lorentz or more
generalized models (such as those in [31]). In particular, future work will include the study of non-local effects.
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