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Abstract—This letter presents the results of motion-tracking
synchronized millimeter wave (mmWave) link bandwidth fluctu-
ations while a user is engaged in immersive augmented/virtual
reality applications. Our system, called MITRAS, supports ex-
tensive exploration of human-induced impacts on mmWave link
bandwidth during immersive experience. MITRAS adopts the
packet train measurement application to track link bandwidth
fluctuations. Meanwhile, the user movements are tracked using
an Oculus Quest 2 headset. Through investigating the impacts
of human movements on link bandwidth fluctuations, we further
propose a link state prediction model to shed light on higher
layer protocol design for immersive applications over mmWave
links.

Index Terms—motion-tracking, immersive application, aug-
mented/virtual reality, mmWave, packet train, prediction.

I. INTRODUCTION

Immersive augmented/virtual reality (AR/VR) applications
require high-throughput (Gbps level) and low-latency con-
nectivity for real-time delivery of rich interactive content.
Meanwhile, untethered (wireless) access between the AR/VR
device and the access point (AP) is essential for better user
experience.

Unlike the sub-6 GHz band, the millimeter wave (mmWave)
spectrum is highly directional. As a result, they require
stricter alignments of the transmitter and the receiver beams.
Furthermore, the signal attenuates up to 20 dB at 60 GHz
band over non-line of sight (NLOS) path, causing severe
link bandwidth degradation. The deterioration in mmWave
link bandwidth is usually alleviated, after some delay, by
adaptive beam management. Therefore, the mmWave link is
in poor condition until the new optimal beam is built, which
in turn increases higher layer latency and reduces higher layer
throughput. A user’s immersive AR/VR experience contains
frequent interactions between the user and contents. These
interactions incurs movements, such as walking and rotation,
which impact on mmWave link bandwidth. This frequent
impact together with the latency in beam management, in turn,
adversely affects the quality of immersive AR/VR experience.

One can alleviate the degradation in user experience by
modifying the behavior of higher layer network protocols.
Such modifications, however, require knowledge of the link
behavior. In particular, the higher layers can take advantage
of predictions of the short-term future link conditions based
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on knowledge of the user movements in the immersive ex-
perience. In this paper, we present results of network layer
measurements of link bandwidth fluctuations along with mea-
surements of the user movements. From these measurements,
we show that one can build a learning model to help predict
link conditions in the near future. The learning model is fairly
simple and highly adaptive. Moreover, these measurements
and the learning model can be easily integrated into both WiFi
and 5G networks.

Studies of mmWave channels is not new [|1]]-[4]. Over the
past decade, mmWave channels have been studied particularly
as part of the development of standards such as IEEE 802.11ad
(5[, IEEE 802.11ay [6], and 5G New Radio (NR) [7]. These
studies are mainly designed for developing physical and link
layer solutions. In this paper, we focus on measurements
targeted on the impact of mmWave links on network layer and
above, especially in the context of indoor, immersive AR/VR
applications. Note that, network layer bandwidth fluctuations
are “aggregate” impacts of channel quality fluctuations and
physical and link layer solutions to mitigate deleterious effects
of channel quality fluctuations. For example, the data rate
observed at network layer is impacted by channel quality,
physical layer coding, physical layer modulation, link layer
adaptive repeat requests (ARQ) strategies, beamforming solu-
tions, etc. Although, there are many papers on channel char-
acteristics, there are not many papers that measure network
layer bandwidth fluctuations along with user movements, and
develop a simple learning model to predict near future network
layer conditions.

Similarly, there is a large body of literature focused on
dealing with the characteristics of mmWave channels at dif-
ferent layers of the protocol stack. For instance, Sur ef al.
propose MUST to predict the best beam and to redirect user
traffic over conventional WiFi when there is blockage in the
mmWave link [1]. Although MUST provides the solution at
the physical layer, higher layer performance enhancement in
mmWave accessed network is needed, especially in networks
with multi-connectivity [4], [8]], [9]. In a multi-connectivity
scenario, [9] proposes a cross-layer design to choose the
optimal wireless path through the transport layer interfaces.
In [2], Li et al. describe a camera video analysis testbed
using mmWave relay data plane with the assist of sub-6G
control plane. This testbed supports agile re-routing when a
mmWave link fails. The importance of scenario consideration
in mmWave network is also mentioned in [2]. With the release
of 5G NR [7], the mmWave channel modeling is proposed in
NYUSIM [3]] with the simulations in physical and link layers
in 5G cellular communications.
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Fig. 1: Structure of MITRAS measurement system

II. MITRAS MEASUREMENT SYSTEM

Fig. [I] shows the structure of our Millimeter wave Im-
mersive application TRAcking System (MITRAS) measure-
ment system and Fig. [2] depicts a user interacting with an
immersive AR/VR application in MITRAS using single and
dual connectivity respectively. The MITRAS measurement
system includes the VR tracking module, the mmWave link
bandwidth measurement module, and a data synchronization
process. In this system, the user wears an Oculus Quest 2
headset. The headset is connected to the network over a
wireless link, allowing for free user movement as needed
for the immersive experience. Since there is no mmWave
interface on Oculus Quest 2 headset, in addition, the user
wears client node (CN) devices connected to the network
over IEEE 802.11ay mmWave based wireless links. The dual
connectivity in MITRAS is supported by two mmWave CNs
for more transmission opportunities. The system logs the user
movements from the Oculus Quest 2 headset. Simultaneously,
it also logs the network layer link bandwidth in each of these
IEEE 802.11ay wireless links. Since this occurs in an indoor
environment, the user movements are always in the vicinity of
the IEEE 802.11ay AP (also shown in Fig. . However, due
to the directional nature of the mmWave channel, the network
layer link bandwidth fluctuates as the user moves during an
immersive VR application.
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Fig. 2: MITRAS setup
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A. VR tracking module

The VR tracking module is based on the Oculus Quest 2 and
OpenVR. This module tracks the location and movement of all
devices involved in VR applications, including the VR headset
and two controllers. The VR devices are connected to PC2
with a wireless connection. The PC2 runs and renders the VR
application and the corresponding views on the VR headset.
The VR devices send the real-time position and orientation
information to PC2 once every few milliseconds. With this
information, the VR tracking module calculates the user’s
walking speed (m/s) and rotational speed (rad/s).

BWbottleneck = (Ltrain ‘ Spacket)/tdispersion

By [||==== o)

mmWave
mmWave CN

mmWave AP channel

Fig. 3: Packet train illustration

B. mmWave link bandwidth measurement module

In this module, we measure the bandwidth of each mmWave
link separately. The link bandwidth measurement is achieved
using packet train, which is derived from the concept packet
pair [10]. The packet pair measures the smallest-bandwidth
link (i.e. bottleneck link) in the route from the sender to the
receiver (e.g. PC1 and PC2 in MITRAS) by transmitting two
back-to-back measurement packets. This technique relies on
the observation that these two packets are usually queued
and transmitted in an back-to-back manner. If this observation
holds, the time space between these two packets (i.e. time
dispersion) is inversely proportional to the bandwidth of the
bottleneck link. In MITRAS, when the mmWave link band-
width is high (e.g. in line of sight (LOS) situation), the time
dispersion is very small and the receiver clock may not be
accurate enough to measure time dispersion accurately.

For an accurate measurement, we use a train of measure-
ment packets, instead of a pair. This idea is illustrated in
Fig. 3] One packet train is a group of packets, sent from PC1
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through the mmWave AP. As shown in Fig. |3| ideally, all
the packets in the train are queued and then later transmitted
back-to-back on the mmWave link. Once the receiver PC2
receives a packet train through a mmWave CN, it calculates
the bottleneck bandwidth along the path according to the
train length and the time dispersion in the bottleneck. For
better measurement of a packet train, PC2 randomly samples
different consecutive sections from a packet train and takes
the average of the measurement results of these sections.
If Lipgin is the length of one random section in a packet
train and the packet size is Spacker» then the relationship
to bottleneck bandwidth in this section can be shown as

BWbottleneck} - (Ltrain . Spacket)/tdispersion [IO]

C. Data synchronization

In the implementation, in order to synchronize measurement
data in real time, the VR tracking and the packet train
measurements are executed as multiple independent processes
on different PC cores. During the measurement, these cores
forward the measured data into the shared memory. Mean-
while, the synchronizing process fetches the most recent data
from the shared memory once there is new data forwarded
into the memory. The interval of the most recent data fetching
process is also in millisecond level. This interval aligns with
the shortest interval during the measurement in previous two
modules. In this way, the measurements are synchronized with
their most recent measured results. Finally, these synchronized
results are output as the traces.

III. EVALUATION

The evaluation experiments are based on packet train tech-
nique. The experiments show the interactions between the
mmWave link bandwidth and the user movements, then further
explore their impacts on mmWave link. Finally, we show that
the tracking of movement speed can be utilized in network
layer link state prediction.
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Fig. 4: Packet train measurement with different MCS

1) Packet train measurement: For accurate bandwidth
measurement with low overhead, we test different parameters
for the packet train using wired connections with fixed band-
width. The optimal parameters for the packet train are 1500-
byte packet size, S0-packet train length and 25 random sections
in a packet train. With 10 ms packet train interval, the overhead
of the packet train measurement is 60 Mbps, which introduces
little overhead in a Gbps-level connection. The packet train
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measurement with these parameters is further validated in
simulations based on the latest 802.11ay module [11] in NS-
3. Fig. @] compares packet train measurement results with the
802.11ay link bandwidth under different Modulation Coding
Scheme (MCS) with single carrier in simulations. The results
show that, the packet train measurement provides accurate link
bandwidth estimation. Thus, we apply this technique to further
measurements.

2) Real-time tracking of link bandwidth and VR move-
ments: Fig. [5| describes the raw data in real-time tracking
of link bandwidth measurement and VR movements. In the
experiments, we focus on two types of movements, walking
and rotation, which are the movements a VR user incurs
frequently. With different magnitude, we explore their impacts
on mmWave link bandwidth.

Fig. [5a] shows the user’s walking velocity traces and the
corresponding link bandwidth. There are three different walk-
ing velocity conditions, fast, moderate, and slow. In these
experiments, two mmWave links on the user’s chest are
measured simultaneously. These two CNs are about 30 cm
lower than the AP in height and their total link bandwidth
traces are presented in the first row in Fig. In this figure,
the rest three rows represent the user’s velocity along three per-
pendicular directions, including forward/backward, left/right,
and up/down, relatively to the mmWave AP. These results
show that while only walking is involved, the link bandwidth
is affected correspondingly without obvious link break. The
reason is that the data receiving process can be affected by
changes in velocity. Meanwhile, the relative direction between
the AP and the CNs also changes slowly during walking,
which can impact the link quality. There is no obvious link
break due to that slow changes in relative directions may not
incur frequent beam reforming.

Fig. [5b] describes the traces of the user’s head rotation and
its effect on link bandwidth. The measurement is performed
on the device worn on the user’s head, which rotates the most
frequently in VR scenarios. In the experiments, the CN on
the head is about 15 cm higher than the AP in height. The
first row includes the link bandwidth traces when the user
rotates fastly, moderately, and slowly. The second, third and
forth rows present the rotating speed traces of yaw, pitch and
roll separately. Fig. [5b| shows that rotations in VR scenarios
are considerably harmful to mmWave link. This is because
dramatic changes in direction can easily break the alignment
between mmWave beams. Moreover, if the rotation is fast and
frequent, the link may be unable to recover since choosing
and reforming beam takes time.

Through the observation on Fig. [5] the alignment between
the link bandwidth traces and their corresponding VR tracking
traces shows MITRAS system’s synchronization between the
mmWave link bandwidth measurement module and the VR
tracking module.

3) Explore speed impacts in VR movements: Fig. [6| sum-
marizes the average link bandwidth under different walking
and rotational speeds. From Fig. [f] it follows that although
faster walking speed reduces link bandwidth, the impact is
not large. On the other hand, faster rotational speed reduces
the link bandwidth more significantly. This may be due to the
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Fig. 5: Real-time link bandwidth measurement and VR tracking
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Fig. 7: Link characteristics during a VR application
directional nature of the mmWave beam. The changes in direc- 0.0

tion due to rotations require new beamforming to reestablish
a strong connection. Since rotations are common movements
in VR applications, this is a challenge. Furthermore, since
rotations often incur view changes, which in turn require a
burst of new data, the reduction in link bandwidth caused by
rotations significantly degrades immersive experience.

4) Learn for link state prediction: Link state prediction at
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the network layer is important for intelligent protocol design at
the upper layers. These predictions can be used by higher layer
protocols to adapt their sending rate based on link conditions.
For instance, Transport Control Protocol (TCP) may reduce or
increase the sending rate based on the link condition in the near
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future say one Round-Trip Time (RTT) later. The link state
prediction can be communicated from a TCP receiver in the
VR headset to a TCP sender in the content server, which can
in turn adapt its sending rate based on the link state prediction.
Such adaptations can significantly improve the performance of
protocols such as TCP.

Considering the mechanisms of upper layer protocols
usually operate in discrete manners, we divide the single-
connected link bandwidth into four link states: Poor (P: O-
20 Mbps), Fair (F: 20-500 Mbps), Good (G: 500-900 Mbps),
Excellent (E: 900-2500 Mbps). Specifically, this separation in
states better supports real-time link prediction managing flow
delivery in the network layer. For the design of the learning
model, we firstly depicts the characteristics of mmWave link
states during the experience in a VR application. Fig. [/| shows
the long-term probability of link bandwidth being in each one
of these states under different walking and rotational speeds.
It is clear that the link bandwidth is more likely in poor
state when the rotational speeds are larger. Although rotation
is shown with more influence to mmWave link bandwidth
than merely walking in indoor VR scenarios in Sec. the
link characteristics in Fig. [/] still show link state deterioration
when the walking speed is high. This is because, during
an immersive VR experience, the user movement is usually
a combination of the walking movement and the rotational
movement (i.e. the user incurs both walking and rotation).

Further, we design a learning model for the link state
prediction as presented in Fig. |8} The inputs to the link state
prediction model include current link bandwidth (as measured
using the packet train approach, walking speed (as measured
by the VR headset), and rotational speed (as measured by
the VR headset). The inputs are sampled once every 10
ms. The objective is to predict the state of the link a short
time in the future (e.g., 10 ms, 20 ms, 40 ms, etc.). The
link state prediction model firstly uses a low pass filter with
1000 Hz bandwidth on the walking and rotational speeds to
reduce the effect of noises on these measurements. The core
component of this prediction model, the learning model, is
a Markov chain. Each state in the Markov model is a triple
comprised of (current link state, current movement state, and
state maintaining time). The current movement state is the
maximum of walking and rotational speed state, categorized
as either Slow, Moderate, or Fast. The current link state
is one of four states: Poor, Fair, Good, and Excellent. The
third component of each Markov state counts the number of
successive times the current link state has not changed. The
count is limited to a maximum of 20. The Markov model
therefore has a total of 4x3x20 = 240 states.

The learning model is trained using a trace of the measure-
ments obtained from the MITRAS while playing VR-based
games. The traces are used to train the transition probabilities
of the Markov model. We test the prediction accuracies by
comparing the predicted link states with the measured link
state while playing the same game on a different day. Fig. [9]
shows the prediction accuracies for four different time inter-
vals 10 ms, 20 ms, 30 ms, and 40 ms. The error bars show
90% confidence intervals. Note that, prediction accuracies are
very good in all the cases. It is often important to predict
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when the link state is about to change. The figure also shows
the accuracy of link change prediction. Here again, one notes
that accuracies are very good. Based on these evaluations, one
can conclude that the learning model works well in predicting
future link states. Future work includes using these predictions
to improve performance of higher layer protocols such as TCP.

IV. CONCLUSION

MITRAS integrates the real-time measurement of mmWave
link bandwidth with the movement tracking of the VR user.
MITRAS quantizes the VR user’s walking and rotational con-
ditions and explores their impacts on mmWave link bandwidth.
The further investigation using a learning model presents that
tracking of the movement is useful to predict network layer
link state in the near future. Moreover, the study based on
MITRAS is also referable to further investigations on real-time
mmWave AR systems. Considering current beam searching
and reforming take time, the performance of mmWave AR/VR
systems can be improved by further adaptive techniques at
higher layers with the assist of link state prediction in a cross-
layer design.
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