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Abstract—We examine the performance of scientific and en-
gineering kernels on the Fujitsu A64FX processor, both out-
of-the-box using various toolchains and with processor-specific
optimizations. While nearly all applications port with little to
no modification, significant performance variation is observed
between the multiple tool chains. This variation depends heavily
upon characteristics of the application (most notably its use of
mathematical functions) and is also constrained by the most
performant toolchains having limited support for recent language
standards. As expected, high performance demands that a kernel
is vectorized, multi-threaded, and localizes memory references.
Detailed optimizations, including use of intrinsics, are also
examined to understand performance gaps and what is necessary
to attain peak performance. This article employs the Ookami
computer technology testbed funded by the American National
Science Foundation. The system provides researchers worldwide
with access to 176 Fujitsu A64FX compute nodes as well as other
state-of the-art technology.

Index Terms—high-performance computing

I. INTRODUCTION

The A64FX processor deployed in Fugaku [1], currently
the world’s currently fastest supercomputer, was developed by
Fujitsu in collaboration with the RIK=EN Center for Compu-
tational Science. Our interest in A64FX is motivated by the
unique success of Fugaku in leading five major benchmarks:
TOP500 [2], Graph500 [3], HPCG-benchmark [4], HPL-AI
[5], Green [6]. The Fujitsu A64FX 48-core, 64-bit ARM
processor is the first to deploy the Scalable Vector Extension
(SVE) SIMD-vector instruction set. Its vector performance is
matched with 32 GB of high-bandwidth memory (1 TB/s)
and promises to retain familiar and successful programming
models while achieving high performance for a wide range of
applications. The Ookami testbed [7] at Stony Brook Univer-
sity enables exploration of the performance and relevance of
A64FX and related technologies to computational science and
engineering in multiple settings outside the leadership scale
of Fugaku. Researchers worldwide can request access and, if
approved, use the system free of charge.

In previous work by ourselves [8], [9] and others [10], the
platform has already demonstrated excellent portability with
most applications compiling and running out of the box, after
addressing the mundane issues of library names and com-
piler flags. Software that is both vectorized and threaded, or

employs optimized library routines, can immediately achieve
competitive performance [8]. However, for some applications
the path to performance is longer. In this paper, we explore
how the choice of toolchain impacts performance through the
ability to vectorize, the underlying math libraries, and aspects
of the OpenMP parallel runtime. We start by examining the
performance of vector kernels, explore the detailed implemen-
tation of the exponential function, examine the NAS parallel
benchmarks that emphasize the performance of compiled
code, and conclude with the HPC Challenge benchmarks that
emphasize the performance of library routines.

II. THE OOKAMI SYSTEM

The Ookami HPE Apollo 80 system funded by the National
Science Foundation (NSF) under grant OAC 1927880 provides
researchers with state-of-the-art computing technology. It in-
cludes 176 A64FX compute nodes running at 1.8GHz, each
with 32GB high-bandwidth memory, 48 cores and a 512GB
SSD. The operating system is standard Linux, CentOS 8. A
high-performance Lustre filesystem provides 0.8TB of storage
served by a Cray ClusterStor E1000. The HDR 200 GB/s
Infiniband network is configured as a full fat tree. The system’s
two login nodes are dual-socket ThunderX2 with 256 GB
memory. The ARM-based login nodes eliminate most cross-
compilation issues, and their very high scalar performance (64
cores or 256 threads at 2.3GHz) accelerates the development
cycle. Other nodes available on Ookami are a dual socket
AMD Milan (64 cores) with 512GB memory, an Intel Skylake
(32 cores) with 192 GB memory including two Nvidia V100
GPUs. This enables users to directly compare portability and
performance across all current major architectures (Intel x86,
AMD x86, ARM+NEON, ARM+SVE, and NVIDIA GPU).

The A64FX-700 series processor used in Ookami has 48
cores arranged in four groups of 12, termed core memory
groups (CMG) that are fully connected to each other. Each
CMG forms a non-uniform memory access (NUMA) region
with 8 Gbyte of on-package, stacked, high-bandwidth memory
(256 Gbyte/s). Each core has 64KB L1 cache, and there is an
8 MB L2 cache shared between the cores within a CMG.
Peak execution rate is achieved by issuing 2x512-bit wide
SIMD FMA + predicate op + 4x ALU instructions per cycle.



Theoretical peak double precision speed is computed as 1.8
GHzx2 FMA/cyclex2 FLOPs/FMAx8 64-bit words/vector =
57.6 GFLOP/s/core.

A. The Software Environment

Ookami runs on standard Linux, specifically CentOS 8. The
Bright Cluster Manager provides the operating system, and
workload manager from a unified interface. Job scheduling
is done using SLURM (Simple Linux Utility for Resource
Management, version 19.05.7).

III. COMPILER AND MATH LIBRARY VECTORIZATION

In teaching computer performance and software optimiza-
tion to physical scientists [11], team members have employed
the example of a simple Monte Carlo algorithm to compute
an integral over the exponential function. The naive loop body
is just 3 lines of code.

x = 23.0*xrand();
while (1) {
// sample and accept/reject new point
xnew = 23.0*rand();
if (exp(-xnew) > exp(-x)*rand()) x =
sum += x; // accumulate statistics

sum=0.0; // initialize

XNew;

However, on a CPU, in addition to being unvectorized and
unthreaded, this loop is completely serial — it exposes nearly
the full latency of most of the operations in the loop. In
contrast, on a GPU, nearly the same code is fully parallel
due to the implicit data parallelism of CUDA and the fully-
predicated instruction set of the GPU. Hence, comparison of
the performance of this tiny kernel reveals over a 500-fold
performance advantage for GPUs over CPUs. While being
a fair comparison of what is possible with minimal effort,
this is not a valid comparison of the performance of the
underlying hardware. Remedying the gap involves introducing
an additional loop over independent samples, splitting that
loop to serve both thread and vector parallelism, interchanging
loops, and promoting scalars to vectors. However, until about
a decade ago, mainstream compilers could not vectorize the
resulting inner loop due to (1) the if-test, (2) the exponential
function, and (3) the random number generator. Thus, addi-
tional required optimizations were loop splitting, and directly
invoking vectorized math library operations. On modern X86
(AVX and beyond), all major tool chains can vectorize the
if-test and exponential functions (for GCC assuming a recent
version of glibc), but a manual call to a vectorized random
number generator is still necessary. A Cray compiler from the
1980s had no such need.

To understand the situation On ARM+SVE, we developed a
small test suite to explore the ability of toolchains to vectorize
code and the resulting performance. The small loops also
permit examining and understanding the generated code. The
test loops are

e simple: y[i] = 2xx[i] + 3*x[i]*x[i]

e predicate: if (x[1]1>0) y[i] = x[i]
« math functions: reciprocal, square root, exponential, sine,
power

e gather: y[i] = x[index[i]]

e scatter: y[index[i]] =

o short gather and scatter (see text)

. The sizes of working vectors were adjusted to collectively
fill the L1 cache. The simple loop is representative of many
scientific or engineering applications that perform basic arith-
metic operations on vectors, matrices, and grids. The predicate
is motivated by the Monte Carlo application above, but occurs
widely. Many scientific kernels (e.g., evaluation of bonded
interactions in molecular dynamics, basis functions in quantum
chemistry, equations of state in astrophysics, etc.) can be
dominated by evaluation of mathematical functions. Gather
and scatter operations occur in many settings (interpolation
tables, splitting/merging vectors to avoid divergent execution
paths, unstructured meshes, etc.). For the gather/scatter test,
the index vector was constructed as a random permutation of
the entire index space (i.e., the integers ¢ = 0,1,...,n — 1,
where n is the vector length). In contrast, the index vector
for the short gather/scatter tests was constructed by randomly
permuting within 128 byte windows (i.e., 16 doubles). This is
to explore the performance of the A64FX implementation of
the SVE non-contiguous load that has special optimizations
within a 128-byte window, similar to coalescing of memory
accesses on a GPU by the threads in a (half-) warp.

The Intel, Fujitsu, Cray and ARM compilers vectorized all
loops, whereas the GNU compiler did not vectorize exp, sin,
and pow (compiler flags are in Table I). The Intel compiled
versions were only run on Intel Skylake (Xeon Gold 6140,
2.1GHz base, 3.7GHz boost), whereas all others used an
A64FX on Ookami (1.8GHz fixed). For these single-core
tests, the clock speed ratio leads to an expected circa 2x
ratio of runtime between A64FX and Skylake unless other
architectural or software features intervene. Figures 1 and 2
show the run-times relative to Skylake for the different loops
and compilers — the rationale for this choice being that the
Intel compiler and its associated math library are sufficiently
mature and tuned as to be regarded as optimal for practical
purposes, whereas the ARM+SVE stack is clearly less mature.

On A64FX, the Fujitsu toolchain delivers the highest per-
formance for all loops, followed by Cray, and ARM/GNU.
For the simple loops, the ARM and GNU compilers are
fairly competitive, but their performance on the ”simple” and
predicate loops are up to 2 times slower. However, we note on
similar kernels, the GNU compiler can sometimes outperform
the Cray compiler. Relative to Skylake, we note that the Fujitsu
tool chain performance hovers at the factor of 2 expected from
the ratio of the clock speeds, except for the predicate operation
that is 3-fold slower than Skylake and the short gather that
is only circa 1.5-fold slower. The A64FX Microarchitecture
Manual [12] indicates that if loads of pairs of elements of
a gather operation fit within an aligned 128-byte window,
then they are not split, resulting in a 2-fold speed up. No
such acceleration is indicated for scatter operations, however,
we note that the short scatter test localizes pairs of 128-byte
windows within a single 256 byte cache line, whereas the
cache line is only 64 bytes on Skylake.

x[1]



TABLE I
COMPILER FLAGS USED IN LOOP VECTORIZATION TESTS.

Compiler Version Flags

Fujitsu 1.0.20 -Kfast -KSVE -Koptmsg=2

Arm 21 —std=c++17 -Ofast -ffp-contract=fastv -ffast-math -Wall -Rpass=loop-vectorize -march=armv8.2-a+sve -mcpu=a64fx -armpl
-fopenmp

Cray 10.0.2 -O3 -h aggress,flex_mp= tolerant,msgs,negmsgs,vector3,omp

GNU 11.1.0 -Ofast -ffast-math -Wall -mtune=a64fx -mcpu=a64fx -march=armv8.2-a+sve -fopt-info-vec -fopt-info-vec-missed -fopenmp

Intel 19.1.2.254 -xHOST -O3  -ipo  -no-prec-div  -fp-model fast=2  -qopt-report=5  -qopt-report-phase=vec  -mkl=sequential

-qopt-zmm-usage=high -qopenmp
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Fig. 2. Runtime on A64FX of vectorized math functions compiled with
different compilers relative to Intel compiler on Skylake.

For the math functions, the Fujitsu tool chain is consistently
close to the anticipated 2-fold ratio relative to Skylake,
indicating that the A64FX can deliver cycle-level equivalent
throughput on these hand-coded kernels. The Cray math li-
brary is fairly consistently another factor of 1.5-2 slower, with

the AMD library slightly slower still except for 10x slower on
pow and 20x on square root. The latter is due to both the AMD
and GNU compilers selecting the SVE FSQRT instruction that
on A64FX is blocking with a 134 cycle latency for a 512-
bit vector. The Cray and Fujitsu compilers instead employ
a Newton algorithm. The previous ARM compiler version 20
also made a similar bad choice for reciprocal (as do the current
GNU compilers), leading us to hope square root will be fixed
in an upcoming release. It is important to note that the both
the GNU and AMD compilers report fully vectorizing the
reciprocal and square root loops even though the performance
could be very far from anticipated. Some components of the
AMD vector math library apparently employ Sleef [13].
Finally, we note that a complete evaluation of math library
performance must include accuracy, which will be the topic
of another paper.

The state of the GNU vector math library on ARM+SVE
deserves special discussion. Not only is there no vector math
library within glibc for ARM+SVE, there presently appears
to be no activity to develop one, and so we must anticipate
this situation persisting for possibly years. Thus, unless an ap-
plication computes primarily with floating-point multiplication
and addition (which fortunately includes most linear algebra,
finite-difference stencils, and FFT), or integer operations, the
GNU toolchain must be avoided for high-performance kernels.
This is a very unfortunate state of affairs since this toolchain
is the de facto standard for Linux platforms and is the first
that most new users on Ookami attempt to use.

IV. EVALUATION OF THE EXPONENTIAL FUNCTION

This section explores the gap in math library performance.
The serial GNU implementation of the exponential function on
AG64FX takes nearly 32 cycles per evaluation. The vectorized
ARM, Cray, and Fujitsu compilers take 6, 4.2, and 2.1 cycles,
respectively, and the Intel compiler on Skylake takes 1.6
cycles.

A standard approach to computing exp x starts by finding
integer m and value 7 such that |r| < 1log2 and z =
mlog2 + r, leading to expxz = 2" expr. Exponentiating r
can be done using a series expansion, with 13 terms being
required to obtain the required accuracy in double precision
arithmetic. Multiplication by 2" is accomplished efficiently by
adding m to the binary exponent. Unless extended precision is
used or some refinement is performed, the last bit(s) will not



be correctly rounded. An error of between 1 and 4 ulps (units
in the last place) is common in vectorized libraries, whereas
the slow serial libraries typically guarantee correct rounding.

The SVE instruction FEPXA accelerates this process by
reducing the number of terms in the series expansion to 5
by reducing the range of r by a factor of 64. We start by
writing * = (m + i/64)log2 + r, but now with integer m,
0 <i<64,and |r| < 135 log2. Then, expz = 2m+i/64 exp .
FEPXA computes 2m+i764, taking 17 bits as input (: in the
lower 6 bits and m + 1023 in the upper 11).

There are 15 floating-point instructions in the loop body,
with more instructions necessary for incrementing the loop
counter and pointers, and for testing and branching. The
processor issues all of these in about 16 cycles — with 8
elements per vector this gives a cost of 2 cycles per element
(in more detail, using the SVE vector-length agnostic loop
structure we obtain 2.2 cycles/element and 2.0 cycles/element
with a fixed-width register). Unrolling once decreased this
to 1.9 cycles/element. Empirically, the Estrin form for the
polynomial that reveals more parallelism at the expense of
more multiplications is slightly faster than the Horner form.

This is not a production-quality implementation — it has
not been tested at the edges of permissible input values and
some additional mask manipulation is necessary to ensure out
of range large positive values are evaluated to be either NaN
or infinity. Limited testing suggests that it yields about 6 ulp
precision, which is good enough for many applications, but
better is possible without compromising speed too much (an
estimated 0.25 additional cycles/element) by correcting the
last FMA operation. This would make the performance of this
implementation comparable with that of Fujitsu.

In light of this experience, we hypothesize that the main per-
formance gap for the non-Fujitsu math libraries is porting from
other platforms standard function approximation algorithms
that do not take full advantage of the features of the SVE
instruction set, as well as not having the detailed architecture
knowledge of the Fujitsu team.

V. NAS PARALLEL BENCHMARKS (NPB)

The NAS Parallel Benchmarks (NPB) [21] are well-known
problems for measuring the performance of parallel computers
and parallelization tools. Most of the benchmarks are derived
from computational fluid dynamics (CFD) codes and are
widely recognized as a good indicator of parallel computer
performance.

We used six applications from the C implementation of
the NAS Parallel Benchmark (NPB) suite [22] to evaluate the
performance of different compilers in the Ookami system. BT,
LU, and SP are pseudo applications, while the other three,
CG, EP, and UA, are based on computational kernels. The
benchmark applications can be run with six different datasets;
S, A, B,C, D, and E. S is the smallest, and F is the largest
data set. We used dataset C' for our experimentation. Here is
a brief overview of these applications:

BT: A simulated CFD computational kernel that uses an
implicit algorithm to solve 3-dimensional (3-D) compressible

Navier-Stokes equations. The finite differences solution to
the problem is based on an Alternating Direction Implicit
(ADI) approximate factorization that decouples the x, y, and
z dimensions. The resulting systems are Block-Tridiagonal of
5x 5 blocks and are solved sequentially along each dimension.
This application shows good load balancing behavior. We used
dataset size C ((162 x 162 x 162 grid size, and 200 iterations))
for experimentation.

CG: Uses a Conjugate Gradient method to compute an
approximation to the smallest eigenvalue of a large, sparse, and
unstructured matrix. It tests unstructured vector computations
and communications. It has a large amount of cache misses
due to its usage of a matrix with randomly generated locations
of entries. Dataset C employs 150000 rows, 15 non-zeros, and
75 iterations.

EP: An Embarrassingly Parallel Benchmark. It generates
pairs of Gaussian random deviates according to a specific
scheme. The goal of this benchmark is to establish a reference
point for platforms’ peak performance. Dataset C employs 232
pairs of random numbers.

LU: Solves a 3D seven-block-diagonal system using lower-
upper triangular systems solution. This application works with
regular sparse matrices, and it uses symmetric successive over
relaxation (SSOR) operations. Dataset size C employs 162 x
162 x 162 grid size, and 250 iterations.

SP: A simulated CFD computational kernel that has a
similar structure to BT. The finite differences solution to the
problem is based on a Beam-Warming approximate factoriza-
tion that decouples the x, y, and z dimensions. The resulting
system has Scalar Pentadiagonal bands of linear equations that
are solved sequentially along each dimension. It shows good
load balancing behavior but poor cache behavior. Dataset C
employs 162 x 162 x 162 grid size, and 400 iterations.

UA: Provides the solution of a stylized heat transfer problem
in a cubic domain, discretized on an adaptively refined, and
unstructured mesh. The benchmark features irregular, dy-
namic memory accesses. Dataset C employs 33500 elements,
1262100 mortar points, 8 levels of refinements, and 200
iterations.

We designed several experiments to test the A64FX sys-
tem performance and the performance of available compilers
(ARM, Cray, Fujitsu, GNU). Since the performance of the
A64FX system significantly depends on vectorization, the
experiments are designed to test the auto-vectorization ca-
pabilities of the compilers. We also compare the scalability
of these applications across multiple threads in the A64FX
system. Finally, we compare how the single-node performance
of A64FX compares to a traditional x86 system (Intel Skylake
with 36 cores).

A. Single node performance of different compilers

1) Single Core: We used the serial version of the NPB to
test the single-core performance of these benchmarks across
different compilers in A64FX and compare their performance
to the single-core performance of an Intel x86 system (Intel
Skylake) using Intel compiler. We used the same optimization
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Fig. 3. Single core runtime of NAS parallel benchmark applications compiled
with different compilers.

flags described in Table I except the OpenMP flags to compile
the programs. Figure 3 shows the result. These results show the
comparison of the optimization and vectorization performance
of different compilers (ARM vs. Cray vs. Fujitsu vs. GCC) in
the A64FX platform and the comparison of platform perfor-
mance (A64FX vs. x86). In A64FX, gcc seems to perform
the best or comparable for 5 of the 6 apps except for EP, a
highly compute-bound embarrassingly parallel application. To
figure out why GCC performed worse in EP, we investigated
the detailed vectorization report. We found that both compilers
vectorized the same portion of the code, yet there is a 3 fold
performance difference. We believe the performance difference
is due to some other optimization, not vectorization.

A64FX vs. x86: To compare the single-core performance of
A64FX against an Intel x86 system (Skylake), we compared
the performance of these compilers in A64FX against the
Intel compiler in Skylake. Intel compiler outperforms all the
compilers in A64FX by a huge margin (from 1.6X to 5.5X).
This performance difference can be attributed to both the
systems and the compilers. The performance difference is
the biggest for the compute-bound applications (5.5X for
EP) while it narrows towards the memory-bound applica-
tions (1.6X for CG). However, the single-core performance
difference in A64FX leaves a lot to be desired. We plan to
investigate this phenomenon in depth in the future.

2) All Cores: Although A64FX has a significant single-
core performance difference compared to Skylake, when using
the whole node (all available cores) using OpenMP, A64FX
does a much better job (Figure 4). In fact, in some cases, it
outperforms Skylake (SP and UA). Further investigation shows
that A64FX performs well in memory-bound applications
(CG, SP, UA) while Skylake wins out in compute-bound
applications. However, even in compute-bound applications,
the performance gap narrows compared to a single core. The
trend of A64FXs good performance in memory-bound apps
can be attributed to higher memory bandwidth.

As for the performance of different compilers in A64FX,
the trend from the single-core experiments continues, with
GCC still performing the best in most applications. However,
we do observe some interesting results with the ARM (in
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Fig. 4. Runtime of NAS parallel benchmark applications compiled with
different compilers running with all available cores.

UA and BT) and the Fujitsu (in UA and SP) compilers
where they perform significantly worse than GCC even though
they had a comparable single-core performance. This can be
attributed to data placement in a multi-threaded environment
and the OpenMP library implementation. Further investigation
reveals that the data placement strategy is the reason for such
performance deviance, at least for the Fujitsu compiler. The
Fujitsu compiler has a default policy of allocating all the data
in CMG 0. Once we changed the policy to first touch, the
Fujitsu compiler showed a much better performance in SP
and a slightly better performance in all the apps, including
UA. The bar representing fujitsu-first-touch shows
the performance with first touch binding. However, as seen
in figure 4, the performance improvement in UA is still
not significant enough for it to be comparable with other
compilers. We plan to investigate the reason behind this as
well as the reason behind the performance deviance of arm
compiler in BT and UA in the future.
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Fig. 5. Scaling (Parallel efficiency) of NAS parallel benchmark applications
in A64FX using the GNU compiler.

3) Scaling: An important aspect of HPC system design
is the scaling/parallel efficiency it can achieve for different
applications. To compare the scaling/parallel efficiency of the
NPB applications on the A64FX and the Skylake node, we
chose two of the best performing compilers in those systems



(GCC in A64FX and icc in Skylake). Figure 5 and 6 show
the parallel efficiency of the NPB applications on A64FX
and Skylake respectively. A64FX shows better scaling for all
the applications compared to Skylake. In A64FX, across 48
cores, EP (compute-bound) scales almost linearly while other
apps scale favorably, with SP (memory-bound) having the least
scaling/parallel efficiency of 0.6 across all 48 cores. Compared
to that, Skylake has a scaling/parallel efficiency between 0.7
(in EP) and 0.25 (in SP).
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Fig. 6. Scaling (Parallel efficiency) of NAS parallel benchmark applications
in x86 (Skylake) using the Intel compiler.

B. Discussion

During this experimentation, we focused on the out-of-the-
box experience of an application developer. Hence, we used
the compiler and runtime defaults for the experiments. As a
result, the result presented here may not represent the best per-
formance that can be achieved by different toolchains through
use of more detailed options and environment variables.

VI. LULESH

The LULESH (Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics) proxy application was developed as
representative of a challenge problem as well as a proxy
for Exascale applications [17]. LULESH solves a simplified
Sedov blast problem with analytic answers while capturing
the numerical essentials of more complex hydrodynamic ap-
plications [18]. Here we report early tests of LULESH 1.0
[19] on the Ookami A64FX system, using reasonable defaults
for the deployed compiler tool chains. These defaults are
shown in Table II and Figure 7, which also contains the
timings for single thread (st) and full occupation (mt) of
the available cores (48 for A64FX and 32 for the Intel
Skylake (Xeon Gold 6130, 16 cores/socket, 32 cores/server,
2.1 GHz base frequency) comparison system). Base represents
the reference 1.0 LULESH code, and Vect the result of an
available vectorized implementation (done originally for the
Intel Sandy Bridge architecture) [19].

Graphically these results are shown in Figure 7. Table II
shows promising vectorization for LULESH based on code
tuned for Intel architectures.

mmm Base(st)
. Vect(st)
= Base(mt)
. Vect(mt)

100 4

seconds/iteration

Gold-6130

ABAFX-Gnu A64FX-Fujitsu AG64FX-CPE  A64FX-Arm

Fig. 7. Comparison of LULESH timings for compilers deployed thus far on
Ookami. For comparison results are also shown for an Intel Skylake (Xeon
Gold 6130, 16 cores/socket, 32 cores/server, 2.1 GHz base frequency) system.

VII. HPC CHALLENGE BENCHMARK (HPCC)

The High-Performance Computing Challenge (HPCC)
benchmark [15] is built on top of the popular High-
Performance LINPACK (HPL) [16] and combines several
other benchmarks. Here we concentrate on matrix-matrix mul-
tiplication (DGEMM), HPL, and Fast Fourier Transformation
(FFT). The first two use linear algebra libraries, and the last
one uses the FFT libraries.

Within XDMoD [14], an HPC resource utilization and
performance analysis tool, we use HPCC for performance
monitoring of several HPC resources from XSEDE and other
systems. This allows us to compare the performance across
a wide range of resources. We have chosen several HPC
resources to make an interesting comparison (Table III). The
TACC Stampede 2 system consists of two node types: Intel
Skylake X (SKX) and Intel Knights Landing (KNL). Like
Ookami, both have a 512-bit wide SIMD instructions set
(AVX512), and SKX nodes have 48 cores each (like Ookami).
KNL has simpler cores than SKX but has a higher core count,
and both nodes have the same theoretical peak FLOP/s. Thus
we can compare several different systems, all of which utilize
a 512-bit wide SIMD instruction set. PSC Bridges 2 and SDSC
Expanse have the same AMD, Zen 2 generation, CPUs and
128 cores/node for the two-socket machine. However, they
only have a 256-bit wide SIMD instructions set (AVX2). Thus,
it is interesting to see whether the narrower SIMD instruction
with a higher core count will be more efficient.

The matrix and vector sizes for the tests were set similarly
to weak scaling problems with the fixed number of elements
per node. Specifically, in HPL, the matrix size was set to
(20,0004/N;,)?, where N,, is the number of nodes. In the em-
barrassingly parallel DGEMM test, each MPI process performs
a test on the matrix of size (20,000+/N,,/N..)? where N,, and
N, is the number of nodes and cores per node respectively.
The FFT was done on a vector of size 20, 000%N,,.

We tested a large set of LA and FFT libraries on Ookami.
Several of them already provide some SVE optimized routines,



TABLE 11
TIMINGS FOR LULESH.

Compiler Version | Flags Base(st) | Base(mt) | Vect(st) | Vect(mt)
ARM 21.0 | -03 -armpl -mcpu=native —-fopenmp -fvectorize 2.030 0.0661 1.575 0.0359
CPE 21.03 | -03 -h vector3 -h msgs -h negmsgs —-h omp 2.055 0.0677 1.310 0.0298
Fujitsu 1.0.20 | -Kfast -KSVE -Koptmsg=2 -Kopenmp 2.052 0.0662 1.359 0.0361
GNU 11.1.0 | -Ofast -fopenmp -Wall -mcpu=a64fx 2.054 0.0674 1.533 0.0351
Intel/x86_64 19.5 | -03 —gopenmp 0.395 0.0355 0.260 0.0154
TABLE IIT
SPECIFICATIONS OF COMPARED HPC SYSTEMS
. . . Cores per Base Frequency, Peak GFLOP/s  Peak GFLOP/s
System CPU SIMD Instructions Node GHz per Core per Node
Ookami Fujitsu A64FX SVE (512 wide) 48 1.8 57.6 2765
Intel Xeon Platinum 8160, 1.4 (AVX512,
TACC Stampede 2 Skylake (SKX) AVX512 48 all cores) 44.8 2150
Intel Xeon Phi 7250,
TACC Stampede 2 Knights Landing (KNL) AVX512 68 14 44.8 3046
PSC Bridges 2 AMD EPYC 7742 (Zen2)  AVX2 128 2.25 36 4608
SDSC Expanse AMD EPYC 7742 (Zen2) AVX2 128 2.25 36 4608
Ookami: OpenBlas- nearly ten t.1mes faster than non-optimized OpenBLAS (Figure
Ookami: ARMPL- 34,6 (60.1%) 9). Core-wise the A64FX core performance is similar to Intel

Ookami; LibSci(Cray)) -

Ookami; Fujitsu-
Stampede-2(Intel SKX); MKL -
Stampede-2(Intel KNL); MKL-
Bridges—2(AMD Zen2); OpenBlas -
Expanse(AMD Zen2); OpenBlas -

20 (34.7%)
40.9 (71%)
3.4 (96.9%)

23 (63.9%)

25.3 (70.2%)

0 20 40 60
Matrix Multiplication (DGEMM), GFLOP/s per core

Fig. 8. Double-Precision General Matrix Multiplication (DGEMM) Floating-
Point Performance per core, embarrassingly parallel (all cores performs same
workload). The number in parenthesis show percentage of theoretical peak
performance. Ookami is compared to several XSEDE systems, see Table III
for some of their specifications. The error bars are the standard deviation of
measurements.

among them: ARM Performance Library (ARMPL), Cray Lib-
Sci, Fujitsu BLAS, Cray FFTW, Fujitsu FFTW. OpenBLAS
and FFTW currently do not have SVE optimizations but can be
built and pass numeric tests. By comparing optimized and non-
optimized libraries, we can speculate on the potential gains
from specifically optimizing software for SVE instructions.

In the case of matrix-matrix multiplication, Fujitsu BLAS
has the highest performance, almost 14 times faster than non-
optimized OpenBLAS (Figure 8). The performance percentage
of the theoretical peak performance for A64FX core is 71%
which is between that for Intel KNL (11.%) and SKX (97%)
systems and on par with AMD Zen 2 systems. Thus DGEMM
performance is most likely already close to the maximum
on A64FX for this matrix size. As for per-core performance
compared to other systems, it is close to Intel SKX and 1.6
times faster than AMD Zen 2 cores. That is, the SIMD width
is important for DGEMM. The ARM Performance Library
and Cray LibSci also show significant speed-up over the non-
optimized OpenBLAS library.

For HPL, Fujitsu BLAS also has the highest performance,

SKX and 1.6 times faster than AMD Zen-2 cores. Per-node
performance is comparable to that of the Intel SKX system
and nearly 1.6 smaller than that of the AMD Zen-2 system.
Thus overall, 2.7 times more cores and a slightly faster clock
speed outperform a twice wider SIMD set. On multiple nodes,
HPL does not scale well in the case of Fujitsu BLAS and MPI
(Figure 9). ARMPL on the other hand shows better scalability
and performance on two or more nodes. We speculate the
Fujitsu MPI may not be optimized for our interconnect.

Within the FFT benchmark, we tested several versions of
FFTW library and ARMPL (Figure 9). The ARMPL imple-
mentation seems to be unoptimized. The Fujitsu version of
FFTW shows the best results, which is 4.2 times faster than
the non-optimized FFTW. This is smaller than what we see in
the LA library comparison, and the performance percentage of
the theoretical peak is also below the well-established systems
(Intel and AMD). The multi-node parallel performance is also
a struggle, and it is relatively flat across all tested nodes count
(Figure 9).D). In summary, The HPCC results showed good
performance from several LA. On a single node, the Fujitsu
BLAS is likely already close to the best possible performance,
though lagged on multiple nodes. The FFT library routines
seem to have room for improvement.

VIII. CONCLUSION

The Fujitsu and HPE/Cray toolchains stand out as delivering
the very best performance. The ARM/LLVM-11 toolchain
delivers competitive performance and fully supports current
language standards. However, mainline LLVM currently in-
cludes limited support for SVE. GCC optimizes for both SVE
and A64FX, and can sometimes generate the best vector and
OpenMP performance. However, it is let down by the lack of
a vector math library and, as a result some kernels might run
30-times slower than if using the Fujitsu or Cray compilers.
Thus, high performance for full applications means adopting
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Fig. 9. High Performance LINPACK Floating-Point Performance on (A) single and (B) multiple nodes. Fast Fourier Transform (FFTW) Floating-Point
Performance on (C) single and (D) multiple nodes. The number in parenthesis show percentage of theoretical peak performance. The error bars are the

standard deviation of measurements.

a commercial toolchain and, possibly, limiting use of modern
language features.
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