
A64FX performance: experience on Ookami

Md Abdullah Shahneous Bari, Barbara Chapman, Anthony Curtis, Robert J. Harrison, Eva Siegmann

Institute for Advanced Computational Science, Stony Brook University

Stony Brook, NY, USA

{MdAbdullah.ShahneousBari, Barbara.Chapman, Anthony.Curtis, Robert.Harrison, Eva.Siegmann}@stonybrook.edu

Nikolay A. Simakov, Matthew D. Jones

Center for Computational Research, University at Buffalo

Buffalo, NY, USA

nikolays@buffalo.edu, jonesm@buffalo.edu

Abstract—We examine the performance of scientific and en-
gineering kernels on the Fujitsu A64FX processor, both out-
of-the-box using various toolchains and with processor-specific
optimizations. While nearly all applications port with little to
no modification, significant performance variation is observed
between the multiple tool chains. This variation depends heavily
upon characteristics of the application (most notably its use of
mathematical functions) and is also constrained by the most
performant toolchains having limited support for recent language
standards. As expected, high performance demands that a kernel
is vectorized, multi-threaded, and localizes memory references.
Detailed optimizations, including use of intrinsics, are also
examined to understand performance gaps and what is necessary
to attain peak performance. This article employs the Ookami
computer technology testbed funded by the American National
Science Foundation. The system provides researchers worldwide
with access to 176 Fujitsu A64FX compute nodes as well as other
state-of the-art technology.

Index Terms—high-performance computing

I. INTRODUCTION

The A64FX processor deployed in Fugaku [1], currently

the world’s currently fastest supercomputer, was developed by

Fujitsu in collaboration with the RIKΞN Center for Compu-

tational Science. Our interest in A64FX is motivated by the

unique success of Fugaku in leading five major benchmarks:

TOP500 [2], Graph500 [3], HPCG-benchmark [4], HPL-AI

[5], Green [6]. The Fujitsu A64FX 48-core, 64-bit ARM

processor is the first to deploy the Scalable Vector Extension

(SVE) SIMD-vector instruction set. Its vector performance is

matched with 32 GB of high-bandwidth memory (1 TB/s)

and promises to retain familiar and successful programming

models while achieving high performance for a wide range of

applications. The Ookami testbed [7] at Stony Brook Univer-

sity enables exploration of the performance and relevance of

A64FX and related technologies to computational science and

engineering in multiple settings outside the leadership scale

of Fugaku. Researchers worldwide can request access and, if

approved, use the system free of charge.

In previous work by ourselves [8], [9] and others [10], the

platform has already demonstrated excellent portability with

most applications compiling and running out of the box, after

addressing the mundane issues of library names and com-

piler flags. Software that is both vectorized and threaded, or

employs optimized library routines, can immediately achieve

competitive performance [8]. However, for some applications

the path to performance is longer. In this paper, we explore

how the choice of toolchain impacts performance through the

ability to vectorize, the underlying math libraries, and aspects

of the OpenMP parallel runtime. We start by examining the

performance of vector kernels, explore the detailed implemen-

tation of the exponential function, examine the NAS parallel

benchmarks that emphasize the performance of compiled

code, and conclude with the HPC Challenge benchmarks that

emphasize the performance of library routines.

II. THE OOKAMI SYSTEM

The Ookami HPE Apollo 80 system funded by the National

Science Foundation (NSF) under grant OAC 1927880 provides

researchers with state-of-the-art computing technology. It in-

cludes 176 A64FX compute nodes running at 1.8GHz, each

with 32GB high-bandwidth memory, 48 cores and a 512GB

SSD. The operating system is standard Linux, CentOS 8. A

high-performance Lustre filesystem provides 0.8TB of storage

served by a Cray ClusterStor E1000. The HDR 200 GB/s

Infiniband network is configured as a full fat tree. The system’s

two login nodes are dual-socket ThunderX2 with 256 GB

memory. The ARM-based login nodes eliminate most cross-

compilation issues, and their very high scalar performance (64

cores or 256 threads at 2.3GHz) accelerates the development

cycle. Other nodes available on Ookami are a dual socket

AMD Milan (64 cores) with 512GB memory, an Intel Skylake

(32 cores) with 192 GB memory including two Nvidia V100

GPUs. This enables users to directly compare portability and

performance across all current major architectures (Intel x86,

AMD x86, ARM+NEON, ARM+SVE, and NVIDIA GPU).

The A64FX-700 series processor used in Ookami has 48

cores arranged in four groups of 12, termed core memory

groups (CMG) that are fully connected to each other. Each

CMG forms a non-uniform memory access (NUMA) region

with 8 Gbyte of on-package, stacked, high-bandwidth memory

(256 Gbyte/s). Each core has 64KB L1 cache, and there is an

8 MB L2 cache shared between the cores within a CMG.

Peak execution rate is achieved by issuing 2x512-bit wide

SIMD FMA + predicate op + 4x ALU instructions per cycle.

Theoretical peak double precision speed is computed as 1.8

GHz×2 FMA/cycle×2 FLOPs/FMA×8 64-bit words/vector =

57.6 GFLOP/s/core.

A. The Software Environment

Ookami runs on standard Linux, specifically CentOS 8. The

Bright Cluster Manager provides the operating system, and

workload manager from a unified interface. Job scheduling

is done using SLURM (Simple Linux Utility for Resource

Management, version 19.05.7).

III. COMPILER AND MATH LIBRARY VECTORIZATION

In teaching computer performance and software optimiza-
tion to physical scientists [11], team members have employed
the example of a simple Monte Carlo algorithm to compute
an integral over the exponential function. The naive loop body
is just 3 lines of code.

x = 23.0*rand(); sum=0.0; // initialize

while (1) {

// sample and accept/reject new point

xnew = 23.0*rand();

if (exp(-xnew) > exp(-x)*rand()) x = xnew;

sum += x; // accumulate statistics

}

However, on a CPU, in addition to being unvectorized and

unthreaded, this loop is completely serial — it exposes nearly

the full latency of most of the operations in the loop. In

contrast, on a GPU, nearly the same code is fully parallel

due to the implicit data parallelism of CUDA and the fully-

predicated instruction set of the GPU. Hence, comparison of

the performance of this tiny kernel reveals over a 500-fold

performance advantage for GPUs over CPUs. While being

a fair comparison of what is possible with minimal effort,

this is not a valid comparison of the performance of the

underlying hardware. Remedying the gap involves introducing

an additional loop over independent samples, splitting that

loop to serve both thread and vector parallelism, interchanging

loops, and promoting scalars to vectors. However, until about

a decade ago, mainstream compilers could not vectorize the

resulting inner loop due to (1) the if-test, (2) the exponential

function, and (3) the random number generator. Thus, addi-

tional required optimizations were loop splitting, and directly

invoking vectorized math library operations. On modern X86

(AVX and beyond), all major tool chains can vectorize the

if-test and exponential functions (for GCC assuming a recent

version of glibc), but a manual call to a vectorized random

number generator is still necessary. A Cray compiler from the

1980s had no such need.

To understand the situation On ARM+SVE, we developed a

small test suite to explore the ability of toolchains to vectorize

code and the resulting performance. The small loops also

permit examining and understanding the generated code. The

test loops are

• simple: y[i] = 2*x[i] + 3*x[i]*x[i]

• predicate: if (x[i]>0) y[i] = x[i]

• math functions: reciprocal, square root, exponential, sine,

power

• gather: y[i] = x[index[i]]

• scatter: y[index[i]] = x[i]

• short gather and scatter (see text)

. The sizes of working vectors were adjusted to collectively

fill the L1 cache. The simple loop is representative of many

scientific or engineering applications that perform basic arith-

metic operations on vectors, matrices, and grids. The predicate

is motivated by the Monte Carlo application above, but occurs

widely. Many scientific kernels (e.g., evaluation of bonded

interactions in molecular dynamics, basis functions in quantum

chemistry, equations of state in astrophysics, etc.) can be

dominated by evaluation of mathematical functions. Gather

and scatter operations occur in many settings (interpolation

tables, splitting/merging vectors to avoid divergent execution

paths, unstructured meshes, etc.). For the gather/scatter test,

the index vector was constructed as a random permutation of

the entire index space (i.e., the integers i = 0, 1, . . . , n − 1,

where n is the vector length). In contrast, the index vector

for the short gather/scatter tests was constructed by randomly

permuting within 128 byte windows (i.e., 16 doubles). This is

to explore the performance of the A64FX implementation of

the SVE non-contiguous load that has special optimizations

within a 128-byte window, similar to coalescing of memory

accesses on a GPU by the threads in a (half-) warp.

The Intel, Fujitsu, Cray and ARM compilers vectorized all

loops, whereas the GNU compiler did not vectorize exp, sin,

and pow (compiler flags are in Table I). The Intel compiled

versions were only run on Intel Skylake (Xeon Gold 6140,

2.1GHz base, 3.7GHz boost), whereas all others used an

A64FX on Ookami (1.8GHz fixed). For these single-core

tests, the clock speed ratio leads to an expected circa 2x

ratio of runtime between A64FX and Skylake unless other

architectural or software features intervene. Figures 1 and 2

show the run-times relative to Skylake for the different loops

and compilers — the rationale for this choice being that the

Intel compiler and its associated math library are sufficiently

mature and tuned as to be regarded as optimal for practical

purposes, whereas the ARM+SVE stack is clearly less mature.

On A64FX, the Fujitsu toolchain delivers the highest per-

formance for all loops, followed by Cray, and ARM/GNU.

For the simple loops, the ARM and GNU compilers are

fairly competitive, but their performance on the ”simple” and

predicate loops are up to 2 times slower. However, we note on

similar kernels, the GNU compiler can sometimes outperform

the Cray compiler. Relative to Skylake, we note that the Fujitsu

tool chain performance hovers at the factor of 2 expected from

the ratio of the clock speeds, except for the predicate operation

that is 3-fold slower than Skylake and the short gather that

is only circa 1.5-fold slower. The A64FX Microarchitecture

Manual [12] indicates that if loads of pairs of elements of

a gather operation fit within an aligned 128-byte window,

then they are not split, resulting in a 2-fold speed up. No

such acceleration is indicated for scatter operations, however,

we note that the short scatter test localizes pairs of 128-byte

windows within a single 256 byte cache line, whereas the

cache line is only 64 bytes on Skylake.

be correctly rounded. An error of between 1 and 4 ulps (units

in the last place) is common in vectorized libraries, whereas

the slow serial libraries typically guarantee correct rounding.

The SVE instruction FEPXA accelerates this process by

reducing the number of terms in the series expansion to 5

by reducing the range of r by a factor of 64. We start by

writing x = (m + i/64) log 2 + r, but now with integer m,

0 ≤ i < 64, and |r| < 1

128
log 2. Then, expx = 2m+i/64 exp r.

FEPXA computes 2m+i/64, taking 17 bits as input (i in the

lower 6 bits and m+ 1023 in the upper 11).

There are 15 floating-point instructions in the loop body,

with more instructions necessary for incrementing the loop

counter and pointers, and for testing and branching. The

processor issues all of these in about 16 cycles — with 8

elements per vector this gives a cost of 2 cycles per element

(in more detail, using the SVE vector-length agnostic loop

structure we obtain 2.2 cycles/element and 2.0 cycles/element

with a fixed-width register). Unrolling once decreased this

to 1.9 cycles/element. Empirically, the Estrin form for the

polynomial that reveals more parallelism at the expense of

more multiplications is slightly faster than the Horner form.

This is not a production-quality implementation — it has

not been tested at the edges of permissible input values and

some additional mask manipulation is necessary to ensure out

of range large positive values are evaluated to be either NaN

or infinity. Limited testing suggests that it yields about 6 ulp

precision, which is good enough for many applications, but

better is possible without compromising speed too much (an

estimated 0.25 additional cycles/element) by correcting the

last FMA operation. This would make the performance of this

implementation comparable with that of Fujitsu.

In light of this experience, we hypothesize that the main per-

formance gap for the non-Fujitsu math libraries is porting from

other platforms standard function approximation algorithms

that do not take full advantage of the features of the SVE

instruction set, as well as not having the detailed architecture

knowledge of the Fujitsu team.

V. NAS PARALLEL BENCHMARKS (NPB)

The NAS Parallel Benchmarks (NPB) [21] are well-known

problems for measuring the performance of parallel computers

and parallelization tools. Most of the benchmarks are derived

from computational fluid dynamics (CFD) codes and are

widely recognized as a good indicator of parallel computer

performance.

We used six applications from the C implementation of

the NAS Parallel Benchmark (NPB) suite [22] to evaluate the

performance of different compilers in the Ookami system. BT,

LU, and SP are pseudo applications, while the other three,

CG, EP, and UA, are based on computational kernels. The

benchmark applications can be run with six different datasets;

S, A, B, C, D, and E. S is the smallest, and E is the largest

data set. We used dataset C for our experimentation. Here is

a brief overview of these applications:

BT: A simulated CFD computational kernel that uses an

implicit algorithm to solve 3-dimensional (3-D) compressible

Navier-Stokes equations. The finite differences solution to

the problem is based on an Alternating Direction Implicit

(ADI) approximate factorization that decouples the x, y, and

z dimensions. The resulting systems are Block-Tridiagonal of

5×5 blocks and are solved sequentially along each dimension.

This application shows good load balancing behavior. We used

dataset size C ((162×162×162 grid size, and 200 iterations))

for experimentation.

CG: Uses a Conjugate Gradient method to compute an

approximation to the smallest eigenvalue of a large, sparse, and

unstructured matrix. It tests unstructured vector computations

and communications. It has a large amount of cache misses

due to its usage of a matrix with randomly generated locations

of entries. Dataset C employs 150000 rows, 15 non-zeros, and

75 iterations.

EP: An Embarrassingly Parallel Benchmark. It generates

pairs of Gaussian random deviates according to a specific

scheme. The goal of this benchmark is to establish a reference

point for platforms’ peak performance. Dataset C employs 232

pairs of random numbers.

LU: Solves a 3D seven-block-diagonal system using lower-

upper triangular systems solution. This application works with

regular sparse matrices, and it uses symmetric successive over

relaxation (SSOR) operations. Dataset size C employs 162×
162× 162 grid size, and 250 iterations.

SP: A simulated CFD computational kernel that has a

similar structure to BT. The finite differences solution to the

problem is based on a Beam-Warming approximate factoriza-

tion that decouples the x, y, and z dimensions. The resulting

system has Scalar Pentadiagonal bands of linear equations that

are solved sequentially along each dimension. It shows good

load balancing behavior but poor cache behavior. Dataset C

employs 162× 162× 162 grid size, and 400 iterations.

UA: Provides the solution of a stylized heat transfer problem

in a cubic domain, discretized on an adaptively refined, and

unstructured mesh. The benchmark features irregular, dy-

namic memory accesses. Dataset C employs 33500 elements,

1262100 mortar points, 8 levels of refinements, and 200

iterations.

We designed several experiments to test the A64FX sys-

tem performance and the performance of available compilers

(ARM, Cray, Fujitsu, GNU). Since the performance of the

A64FX system significantly depends on vectorization, the

experiments are designed to test the auto-vectorization ca-

pabilities of the compilers. We also compare the scalability

of these applications across multiple threads in the A64FX

system. Finally, we compare how the single-node performance

of A64FX compares to a traditional x86 system (Intel Skylake

with 36 cores).

A. Single node performance of different compilers

1) Single Core: We used the serial version of the NPB to

test the single-core performance of these benchmarks across

different compilers in A64FX and compare their performance

to the single-core performance of an Intel x86 system (Intel

Skylake) using Intel compiler. We used the same optimization

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

BT CG EP LU SP UA

E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Applications

Performance comparison (single core) - across compilers

arm cray fujitsu gcc icc-skylake

Fig. 3. Single core runtime of NAS parallel benchmark applications compiled
with different compilers.

flags described in Table I except the OpenMP flags to compile

the programs. Figure 3 shows the result. These results show the

comparison of the optimization and vectorization performance

of different compilers (ARM vs. Cray vs. Fujitsu vs. GCC) in

the A64FX platform and the comparison of platform perfor-

mance (A64FX vs. x86). In A64FX, gcc seems to perform

the best or comparable for 5 of the 6 apps except for EP, a

highly compute-bound embarrassingly parallel application. To

figure out why GCC performed worse in EP, we investigated

the detailed vectorization report. We found that both compilers

vectorized the same portion of the code, yet there is a 3 fold

performance difference. We believe the performance difference

is due to some other optimization, not vectorization.

A64FX vs. x86: To compare the single-core performance of

A64FX against an Intel x86 system (Skylake), we compared

the performance of these compilers in A64FX against the

Intel compiler in Skylake. Intel compiler outperforms all the

compilers in A64FX by a huge margin (from 1.6X to 5.5X).

This performance difference can be attributed to both the

systems and the compilers. The performance difference is

the biggest for the compute-bound applications (5.5X for

EP) while it narrows towards the memory-bound applica-

tions (1.6X for CG). However, the single-core performance

difference in A64FX leaves a lot to be desired. We plan to

investigate this phenomenon in depth in the future.

2) All Cores: Although A64FX has a significant single-

core performance difference compared to Skylake, when using

the whole node (all available cores) using OpenMP, A64FX

does a much better job (Figure 4). In fact, in some cases, it

outperforms Skylake (SP and UA). Further investigation shows

that A64FX performs well in memory-bound applications

(CG, SP, UA) while Skylake wins out in compute-bound

applications. However, even in compute-bound applications,

the performance gap narrows compared to a single core. The

trend of A64FXs good performance in memory-bound apps

can be attributed to higher memory bandwidth.

As for the performance of different compilers in A64FX,

the trend from the single-core experiments continues, with

GCC still performing the best in most applications. However,

we do observe some interesting results with the ARM (in

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

BT CG EP LU SP UA

E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Applications

Performance comparison (all cores) - across compilers

arm cray fujitsu fujitsu-first-touch gcc icc-skylake

Fig. 4. Runtime of NAS parallel benchmark applications compiled with
different compilers running with all available cores.

UA and BT) and the Fujitsu (in UA and SP) compilers

where they perform significantly worse than GCC even though

they had a comparable single-core performance. This can be

attributed to data placement in a multi-threaded environment

and the OpenMP library implementation. Further investigation

reveals that the data placement strategy is the reason for such

performance deviance, at least for the Fujitsu compiler. The

Fujitsu compiler has a default policy of allocating all the data

in CMG 0. Once we changed the policy to first touch, the

Fujitsu compiler showed a much better performance in SP

and a slightly better performance in all the apps, including

UA. The bar representing fujitsu-first-touch shows

the performance with first touch binding. However, as seen

in figure 4, the performance improvement in UA is still

not significant enough for it to be comparable with other

compilers. We plan to investigate the reason behind this as

well as the reason behind the performance deviance of arm

compiler in BT and UA in the future.

0

0.2

0.4

0.6

0.8

1

1.2

1 12 24 36 48

P
a

ra
ll

e
l

E
ff

ic
ie

n
cy

No. of Threads

BT CG EP LU SP UA

Fig. 5. Scaling (Parallel efficiency) of NAS parallel benchmark applications
in A64FX using the GNU compiler.

3) Scaling: An important aspect of HPC system design

is the scaling/parallel efficiency it can achieve for different

applications. To compare the scaling/parallel efficiency of the

NPB applications on the A64FX and the Skylake node, we

chose two of the best performing compilers in those systems

TABLE II
TIMINGS FOR LULESH.

Compiler Version Flags Base(st) Base(mt) Vect(st) Vect(mt)

ARM 21.0 -O3 -armpl -mcpu=native -fopenmp -fvectorize 2.030 0.0661 1.575 0.0359
CPE 21.03 -O3 -h vector3 -h msgs -h negmsgs -h omp 2.055 0.0677 1.310 0.0298
Fujitsu 1.0.20 -Kfast -KSVE -Koptmsg=2 -Kopenmp 2.052 0.0662 1.359 0.0361
GNU 11.1.0 -Ofast -fopenmp -Wall -mcpu=a64fx 2.054 0.0674 1.533 0.0351
Intel/x86 64 19.5 -O3 -qopenmp 0.395 0.0355 0.260 0.0154

TABLE III
SPECIFICATIONS OF COMPARED HPC SYSTEMS

System CPU SIMD Instructions
Cores per
Node

Base Frequency,
GHz

Peak GFLOP/s
per Core

Peak GFLOP/s
per Node

Ookami Fujitsu A64FX SVE (512 wide) 48 1.8 57.6 2765

TACC Stampede 2
Intel Xeon Platinum 8160,
Skylake (SKX)

AVX512 48
1.4 (AVX512,
all cores)

44.8 2150

TACC Stampede 2
Intel Xeon Phi 7250,
Knights Landing (KNL)

AVX512 68 1.4 44.8 3046

PSC Bridges 2 AMD EPYC 7742 (Zen2) AVX2 128 2.25 36 4608
SDSC Expanse AMD EPYC 7742 (Zen2) AVX2 128 2.25 36 4608

23 (63.9%)

25.3 (70.2%)

34.6 (60.1%)

20 (34.7%)

40.9 (71%)

3 (5.1%)

5 (11.2%)

43.4 (96.9%)

Expanse(AMD Zen2); OpenBlas

Bridges−2(AMD Zen2); OpenBlas

Stampede−2(Intel KNL); MKL

Stampede−2(Intel SKX); MKL

Ookami; Fujitsu

Ookami; LibSci(Cray))

Ookami; ARMPL

Ookami; OpenBlas

0 20 40 60

Matrix Multiplication (DGEMM), GFLOP/s per core

Fig. 8. Double-Precision General Matrix Multiplication (DGEMM) Floating-
Point Performance per core, embarrassingly parallel (all cores performs same
workload). The number in parenthesis show percentage of theoretical peak
performance. Ookami is compared to several XSEDE systems, see Table III
for some of their specifications. The error bars are the standard deviation of
measurements.

among them: ARM Performance Library (ARMPL), Cray Lib-

Sci, Fujitsu BLAS, Cray FFTW, Fujitsu FFTW. OpenBLAS

and FFTW currently do not have SVE optimizations but can be

built and pass numeric tests. By comparing optimized and non-

optimized libraries, we can speculate on the potential gains

from specifically optimizing software for SVE instructions.

In the case of matrix-matrix multiplication, Fujitsu BLAS

has the highest performance, almost 14 times faster than non-

optimized OpenBLAS (Figure 8). The performance percentage

of the theoretical peak performance for A64FX core is 71%

which is between that for Intel KNL (11.%) and SKX (97%)

systems and on par with AMD Zen 2 systems. Thus DGEMM

performance is most likely already close to the maximum

on A64FX for this matrix size. As for per-core performance

compared to other systems, it is close to Intel SKX and 1.6

times faster than AMD Zen 2 cores. That is, the SIMD width

is important for DGEMM. The ARM Performance Library

and Cray LibSci also show significant speed-up over the non-

optimized OpenBLAS library.

For HPL, Fujitsu BLAS also has the highest performance,

nearly ten times faster than non-optimized OpenBLAS (Figure

9). Core-wise the A64FX core performance is similar to Intel

SKX and 1.6 times faster than AMD Zen-2 cores. Per-node

performance is comparable to that of the Intel SKX system

and nearly 1.6 smaller than that of the AMD Zen-2 system.

Thus overall, 2.7 times more cores and a slightly faster clock

speed outperform a twice wider SIMD set. On multiple nodes,

HPL does not scale well in the case of Fujitsu BLAS and MPI

(Figure 9). ARMPL on the other hand shows better scalability

and performance on two or more nodes. We speculate the

Fujitsu MPI may not be optimized for our interconnect.

Within the FFT benchmark, we tested several versions of

FFTW library and ARMPL (Figure 9). The ARMPL imple-

mentation seems to be unoptimized. The Fujitsu version of

FFTW shows the best results, which is 4.2 times faster than

the non-optimized FFTW. This is smaller than what we see in

the LA library comparison, and the performance percentage of

the theoretical peak is also below the well-established systems

(Intel and AMD). The multi-node parallel performance is also

a struggle, and it is relatively flat across all tested nodes count

(Figure 9).D). In summary, The HPCC results showed good

performance from several LA. On a single node, the Fujitsu

BLAS is likely already close to the best possible performance,

though lagged on multiple nodes. The FFT library routines

seem to have room for improvement.

VIII. CONCLUSION

The Fujitsu and HPE/Cray toolchains stand out as delivering

the very best performance. The ARM/LLVM-11 toolchain

delivers competitive performance and fully supports current

language standards. However, mainline LLVM currently in-

cludes limited support for SVE. GCC optimizes for both SVE

and A64FX, and can sometimes generate the best vector and

OpenMP performance. However, it is let down by the lack of

a vector math library and, as a result some kernels might run

30-times slower than if using the Fujitsu or Cray compilers.

Thus, high performance for full applications means adopting

