
Educating HPC Users in the use of advanced

computing technology

Eva Siegmann, Alan Calder, Catherine Feldman, Robert J. Harrison

Institute for Advanced Computational Science, Stony Brook University, USA

Email: {eva.siegmann,alan.calder,catherine.feldman,robert.harrison}@stonybrook.edu

Abstract—We examine a multi-modal approach to educating
and training users of an advanced computing technology testbed
at the Institute for Advanced Computational Science at Stony
Brook University. Ookami [1] provides researchers worldwide
with access to 176 Fujitsu A64FX compute nodes, this being
the same processor technology powering the Japanese Fugaku
supercomputer, the fastest computer in the world since June
2020. However, achieving high-performance on this Arm-based,
leadership computing technology requires that users be familiar
with details of computer architecture, performance analysis and
modeling, and high-performance programming models that are
commonly omitted in introductory programming courses. Indeed,
regardless of their seniority, many of the testbed users are
surprisingly unfamiliar with basic concepts such as vectoriza-
tion, pipelining, latency/bandwidth, roofline models, computing
energy/power, threads, and non-uniform memory access. These
same concepts also pervade mainstream x86 technologies, so this
is of widespread concern. Due to the national/global nature of our
user community that is also very diverse in both discipline and
experience, the inability to offer formal classes, and our experi-
ence that most people do not tend to read online documentation
or training materials in sufficient depth, we have consciously
employed multiple approaches that heavily emphasize (online)
personal interactions and transfer of skills. Online documentation
has been organized around best-practices and FAQs; twice-
weekly hackathons and office hours via Zoom enable deep dives
by both the team and the user community with multiple broad
benefits; a Slack channel provides both real time and archived
answers and discussions; and workshops, training and webinars
target community needs as they arise. The perspective that
these tools are being used in an educational setting rather than
just for project communication makes them more effective and
contributes to community success.

Index Terms—A64FX, high-performance computing, educa-
tional program

I. INTRODUCTION

High-performance computing (HPC) is differentiated from

mainstream computing by raising ”performance” to a level-

one correctness concern. A correct program should not just

produce a valid result, it should execute “efficiently.” Even

defining HPC “performance” or “efficiency” is not straightfor-

ward, but everyone agrees that a national cyber-infrastructure

costing several hundred million dollars should be used effi-

ciently, and that is an adequate starting point for a conversation

with users. Unfortunately, due to the diverse nature of scientific

algorithms (so that most are not readily captured by optimized

libraries) and the low-level of HPC programming models, this

elevation of performance to a level-one concern means that

most programmers and users must be aware of many details of

system architecture and software as well as how these details

impact performance. The impacts can be huge — a program-

mer can find well over a 100x speed up by switching from

a serial implementation to a fully-pipelined, vectorized, and

threaded version; and a user can find factors of 2-10, or more,

by switching compilers or changing the options or environment

variables controlling OpenMP and MPI. Black-box recipes

and best practices do not fully address efficient utilization of

even a single computer system, and, more significantly, do

not produce a community prepared for today’s experimental

hardware becoming mainstream or inevitable future changes in

computer technology. As a computer testbed project funded by

the National Science Foundation, we perceived from the outset

a special responsibility for advancing communal interests of

which Ookami is just a small part.

II. THE OOKAMI TESTBED

A. Technical Details

Ookami is an Apollo 80 system funded by the NSF (Na-

tional Science Foundation) under grant OAC 1927880. It

consists of

• 176 Fujitsu A64FX nodes running at 1.8 GHz each with

32GB of high-bandwidth (1 TB/s) memory and a 512 GB

SSD

• 2 dual socket Thunder X2 (64 cores) each with 256 GB

memory

• 1 dual socket Intel Skylake (36 cores) with 192 GB

memory

• 1 dual socket AMD Milan (64 cores) with 512 GB

memory

• 2 Nvidia V100 GPUs

Ookami runs CentOS8 and a high-performance Lustre

filesystem provides around 800TB of storage served by a Cray

ClusterStor E1000. The HDR 200 GB/sInfiniband network

(100 GB/s host adaptors due to PCI limitations) is configured

as a full fat tree. The two login nodes are each dual-socket

ThunderX2 with 64 cores (256 threads) and 256 GB memory.

Since they are also Arm-based, the issue of cross-compilation

is reduced. The heart of the system is formed by the 176

A64FX compute nodes. A node consists of 48 cores (with

private 64KB L1 cache) grouped into four core memory groups

(CMG) of 12 cores that share an 8MB L2 cache is directly

connected to on-package stacked, high-bandwidth memory

(256GB/s). There is no L3 cache. The CMGs are connected via





III. NEW OPPORTUNITIES FOR EDUCATION

A. Slack Channel

Normally regarded as a tool for team communication, this

has become one of our most powerful educational tools. Sus-

tainably monitored by both team members and growing cadre

of users, we can immediately and directly respond to questions

and, as appropriate, pivot the conversation to address either

the fundamental issues or overarching concepts. For instance,

a question of clock speed (Ookami’s is fixed at 1.8 GHz) was

deliberately morphed into a conversation about the different

power efficiency concerns of edge and leadership computing,

and the problems in benchmarking on x86 processors with

dynamic clock speeds. Moreover, a “personal” conversation

with a user routinely pulls in a wider audience that brings dif-

ferent/deeper technical perspectives and follow-up questions,

and is publicly archived. It is routine that we refer users to

these archived conversations. The average number of posts is

288 per month.

B. Office Hours — what’s in a name?

There are twice-weekly, 2-hour Ookami office hours that are

virtual meetings via Zoom. Originally called hackathons, since

the original focus was on deep code dives and actually writing

code, we renamed them office hours to address poor attendance

— it turned out that most users interpreted hackathon to be

an invitation only or focused event, rather than being open to

all.

In their current form, the Ookami office hours give users

the opportunity to get in direct contact with the support

team as well as with other users. Users can join and ask

specific questions, do deep code dives, or just present their

work on the system and get feedback from others. Experience

and user-feedback show that these meetings are enormously

helpful, and many users seem to greatly appreciate the sense

of community it builds (as do we!). We also routinely use

these time slots for scheduled seminars and training events.

Again, approaching these as actual class office hours that

serve as much a pedagogical purpose as user support makes

the interaction much more impactful. For instance, rather

than stopping at the discovery that the performance of a

code is memory-bandwidth limited, we can introduce roofline

performance models and provide pointers to further reading.

However, unlike Slack, the office hours are not recorded be-

cause large volumes of unstructured video are mostly useless.

Thus, these conversation are ephemeral and different media

must be employed to document key points.

C. Ticketing System

More conventional user support, installation requests, or

reporting issues, are submitted via a ticket system at https:

//iacs.supportsystem.com/. Those tickets are handled by the

cluster’s support team. On average, users wait about a day for a

response to their ticket, thus this mechanism is not appropriate

for most other purposes.

D. Ookami Website

In addition to the above interactive components, we pro-

vide a project website, www.stonybrook.edu/ookami. It gives

information about what Ookami is, how to get accounts on the

system, the various projects which are using the system, the

system status, upcoming events like office hours or webinars,

and a detailed FAQ section. The FAQ section discusses the

important topics and best practices, e.g., how to access the

cluster, the module environment, compilers and toolchains,

slurm, vectorization, and storage. It also gives users access

to documentation like the A64FX specification, datasheet,

and microarchitecture manual; Arm and Cray documentations;

as well as recordings and material of any events hosted on

Ookami.

IV. WEBINARS AND SEMINARS

To educate users more deeply on specific topics, we rou-

tinely organize webinars and seminars from team and commu-

nity members. These are primarily focused on enabling users

to port and tune their codes for the A64FX architecture, but we

also use these as opportunities to put A64FX and its software

ecosystem in a broader context. In the following section,

webinars held in the time from January till August 2021

are described. The materials and recordings of all webinars

are available on the documentation section of the Ookami

webpage.

A. SVE Hackathon

In February 2021, a SVE (scalable vector extension)

hackathon held by Arm was hosted on Ookami. The goal

of this event was to introduce SVE as a tool for enhancing

scientific application codes, and to educate users in using per-

formance engineering tools for SVE. Every participant had an

account on Ookami and enough compute nodes were provided

to ensure that everybody could participate in the hands-on

exercises. This hackathon lasted three days and was a hybrid

event with presentations and hands-on exercises. The first

day gave introductions to the Arm ecosystem and the Fujitsu

A64FX processor. This theoretical block was followed by

hands-on exercises. Optimal code generation and differences in

the various compilers were studied with the example of FMLA

(floating-point fused multiply-add) and stream calculations.

At the end of the first day, power measurements on A64fX

were discussed. The second day covered the fundamentals of

SVE. Participants had the chance to test various small test

programs and use them for learning more on how to use SVE.

The compilers and their capabilities of vectorizing codes were

discussed in great detail. This topic was backed up with hands-

on exercises. The last day of the hackathon was used to talk

about the compiler intrinsics for SVE, complex arithmetics,

data movement, and the Arm profiling tools.

A total of 31 users participated on the event. This number

was very well suited for the hackathon as it was big enough to

be a critical mass and small enough to still allow interaction

between the users.



B. XDMoD

In March 2021, the team of the Center for Computational

Research at the University at Buffalo presented their software

XDMoD [2], which is monitoring the job performance on

Ookami and also has the application kernel module installed.

All users of Ookami can access the XDMoD instance and get

detailed information on the system’s overall utilization and the

performance of their own jobs.

The performance data, which can be accessed via the online

XDMoD interface [3] is collected via performance co-pilot

(PCP) [4]. It can also handle the Arm SVE hardware counters,

and time-series plots of the instruction rate are available in

the job viewer. XDMoD runs daily benchmarks to actively

monitor the performance. Instructions on how to set up these

benchmarks and how to utilize the various compilers for those

setups were given to the users.

This webinar educated Ookami users in accessing the

XDMoD instance, monitoring the overall performance of the

system, and getting detailed information on specific jobs.

C. TAU

In April 2021, a webinar about the TAU performance

system [5] took place. TAU is a portable profiling and tracing

toolkit for performance analysis of parallel programs written

in Fortran, C, C++, UPC, Java, and Python. In this webinar,

users learnt about the TAU architecture.

Profiling applications with TAU gives information about

how much time is spent in each routine and loop, what is

the contribution of each statement within a loop, time spent

in OpenMP loops, data cache misses, extent of vectorization,

memory usage, power usage, etc. In the webinar, hands-on

exercises were used for allowing users to get familiar with the

TAU interface.

As profiling is crucial in getting good performance, espe-

cially when using a new processor, this webinar was very

helpful for the Ookami users.

D. Parallelware Analyzer

As the Ookami project is not only collaborating with

academia but also with industry, a collaboration with the

Spanish company Appentra evolved. They are developing the

Parallelware Analyzer [6] and presented it to Ookami users in

the form of a webinar in July 2021.

The Parallelware Analyzer is a static code analyzer spe-

cializing in performance. During this event, users learnt how

they can use the software to create performance reports of

their application. During a hands-on exercise it was shown

how the profiler can identify performance bottlenecks. It can

also modify the source code by adding OpenMP pragmas. The

webinar used a MATMUL implementation as an example for

showing Parallelware Analyzer’s capabilities.

Due to the collaboration with Appentra, the software is

available to all users of Ookami. Similarly, Ookami sends reg-

ular reports about the utilization of the software to Appentra.

This allows them to tailor their software to the needs of HPC

users.

E. OSACA and likwid

In July 2021, the team from the Erlangen National High

Performance Computing Center at the Friedrich-Alexander

University Erlangen-Nuremberg held a webinar and online

training about their tools OSACA and likwid. This webinar

started with an introduction to the SpMV (Sparse matrix-

vector multiplication) theory and showed how the tools can

be used for that.

likwid is [7] a toolsuite of command line applications. It

consists of a variety of tools for e.g, showing thread, cache

and NUMA topology; configuring and reading out hardware

performance counters; pining threaded applications. OSACA

(Open Source Architecture Code Analyzer) [8], [9] can an-

alyze throughput and latency, and insert markers for deeper

analysis.

As a result of this seminar and the associated training

materials, multiple users have now started exploring use of

these tools that were previously mostly only known to HPC

experts.

V. USE CASE - FLASH ON OOKAMI

Due to the versatility of its applications, its long history

of running on cutting-edge platforms, its limited ability to

take advantage of accelerators such as GPUs, and the interests

of the investigators, the FLASH code was chosen as one of

the acceptance applications for Ookami. The research group

tasked with porting FLASH to Ookami is mainly associated

with the astrophysics community, and its members have differ-

ing levels of experience with HPC systems. Therefore, this task

presented both many challenges and opportunities to learn.

This use case seeks to demonstrate how the broad Ookami

collaboration provides a supportive community experience

that an application developer/user can expect when starting

a project on Ookami.

A. The FLASH Code

The FLASH code is a highly parallelized, component-based

scientific software package for addressing a variety of multi-

scale, multi-physics applications [10]–[14]. While originally

written to simulate astrophysical phenomena [15]–[19], such

as the Type Ia supernovae currently under investigation by this

research group, recent developments in FLASH have extended

its capabilities [12], [20]. FLASH is extensively used in in

modeling high powered laser experiments, including those at

the Omega Laser Facility; high-energy density physics; fluid-

structure interactions; and for more general problems [21].

The current release version of FLASH (4.6.2) is parallelized

primarily through MPI, although some solvers have been

modified to take advantage of threading [13]. Development

toward a more general design for better allowing threading

continues [22]–[24].

FLASH’s success and development is intertwined with its

history of being run on new architectures. FLASH was devel-

oped at the Flash Center for Computational Science at the Uni-

versity of Chicago that was originally funded by the Depart-

ment of Energy’s Accelerated Strategic Computing Initiative



[25], which allowed the group access to unclassified versions

or partitions of the platforms at the Defense Program National

Laboratories as they became available [26]. Highlights of the

development of FLASH included winning the SC2000 Gordon

Bell Prize, Special Category, for reactive fluid flow simulations

using AMR that achieved 238 GFlops on 6420 processors of

ASCI Red [27], performing a study of weakly compressible

stirred-turbulence at an unprecedented resolution [19], [28]

on the IBM BG/L machine to be commissioned at LLNL in

2005, and serving as one of of the formal acceptance tests for

Intrepid, the IBM BG/P, and MIRA, the IBM BG/Q, machines

at the Argonne Leadership Computing Facility [13].

B. Previous Experience

The P.I. of the astrophysics research group working with

FLASH is one of its developers. The P.I. has written and incor-

porated modules with significant additional physics capability

into the code, performed validation and verification studies,

and played a large role in porting and tuning the code on

the architectures highlighted above (see Section V-A). Also,

a few decades ago, the P.I. has run dissertation simulations

on traditional vector Cray machines, giving experience with

vectorizing codes that proved surprisingly useful for this

project.

The graduate student of the group had no prior experience in

HPC. Until now, the student had only run FLASH on a cluster

and made small changes to the problem, as the main focus

was creating analysis and visualization scripts to compare

simulations to observations. The student had only ever used

the GCC compiler; had a very basic understanding of MPI;

and had no knowledge of code profiling, porting code to new

architectures, tuning code for optimization, vectorization, or

even the parts of a computer.

In the following, the student describes in her own words the

experience of starting to use Ookami.

C. The Learning Process

The resources provided by the Ookami collaboration al-

lowed us to easily share information, learn new techniques,

and create a strong community. Ookami Office Hours provided

real-time help from experts in different fields. Over Zoom, we

could easily share our screen and be provided with instant

feedback when debugging. This greatly sped up the process

of porting our code; we learned from our more experienced

collaborators instead of rediscovering information on our own.

And when faced with a new problem, it was able to be solved

with suggestions from every member on the call, who brought

their different viewpoints together. This more personal way of

collaborating led to even greater involvement in our project:

a graduate student on the Ookami team in Stony Brook’s

computer science department helped us perform scaling stud-

ies and MPI implementation comparisons, and the P.I. of the

Ookami project set out to help us with vectorization. Getting

to meet our collaborators face-to-face allowed us to get to

know them, making Office Hours a comfortable and enjoyable

environment. The welcoming and supportive atmosphere made

it easy to ask questions, from basic questions about how to

log in to more complicated ones such as vectorizing specific

loops. We were also enthusiastically shown helpful tips to

speed up our workflow, such as saving our loaded modules for

easy restoration and our new favorite command line shortcuts

Ctrl-r and !.

In between the twice-weekly Office Hours, the active Slack

channel was an invaluable resource. Every member of the

Ookami collaboration is on the Ookami Slack channel. As

Slack is commonly used by many research groups, it was a

familiar way of communicating. Due to this and the welcoming

and supportive atmosphere, the Slack channel is widely used

by the collaboration. Important information, such as upcoming

events and FAQs, are pinned to the channel for easy access.

We are able to search through previous messages for answers

to our questions before posting new ones, and it usually

takes less than an hour for someone to respond in the group

chat. Through Slack, we can easily share screenshots, error

messages, code snippets, and even entire files if necessary.

This allowed other collaborators to write their own mini-

examples to test the feature in question, and see if the issue

was with the machine or with the user. In the former case,

issues could be easily reported through the ticketing system,

but more often than not the core Ookami team would quickly

respond on Slack and address the issue. This kind of support

was important on Ookami, and worked both ways, as the

testbed would also undergo frequent changes and the software

stack would evolve. Changes such as updating and moving

modules; adding queues; changing compiler licenses; or imple-

menting data limits and storage requirements were promptly

reported through the Slack channel, which provided the users

with instant feedback. Additionally, Slack gives the option to

message any member of the team individually, allowing for

deeper discussions and encouraging collaboration.

As the Ookami user base grew, so did the opportunities for

formal training in the form of webinars. We were able to learn

to use software and tools from their creators and developers,

who were excited that their work was being used on a new

platform and were consequently open to feedback, sugges-

tions, and questions. These workshops helped us learn to use

the tools that we are currently using to profile FLASH. The

workshops had varying levels of assumed previous knowledge,

which is at times too high for an application developer/user

in another field. However, questions are encouraged, and

the other resources mentioned above provided mediums to

discuss what was learned by others in more general terms.

The recorded videos available on the website are also helpful

resources to review.

Overall, the Ookami group has created a communication

model that makes users feel welcome and comfortable, en-

courages and enables collaboration, and is able to be scaled to

many users. Both Office hours and the Slack channel benefit

from having a large user base; the more questions that are

asked and the more people there are to answer, the better.

Any common issues and solutions that the group finds are

documented on Ookami’s growing website, where FAQs and





question. They mentioned that they would like to have specific

software on Ookami, e.g for visualization. Users who did

not yet attend any events (webinar, hackathon, office hours)

mentioned that they do not have time. Therefore, all webinars

and hackathons are recorded and the recordings together with

the slides and other material are available on the Ookami

webpage.

Another aspect of improving training materials and docu-

mentation is the continuous monitoring the slack channel dis-

cussion and tickets, as well as direct feedback from users, by

research staff. Improvements and additions to documentation

and training materials are thus continuously made following

interactions with users.

Similarly, research staff also monitor the slack channel,

bug reports, and tickets for deficiencies in documentation

and training materials and for deficiencies in management

procedures. An example was the confusion caused early on

by the rapidly changing software stack. Ookami uses modules

to allow users to modify their environments as needed for their

applications. Lists of modules, some of which were hidden,

were rapidly changing when Ookami first came on line, and

that resulted in considerable confusion among the users. As a

result, the pace of changes was slowed and additional attention

was paid to documenting module lists and the software stack.

Finally, plans are for formal surveys of users. Questions will

include the ease of finding information (e.g the usefulness

of FAQs), the overall utility of each category of training

material (Slack channel, documentation, ticket submission,

Office Hours, and webinars), and opportunities for direct

feedback from users. Surveys are expected to be completed

and sent to users by end of the calendar year 2021.

VII. SUMMARY AND CONCLUSION

The Ookami testbed provides researchers access to a new

computing technology, A64FX. The expertise of the users

ranges from experienced HPC users to undergraduate students,

e.g., students funded by the NSF REU program. The office

hours, the slack channel, the ticketing system and the website

are in place since the beginning aiming to provide support to

all users, independent of their level of expertise. During the

first weeks and months it turned out that the usage of those

different support channels depends a lot on the users’ personal

preferences. Some prefer a personal conversation during the

office hours while others favor written communication, or just

the supply of documentation on the website. The level of

expertise does not have a significant impact on what kind of

support users prefer. The topics of the webinars we are offering

is based on the feedback we get from user interaction.

To enable all users, independent of their level of expertise or

personal preferences, to port and tune their codes for A64FX,

to use Ookami in an efficient way, a multi-modal education

and training strategy is employed, which assessment suggests

is greatly appreciated by users.

ACKNOWLEDGMENT

Ookami [1] is supported by the National Science Foundation

(NSF) grant OAC 1927880, XDMoD by NSF OAC 1445806.

The FLASH code was developed in part by the DOE

NNSA ASC and DOE Office of Science ASCR supported

Flash Center for Computational Science at the University of

Chicago. Our work with the FLASH code was supported

in part by the US Department of Energy under grant DE-

FG02-87ER40317. The authors acknowledge REU Site: Data

+ Computing = Discovery NSF Award 1950052 that supported

some of the research with FLASH.

REFERENCES

[1] Stony Brook University, “Ookami.” https://www.stonybrook.edu/
commcms/ookami/, 2020.

[2] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon,
J. P. White, N. Simakov, A. K. Patra, J. Sperhac, T. Yearke, R. Rathsam,
M. Innus, C. D. Cornelius, J. C. Browne, W. L. Barth, and R. T. Evans,
“Open xdmod: A tool for the comprehensive management of high-
performance computing resources,” Computing in Science Engineering,
vol. 17, no. 4, pp. 52–62, 2015.

[3] University at Buffalo Center for Computational Research. https://
ookami.ccr.xdmod.org/index.php/, 2021.

[4] Silicon Graphics Inc, Aconex, and Red Hat, “Performance Co-Pilot
(PCP).” https://pcp.io, 2000.

[5] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[6] Appentra Solutions, S.L. https://www.appentra.com/products/
parallelware-analyzer/, 2021.

[7] Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein,
“”likwid”.” https://zenodo.org/record/4983493#.YS1 WIhKhPZ, 2021.

[8] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated instruction stream throughput prediction for intel and
amd microarchitectures,” in 2018 IEEE/ACM Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems

(PMBS), pp. 121–131, 2018.
[9] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic

throughput and critical path analysis of x86 and arm assembly ker-
nels,” in 2019 IEEE/ACM Performance Modeling, Benchmarking and

Simulation of High Performance Computer Systems (PMBS), pp. 1–6,
2019.

[10] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH:
An adaptive mesh hydrodynamics code for modeling astrophysical
thermonuclear flashes,” The Astrophysical Journal Supplement Series,
vol. 131, pp. 273–334, 2000.

[11] A. C. Calder, B. Fryxell, T. Plewa, R. Rosner, L. J. Dursi, V. G.
Weirs, T. Dupont, H. F. Robey, J. O. Kane, B. A. Remington, R. P.
Drake, G. Dimonte, M. Zingale, F. X. Timmes, K. Olson, P. Ricker,
P. MacNeice, and H. M. Tufo, “On validating an astrophysical simulation
code,” The Astrophysical Journal Supplement Series, vol. 143, pp. 201–
229, 2002.

[12] A. Dubey, K. Antypas, A. Calder, C. Daley, B. Fryxell, J. Gallagher,
D. Lamb, D. Lee, K. Olson, L. Reid, P. Rich, P. Ricker, K. Riley,
R. Rosner, A. Siegel, N. Taylor, K. Weide, F. Timmes, N. Vladimirova,
and J. Zuhone, “Evolution of flash, a multi-physics scientific simulation
code for high-performance computing,” International Journal of High

Performance Computing Applications, vol. 28, no. 2, pp. 225–237, 2014.

[13] A. Dubey, A. Calder, R. Fisher, C. Graziani, G. Jordan, D. Lamb,
L. Reid, D. Townsley, and K. Weide, “Pragmatic optimizations for better
scientific utilization of large supercomputers.,” International Journal of

High Performance Computing Applications, vol. 27, no. 3, pp. 360–373,
2013.

[14] A. Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker,
L. Reid, K. Riley, R. Rosner, A. Siegel, F. Timmes, N. Vladimirova, and
K. Weide, “The software development process of flash, a multiphysics
simulation code,” in 2013 5th International Workshop on Software

Engineering for Computational Science and Engineering (SE-CSE),
pp. 1–8, 2013.

[15] M. Zingale, F. X. Timmes, B. Fryxell, D. Q. Lamb, K. Olson, A. C.
Calder, L. J. Dursi, P. Ricker, R. Rosner, P. MacNeice, and H. M.
Tufo, “Helium detonations on neutron stars,” Astrophysical Journal

Supplement Series, vol. 133, p. 195, 2001.



[16] L. J. Dursi, M. Zingale, A. C. Calder, B. Fryxell, F. X. Timmes,
N. Vladimirova, R. Rosner, A. Caceres, D. Q. Lamb, K. Olson, P. M.
Ricker, K. Riley, A. Siegel, and J. W. Truran, “The Response of Model
and Astrophysical Thermonuclear Flames to Curvature and Stretch,”
Astrophysical Journal, vol. 595, pp. 955–979, Oct. 2003.

[17] A. Alexakis, A. C. Calder, L. J. Dursi, R. Rosner, J. W. Truran,
B. Fryxell, M. Zingale, F. X. Timmes, K. Olson, and P. Ricker, “On the
nonlinear evolution of wind-driven gravity waves,” Physics of Fluids,
vol. 16, pp. 3256–3268, Sept. 2004.

[18] A. Alexakis, A. C. Calder, A. Heger, E. F. Brown, L. J. Dursi, J. W.
Truran, R. Rosner, D. Q. Lamb, F. X. Timmes, B. Fryxell, M. Zingale,
P. M. Ricker, and K. Olson, “On heavy element enrichment in classical
novae,” Astrophysical Journal, vol. 602, pp. 931–937, 2004.

[19] R. Fisher, S. Abarzhi, S. M. Antypas, K.and Asida, A. C. C alder,
F. Cattaneo, P. Constantin, A. Dubey, I. Foster, J. B. Gallagher, M. K.
Ganapath, C. C. Glendenin, L. Kadanoff, D. Q. Lam b, S. Needham,
M. Papka, T. Plewa, L. Reid, P. Rich, K. Riley, and D. Sheeler, “Tera-
scale Turbulence Computation on BG/L Using the FLASH3 Code,” IBM

J. Res. & Dev., vol. 52, pp. 127–136, jan 2008.
[20] P. Tzeferacos, M. Fatenejad, N. Flocke, C. Graziani, G. Gregori, D. Q.

Lamb, D. Lee, J. Meinecke, A. Scopatz, and K. Weide, “FLASH MHD
simulations of experiments that study shock-generated magnetic fields,”
High Energy Density Physics, vol. 17, pp. 24–31, Dec. 2015.

[21] J. O’Neal, K. Weide, and A. Dubey, “Experience report: Refactoring
the mesh interface in flash, a multiphysics software,” in WSSSPE6.1,

colocated with eScience 2018, Amsterdam, Netherlands, 2018.
[22] C. Daley, J. Bachan, S. Couch, A. Dubey, M. Fatenejad, B. Gallagher,

D. Lee, and K. Weide, “Adding shared memory parallelism to FLASH
for many-core architectures,” in TACC-Intel Highly Parallel Computing

Symposium, April 2012. Poster.
[23] A. Dubey, “Programming abstractions for orchestration of hpc scientific

computing.” https://chapel-lang.org/CHIUW2019.html, 2019. Keynote,
Chapel User’s Group Meeting.

[24] A. Dubey, “Dynamic resource management, an application perspective.”
https://project.inria.fr/resourcearbitration/program/, 2019. Invited talk,
RADR, co-located with IPDPS.

[25] U. O. of Defense Programs, “Accelerated strategic computing initiative
(asci) program plan [fy2000],” 1 2000.

[26] R. Rosner, A. C. Calder, L. J. Dursi, B. Fryxell, D. Q. Lamb, J. C.
Niemeyer, K. Olson, P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo,
Y. Young, M. Zingale, E. Lusk, and R. Stevens, “Flash Code: Study-
ing Astrophysical Thermonuclear Flashes,” Computing in Science and

Engineering, vol. 2, p. 33, Mar. 2000.
[27] A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. Mac-

Neice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo,
J. W. Truran, and M. Zingale, “High-performance reactive fluid flow
simulations using adaptive mesh refinement on thousands of processors,”
in Proceedings of Supercomputing 2000, p. http://sc2000.org, 2000.

[28] K. Antypas, A. C. Calder, A. Dubey, R. T. Fisher, M. K. Ganapathy,
B. Gallagher, L. B. Reid, K. Riley, D. J. Sheeler, and N. T. Taylor,
“Scientific applications on the massively parallel BG/L machine,” in
Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications & Conference on Real-Time

Computing Systems and Applications, PDPTA 2006, Las Vegas, Nevada,

USA, June 26-29, 2006, Volume 1 (H. R. Arabnia, ed.), pp. 292–298,
CSREA Press, 2006.

[29] B. Michalowicz, E. Raut, Y. Kang, T. Curtis, B. Chapman, and
D. Oryspayev, “Comparing the behavior of openmp implementations
with various applications on two different fujitsu a64fx platforms,” in
Practice and Experience in Advanced Research Computing, PEARC ’21,
(New York, NY, USA), Association for Computing Machinery, 2021.


	Introduction
	The Ookami Testbed
	Technical Details
	Users and Projects
	Opportunities
	Challenges

	New Opportunities for Education
	Slack Channel
	Office Hours — what's in a name?
	Ticketing System
	Ookami Website

	Webinars and seminars
	SVE Hackathon
	XDMoD
	TAU
	Parallelware Analyzer
	OSACA and likwid

	Use Case - FLASH on Ookami
	The FLASH Code
	Previous Experience
	The Learning Process
	Ongoing and Future Work

	Assessment
	Summary and Conclusion
	References

