BAYESIAN ROME FOR MEASUREMENT INVARIANCE 1

A Bayesian Region of Measurement Equivalence (ROME) Approach for Establishing

Measurement Invariance

Yichi Zhang!, Mark H. C. Lai', and Gregory J. Palardy?
! Department of Psychology, University of Southern California
2 Graduate School of Education, University of California, Riverside
Author Note
Mark H. C. Lai @® https://orcid.org/0000-0002-9196-7406
Yichi Zhang @ https://orcid.org/0000-0002-4112-2106

Files available at the Open Science Framework (https://osf.io/e75wk/) provide complete R and
Mplus code for the examples in this manuscript. This study received support from the U. S. Army
Research Institute for the Behavioral and Social Sciences (ARI) under Grant W911NF2010282 and the
National Science Foundation under Grant No. 1908630. The views, opinions, and/or findings in this
manuscript are those of the authors and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documents. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. The content of this manuscript was presented in the
online Annual Meeting of the Psychometric Society (IMPS), July 14-17, 2020.

©American Psychological Association, 2022. This is an Accepted Manuscript of an article on
October 5, 2021 to be published in Psychological Methods. This paper is not the copy of record and may
not exactly replicate the authoritative document published in the APA journal. The final article is
available, upon publication, at: https://doi.org/10.1037/met0000455

Correspondence concerning this article should be addressed to Mark Lai, Department of

Psychology, University of Southern California, Los Angeles, CA 90089-1061. Email: hokchiol@usc.edu



BAYESIAN ROME FOR MEASUREMENT INVARIANCE 2

Abstract

Measurement invariance research has focused on identifying biases in test indicators measuring a
latent trait across two or more groups. However, relatively little attention has been devoted to the
practical implications of noninvariance. An important question is whether noninvariance in
indicators or items results in differences in observed composite scores across groups. The current
study introduces the Bayesian Region of Measurement Equivalence (ROME) as a framework for
visualizing and testing the combined impact of partial invariance on the group difference in
observed scores. Under the proposed framework, researchers first compute the highest posterior
density intervals (HPDIs)—which contain the most plausible values—for the expected group
difference in observed test scores over a range of latent trait levels. By comparing the HPDIs
with a predetermined range of values that is practically equivalent to zero (i.e., region of
measurement equivalence), researchers can determine whether a test instrument is practically
invariant. The proposed ROME method can be used for both continuous indicators and ordinal
items. We illustrated ROME using five items measuring mathematics-specific self-efficacy from
a nationally representative sample of tenth graders. Whereas conventional invariance testing
identifies a partial strict invariance model across gender, the statistically significant noninvariant
items were found to have a negligible impact on the comparison of the observed scores. This
empirical example demonstrates the utility of the ROME method for assessing practical
significance when statistically significant item noninvariance is found.

Keywords: structural equation modeling, measurement invariance, equivalence testing,

Bayesian
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A Bayesian Region of Measurement Equivalence (ROME) Approach for Establishing
Measurement Invariance

When using psychological test scores to compare groups or as a criterion to select
individuals across groups, it is important to ascertain the test measures the same latent construct
in the same way for each group (Stark et al., 2004). If individuals from different groups who
have the same level of the latent construct have similar performance on the psychological test,
then the test is measurement invariant (Meredith & Millsap, 1992). However, if the test has
different measurement properties across groups for individuals with the same level of the latent
construct, such as consistently giving a higher score for members of one group, it violates
measurement invariance or measurement equivalence (Millsap & Kwok, 2004). In practice, it is
common that only partial measurement invariance holds, meaning that only a subset of
indicators is measurement invariant (Byrne et al., 1989; Lai et al., 2019).

There is an abundance of research on methods for examining measurement invariance.
However, this literature mainly focuses on identifying noninvariant indicators, and there is a
dearth of studies on the practical impact of noninvariance on group differences in the latent
construct level or score. For example, when organizations or researchers use psychological tests
to compare individuals or make classifications, they typically use the total test score. Thus, the
interest is whether there is a difference in total scores rather than on specific indicators. To
address this gap in the literature, the current study proposes a Bayesian framework for testing
practical invariance in terms of the total score when one or more indicators have been flagged to
be noninvariant. Compared with traditional approaches for testing measurement invariance, the
proposed method allows researchers to directly quantify the degree of invariance violation in a

relevant and useful way for substantive applications.
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Background

Establishing measurement invariance is important because group differences in the
observed test scores! are often difficult to interpret if invariance does not hold. For example, the
Positive and Negative Affect Schedule (PANAS), a self-reported scale composed of words
describing feelings and emotions (Watson et al., 1988), could function differently for participants
from different cultural backgrounds. That is because the negative affect (NA) subscale of
PANAS has indicators “shame” and “guilt,” whose interpretations tend to vary across cultures.
Previous studies found that in collectivistic cultures, shame and guilt were viewed as slightly less
negatively compared to individualistic cultures because these two words also indicated self-
reflections (Eid & Diener, 2001; Sheikh, 2014). Thus, when the NA subscale of PANAS is used
to assess negative affect across cultures, it is unclear whether observed differences in test scores
are caused by real differences in negative affect or the different cultural meanings of test items.
Therefore, without establishing measurement invariance, any research conclusions made on the
NA subscale of PANAS might be inaccurate because the observed group differences in the
subscale scores are confounded with measurement bias.
Traditional Approach for Testing Measurement Invariance

Two commonly used frameworks for testing measurement invariance are multiple-group
confirmatory factor analysis (MG-CFA; Joreskog, 1971) and item response theory (IRT; Millsap
& Everson, 1993). Despite the different traditions and procedures of the two frameworks for
invariance testing, many popular IRT models share the same underlying factor model as with

MG-CFA (Takane & Leeuw, 1987). The current study focuses on the MG-CFA framework but

!'In this article, observed scores and test scores are used interchangeably to represent the
observed scores of the test instrument.
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also references some IRT methods, as the proposed method for quantifying noninvariance is
equally applicable to IRT models.

For simplicity, in this manuscript, we assume that the psychological test or subscale is
unidimensional such that it measures only one latent construct. The MG-CFA method assumes a
model where p indicators measure the underlying latent construct for K groups and has the form,

Yik = T + i + € (1)
where y;;, is a p X 1 vector of the observed score variables for the ith person in the kth group, T
isa p X 1 intercept vector, A, is a p X 1 vector of factor loadings, n;i is the latent score for the
ith person in the kth group, and €;;, is the p X 1 vector of unique factor variables. Also, the model
assumes that €;;, follows a multivariate normal distribution with a mean vector of Os and
variance-covariance matrix 0;,. We further assume local independence, such that @, is a
diagonal matrix with elements 8y, 0, ... 0.

Under this framework, four levels of factorial invariance have been proposed (Meredith,
1993; Millsap, 2007). The first level is configural invariance, which requires the same factor
structures across groups, such as having the same number of factors and the same item patterns.
The second level is weak invariance, which requires the factor loadings to be the same across
groups. The third level is strong invariance, which, in addition to the factor loadings, also
requires intercepts to be equal across groups. Finally, the highest level is strict invariance, which
requires the factor loadings, intercepts, and the unique factor variances to be the same across
groups.

Within the MG-CFA framework, there are several approaches for testing measurement
invariance. Frequentist approaches include the likelihood ratio test (LRT) in the framework of

traditional significance testing (Steiger et al., 1985). The LRT is a chi-square test for comparing
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two nested models, one with equality constraints as implied by a particular level of invariance
and the other without such constraints. This approach tests whether the parameters statistically
differ across groups without showing the practical implications of such noninvariance.
Furthermore, the LRT is sensitive to sample size. As sample size increases, trivial differences
among groups can generate a statistically significant result (Meade, 2010). To combat this
limitation, researchers use other goodness-of-fit indices, such as root-mean-square error of
approximation (RMSEA) and comparative fit index (CFI), to quantify the level of noninvariance.
However, similar to LRT, these fit indices are difficult to interpret as they do not directly convey
the degree of the invariance violations (Lai et al., 2019; Putnick & Bornstein, 2016). Also,
researchers have proposed other indices and cutoff values, but there is a lack of agreement on
which to adopt and when. These alternatives require specific research designs and thus have
limited generalizability (Svetina et al., 2020).

Both IRT and goodness-of-fit indices follow the traditional null hypothesis significance
testing framework (NHST), which does not allow researchers to directly support the null
hypothesis of invariance. Under NHST, researchers can only reject the null hypothesis or fail to
reject the null hypothesis. Failing to reject the null hypothesis that the tested parameters are equal
is not equivalent to accepting it, because statistical power may be insufficient to capture the
noninvariance (Kline, 2016).

Recent Development

In order to directly support measurement invariance, Yuan and Chan (2016) recently
proposed the use of equivalence testing in the multigroup structural equation modeling (SEM)
context. Unlike the traditional null hypothesis, equivalence testing hypothesizes that the misfit

between models with invariance constraints, usually expressed in the metric of model fit indices



BAYESIAN ROME FOR MEASUREMENT INVARIANCE 7

such as RMSEA, is greater than a prespecified amount €, which can be any small positive
number. In other words, instead of focusing on rejecting or failing to reject a null hypothesis of
absolute equivalence in fit between models, researchers aim to provide evidence that the degree
of noninvariance is less than a prespecified threshold that is considered negligible. If the null
hypothesis under equivalence testing is rejected, this means the difference between models is
negligible, so researchers can conclude that the invariance holds. The meaning of power also
changes with the equivalence testing. In NHST, power is the probability of detecting a difference
in the tested parameters given the parameters are different in the population. Whereas, in
equivalence testing, power is the probability of supporting the alternative hypothesis that the
difference in the tested parameters is smaller than a prespecified amount, given that the
alternative hypothesis is true in the population (Yuan & Chan, 2016). Failure to reject the null
hypothesis for an equivalence test does not mean insufficient evidence for differences in tested
parameters anymore; it only indicates insufficient evidence to support that factorial invariance is
within a tolerable size. A limitation of equivalence testing, however, is that it quantifies the
impact of noninvariant indicators in the unit of model fit indices, such as RMSEA, which makes
it hard to interpret the implications of noninvariance on psychological tests (Shi et al., 2019).
Previous research has also proposed methods to test measurement invariance under the
Bayesian framework. The Bayesian framework regards parameters as random variables, and thus
posterior distributions of estimated parameters can be obtained. One Bayesian approach,
proposed by Shi et al. (2019), focuses on the cross-group differences on factor intercepts and
loadings, and allows researchers to establish invariance if the posterior distributions of those

differences have high probabilities of being close to zero (we discuss this in the next section).
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Nonetheless, differences in factor loadings and intercepts, which are abstract model parameters,
are difficult to interpret, especially in a practical sense.
Practical Significance of Noninvariance

In practice, test users or applied researchers are typically more interested in the practical
implications of measurement noninvariance in observed score units than the change in model fit
indices. As noted in a comprehensive review by Nye et al. (2019), around 89% of the group
mean comparison studies and 58% of the predictive analyses conducted after testing for
measurement invariance focused on observed scores.

Several indicator-level effect size indices have been proposed to assess the impact of
measurement noninvariance on observed scores. Under the CFA framework, Nye et al. (2011)
and Nye et al. (2019) proposed duacs and duacs signed , the signed and unsigned versions of an
effect size index that reflects the observed difference for each item due to measurement
noninvariance. Gunn et al. (2020) provided variations of these two indices, which they used
different standard deviations to standardize the impact of noninvariance. In addition, they
proposed two other similar indices that can be used with single factor analysis.

In addition to the indicator scores, total test scores are often of interest for selections or
classifications. For example, consider the Center for Epidemiological Studies-Depression (CES-
D; Radloff, 1977), a clinical screening test for assessing depressive symptoms that uses a cutoff
score of 16 for mild to moderate depression. While there is an abundance of research examining
measurement invariance of the CES-D across cultural groups (e.g., Kim et al., 2009; Yang et al.,
2015), most studies have only identified noninvariant indicators without examining the impacts
of noninvariance on total test scores. Such information, however, is of limited utility for

decisions about whether the scale itself is biased in making clinical diagnoses (e.g., Lai et al.,
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2017; Millsap & Kwok, 2004). For that essential decision, it is necessary to test measurement
invariance and investigate its implications on total test scores.

Although there are some discussions on indicator-level effect size indices in the
literature, there has been little discussion on the effects of indicator noninvariance on total
scores. One index related to the current research is the DTFR statistic proposed by Stark et al.
(2004; see also Chalmers et al., 2016) under the IRT framework, examining the expected group
mean difference in total test scores. They also proposed dprr, an effect size index that divides
DTEFR by the standard deviation of the focal group’s scores (Stark et al., 2004; see a similar
index in Meade, 2010). A highly similar index to DTFR, Amean, was later discussed in Nye &
Drasgow (2011) under MG-CFA. However, a limitation of DTFR and Amean is that they show
the degree of measurement invariance violations by a single number representing the average
bias across levels of the latent construct. Therefore, if the bias favors one group on the high end
of the latent construct but favors the other group on the low end, these two indices may indicate
the test instrument is nearly unbiased when it is not.

In addition, Chalmers et al. (2016) proposed sDTFp, an index showing test bias at a given
latent trait level, and developed a simulation-based procedure for obtaining approximate
confidence intervals for sDTFs. However, both DTFR and sDTFs are developed in the IRT
framework, and similar indices have not been developed in the CFA framework. Furthermore,
previous research has not provided inferential procedures for using these effect size indices to
support measurement invariance, which is the focus of the current study.

Focus of the Present Study
To address the limitations of current measurement invariance practices, we propose the

region of measurement equivalence (ROME) method for directly supporting measurement
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invariance and testing its impact on total scores using the Bayesian structural equation modeling
(BSEM) framework. The ROME method is similar to equivalence testing, but it focuses on a
metric that is easier to interpret, namely, the impact of biased indicators on group differences in
total test scores.? It should be pointed out that the ROME method complements, but does not
replace, conventional methods of identifying noninvariant indicators or quantifying bias on the
metric of model parameters, as there are conditions researchers need to obtain such information.
Using ROME for invariance research provides more detailed information on how noninvariance
affects the total scores, which is usually of interest when using tests for selecting individuals or
comparing groups.
Measurement Invariance Testing via Bayesian ROME

The Bayesian Framework

The Bayesian framework has been increasingly used in structural equation modeling
(SEM) over the past few years (Lee, 2007; Hoyle, 2012; Shi et al., 2019). Assume 1 is the latent
variable, which is the unobservable attribute that we are interested in, y is the observable value
of 1, and 0 is one of the unknown parameters of SEM (Hoyle, 2012). Our goal is to determine
p(8]y), the posterior distribution of parameter 0 given the observed data y. According to the
Bayes’ theorem, p(8]y) < p(y|0)p(0), where p(y|0) represents the likelihood of 6 given y, and
p(0) stands for the prior distribution of 6. The theorem suggests that the posterior distribution of
a parameter is proportional to the product of the likelihood of the parameter given the observed
value and prior distribution of that parameter.

As stated above, the posterior distribution of a parameter can be acquired through

weighting the prior distribution of the parameter by data. In the traditional frequentist view,

2 Here total test scores represent the sum of observed scores or test scores of all items.
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parameters are treated as constants, whereas in the Bayesian framework, parameters are regarded
as random variables with probability distributions (Song & Lee, 2012). Thus, summary statistics,
such as mean and variance, can be calculated from the posterior distribution (Hoyle, 2012).
However, when the model involves latent variables such as the CFA model, it can be
computationally demanding to get the mean or variance because it requires numerical
integration. Under this situation, Markov Chain Monte Carlo (MCMC), a random sampling
method that draws samples repeatedly from the posterior distribution, can summarize the
distribution and obtain useful information such as mean and variance (Gill, 2008). This allows
MCMC to provide estimates while avoiding the potential computational challenges noted for
numerical integration.

Highest Posterior Density Interval (HPDI)

In the Bayesian framework, because each parameter is assumed to have a probability
distribution, we can obtain the credible interval, a fixed interval in which the parameter value
falls with a certain probability (Box & Tiao, 1993). For example, a 95% credible interval means,
integrating information from the prior distribution and the observed data, there is a 95%
probability that the parameter is inside the credible interval (Kruschke, 2014), which is different
from a frequentist confidence interval. One type of credible interval of particular interest is the
highest (posterior) density interval (HPDI), or HDI, inside which any point has a higher
probability than points outside that interval. The formal definition of HPDI is given by Kaplan
(2014, p. 96):

Let p(8|y) be the posterior probability density function. A region R of the parameter
space 0 is called the 100(1 — a)% HPDI if

I.pBER|y)=1—«
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2. For®; € Rand 0, € R, P(8,|y) = P(8,]|y)

In other words, an HPDI essentially represents the degree of uncertainty about a parameter
(Kruschke, 2018). When the sample size is large and/or with informative priors, the posterior
distribution is likely sharp and the HPDI is narrow, which reflects a high degree of certainty
about the parameter estimates. In contrast, if the posterior distribution is likely flat and the HPDI
is wide, the parameter estimates have high degrees of uncertainty.

Some previous research has used HPDI for statistical testing by comparing HPDI with a
region of practical equivalence (ROPE) (Kruschke, 2014; Shi et al., 2019), as discussed below.
ROPE

For some applied studies, researchers are interested in estimating the difference in
parameters across groups and whether these differences are negligible. Kruschke (2014)
proposed using ROPE for this purpose. Specifically, ROPE represents a range of parameter
values that are practically equivalent to the null value (Kruschke, 2014).

Comparing an HPDI to a ROPE can be used as a decision rule for null hypothesis testing
in the Bayesian framework (Kruschke, 2018). Specifically, if the 95% HPDI is completely within
the preset ROPE, there is at least a 95% chance that the parameter is practically equivalent to the
null value, and, therefore, the null hypothesis should be accepted in a practical sense. On the
contrary, if the 95% HPDI is entirely outside the preset ROPE, that indicates there is at least a
95% chance that the parameter is practically different from the null value, and, therefore, the null
hypothesis is rejected. When the 95% HPDI is neither completely inside the ROPE nor
completely outside the ROPE, whether the null hypothesis should be rejected remains
inconclusive because some of the most credible values are practically equivalent to the null

value, but others are not.
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The HPDI and ROPE decision rule requires specifying the limits of the ROPE. Since
there are no substantive guidelines on how to decide the appropriate range of values that are
considered practical equivalence, Kruschke (2014) recommended using a range from -0.1 to 0.1
of a standardized parameter, so that the region contains values of standardized mean difference
effect size less than or equal to 0.1 (Cohen, 1988). However, this cutoff value is arbitrary, and
researchers should decide the ROPE based on a rationale for gauging the practical differences in
total scores.

In addition to the limits of ROPE, the width of an HPDI is also an influencing factor of
the decision. When an HPDI has a narrower range reflecting a high degree of certainty, it is more
likely to conclude the parameter is practically equal to the specified null value or substantially
different from the null value. However, if the HPDI is wide, the HPDI limits may overlap with
the ROPE and the zero point, leading to inconclusive results (Kruschke, 2018).

Region of Measurement Equivalence (ROME)

The current study applies the concept of ROPE to measurement invariance analysis,
which we call ROME. Specifically, a ROME is a range of values on total test scores that are
practically equivalent to no bias across groups. Similar to ROPE, researchers could use ROME
and HPDI to make decisions for null hypothesis testing in the Bayesian framework and evaluate
measurement equivalence of the scale.

Computing the Expected Difference in Total Scores

In multiple group studies, researchers are usually interested in group differences and
whether these differences are negligible. The current study investigates the impact of
measurement noninvariant indicators on observed group differences by calculating the expected

difference in total test scores across a range of latent trait values. Based on the multi-group
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confirmatory analysis model in equation (1), the expected score of the jth indicator for the ith
person with given 7 in the kth group, could be written as:

E(yijkIn) = Tk + Az, (2)
This can be extended to represent the expected total test score, Ty, for the ith person with a given
n in the kth group. As shown on the right-hand side of equation 3, the expected sum of y;; of p
indicators, can be further written as the sum of tj;, of p indicators plus the sum of A;, of p

indicators times the latent score 7.

p P
E(Ty) = E(Yiak + Yigk + -+ + }’ipkm) = z Tjx + 1M z Ajk 3)
j=1 j=1
The expected difference in total test scores between two groups for people with the same latent
score 1) is:
E(Dy_1Im) = E(TzIn) — E(Ty|n). (4)
Note that when strict invariance holds, D,_; equals zero since two people with the same latent
score are expected to have the same observed total score. Therefore, the larger the E(D,_4|n),
the larger the impact noninvariance has on the total test score.
When the MG-CFA model is fitted as a BSEM model, one can obtain the posterior

distribution for each parameter, which can be used to get the 95% HPDI for expected total test
scores of each group, as well as the group difference in the expected total scores. We argue that

the consequence of partial invariance on total test scores is often more practically useful than

detecting measurement invariance on specific indicators. Thus, the ROME method estimates
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how much the expected total score differs between two groups across latent trait levels (1)),
which is a practical statistic of the impact of partial invariance.?

Note that in a factor model, n is unbounded and can take on any value on the real line,
and it can be shown that, unless the loadings are equal across groups, E (D,_;|n) will be outside
of any finite ROME for some values of 1. Therefore, we only consider a range of 1 that captures
a typical range of the population. In this study, we choose £2SD as the range of n, which
captures about 95% of the population under a normal distribution. However, if researchers are
interested in using the test for people with higher or lower latent trait levels, E(D,_4|n) can be
computed on a different range of 1.

Presetting the ROME

The Bayesian framework enables researchers to use the 95% HPDI and ROME to
establish measurement invariance. As a starting point, we set the ROME following the
convention suggested by Kruschke (2014), which is [-0.1s,, 0.1s,]. Specifically, s, in the
proposed method is defined as the pooled standard deviation of the total test scores of the

psychological test being evaluated:

(ng — s + (nj — 1)51-2

= Ny +n; — 2 %)

3 Although the proposed method shares some commonalities with the sDTF, statistics proposed by
Chalmers et al. (2016), these two methods differ in three major aspects. First, sSDTFy was developed
under the NHST framework, which indicates its goal is to reject invariance. In contrast, ROME is
proposed to directly support practical invariance, which compares the impact of noninvariance with a
range of negligible group differences. Second, sDTFy is developed under the IRT framework with binary
and categorical items. In contrast, ROME is proposed under MG-CFA and can be used with continuous
indicators and categorical indicators. We illustrate ROME with continuous indicators in the empirical
example and provide a parallel example using categorical indicators in the supplemental materials
(https://osf.io/e75wk/). Third, multivariate normality is an essential assumption of the Monte Carlo
method used by sDTFy, but it is not required for MCMC used by ROME. When the sample size is small,
MCMC can give more accurate inferences than the Monte Carlo method (Lee & Song, 2004).
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In this case, niand s;, represent the number of observations and the sample standard deviation of
total test score for the kth group, whereas n; and s; represent the number of observations and the
standard deviation of sample total test score for the jth group.

After setting the ROME for group differences and obtaining the 95% HPDI for the
expected difference in total scores, researchers can examine whether measurement invariance
holds in a practical sense, and then quantify the impact of group differences on total scores.
However, the proposed method is only applicable when a partial invariance model is identified,
meaning that at least one indicator is found or allowed to be noninvariant. A summary of the
steps for applying the proposed ROME method is discussed below, followed by an illustrative
empirical example.

Steps for Using ROME to Test for Measurement Invariance

Following conventional measurement invariance testing,* assume that at least one
indicator was found noninvariant. The Bayesian ROME can be implemented using the following
steps:

1. Set the ROME, a range of values where the group differences in the expected total test
scores given 1) is practically equivalent to zero.

2. Fit Bayesian MG-CFA model to data and obtain posterior distributions of the model
parameters for each group (intercepts, factor loadings, and uniqueness).

3. Compute the posterior distribution and the 95% HPDI for the expected difference in total

scores between groups, given 1.

4 Researchers can use either the frequentist or the Bayesian procedures to identify noninvariant
indicators or items, and use ROME to evaluate practical invariance. We used frequentist CFA to
identify noninvariant indicators in the below example because it is one of the more popular
approaches to test MI. However, researchers can use Bayesian procedures such as the Bayes
factor (Kruschke, 2011) or the deviance information criterion (Verhagen & Fox, 2012).
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4. Compare the 95% HPDI in (3) with the preset ROME to evaluate whether measurement
invariance holds practically at the observed score level.
Empirical Example

Here we use R to demonstrate the proposed method for testing measurement invariance
with continuous CFA as an approximation of the discrete items for simplicity, and in the
supplemental materials, we demonstrate using ROME with Mplus and R for item factor analysis
(Wirth & Edwards, 2007) with ordinal items. The R codes and Mplus syntax for the example can
be found at the Open Science Framework (OSF; https://osf.io/e75wk/). This example uses a
nationally representative sample of 10% graders from the Educational Longitudinal Study of
2002 (ELS: 2002), collected by the National Center for Education Statistics (U.S. Department of
Education, 2004). ELS: 2002 follows students through high school to postsecondary years and
includes extensive student survey items and items from parents, teachers, and school
administrators.

The current study investigated measurement invariance of a 5-item scale of math-specific
self-efficacy across gender. Self-efficacy, which was described by Bandura (1997) as the “beliefs
in one’s capabilities to organize and execute the courses of action required to manage
prospective situations” (p. 2), is one of the most widely studied dispositions in psychology and
education (Palardy, 2019). The scale assessed participants’ math-specific tasks or skills and
consisted of five items rated on a 4-point Likert-type scale (1 = Almost never, 4 = Almost
always). Item descriptions are provided in Table 1. As shown in Table 1, all inter-item
correlations exceed 0.68. All participants were included in the analysis except those that did not

respond to any items (N = 11,663; 47.69% male, 52.31% female).
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If this scale is used to assess students’ self-efficacy in math and compare their scores
across gender groups, it is important to ensure the scale works the same for both genders. Thus,
this example's objective is to test whether the scale of math self-efficacy is measurement
invariant across gender. We first describe the results from conventional invariance testing and
then illustrate the ROME method using the steps proposed above, which also shows the impact
of noninvariant items on the expected difference in total scores between genders in plots.
Conventional Invariance Testing with MG-CFA

A series of multiple-group factor models were fit to find the baseline factorial invariance
model. Table 2 provides the fit indices for each model and the Appendix provides additional
details. We used the /avaan package (v0.6-5; Rosseel, 2012) in R to conduct the measurement
invariance analysis. Full information maximum likelihood estimation was used for the CFA
models. Parallel analysis suggested that one component, with an eigenvalue of 4.05 and an
explained variance of 80.96%, should be retained. We tested the one-factor model of math self-
efficacy described in Schaefer (2009), which allowed the unique factor covariances between
items 1 and 2 and 2 and 3 to be correlated. The initial model had a good fit (RMSEA = .056,
90% CI1[0.048, 0.065], CFI = .998), so we further tested the configural invariance and weak
invariance. Results indicated that item 5 has differential loadings for males and females.
Consequently, a partial strong invariance model that constrained the factor loadings for all items
except item 5 and intercepts for all items was fit to data. The results showed items 2, 4, and 5
were noninvariant in their intercepts. Therefore, the intercepts of these items were freed to
improve model fit.

Lastly, a partial strict invariance model, which freed the factor loading for item 5 and

intercepts for items 2, 4, 5, was fit to the data. Since the chi-square difference test showed a
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statistically significant difference from the partial strong invariance model, we further relaxed
the constraint in unique factor variance of items 4 and 5 so that the model had an improved fit. In
addition, the unique factor covariances between items 1 and 2, 2 and 3 were tested.” We found
evidence that the covariance between items 1 and 2 was noninvariant across groups. To
conclude, items 1 and 3 showed strict invariance, items 2 and 4 showed weak invariance, and
item 5 was noninvariant.
Step 1: Set ROME for Group Differences
In this illustration, we follow the convention of using a ROPE limit of £0.1s,,, the pooled
standard deviation of the total test scores. Given that s,, = 4.12, our ROME was set as [-0.412,
0.412].
Step 2: Obtain Parameter Posterior Distributions
Next, we fitted the partial strict invariance model obtained from the conventional

frequentist CFA using BSEM with the blavaan (v. 0.3-8; Merkle & Rosseel, 2018) R package.
The default weakly informative priors of blavaan were used for all estimated parameters.
Specifically,

A~N (0, 10)

T~N(0,32)

02 ~ Gamma (1, 0.5)
a~ N (0, 10)
y!? ~ Gamma (1, 0.5),

where o and vy are the latent means and latent variances for the female group. Note that in

blavaan, the normal prior is parameterized using the mean and the standard deviation, and for

> See Byrne (2004) for more discussion on testing unique factor covariances.
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scale parameters, the priors are set on the standard deviation (i.e., 0'? and y'?). For this BSEM
model, we set the number of chains to three, the number of warmup iterations per chain to 500,
and the number of post-warmup iterations per chain to 1,000. The target acceptance rate was
95% (adapt_delta = 0.95). To assess convergence, we ensured that there were no divergent
transitions post-warmup and that R < 1.01, effective sample sizes > 800 for all parameters
(Vehtari et al., 2020). The trace plots of the factor loadings for each item are provided in Figure
1. The figure indicates that the factor loadings converged rapidly, and three chains mixed well
with each other.

The parameter estimates extracted from blavaan are shown in Table 3. Our reference
group was female, so the latent factor mean for female was fixed to 0, and the latent factor
variance for female was set to 1. In contrast, the male group had a mean of 0.323 (posterior SD =
0.021) and a variance of 1.020 (posterior SD = 0.030). The result suggested that males have
higher latent self-efficacy in math than females, which is consistent with the research literature
(Huang, 2013).

Step 3: Compute the Expected Difference in Total Scores Given # and its 95% HPDI

We then obtained posterior distributions for estimated parameters and the 95% HPDI for
the expected group difference in total scores. Specifically, for each level of i) in the range of two
SD below and two SD above the mean of the female sample on 1, we calculated the expected
difference in total test scores across gender using female score minus male score, and generated a
95% HPDI. Here the mean expected differences between female and male for M +2SD of math-
specific self-efficacy were reported because most students were within this range. The results
indicated that for students with math self-efficacy equal to the sample mean for the female group

(i.e., n = 0), the posterior mean group difference in total scores between female and male was
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0.102, and the 95% HPDI was [0.057, 0.146]. For students who are two standard deviations
above the mean math-specific self-efficacy (i.e., = 2), the posterior mean group difference in
total scores was 0.172, and the 95% HPDI was [0.113, 0.232]. For students who are two standard
deviations below the mean math-specific self-efficacy (i.e., 1 = -2), the posterior mean group
difference in total scores was 0.032, and the 95% HPDI was [-0.031, 0.095]. Thus, for students
with the same latent level of self-efficacy in math, females tended to report a higher observed
self-efficacy score than males by less than 0.2 point on a range of 15 points (from the lowest
possible score of 5 points to the highest possible score of 20 points).
Step 4: Compare the 95% HPDI with ROME and Determine Measurement Invariance

As shown in Figure 2, the expected total score for females was higher than the expected
total score for males given the same level of self-efficacy in math from n=-2 SD ton =2 SD.
For students who have a self-efficacy score of approximately two standard deviations above the
mean, the 95% HPDI shows that the expected gender difference is between 0.113 and 0.232
points. The expected group difference in total scores is shown in Figure 3. The graph suggests
that although there is a slight difference in total scores between females and males given the
same trait level of math self-efficacy on this scale, it is practically negligible because the mean
difference is completely within the preset ROME [-0.412, 0.412]. Stated another way, for
females and males with the same level of self-efficacy, the mean group difference is not large
enough to be of practical significance, although females tended to report a slightly higher score
than males on this scale. Thus, we conclude, for practical purposes of using the total test scores,
the math-specific self-efficacy scale is measurement invariant across gender.

Discussions
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In this paper, we introduce the Bayesian ROME approach for establishing measurement
invariance. It is designed to complement conventional methods of testing measurement
invariance by quantifying the impact of noninvariance on the total test score. It provides the
expected difference in total scores among groups with a 95% HPDI. By comparing the 95%
HPDI with the preset ROME—a region of practical measurement equivalence, researchers can
establish measurement invariance of a test instrument and decide whether the group difference
caused by biased indicators is negligible.

Compared to the traditional frequentist approach, the ROME approach can provide more
information. First, it can directly support the hypothesis of measurement invariance, whereas
traditional frequentist methods either reject or fail to reject this hypothesis. The Bayesian
parameter estimation framework enables researchers to make statistical inferences by using 95%
HPDI as a tool for hypothesis testing (Kruschke, 2018; Shi et al., 2019). Different from
conventional hypothesis testing, where failure to reject the null hypothesis of measurement
invariance does not correspond to accepting the null hypothesis (Cohen, 1994), the ROME
approach enables researchers to confidently conclude that the measurement invariance is
established by comparing the 95% HPDI with the ROME (Shi et al., 2019).

Second, the ROME approach can help researchers quantify test bias across groups in an
understandable way. Previous approaches mainly focused on obtaining an all-or-none decision
when testing measurement invariance. Even when effect size measures are used, they typically
report the differences in factor loadings or intercepts for noninvariant indicators, which may not
be intuitive for test users and applied researchers. The ROME method overcomes this
shortcoming by reflecting the impact of biased indicators on the unit of the observed score. This

eases the interpretations of the measurement invariance results and focuses on practical
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implications of the noninvariant indicators. Moreover, the ROME approach can visualize the
impact of noninvariant indicators on total test scores. If the expected group difference in total test
scores is a constant, then the test instrument is biased towards one group for people who have the
same level of the latent construct, and the bias is the same magnitude for everyone. However, if
the expected group difference in total scores is a straight line with a nonzero slope, the
noninvariant indicators have different factor loadings across groups. Consequently, the test
instrument might be measurement invariant for some participants but not for others. Thus,
compared to traditional approaches, the ROME method could provide additional valuable
information on when and to whom the test instrument is practically invariant.
Alternative Methods for Presetting ROME

In the real data example, we set our ROME following the ROPE convention suggested by
Kruschke (2014), which is to use 0.1 pooled standard deviation of the observed total score as the
range of practical equivalence. However, the limit of ROME could also be set using other rules.
One option is to set the ROME based on the minimal meaningful scoring unit. Any score
difference less than half of this unit could be treated as negligible, which suggests ROME to be [-
0.5 minimal meaningful scoring unit, 0.5 minimal meaningful scoring unit]. For example, some
test instruments, like the Scholastic Assessment Test (SAT), uses 10 points as the smallest unit to
distinguish people. Thus, any value within the range of 5 points can be considered practically
equivalent.

Another approach of setting ROME depends on the effect size. Similar to the idea of
ROPE, Lakens (2017) proposed to specify an equivalence bound such that any result that falls
within it is equivalent to the absence of an effect that is practically meaningful. He suggested

setting the equivalence bound to the smallest effect size of interest (SESOI), the minimum
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difference between groups that can be considered statistically significant. The value of SESOI
can be obtained by conducting a power analysis based on the expected effect size and is
determined exclusively by sample size (Lakens, 2017). However, this approach is controversial
because other researchers believe ROPE should not be set based on measurement precisions
determined by sample sizes (Kruschke, 2018). In general, setting ROME limits is similar to
choosing threshold values for other decision statistics such as p-values and Cohen’s d. Thus,
researchers should focus on the purpose of the study and think about the range of values that can
be considered practically equivalent in scales that are frequently used in their fields.
Limitations and Future Directions

It should be noted that there are two prerequisites for using the ROME method. One is to
have a good model fit for the partial invariance model identified by the traditional frequentist
method. Having a misfit in the partial invariance model would result in an unsatisfactory fit in
the BSEM model, which could produce an inaccurate 95% HPDI and further influence the
conclusion about measurement invariance of the test instrument. The other prerequisite is that the
ROME method only applies when partial invariance is detected by the conventional
measurement invariance testing method. If the conventional Likelihood Ratio Test does not
detect any violation of measurement invariance, then the two groups would have the same
expected total scores so that the 95% HPDI would always be inside the ROME. In other words, it
is meaningless to use the ROME method when there are no violations of measurement
invariance.

A limitation of the illustrative example is that most items fail scalar invariance, which
might be a concern for interpreting the latent traits as on the same scale. Although some research

such as Shi et al. (2017), showed in simulation studies that a partial invariance model with one
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invariant item as the anchor item was sufficient for setting the zero point for the latent trait, this
result is based on the assumption that the invariant item was correctly identified. Thus,
researchers need to be cautious interpreting the results of the illustrative example and future
studies with partially invariant scales.

The current study can be extended to three or more groups. Extending the ROME method
to more than two groups could help researchers establish measurement invariance on
psychological tests that are widely used to compare multiple groups, such as surveys in
multinational studies. One possible direction is to apply the proposed method with the same
ROME to every pair of groups, and support invariance when all HPDIs on the pairwise
difference on the expected total scores are within the preset ROME.

In summary, the current study introduced a ROME approach for testing measurement
invariance. Besides identifying noninvariant indicators, the ROME method allows researchers to
establish measurement invariance and determine whether the group differences caused by item
biases are practically meaningful. It also provides more information, such as when and to whom
the test is noninvariant, as well as graphical tools to visually show the impact of noninvariant

indicators on total scores, which could be useful for research designs and communication.
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Table 1

Table and Figures

Self-Efficacy (Math-Specific) Scale Items Summary and Correlation Matrix (Spearman) by Gender

Female Male Correlation Matrix
Item Description ~ M SD M SD BYS89A BYS89B BYS89L BYS89R BYS89U
BYS89A Candoexcellent 243 092 268 0.92 - 74 .68 .70 .69
job on math tests
BYS89B  Canunderstand 2.21 091 254 0.93 77 - 74 .68 .68
difficult math
texts
BYS89L  Canunderstand 2.34 0.95 2.61 095 .70 74 - 75 77
difficult math
class
BYS89R Cando excellent 2.55 095 272 0093 71 .68 77 - .81
job on math
assignments
BYS89U Can master math 2.58 094 276 0.92 .69 .69 75 .80 -

class skills

Note. This correlation table was computed using listwise deletion, N =10,443. This differs from the

sample size used (N =11,663) in lavaan and blavaan since full information maximum likelihood and

Bayes estimators were used in fitting the MG-CFA models. The correlations of male (female) are shown

in the lower (upper) triangle.
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Table 2

Fit Statistics of Various Invariance Models

. df CFI ACFI RMSEA ARMSEA
Configural Invariance 119.862 6 0.997 0.057
Weak Invariance 136.377 10 0.997 0.000 0.047 -0.010
Partial Weak Invariance 124.963 9 0.997 0.000 0.047 -0.010
(freed A5 and all ts and 0s)
Partial Strong Invariance 310.578 12 0.993 -0.004 0.065 0.018
(freed Az, T5, and all 0s)
Partial Strong Invariance 125.906 10 0.997 0.000 0.045 -0.002
(freed As, T5, T4, Ts, and all
0s)
Partial Strict Invariance 128.181 13 0.997 0.000 0.039 -0.006
(freed )\59 T2, Ty, Ts, 645 95)
Partial Strict Invariance 129.045 14 0.997 0.000 0.038 -0.007
(freed A5: T2, Ty, Ts, 94-9
659 e12)

Note. The changes in fit statistics ( ACFI and ARMSEA) are computed between configural and
partial weak invariance models, partial weak and partial strong invariance models, partial strong

and partial strict invariance models.
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Table 3
Parameter Estimates for Math-specific Self-efficacy Scale Analyzed across Female and Male

Under the Partial Strict Invariance Model

Female Male
Parameter Estimate Posterior SD. Estimate  Posterior SD.
Factor means 0 0.323 0.021
Factor variances 1 1.020 0.030
Factor loadings
BYS89A 0.727 0.009 -- --
BYS89B 0.707 0.009 -- --
BYS89L 0.816 0.009 -- --
BYS89R 0.840 0.009 -- --
BYS89U 0.849 0.010 0.814 0.011
Intercepts
BYS89A 2.430 0.011 -- -
BYS89B 2.207 0.012 2.297 0.012
BYS89L 2.337 0.012 -- -
BYS89R 2.543 0.012 2.440 0.014
BYS89U 2.567 0.012 2.479 0.014
Unique factor variances
BYS89A 0.316 0.005 -- --
BYS89B 0.342 0.005 -- --
BYS89L 0.242 0.004 -- -
BYS89R 0.181 0.005 0.161 0.005
BYS89U 0.170 0.005 0.191 0.005

Note. -- represents invariant parameters, which means the cells have the same value as the other group.
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Figure 1

Trace plot of the standardized factor loadings for test
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Figure 2

Expected Total Test Scores for Male and Female
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Note. The black solid lines show the posterior means for female (left) and male (rignt), and the

intervals between two dashed lines represent the 95% HPDI. The posterior means and 95%

HPDI for female and male are very similar.
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Figure 3

Expected Group Differences in Total Test Scores
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Note. The orange (dark grey) solid line represents the posterior mean of the expected difference
in total scores between female and male (female score minus male score) in math-specific self-
efficacy scale. The shaded area represents the 95% HPDI, and the interval between two red

(grey) dashed lines is the ROME [-0.412, 0.412].
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Appendix

We tested the one-factor model of math self-efficacy described in Schaefer (2009) using
R (R core team, 2019), and the /avaan package (v0.6-5; Rosseel, 2012). This model showed a
good fit: y2(df = 3,N = 11663) = 113.251,p < .001, RMSEA = .056, 90% CI [0.048,
0.065], CFI =.998. We evaluated configural invariance across gender and found it had an
acceptable fit: RMSEA = .057 (90% CI [.048, .066]), CFI = .997. However, this configural
model was rejected by a test of exact fit: y?(df = 6) = 119.862,p < .001. We then fitted a
weak invariance model which constrains all factor loadings to be the same across each group to
data. The Chi-square difference test was significant: Ay?(df = 4) = 16.515,p < .05.
Sequential likelihood ratio tests, similar to the sequential specification search proposed by Yoon
& Millsap (2007) based on modification indices, were used to identify noninvariant items.
Specifically, we relaxed invariance constraints of items based on a series of likelihood ratio tests
until there is no significant chi-square difference. Freeing factor loading for each item
sequentially suggests item 5 (“I’m certain I can master the skills being taught in my math class.”)
might have different loadings for males and females.® A partial weak invariance model with
freely estimated factor loading for item 5 showed a good fit, with y?(df = 9) = 124.963,p <
.05, RMSEA =.047, 90% CI [0.040, 0.054], CF1 = .997.

The next model tested strong invariance by further fixing intercepts for all items across
each group. Again, the chi-square difference was statistically significant, suggesting some items
may have noninvariant intercepts: Ax%(df = 4) = 207.24,p < .001. Releasing the intercept for

each item one by one suggested item 5 (“I’m certain I can master the skills being taught in my
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math class”), item 4 (“I’m confident I can do an excellent job on my math assignments.”’) and
item 2 (“I’m certain I can understand the most difficult material presented in my math texts.”)
were not measurement invariant in their intercepts for males and females. A partial strong
invariance model with released intercepts for item 2, 4 and 5 was fitted to data and showed a
better fit: y2(df = 10) = 125.906,p < .001, RMSEA = .045, 90% CI1[0.038, 0.052], CFI
=.997.

We further constrained the unique factor variance for all items across each group. The
Chi-square different test was statistically significant, indicating that some items were
noninvariant on unique factor variances: 4y*(df = 5) = 16.741,p < .05. We continued freeing
items’ unique factor variances one by one and found item 4 (“I’'m confident I can do an excellent
job on my math assignments.”) and item 5 were not measurement invariant at this level. The
unique factor covariances were further tested, suggesting a noninvariant covariance between
items 1 and 2 across groups. Thus, our base CFA model was a partial strict invariant model with
unequal unique factor variance on items 4 and 5 and unequal covariance between items 1 and 2.
The final model showed a good fit: y2(df = 14) = 129.045,p < .001, RMSEA = .038, 90%
CI[0.032, 0.044], CFI = .997. The sequential investigation suggested that items 1 and 3 were

strict invariant, items 2 and 4 were weak invariant, and item 5 was noninvariant.



