P4BID: Information Flow Control in P4*

Karuna Grewal
Cornell University
USA

Abstract

Modern programmable network switches can implement cus-
tom applications using efficient packet processing hardware,
and the programming language P4 provides high-level con-
structs to program such switches. The increase in speed and
programmability has inspired research in dataplane program-
ming, where many complex functionalities, e.g., key-value
stores and load balancers, can be implemented entirely in
network switches. However, dataplane programs may suffer
from novel security errors that are not traditionally found
in network switches.

To address this issue, we present a new information-flow
control type system for P4. We formalize our type system in a
recently-proposed core version of P4, and we prove a sound-
ness theorem: well-typed programs satisfy non-interference.
We also implement our type system in a tool, P4BID, which
extends the type checker in the p4c compiler, the reference
compiler for the latest version of P4. We present several case
studies showing that natural security, integrity, and isolation
properties in networks can be captured by non-interference,
and our type system can detect violations of these properties
while certifying correct programs.

CCS Concepts: « Security and privacy — Information
flow control; Logic and verification; Network security.

Keywords: Information-flow control, programmable networks

ACM Reference Format:

Karuna Grewal, Loris D’Antoni, and Justin Hsu. 2022. P4BID: In-
formation Flow Control in P4. In Proceedings of the 43rd ACM SIG-
PLAN International Conference on Programming Language Design
and Implementation (PLDI °22), June 13—17, 2022, San Diego, CA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3519939.3523717

“This is the conference version of the paper. We defer technical details,
secondary definitions, and proofs to the full version of the paper [16].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI 22, June 13-17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523717

Loris D’Antoni
University of Wisconsin
USA

Justin Hsu
Cornell University
USA

1 Introduction

The last two decades have seen an ongoing shift in how
networks are programmed. The task of programming a net-
work once consisted of manually setting configurations in
specialized switch hardware that provided limited customiza-
tion; low-level programming was the only way to achieve
performance. Today, switches are highly programmable and
provide rich functionalities for processing network packets.
This increased programmability is enabling complex network
functionalities, which traditionally run on slower dedicated
devices, to run directly on switches and other networking
hardware [19, 31]. Furthermore, new programming models
and languages make it easier for network operators to define
complex functionalities [6].

While the advent of programmable network switches has
inspired a large number of practitioners and researchers to
write complex functionalities that can run on switches, it
has also brought a new level of complexity in a world where
bugs can be costly. As is well known, network configura-
tion errors have led to widespread and costly outages (e.g.,
[13, 34]). The problem of preventing these, and other, types
of bugs has received a lot of attention in the programming
languages and verification communities. For example, re-
searchers have developed formal tools for verifying that
switch configurations guarantee desirable network proper-
ties, such as node reachability, the absence of black holes, and
resilience to link failures (e.g., [1, 2, 33]). While these tools
are extremely useful for network operators, applications
running on programmable switches may exhibit errors that
are not traditionally associated with networks. In particular,
there has been little work on verifying security properties
for dataplane programs.

Our work. We develop a new information-flow control
(IFC) type system for the network programming language
P4 [6], aleading language for programming network switches.
P4 is an attractive target: it is actively developed by re-
searchers from academia and industry, and can compile to
a variety of networking hardware. Information flow control
(IFC) is a well-studied, language-based approach to verify-
ing security properties where variables in the program are
tagged with security labels, and the type system ensures that
no information can flow from high-security variables (secret)
to low-security ones (public). IFC is (i) flexible: by chang-
ing the label usage one can model security properties, like
confidentiality and integrity; (ii) general: it can accommo-
date complex programming constructs; and (iii) lightweight:

https://doi.org/10.1145/3519939.3523717
https://doi.org/10.1145/3519939.3523717
https://doi.org/10.1145/3519939.3523717

PLDI °22, June 13-17, 2022, San Diego, CA, USA

the analysis is simple, type-based, and requires minimal an-
notations from the programmer. Owing to these strengths,
IFC has found wide adoption and has been deployed in real
languages [24, 27].

Designing an IFC type system for P4 involves both techni-
cal and conceptual challenges. On the technical side, while P4
resembles a standard imperative language, it has a number
of features to target the restricted computational model of
networking switches. For instance, much of the computation
in P4 programs happens via tables, which match on data in
packet headers and select which actions to run. While a P4
program implements the actions, the table itself is not known
until it is installed at runtime by the network controller. A
second technical challenge is the size and complexity of the
language. Like many languages in real-world use, P4 does not
have a formal specification. To firm up the foundations of P4,
Doenges et al. [10] developed a formal version of P4, called
Core P4, as part of the broader PETR4 project. The formal
operational model of Core P4 makes it possible to develop
type systems that provably guarantee program properties.
However, Core P4 is still quite large—P4 is a language in-
tended for real-world use, with a wide variety of declarations,
statements, and expressions, and Core P4 models almost all
the features of P4. Our work develops an IFC system that
can handle the principal features of Core P4.

On the conceptual side, IFC for dataplane programming
has been little-studied and it is not know what useful prop-
erties network properties an IFC system can enforce. As part
of our work, we present case studies showing that standard
properties guaranteed by IFC, like confidentiality and in-
tegrity, are useful security properties for networking applica-
tions. We also show how natural network isolation properties
can also be guaranteed with an IFC system, by adjusting the
lattice of security labels.

Outline. After overviewing our approach in Section 2 and
providing the necessary background on P4 and Core P4 in
Section 3, we present our central contributions:

1. An Information Flow Control (IFC) type system for Core
P4 [10], a core calculus modeling the P4 language,
together with a soundness theorem: well-typed pro-
grams satisfy non-interference (Section 4).

2. P4BID: a type-checker implemented on top of p4c, the
reference compiler for P4. We evaluate our system
through four case studies, demonstrating how proper-
ties enforced by IFC, like confidentiality and integrity,
can be useful in a networking context. We implement
our case studies in P4 and show that P4BID can au-
tomatically detect when these properties are violated,
while correctly type-checking versions of these pro-
grams where the problems are removed (Section 5).

We conclude by surveying related work (Section 6) and out-
lining possible future directions (Section 7).

Karuna Grewal, Loris D’Antoni, and Justin Hsu

2 Overview

A quick introduction to P4. P4 is an actively-developed
language for programming the network data plane. Com-
putation is divided into three phases: parser, pipeline, and
deparser. The packet processing starts at the parser, where the
input packet is extracted into a typed representation given
by headers using a finite state machine. The pipeline phase
executes the primary logic of the switch by transforming
the parsed representation of the input packet. The deparser
serializes the parsed typed representation of the input packet
into the output packet. Our work focuses on P4 control blocks,
which implement the pipeline phase. To get a feel for the
language, we consider a P4 program for a basic task: con-
verting virtual addresses to physical addresses when packets
enter a local network. Listing 1 begins by declaring the types
of the headers which are carried by packets; P4 programs
manipulate the state of packets by modifying the headers. In
our case, there are three headers: ipv4 and ethernet carry the
routing information in the original packet, while local_hdr
carries information specific to the local network.

Listing 1 shows the code for the control block, which
implements the core part of the logic. (The full P4 program
also describes other stages of the packet-processing pipeline
like parsing and deparsing, which we do not consider in
our work.) The switch behavior is organized into tables and
actions. Tables match data in headers (the keys) and apply
actions. For instance, the table ipv4_Ipm_forward inspects
the value of the header hdr.ipv4.dstAddr and then decides
whether to run action ipv4_forward or drop the packet. The
concrete mapping is not specified by the P4 program; instead,
the switch controller installs these mappings at runtime.
Actions can inspect and modify packet headers. Actions can
also be parameterized by arguments, which are supplied
by the table when the action is applied. For example, the
action ipv4_forward accepts a destination address and port as
arguments, and then proceeds to update headers. Finally, the
apply block specifies the overall behavior of the control block:
here, the switch applies table virt2phys to translate virtual
addresses to physical addresses, and then ipv4_lpm_forward
to forward the packet.

A potential security vulnerability. Listing 1 is designed
to process a packet as it enters a local network. The incoming
packet refers to a virtual address, which must be translated
to a physical address. Furthermore, the switch adjusts other
packet fields, like the maximum number of hops (time-to-live,
ttl), to reflect the topology of the local network. To preserve
privacy, details of the local network should not leak into
fields that are visible when the packet leaves the network.
To accomplish this goal, the program uses a separate header
of type local_hdr_t to store local information (Line 1). As
the packet is routed in the local network, the switches do
not touch the public ipv4 and ethernet headers; instead, they

P4BID: Information Flow Control in P4

Listing 1. Translating virtual to physical addresses.

header local_hdr_t {
bit<32> phys_dstAddr;
bit<8> phys_ttl;
bit<48> next_hop_MAC_addr;

I T N N N

}
header ipv4_t {
bit<8> ttl;
bit<8> protocol;
10 bit<32> srcAddr;
1 bit<32> dstAddr;

12}

14 header eth_t {
15 bit<48> srcAddr;
16 bit<48> dstAddr;

17}

19 struct headers {

20 ipv4_t ipv4;

21 eth_t eth;

22 local_hdr_t local_hdr;

3}

24

25 control Obfuscate_Ingress(inout headers hdr,

26 inout standard_metadata_t std_metadata) {
27 table virtual2phys_topology {

28 key = { hdr.ipv4.dstAddr: exact; }

29 actions = { update_to_phys; }

30 }

31 action update_to_phys(bit<32> phys_dstAddr,

32 bit<8> phys_ttl) {

33 hdr.local_hdr.phys_dstAddr = phys_dstAddr;
34 hdr.ipva.ttl = phys_ttl;

35 }

36 table ipv4_lpm_forward {

37 key = { hdr.ipv4.dstAddr: Ipm; }

38 actions = { ipv4_forward; drop; }

39 }

40 action ipv4_forward(bit<48> dstAddr, bit<9> port) {
41 hdr.eth.dstAddr = dstAddr;

42 standard_metadata.egress_spec = port;

43 }

44 action drop() { mark_to_drop(standard_metadata); }
45 apply {

46 virtual2phys_topology.apply();

47 ipv4_Ipm_forward.apply();

48 }

49 }

parse local_hdr and update it with the next hop route infor-
mation. When the packet exits the local network, the header
local_hdr is removed.

While the intended behavior is simple to describe, the pro-
gram in Listing 1 has an error: Line 34 incorrectly stores the
local ttl in the ipv4 header, rather than the local_hdr header.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Listing 2. Security-Annotated Version of Listing 1
header local_hdr_t {

1

2 <bit<32>, high> phys_dstAddr;
3 <bit<8>, high> phys_ttl;

4 /..

5}

6

7 header ipv4_t {

8 <bit<8>, lows ttl;

9 /...

0}

12 struct headers {
13 ipv4_t ipv4;

14 local_hdr_t local_hdr;

15 /...

16}

17

18 control Obfuscate_Ingress(inout headers hdr,

19 inout standard_metadata_t std_metadata) {
20 action update_to_phys(<bit<32>, high> phys_dstAddr,
21 <bit<8>, high> phys_ttl) {
22 hdr.local_hdr.phys_dstAddr = phys_dstAddr;
23 // 'BUG!: low <- high

24 hdr.ipva.ttl = phys_ttl;

25 // «FIXs: high <- high

26 hdr.local_hdr.phys_ttl = phys_ttl;

27 }

28 /..

29 }

Even when the local header is removed, the ipv4 header will
carry private information about the local network. This kind
of error unintentionally leaks local information into public
headers, but it can be easy to overlook.

Security types to the rescue. We design an information-
flow control type system for P4 to catch such bugs. Like
standard IFC type systems, our system extends each P4 type
with a security label: high if the data is secret, and low if
the data is public. Listing 2 shows our example program
annotated with security types. All data specific to the local
network (e.g., phys_dstAddr, phys_ttl) are marked as high
security. The publicly visible headers (e.g., ipv4, eth) are
marked as low security. Our type system guarantees that
information from high-security data does not influence low-
security data. For instance, the information leak we saw
before can be flagged in our type system: Line 24 incorrectly
assigns a high-security data phys_ttl to a low-security field
ipv4.ttl. The problem is corrected by assigning phys_ttl to
local_hdr.ttl (Line 26), which is a high-security field.

While this kind of analysis is fairly straightforward, the
design of our type system must handle unusual features
from P4’s programming model (e.g., actions and tables); we
discuss these aspects in Section 3 and Section 4. Furthermore,

PLDI °22, June 13-17, 2022, San Diego, CA, USA

while Listing 1 demonstrates a basic information leak, we
will see more interesting applications of our type system to
networking applications in Section 5.

3 Syntax and Semantics of Core P4

This section briefly reviews the core P4 calculus presented
in the recent work on PETR4 [10], the representation of P4
programs in terms of the core calculus syntax, and the opera-
tional semantics and typing judgements for the core calculus.

3.1 Core P4 Syntax

PETR4 formalizes the semantics of various P4 primitives,
like control blocks, match-action tables, and statements in
a calculus called Core P4. For our information-flow control
type system, we focus on the fragment of Core P4 in Figure 1.
Expressions and statements are largely standard.

Core P4 programs (prg) are represented as a sequence of
variable, object, or type declarations followed by a control
block. The central construct in a P4 program is the control
block, which describes how the switch processes packets
in terms of table and action calls inside its apply block. A
control block body (ctrl_body) is a sequence of declarations
and statements. The stmt in the control block corresponds
to the apply block of a P4 program.

Variable and type declarations (var_decl, typ_decl) are
largely standard; the match_kind enum declares different
ways tables can match on packet fields. Object declarations
(obj_decl) declare P4 objects: tables and actions. These object
declarations can have nested ordinary statements (stmt) that
allow usual imperative primitives like mutation and control
flow statements. To get a feel for these features, let’s consider
how they correspond to parts of the Obfuscate_Ingress con-
trol block in Listing 1. The example control block consists of
three actions declarations (update_to_phys, ipv4_forward,
and drop), and two table declarations (virtual2phys_topology
and ipv4_lpm_forward).

Tables. A table declaration, table x {@ act}, is com-
posed of a list of expressions (usually packet header fields)
that specify the lookup key, k_ey, and actions, act, which the
lookup table might execute. A table application uses the key
to lookup the entries in the table (installed by the control
plane) and invokes the action from the matched entry. For
example, table virtual2phys_topology in Line 27 contains the
key hdr.ipv4.dstAddr: exact (where exact specifies the match
pattern, in this case, exact match on the key), and the action
update_to_phys action. Applying this table, represented in
Core P4 as virtual2phys_topology(), matches the table en-
tries installed by the control plane against the corresponding
keys in the current packet and returns an appropriate action
to run, with all its arguments. Any optional arguments in the
returned action will be supplied by the control plane. The
match pattern determines the criterion for choosing a table
entry based on the key. For instance, [pm specifies that a key

Karuna Grewal, Loris D’Antoni, and Justin Hsu

is matched to the entry corresponding to its longest prefix;
exact specifies that a key should be exactly matched to some
table entry otherwise it is a match failure.

Actions. An action declaration is a special case of a func-
tion declaration, function 7,; x (d y : 7){stmt}, with no re-
turn type. For example, the action update_to_phys on Line 32
in Listing 1 has parameters phys_dstAddr and phys_ttl, of
types bit(32) and bit(8). Parameters can have a direction-
ality, d: an in expression can only be read from, while an
inout expression can be both read and written to. Omitted
directions in parameters default to the in direction; these
directionless parameters are optional arguments that can be
passed by the control plane. Invoking the action, which can
be done directly as a statement or indirectly from a table,
runs the statement stmt in the action body. Actions, like all
Core P4 functions, do not support recursion.

Differences compared to Core P4. The language in Fig-
ure 1 is a significant fragment of Core P4, but it does not
handle some of its more specialized features (e.g., generics,
constant declarations, slice operation, and native functions).
We consider this fragment for simplicity, but we do not fore-
see difficulties in extending our IFC analysis to full Core P4.
We omitted some lesser-used features, like generics, because
the core language is already quite large and we believe it
is unlikely that omitted features lead to information-flow
violations. We focus on programs with a single control block
because most P4 programs encode their main functionality
in a single ingress control block. Since our system already
supports user-defined functions and closures, with all of their
technical intricacies, we do not see any obstacle to handling
multiple control blocks besides increasing the complexity of
our type system.

3.2 Core P4 Semantics

To understand the semantics of Core P4 programs, we will
review the evaluation judgement forms for expressions, state-
ments, and declarations from PETR4 [10]. The main judge-
ments are as follows:

(C. A e exp) U (i, val)
(C,A e, stmt) | (i, €, sig)
(C, A, e, decl) | (A,), €, sig)

The contexts used in these judgements are defined in Fig-
ure 2. Here, A is the partial map from type names to types; €
is the partial map between variables and their memory loca-
tions; y is the memory store mapping variable locations to
their values. C models the table lookup map provided by the
control plane: given a table at location [with key = val, and
a list of actions described by a list of PartialActionRef (ac-
tions with optional arguments missing), C returns an action
call expression with all the optional arguments of the action
supplied (ActionRef). The judgements use val to denote a

P4BID: Information Flow Control in P4

PLDI °22, June 13-17, 2022, San Diego, CA, USA

stmt == exp;(exps) function call
| exp; :=expy assignment
| if (expp) stmty else stmt, conditional
| {stmt} sequencing
| exit exit
| return exp return
| var_decl variable declaration
(b) Statements
d == in|inout
lval = x
| lval.f
| lval[n]
key == exp:x
act == x(exp,x:71)

(d) Other constructs

Figure 1. Core P4 Expressions (fragment)

exp == b Boolean
| ny integers or bits of width w
| x variable
| expi[exps] array indexing
| exp; @ exp; binary operation
| {fi = expi} record
| exp.f; field projection
| expi(expsz) function call
(a) Expressions
prg == typ_decl ctrl_body
ctrl_body := decl stmt
decl == wvar_decl|obj_decl | typ_decl
var_decl == rx:=exp|rx
typ_decl == match_kind {J_‘} | typedef X
obj_decl := tablex {k_ey act}
| function t,e; x (d y : 7){stmt}
(c) Declarations
Var : variables Val : values
TypVar :type variables Typ :typesin Core P4

Loc :locations

I :Var— Typ A TypVar — Typ
€ :Var — Loc 1 :Loc — Val
C :Locx Val X Partial ActionRef — ActionRef

Figure 2. Typing and Evaluation Contexts

value; and sig to denote a signal, which indicates whether
the program’s control flow proceeds normally (cont), returns
a value (return val), or errors (exit).

Since function calls are expressions, and a function’s body
can update the memory store, the evaluation judgement for
expressions can modify the memory store. Similarly, the
statement evaluation judgement captures the updated mem-
ory store from evaluating a statement with side-effects and
the environment extension on declaring a new variable. A
declaration evaluation can reduce to a new memory store
and environment when evaluating a variable or object decla-
ration. Additionally, a declaration statement can update the
type definition context by introducing a new type alias. Both
declarations and statements evaluate to a signal sig, repre-
senting the result of the control flow in their sequencing
blocks.

3.3 Core P4 Type System

Figure 3 recalls the types from Core P4. Core P4 divides the
P4 types into two categories: base types, p, and general types,
k. The fields of headers and records must be base types. The

p := bool | int | bit{n) | unit
| {Fip} | header{Fp} | pln]
| match_kind{f}

K = p|table|dKk — Kk

Figure 3. Core P4 types

simplified Core P4 typing judgements for the fragment of
Core P4 presented in Figure 1 are as follows:

[LArexp:xgoesd T,ArstmtAT" T,Ardecl TN

The expression typing judgement associates a directionality
with expressions to indicate if the expression is read only
(in) or is both readable and writable (inout). Intuitively, the
contexts on the left of - in the statement and declaration typ-
ing rule describe the contexts before their execution, while
the contexts on the right of 4 define the context after the
execution of the statement and declaration.!

4 IFC Type System for P4

This section presents the security-type extension for the
Core P4 fragment presented in Figure 1. Before presenting
the security-types for our fragment of Core P4, we describe
the main idea behind security type systems.

4.1 Background on Security Type Systems

A security type system lifts ordinary types to security types
by annotating them with security labels [28]. These security

The original Core P4 typing judgements also have a constant store, to
model compile-time constants. We omit this store since our fragment does
not include compile-time constants.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

labels are drawn from a security lattice, (L, C), associated
with the type system. We illustrate the key ideas using a
simple two point lattice {low, high}. Here, low identifies
publicly visible values and high represents secure values,
and low C high.

Consider a well-typed closed expression exp with type
7, represented by an ordinary type system as + exp : T.
A security-type system will additionally assign a security
label, y € L to exp. This can be represented by the typing
judgement + exp : (t,), where the pair (z, y) is the security
type. For instance, if exp evaluates to val and y = high, then
val is considered to be a secure value.

For statements (or expressions) that can mutate variables,
a security type system assigns a security label pc € L to the
typing judgements. This label denotes the security context
used to track the security level for variables that can be
written at a given program point (program counter). Consider
a conditional statement that branches on a high security
guard expression:

if (h==1) { h:=set_high();}else { h:=1;},

where the security level of h is high and the set_high function
call in the true branch writes to only high security variables.
Since the guard is at high security level, the pc for both the
conditional branches becomes high. Here, both branches
need to be well-typed under the high security label, which
implies that no variable at security level lower than high
can be mutated in either branch. For instance, we must have
I thigh h := set_high() and ' tpigp (h := 1). Without this
restriction, there can be an implicit flow of information from
the conditional guard into the statement blocks of the condi-
tional, for instance, if the function wrote to a low variable.

The utility of a security-type system lies in the non-interference

guarantee offered by a well-typed program. To define non-
interference, suppose that all low security variables are ob-
servable while any high security variable is unobservable.
Informally, non-interference can be understood as the prop-
erty of a program where no unobservable input variable
influences the value of any observable output.

4.2 P41FC Type System

This section describes our information-flow control type
system for the language in Figure 1. We assume the lattice
(L, E) of security labels has T and L elements, representing
the top and bottom elements of the lattice. In our example
lattice, L = low and T = high.

Figure 4 summarizes the security types of our information-
flow control system. Core P4 types are lifted to security types
using a security label, y, from the lattice L. We also use
pc to denote a security label when it is used as a security
context. As in Core P4, we distinguish between base security
types p and general security types k. For non-base types, the
security label is tracked within the type itself, for instance,
the fields of headers and records are assigned security labels

Karuna Grewal, Loris D’Antoni, and Justin Hsu

(bool, y) | (int, x) | (bit(n), x) | {unit, L)
(f: pt. L) | (header{f : p}, L) | (p[nl], L)
(match_kind{f}, L)

i= p | (table(pen). L) | (@ p 25 pres. 1)

BE b&lhnt | bit(n)ﬂit

| {7 p} | header(f - p}

| pln] | match_kind{f}

| table(pens) | dp 2 pres

Figure 4. IFC Types

instead of the header or record. But to keep the shape of
types uniform, we assign the L security label for such types.
We use the metavariable 7 to denote a security type without
its outer-most security label; thus, security types are of the
form (z,).

Before describing the judgement forms of the security
type system, we introduce the contexts used in the typing
judgements. The typing judgements use a typing context, I,
a type definition context, A, and a security context, pc, which
are same as Core P4’s contexts Figure 2, with the difference
that now Typ is the set of security types of the form (z, y).

For a given security label pc, variables in a typing context I'
at security level y C pc will be referred as below-pc variables,
and variables at security level y IZ pc will be referred as not
below-pc (or sometimes above-pc) variables.

Our security type system has three forms of judgements
for expressions, statements, and declarations, respectively:

Expressions : T, A +p. exp: (1, x) goes d
Statements : T, A+, stmt 4T’
Declarations : I, A +pc decl 4T/, A’

The direction annotation goes d in the typing judgement for
expressions is dropped when the direction is not important.
The complete security typing rules can be found in Figure 5
(expressions), Figure 6 (statements), and Figure 7 (declara-
tions). Expression typing assumes a typing oracle 7, giving
the meaning of the binary operations. In statement and decla-
ration typing, the judgement A + 7 ~» 7’ converts 7 to a base
type by unfolding type definitions [10]. Below, we discuss
the most interesting—and technically intricate—typing rules:
those for functions, tables, and subtyping.

Typing rules for functions. Our system has rules for
function declarations and function calls. These are also the
key rules for typing actions, which are functions with no
return type. The T-FNDEcCL rule in Figure 7 typechecks the
body of the function to eliminate any leaks in the function
body. The pcy, security label on the function’s arrow type
records the lower bound on the security labels of the vari-
ables that the function mutates. For instance, in the following

P4BID: Information Flow Control in P4

function:
function insecure(){! := 1;h := 2; },

where the security labels of [and h variable are low and
high respectively, pcy, will be low. The T-FNCALL rule in
Figure 5 enforces that a function will not be invoked in a
context that is higher than the function’s pc, because doing
so, for instance in the example program, will implicitly flow
information from a high guard expression into a low variable.

Typing rules for tables. Since a table matches on the key
to select an action to invoke, the key of a table resembles the
guard of a conditional. Thus, the value of a key can implicitly
leak in the action’s body if the invoked action writes to vari-
ables at security label lower that that of the key expression.
Therefore, to declare a table of type (table(pcip), L), the
rule T-TBLDECL in Figure 7 ensures that the security label of
the most secure key, yi, is lower than the label of the least
secure assignment, pc,, in any action. Here, pc;p; records the
lower bound on the write effects associated with any keys,
actions, or arguments.

The T-TBLCALL rule in Figure 6 prevents any implicit flow
into any of the actions that a table might invoke by allowing
a table to be applied only in a pc context lower than the
least secure write effect associated with the table application,
pcepi- This prevents implicit leaks during the evaluation of
keys, arguments, or the action’s body.

Subtyping rule. The T-SuBTYPE-IN rule in Figure 5 allows
only read-only (in) expressions to increase their security
label. It is not safe to allow inout expressions to be subtyped.
To see why, consider the following function:

write_to_high (inout h : (bool, high)) {h := true; }

Suppose we have a low variable | : (bool, low). Since vari-
ables are inout expressions (T-VAR in Figure 5), if inout ex-
pressions were allowed to increase their label, write_to_high(l)
call would have been valid. In this case, the function would
have written to a low variable when it should have operated
with only a high variable.

4.3 Non-Interference

To define non-interference, consider two program states,
(C, A, pg, €5) and {C, A, pp, €p), where the environments have
equal domains. Suppose every below-pc variable x has equal
value under both the memory stores, y,(€,(x)) = pp(€p(x)),
but the value of any variables that are not below-pc can
differ between the two stores. Non-interference is satisfied
if evaluating an expression, statement, or declaration in the
two program states results in two final program states that
agree on below-pc variables.

The following definition formally describes a pair of below-
pc equivalent memory stores and environments. The store
typing context = maps locations in a store to security types.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Definition 4.1. Consider two pairs of memory stores and
environments (g, €,) and (i, €,). Then

Ea Ep A Izpc (Has €a) {po-€p) = T
is satisfied when

Za A |: <,Ua: €a> :T and Ep, A |: <[.lb, 6b> : T

and every below-pc variable x in €, and €, has equal value
i.e, Ha (ea(x)) = Hb (ep(x)).

Intuitively, Z,A |= (p,€) : T states that the store and
environment are well-typed: recalling that the location of
every variable is described by the environment € and the
value at valid locations is described by the memory store p,
the type assigned to a variable using the store typing = must
be the same as the type assigned by the typing context T'.

The following definition of non-interference for state-
ments requires that evaluating a statement under below-pc
equivalent pairs of memory stores and environment can only
reduce to pairs of final memory stores and environments that
are below-pc equivalent. Technically, this is a termination
insensitive notion of non-interference, since it does not re-
quire that both executions terminate. However, P4 programs
do not allow recursion and Doenges et al. [10] prove that all
well-typed Core P4 programs terminate.

Definition 4.2 (Non-interference for statements). For any
security lable I, T', A |=p. NI(stmt) = T holds for any Zg, Ep,
Has Hbs €as €bs Hos J1y,» €45 €, if whenever

1. Eg, Ep, A Fi (plas €a) (pps€0) = T,
2. {C; A\; pras €q5 stmt) | (pg; €45 5191),
3. {C; A pps eps stmt) | (py s €,55ig2)

then there exists =7, E;}, such that

1. T,A bpe stmt AT,

B By A (o €0) (i €) T,

CELE A () () i T,

. for any I, € pom(y,) and [, € pom(yp) such that
Ea At pa(ly) : (r, x) and Ep, A + pp(lp) = (7, x) and
pe & x, we have 5 (la) = pa(la) and py (Ip) = pp(Ip),

5. for any I, € pom(y,) such that Z,, A F pa(ly) : Telos,

where 7cjos € {Tfn, 7151}, We have pi},(Ia) = pa(la),

6. for any I, € pom(pp) such that Zp, A + pp(Ip) : Tejoss

where 755 € {Tfn, Typ1}, we have :u;,(lh) = pp(lp),

7. one of the following holds:

® sig; = sigas = cont; or

® sig; = sigs = exit; or

® sig; = return val; and sig; = return val, such that
=, E;},A 1 NI(valy,valy) : (7, Xret), Where A +
Tret ™ T;ez and I'[return] = (zyes, Xret>,

8. we have the inclusions:

e 5, CEjand By C E;

® poM(4g) € pOM(py,) and poM(pp) C DOM(py); and

® poM(€;) € poM(€,) and DoM(€p) S DOM(E)).

=W N

PLDI °22, June 13-17, 2022, San Diego, CA, USA

’

T A bper exp i (T,) pc C pc
IA bpe exp i (T, x)

T-SuBTYPE-PC

T, A bpe exp : (T, x) goes in

Karuna Grewal, Loris D’Antoni, and Justin Hsu

XEX

n - T-SuBTyPE-IN
LA rpe exp : (1, ¥') goes in

x € pom(T) I'(x) ={7, x)

T-BooL

I, A bpe b2 (bool, 1) goes in

LA bpe expr : {p1, x1) T, A bpe expy i {p2, Xo)
T(Ws@pisp)=ps xEX Ly

T, A bpe expy @ exps = {ps, ') goes in

T-BINOP

T, A bpe exp s ({fi: {z xi)}, L) goes d
T, A vbpe exp.fi = Ty, yi) goes d

T-MEMREC

LA bpe exp : (header (fi: (i, i)}, 1) goes d
T, A bpe exp.fi (7, i) goes d

T-MeEMHDR

[, A bpe neo = (int, L) goes in

T-INT - T-VAR
I, A bpe x 2 (7, x) goes inout

[, A bpe {exp : (m i)}
LA bpe {f s expl - ({f : {m, xi)}, L) goes in

T-Rec

LA bpe expr = ({7, x1)[n], L) goes d
T, A Fpe expy = (bit(32), x2) X2Cxn

[, A vbpe expi[exps] : {z, y1) goes d

T-INDEX

—— PCfn
T, A "pc exp; : <d <Ti, Xt> — <Treta Xret>: J—>
T, A bpe exps - (T, xi) goes d pec T pepn
T, A bpe expi(exps) : {Tres Xrer) gOES in

T-CaLL

Figure 5. IFC Typing Rules for Expressions

T-EmMPTY

[LAvp {} AT T,A+r, exit 4T

T, A Fpe expy : (T, x1) goes inout
L Avpeexpy:(t,x2) x2Sy pcCy
[LAbpe expri=exps AT

1
T-AssiGN

IA Fpe exp : (T, Xret) [(return) = (Tret, Xret)

T-Ex1T

T, A vpe exp : (bool, y1)

I,A FPC stmt; 413
T, A bpe {stmty;stmty} 4 Ty

I, A ch {Stmtz} 115
T-SeQ

I,A Fr stmty 415
X1E Xz PCE xo

F,A l_)(z stmty H Fl

T-ConD

AI—TretWT

T, A vy if (exp) stmty else stmty AT

[, A vpc var_decl 4Ty, A
T-DEcL

T-RETURN

ILAF, returnexp 4T

[, A by expi(exps) = (Trers Xret)
[A by expi(expsy) 4T

T-FNCALLSTMT

T,A Fpc exp : (table(PCtbl)> J—>

[, A vbpe var_decl 4Ty

¢ C perpr
P pet T-TBLCALL

[LAFpeexp() 4T

Figure 6. IFC Typing Rules for Statements

We present similar non-interference definitions for expres-
sions and declarations in the full version of the paper.

Then, our main soundness theorem states that a well-
typed program in our information-flow control type system
will be non-interfering.

Theorem 4.3 (Main Soundness Theorem). If T, A+, stmt
I, thenT, A |5y NI(stmt) 5 T7.

We present similar non-interference theorems for expres-
sions and declarations in the full version of the paper.

Proof Sketch. We prove non-interference theorems for state-
ments, expressions and declarations together as a mutual

induction on the typing derivation. The detailed proof of The-
orem 4.3 is given in the full version of the paper. The most
involved case is the rule for function calls (T-FNCALL), where
we must slightly strengthen the non-interference definition
for expressions, statements, and declarations. O

5 Implementation and Case Studies

To evaluate our type system, we implemented a type-checker
for annotated P4 programs and used it to analyze a range
of example programs exhibiting different kinds of errors.
We call our tool P4BID. Our information-flow control type
system is implemented as an extension of the type checker
in the p4c compiler [26], the reference compiler for P44 [25].

P4BID: Information Flow Control in P4

T-VArRDECL

LA bpe exp : (7', x)

PLDI °22, June 13-17, 2022, San Diego, CA, USA

ArT~ T
T-VARINIT

LA bpe (T,) x AT [x : (7,)], A

TiA bpe (T x) x i=exp AT [x : (7', p)|; A

r>A FPCtbl expk : <Tk; Xk>

pefn; .
LA Fpeyyy acta; 2 dSTays Xaji) 5 Teji Xejy) — (unit, L), 1)

L, A bpeyy €XPay; ¢ {Tajis Xayi) goes d

LA bpeyyy Xk (match_kind, 1)

Xk E pepn; forall j, k

Xk E pegpy for all k
pca E pepn; for all j

pevt E pe
¢ T-TBLDECL

[, A by table x {expy : xi actq;(expa,;)} 4T [x : (table(pcspr), L)], A

I = T[x; : (7}, xi), return : T/ o, Xrer)]
, SR pcfn ,
r = r[x : <d <Tl's Xl> — (Tre[’ Xret>> J—)]

A b Trer o T,

/
A+ 7; »» 7] for each 7 -

I, A '_Pcfn stmt 41,

T-FuncDEecL

L, A kpe function (Tres, Yrer) X (d x; = {7y, yi)){stmt} 4T",A

Figure 7. IFC Typing Rules for Declaration

The target of our type checker is the simple_switch based
on the BMv2 behavioral model. Our implementation adds
about 700 LOC to pr4c and supports the £ = {high, low}
lattice, and a simple diamond lattice from Figure 8b, £ =
{high, alice, bob, low} for modeling isolation specifications.
Standard P4 types can be annotated with a security label
from the lattice; unannotated types default to low.

We evaluate our implementation by comparing the type-
checking time of the secure programs presented in the case
studies using the P4BID typechecker with the typechecking
time of their uninstrumented insecure counterparts using
the original p4c compiler. Table 1 shows that our implemen-
tation incurs an overhead of 5% (or 30ms) on average in
comparison to the reference p4c compiler when evaluated
on the instrumented and uninstrumented versions of the
same program. We believe this overhead is reasonable for
an unoptimized implementation that builds on the stock p4c
compiler; developing a more optimized implementation is a
direction for future work.

Table 1. Typechecking time in milliseconds.

Program Unannotated, p4c Annotated, P4BID

D2R 534 599
App 593 600
Lattice 495 527
Topology 554 591
Cache 538 550
Average 543 573

In the rest of the section, we present our case studies.

5.1 Dataplane Routing with Priorities

In traditional networks, the control plane is responsible for
routing, determining how to send a packet from source to des-
tination, while the data plane is responsible for forwarding,

sending a packet to its next hop. Subramanian et al. [31] have
shown that using programmable switches, one can handle
routing in the data plane, avoiding the control plane entirely.
In their scheme, called D2R, when a switch receives a packet,
it uses pre-loaded information about the network topology
and local knowledge about link failures to perform a breadth-
first search (BFS) and find a path to the target destination
address. D2R uses P4 mechanisms (e.g., stacks) to perform
the BFS computation entirely on the switch, without needing
to communicate with the control plane.

We consider an extension of D2R where packets that en-
counter a higher number of link failures will receive higher
priority. Listing 3 gives schematic code for the main headers
and control block implementing this variant of data plane
routing. The bfs_t headers describe the auxiliary informa-
tion carried in the packets to perform the BFS, e.g., which
links have been tried, while the ipv4_t headers contain in-
formation for standard packet forwarding. In the control
block D2R_Ingress, the number of failures count (Line 19)
can be computed from the vector of links that have been
tried, hdr.bfs.tried_links, and the number of traversed links,
hdr.bfs.num_hops. The table bfs_step performs one step of
BFS; the details are not important for our purposes. Since
P4 does not support loops, an iterative search algorithm like
BFS is modeled in the apply block on Line 35 by unrolling
the loop. If the BFS search has not completed, i.e., the current
node in the BFS search is not the destination node (Line 37),
the BFS table is applied again (we elide the details of this BFS
search algorithm which can be found in [31]). When the BFS
search has successfully completed (Line 39), the forwarding
table is applied and packet priorities are assigned based on
the number of failures encountered by the packet.

Using failure information to prioritize packets may leak
information. For instance, there are several potential reasons
why hdr.bfs.num_hops could be secret—e.g., the packet could
be transiting a private network and one might not want to

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Listing 3. D2R: Dataplane Routing
header bfs_t {

<bit<32>, low> curr;
<bit<32>, low> tried_links;
<bit<32>, high> num_hops;
/...

}

header ipv4_t {
<bit<3>, low> priority;

I T N N N

/] ...
0}
11 struct headers {
12 bfs_t bfs;
13 ipv4_t ipv4;
14 /...
5}

17 control D2R_Ingress(headers hdr) {
18 <bit<32>, high> failures
19 = num_bits_set(hdr.bfs.tried_links) - hdr.bfs.num_hops;

21 table bfs_step { ... }

22 table forward {
23 key = { hdr.bfs.next_node: exact; }
2 actions = { forwarding(failures); NoAction; }
25
}
26 action forwarding(in <bit<32>, high> failures) {
27 if (failures >= THRESHOLD) {
28 hdr.ipv4.priority = PRIO_T; // Leak
29 }
30 else {
31 hdr.ipv4.priority = PRIO_2; // Leak
32
33 // ... normal forwarding logic ...
34 }
55 apply{
36 if (hdr.bfs.curr != hdr.ipv4.dstAddr) {
37 bfs_step.apply();
38 } else {
39 forward.apply();
40 }
41 // repeat applications of bfs
42 }
3}

reveal whether the network has reliable or unreliable links. If
hdr.bfs.num_hops is annotated as high security, the program
is rejected by our typechecker because the forwarding action
writes data to the low-security priority after branching on
the number of the failures, which is high security (Lines 28
and 31). This is an example of an indirect leak: the program
branches on the secret, and then writes to public fields.

To remedy this information leak, we can modify the scheme
so that the priority is computed based on non-sensitive in-
formation. For instance, we can assign priority based on
the total number of links that a packet tried to cross. This

Karuna Grewal, Loris D’Antoni, and Justin Hsu

count is an approximate proxy for the number of failures:
as the number of failures rises, the packet tries more links.
This change can be implemented by removing hdr.bfs.num_-
hops in Line 19, giving a program that is accepted by our
typechecker.

A similar kind of leak can manifest in the implementation
of NetChain [18], an in-network implementation of chain
replication on top of a key-value store. The implementation
assigns roles to the various switches in the network to de-
termine the head, tail, or internal nodes of the chain, which
among various actions determines if the node sends out a re-
ply or not. If the roles header field is labeled as a secret field,
this can give away private topological information. When in-
strumented with a high label on role, the typechecker flagged
implicit leaks in the implementation.

5.2 Modeling Timing for In-Network Caching

Like other IFC systems, our type system can model different
notions of adversary-observable data. For an example, we can
consider a key-value store with an in-network cache [19].
These systems are a prominent application of data plane
computing: switches can quickly retrieve hot items, keep
track of which items are frequently requested, and notify
the controller about which items should be stored on the
switch. While the result of a query should be the same no
matter where the item is stored, an observer may be able to
detect variations in timing: data that is stored on the switch
is returned faster, while data that is stored on the controller
takes longer to access. In some cases, this timing side-channel
may allow an adversary to learn about the state of the system.

While Core P4 does not model timing aspects of program
behavior, we can still model timing information leaks by
augmenting the program with new variables holding data
that a timing-sensitive adversary may be able to observe.
For example, Listing 4 gives a schematic P4 program imple-
menting a simple cache. The switch first tries to fetch data
locally (Line 16). If the request hits then the table runs action
cache_hit, while if the request misses then the table runs
action cache_miss. Both actions record the hit or miss in
hdr.resp.hit. We mark this field as a low-security (publicly
visible) variable, to model an adversary who can distinguish
whether a request was serviced by the cache or the controller.
If the query is sensitive information, hdr.req.query is de-
clared as high security. Our typechecker rejects this program
because of an information leak: the actions cache_hit and
cache_miss write to the low-security field hdr.response.hit
(Lines 8 and 10), but they are invoked in a table with a high-
security key hdr.req.query (Line 12). This is again an indirect
leak, modeling a simple timing side-channel.

5.3 Preventing Manipulation in Resource Allocation

The examples we have seen so far use IFC to guarantee con-
fidentiality: secret information (high) should not leak into

P4BID: Information Flow Control in P4

Listing 4. In-network cache

header request_t { <bit<8>, high> query; }
header response_t { <bool, low> hit; <bit<32>, low> value; }
struct headers { request_t req; response_t resp; eth_t eth; }

control Cache_Ingress(headers hdr) {
action cache_hit(<bit<32>, low> value) {
hdr.resp.value = value;
hdr.resp.hit = true;

I T N N N

}
10 action cache_miss() { hdr.resp.hit = false; }
11 table fetch_from_cache {
12 key = { hdr.req.query: exact; }
13 actions = { cache_hit; cache_miss; }
14 }
15 apply {
16 fetch_from_cache.apply();
17 // ... if miss, try to fetch from controller ...
18
}

v}

publicly visible outputs (low). As is well-known, if we in-
terpret high-security data as “untrusted” and low-security
data as “trusted”, IFC systems can also ensure integrity: un-
trusted inputs should not affect trusted outputs. To demon-
strate, suppose several applications are running on separate
subnetworks behind a single gateway switch, which is re-
sponsible for forwarding packets to their destination sub-
network and allocate resources to the application flows. We
consider a very simple form of resource allocation, where
a switch caters to the needs of latency-sensitive applica-
tions by increasing the priority of packets belonging to such
applications. The P4 program in Listing 5 gives the main
logic for a gateway switch that accomplishes this task. In
addition to ordinary IP headers, packet headers in this set-
ting also include an application ID hdr.app.applD indicating
which application the packet belongs to. In the control block,
the table app_resources matches on the application ID, and
then calls set_priority with the desired priority level. This
action then sets the priority level of the packet by writing to
hdr.ipv4.priority (Line 15). Finally, the switch forwards the
packet to the destination address hdr.ipv4.dstAddr.

While this program behaves well when clients are honest,
a malicious client may manipulate the switch to increase the
priority of their packets. Specifically, since hdr.app.appID
is used to determine priority but not used to forward the
packets, a client may report a false application ID. This issue
can be detected by our IFC system if we label hdr.app.appID
as untrusted (high) and hdr.ipv4.priority as trusted (low):
setting priority based on application ID is an information-
flow violation.

To address this problem, we can set the priority based on

the destination address instead, by matching on hdr.ipv4.dstAddr

instead of hdr.app.appID on Line 18. It is reasonable to model

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Listing 5. Resource Allocation

header app_t { <bit<8>, high> applID; }
header ipv4_t {
<bit<32>, low> dstAddr;
<bit<32>, low> priority;
/] ...
}
struct headers {
app_t app;
ipv4_t ipv4;
10 /] ...
un }

B T - N o N

13 control App_Ingress(headers hdr) {
14 action set_priority(<bit<3>, low> priority) {

15 hdr.ipv4.priority = priority;

16 }

17 table app_resources {

18 key = { hdr.app.applID: exact; }
19 actions = { set_priority; }

20 }

2 apply{

22 set_priority.apply();

23 // ... forward the packet to hdr.ipv4.dstAddr ...
2 }

5}

this header as trusted (low) because if a client were to manip-
ulate this data, the packet would be delivered to the wrong
destination. In the modified program, the priority is now
only computed based on trusted data in hdr.ipv4.dstAddr
and the typechecker accepts this program because there is
no integrity violation.

5.4 Ensuring Network Isolation

The previous example changes the interpretation of security
labels in order to establish different properties with IFC. For
our final case study, we show how our type system can use
a richer lattice to enforce network isolation properties.

Suppose we have a private network used by two clients,
Alice and Bob, who run dataplane programs on two sep-
arate nodes (the precise topology is not important, but a
sketch can be see in Figure 8a). Nodes pass around a shared
packet header with separate fields for Alice and for Bob, and
we want to ensure that Alice does not touch Bob’s fields,
and vice versa. Furthermore, the network operator wants to
carry telemetry data alongside the packets (in-band network
telemetry [17]) this data may depend on Alice or Bob’s data,
but neither Alice nor Bob should be able to use telemetry
data.

We can model this isolation property as non-interference
with a four-point diamond lattice with labels {A, B, T, L}
(Figure 8b). Non-interference ensures that data from level y
can flow to variables labeled y’ if and only if y C y’. Thus, if
we label Alice’s fields A and label Bob’s fields B, then Alice’s

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Bob Switch T
/N
B A
N/
Alice switch 1
(a) Network Topology (b) Security Lattice

Figure 8. Security lattice for a network topology

data cannot influence Bob’s fields, and vice versa. Similarly,
T-labeled fields can depend on all data, but cannot influence
data below T. For instance, telemetry data can be labeled T:
both Alice and Bob can accumulate data into T-labeled fields
(e.g., increment a counter), but neither Alice nor Bob are able
to leak information from T-labeled data into their own fields.
Finally, fields labeled L contain globally visible data that
cannot depend on other fields above L. For example, we can
pre-configure a packet’s route through the private network
in L -labeled fields: this ensures that information from Alice
or Bob does not influence routing, potentially leading to an
indirect leak or isolation failure.

Labeling data from the four-point lattice can already rule
out many kinds of leaks. However, it still allows some leaks
involving 1-labeled data. For instance, Alice may write Bob’s
fields with L-labeled data, while Bob may use L-labeled
data to modify L -labeled data. While potentially undesirable,
neither of these actions violates IFC since high data is allowed
to depend on low data. To prevent these behaviors, we can
additionally typecheck Alice’s code with pc label A, and
typecheck Bob’s code with pc label B. Then, non-interference
guarantees that Alice can only write to fields labeled A or T,
and Bob can only write to fields labeled B or T.

Listing 6 shows schematic versions of programs imple-
menting the Alice and Bob switches. Both the switches have
a single action. The packet header carries one of the four se-
curity labels. In this example, we consider that hdr.alice_data
and hdr.bob_data are Alice’s and Bob’s data, respectively;
hdr.eth cannot be updated by either switch, but it can be
used by both the switches; and hdr.telem can be updated by
any switch but it should not be visible to Alice or Bob. Then,
isolation can be established by checking two judgements:

T, A +4 update_by_alice() 4T’
T, A +g update_by_bob() 4T’

Programs that incorrectly access packet headers will be
flagged by the typechecker. For instance, in Alice_Ingress, the
switch tries to write to Bob’s field, Line 12 and on Line 16 it
attempts to use the telemetry field hdr.telem, which can only
be written to, not read. Our typechecker flags both leaks. A
safe version of Alice’s switch program is shown in Listing 7.
In contrast, Bob_Ingress is accepted by the typechecker: it
applies a table that branches on the L-labeled header hdr.eth,

Karuna Grewal, Loris D’Antoni, and Justin Hsu

Listing 6. Network Isolation and Telemetry

struct headers {

1

2 <alice_t, A> alice_data;

3 <bob_t, B> bob_data;

4 <telem_t, top> telem;

5 <eth_t, bot> eth;

s }

7

8 //typedatpc=A

o control Alice_Ingress(headers hdr) {

10 action set_by_alice(<bob_t, A> value) {
11 // Error: should not have written to Bob's field
12 hdr.bob = value;

13 }
14 table update_by_alice {

15 // Error: should not have used telemetry field
16 key = { hdr.telem: exact; }
17 actions = { set_by_alice; }

18 }
19 apply { update_by_alice.apply(); }

22 //typed at pc =B
23 control Bob_Ingress(headers hdr) {
2 action set_by_bob() {

25 // Allowed: modify telemetry using telemetry
information
26 hdr.telem = hdr.telem + 1;

27 }

28 table update {

29 key = { hdr.eth.dstAddr: exact; }

30 actions = { set_by_bob; NoAction; }
31 }

32 apply { update_by_bob.apply(); }

33

Listing 7. Isolation Respecting Switch Program

// typed at pc = A
control Alice_Ingress(headers hdr) {
action set_by_alice(<alice_data, A> value) {
hdr.alice_data = value;
}
table update_by_alice {
key = { hdr.alice_data: exact; }
action = { set_by_alice; }
}
10 apply { update_by_alice.apply(); }
n }

I N L T T SO R

and the action set_by_bob only modifies the T-level header
hdr.telem, incrementing a counter.

While our concrete example only involves two switches
and two parties, the same idea can be directly generalized to
more parties by adding additional labels at the level of A and
B. Then, our typechecker can ensure that programs written

P4BID: Information Flow Control in P4

by different parties act on only their own packet headers.
Richer dataflow policies could potentially be enforced by
using more complex lattices; this is an interesting direction
for future work.

6 Related Work

Security in programmable networks. Recent works ex-
plore the security and privacy implications of programmable
networks. For instance, in-network systems can be used to
defend against denial-of-service attacks [38, 39], obfuscate
network topology [23], mitigate covert channels [37], and
enforce custom security policies [21, 31]. Tools have also
been developed for helping operators test their dataplane
programs against adversarial inputs (e.g., [20]). Our work
complements these systems by detecting security and pri-
vacy bugs in programs running on programmable switches.

Network verification. The network verification literature
is too vast to summarize here; methods have have targeted
many aspects of networked systems, including routing proto-
cols (e.g., [2-4, 36]), network configurations (e.g., [5, 29]), and
network controllers (e.g., [7, 15]). Techniques have also been
developed for verifying dataplane programs (e.g., [1, 14]).
Some works also allow one to automatically repair faulty
configurations [30] or to automatically synthesize policy-
compliant ones [32, 33].

Our work focuses on dataplane programs written in the
P4 language [6], building on the core version of P4 developed
by Doenges et al. [10]. Perhaps the most closely related work
is p4v [22], a verification system for P4 programs. Using p4v,
a P4 program is verified against a logical specification by ex-
tracting a logical formula, which can be dispatched to solvers
like Z3. Liu et al. [22] use p4v to verify basic correctness prop-
erties, e.g., a program does not read or write invalid headers,
or a program implements the desired functionality correctly.
While our system cannot verify the general properties estab-
lished by p4v, our target non-interference property cannot
be established in p4v since it relates a program’s behavior
on pairs of inputs [8]. Furthermore, our type-based analysis
is lightweight and does not require automated solvers.

Two closely related type-system based works that explore
properties orthogonal to non-interference properties are
SafeP4 [11] and 14 [12]. SafeP4 aims at catching invalid
header access bugs, while I14 presents a dependently-typed
extension of P4 for verifying richer properties that SafeP4
could not cover. Unlike IT4, P4BID has a light-weight type-
checking algorithm that does not involve constraint solving.
Furthermore, our system builds on Core P4, a more realistic
formal model of P4. For example, Core P4 models different
calling conventions of P4 functions (e.g., pass by value and
pass by reference) and control flow signals. These features
introduced new opportunities for implicit leaks, which our
type system rules out.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Information-flow control. Our approach belongs to a
line of research on information-flow control (IFC), a type-
based method of expressing and verifying a wide variety of
security properties. Starting from work by Denning [9] and
Volpano et al. [35], there are now many information-flow con-
trol systems ensuring different variants of non-interference
against different kinds of adversaries; the survey by Sabelfeld
and Myers [28] is a good introduction to this area. Exist-
ing systems target general-purpose programming languages
(e.g., [24, 27]). Our work brings this idea to languages for
programmable networks.

7 Conclusion and Future Directions

We have designed an information-flow control type system
for P4 and demonstrated how it can verify networking prop-
erties for programs running on programmable switches.
We see several possibilities for further investigation. First,
our non-interference theorems treat P4 programs as map-
ping a single input packet to a single output packet, but,P4
allows programming switches that can maintain internal
state and recirculate packets for additional processing. These
features could lead to security leaks if an adversary can ob-
serve sequences of input and output packets, and it would be
interesting to establish non-interference in this richer setting.
Second, it could be interesting to refine our analysis with
information or assumptions about the control plane [22].

Acknowledgments

This work benefited substantially from discussions about P4
and Core P4 with Eric Campbell, Ryan Doenges, and Nate
Foster. We thank the reviewers and our shepherd, Jedidiah
McClurg, for their close reading and constructive feedback.
This work is partially supported by NSF grants #2152831 and
#1943130.

References

[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
semantic foundations for networks. In ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), San Diego,
California. 113-126. https://doi.org/10.1145/2535838.2535862

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In Con-
ference of the ACM Special Interest Group on Data Communication
(SIGCOMM,), Los Angeles, California. 155-168. https://doi.org/10.1145/
3098822.3098834

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018.
Control plane compression. In Conference of the ACM Special Interest
Group on Data Communication (SSIGCOMM), Budapest, Hungary. 476—
489. https://doi.org/10.1145/3230543.3230583

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2020.
Abstract interpretation of distributed network control planes. Proceed-
ings of the ACM on Programming Languages 4, POPL (2020), 42:1-42:27.
https://doi.org/10.1145/3371110

Riidiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Mar-
tin T. Vechev. 2020. Config2Spec: Mining Network Specifications from
Network Configurations. In USENIX Symposium on Networked Systems

[2

—

E

—

[4

[l

5

—

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3371110

PLDI °22, June 13-17, 2022, San Diego, CA, USA

[10

[11

[12

[13

(14

[15

(16

(17

(18

[19

[20

—

—

—

—

]

—

—

[lanv i s

]

—

—

=

—

[t

Design and Implementation (NSDI), Santa Clara, California. 969-984.
https://www.usenix.org/conference/nsdi20/presentation/birkner

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: programming protocol-
independent packet processors. Comput. Commun. Rev. 44, 3 (2014),
87-95. https://doi.org/10.1145/2656877.2656890

Eric Hayden Campbell, William T. Hallahan, Priya Srikumar, Carmelo
Cascone, Jed Liu, Vignesh Ramamurthy, Hossein Hojjat, Ruzica Piskac,
Robert Soulé, and Nate Foster. 2021. Avenir: Managing Data Plane
Diversity with Control Plane Synthesis. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 133-153. https:
//www.usenix.org/conference/nsdi21/presentation/campbell

Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. .
Comput. Secur. 18, 6 (2010), 1157-1210. https://doi.org/10.3233/JCS-
2009-0393

Dorothy E. Denning. 1976. A Lattice Model of Secure Information
Flow. Commun. ACM 19, 5 (1976), 236-243. https://doi.org/10.1145/
360051.360056

Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander
Chang, Newton Ni, Samwise Parkinson, Rudy Peterson, Alaia Solko-
Breslin, Amanda Xu, and Nate Foster. 2021. Petr4: formal foundations
for p4 data planes. Proceedings of the ACM on Programming Languages
5, POPL (2021), 1-32. https://doi.org/10.1145/3434322

Matthias Eichholz, Eric Hayden Campbell, Nate Foster, Guido Sal-
vaneschi, and Mira Mezini. 2019. How to Avoid Making a Billion-Dollar
Mistake: Type-Safe Data Plane Programming with SafeP4. In European
Conference on Object-Oriented Programming (ECOOP), London, England
(Leibniz International Proceedings in Informatics, Vol. 134). 12:1-12:28.
https://doi.org/10.4230/LIPlcs.ECOOP.2019.12

Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster,
and Mira Mezini. 2022. Dependently-Typed Data Plane Programming.
Proceedings of the ACM on Programming Languages 6, POPL, Article
40 (Jan. 2022), 28 pages. https://doi.org/10.1145/3498701

Facebook. 2021. More details about the October 4 outage. https:
//engineering.fb.com/2021/10/05/networking-traffic/outage-details/
Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and
Laure Thompson. 2015. A Coalgebraic Decision Procedure for NetKAT.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Mumbai, India. 343-355. https://doi.org/10.1145/
2676726.2677011

Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker.
2020. NV: an intermediate language for verification of network control
planes. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), London, England. 958-973. https://doi.org/
10.1145/3385412.3386019

Karuna Grewal, Loris D’Antoni, and Justin Hsu. 2022. P4BID: In-
formation Flow Control in P4 (Extended Version). Technical Report.
arXiv:2204.03113 [cs.PL] https://arxiv.org/abs/2204.03113

Intel. 2020. In-band Network Telemetry Detects Network Performance
Issues. Technical Report. Intel. https://builders.intel.com/docs/
networkbuilders/in-band-network-telemetry-detects-network-
performance-issues.pdf

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-Free
Sub-RTT Coordination. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Renton, Washington. USA, 35-49.
Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Bal-
ancing Key-Value Stores with Fast In-Network Caching. In USENLX
Symposium on Operating Systems Design and Implementation (OSDI),
Shanghai, China. 121-136. https://doi.org/10.1145/3132747.3132764
Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. 2021. Prob-
abilistic profiling of stateful data planes for adversarial testing. In

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Karuna Grewal, Loris D’Antoni, and Justin Hsu

International Conference on Architectural Support for Programming
Langauages and Operating Systems (ASPLOS). 286-301. https://doi.
org/10.1145/3445814.3446764

Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and
Xiapu Luo. 2020. Programmable In-Network Security for Context-
aware BYOD Policies. In USENIX Security Smposium (USENIX).
595-612. https://www.usenix.org/conference/usenixsecurity20/
presentation/kang

Jed Liu, William T. Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and Nate
Foster. 2018. p4v: practical verification for programmable data planes.
In Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM), Budapest, Hungary. 490-503. https://doi.org/10.1145/
3230543.3230582

Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever,
and Martin T. Vechev. 2018. NetHide: Secure and Practical Net-
work Topology Obfuscation. In USENIX Security Smposium (USENIX),
Baltimore, Maryland. 693-709. https://www.usenix.org/conference/
usenixsecurity 18/presentation/meier

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. 2006. Jif 3.0: Java information flow. http:
//www.cs.cornell.edu/jif

P4Lang. 2022. P4_16 Spec. https://p4.org/p4-spec/docs/P4-16-v1.0.0-
spec.html

P4Lang. 2022. P4c Compiler. https://github.com/p4lang/p4c
Francois Pottier and Vincent Simonet. 2003. Information flow inference
for ML. ACM Transactions on Programming Languages and Systems 25,
1(2003), 117-158. https://doi.org/10.1145/596980.596983

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based
information-flow security. IEEE ¥. Sel. Areas Commun. 21, 1 (2003),
5-19. https://doi.org/10.1109/JSAC.2002.806121

Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and
Martin T. Vechev. 2020. Probabilistic Verification of Network Configu-
rations. In Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM). 750-764. https://doi.org/10.1145/3387514.
3405900

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. 2020. Detecting network load violations for dis-
tributed control planes. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), London, England. 974-988.
https://doi.org/10.1145/3385412.3385976

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. 2021. D2R: Policy-Compliant Fast Reroute. In
ACM SIGCOMM Symposium on SDN Research (SOSR). 148-161. https:
//doi.org/10.1145/3482898.3483360

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017. Gen-
esis: synthesizing forwarding tables in multi-tenant networks. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Paris, France. 572-585. https://doi.org/10.1145/3009837.
3009845

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2018. Synthe-
sis of Fault-Tolerant Distributed Router Configurations. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 2, 1
(2018), 22:1-22:26. https://doi.org/10.1145/3179425

Steven J. Vaughan-Nichols. 2021. Google glitch triggers major internet
outage. ZDNet (Nov. 2021). https://www.zdnet.com/article/google-
glitch-triggers-major-internet-outage/

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A
Sound Type System for Secure Flow Analysis. J. Comput. Secur. 4, 2/3
(1996), 167-188. https://doi.org/10.3233/JCS-1996-42-304

Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. 2016. Scalable verification of
border gateway protocol configurations with an SMT solver. In ACM

https://www.usenix.org/conference/nsdi20/presentation/birkner
https://doi.org/10.1145/2656877.2656890
https://www.usenix.org/conference/nsdi21/presentation/campbell
https://www.usenix.org/conference/nsdi21/presentation/campbell
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/3434322
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1145/3498701
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1145/3385412.3386019
https://arxiv.org/abs/2204.03113
https://arxiv.org/abs/2204.03113
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3445814.3446764
https://doi.org/10.1145/3445814.3446764
https://www.usenix.org/conference/usenixsecurity20/presentation/kang
https://www.usenix.org/conference/usenixsecurity20/presentation/kang
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://www.usenix.org/conference/usenixsecurity18/presentation/meier
https://www.usenix.org/conference/usenixsecurity18/presentation/meier
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://github.com/p4lang/p4c
https://doi.org/10.1145/596980.596983
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3385412.3385976
https://doi.org/10.1145/3482898.3483360
https://doi.org/10.1145/3482898.3483360
https://doi.org/10.1145/3009837.3009845
https://doi.org/10.1145/3009837.3009845
https://doi.org/10.1145/3179425
https://www.zdnet.com/article/google-glitch-triggers-major-internet-outage/
https://www.zdnet.com/article/google-glitch-triggers-major-internet-outage/
https://doi.org/10.3233/JCS-1996-42-304

P4BID: Information Flow Control in P4 PLDI °22, June 13-17, 2022, San Diego, CA, USA

SIGPLAN Conference on Object Oriented Programming: Systems, Lan- [38] Jiarong Xing, Wenging Wu, and Ang Chen. 2019. Architecting Pro-
guages, and Applications (OOPSLA), Amsterdam, The Netherlands. 765— grammable Data Plane Defenses into the Network with FastFlex. In
780. https://doi.org/10.1145/2983990.2984012 USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), Prince-
[37] Jiarong Xing, Adam Morrison, and Ang Chen. 2019. NetWarden: ton, New Jersey. 161-169. https://doi.org/10.1145/3365609.3365860
Mitigating Network Covert Channels without Performance Loss. In [39] Jiarong Xing, Wenqing Wu, and Ang Chen. 2021. Ripple: A Pro-
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), Ren- grammable, Decentralized Link-Flooding Defense Against Adaptive
ton, Washington. https://www.usenix.org/conference/hotcloud19/ Adversaries. In USENIX Security Smposium (USENIX). 3865-3881. https:

presentation/xing //www.usenix.org/conference/usenixsecurity21/presentation/xing

https://doi.org/10.1145/2983990.2984012
https://www.usenix.org/conference/hotcloud19/presentation/xing
https://www.usenix.org/conference/hotcloud19/presentation/xing
https://doi.org/10.1145/3365609.3365860
https://www.usenix.org/conference/usenixsecurity21/presentation/xing
https://www.usenix.org/conference/usenixsecurity21/presentation/xing

	Abstract
	1 Introduction
	2 Overview
	3 Syntax and Semantics of Core P4
	3.1 Core P4 Syntax
	3.2 Core P4 Semantics
	3.3 Core P4 Type System

	4 IFC Type System for P4
	4.1 Background on Security Type Systems
	4.2 P4 IFC Type System
	4.3 Non-Interference

	5 Implementation and Case Studies
	5.1 Dataplane Routing with Priorities
	5.2 Modeling Timing for In-Network Caching
	5.3 Preventing Manipulation in Resource Allocation
	5.4 Ensuring Network Isolation

	6 Related Work
	7 Conclusion and Future Directions
	Acknowledgments
	References

