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Towards strengthening links between learning analytics and assessment: Challenges and 
potentials of a promising new bond 

A B S T R A C T   

Learning analytics uses large amounts of data about learner interactions in digital learning environments to understand and enhance learning. Although measurement 
is a central dimension of learning analytics, there has thus far been little research that examines links between learning analytics and assessment. This special issue of 
Computers in Human Behavior highlights 11 studies that explore how links between learning analytics and assessment can be strengthened. The contributions of these 
studies can be broadly grouped into three categories: analytics for assessment (learning analytic approaches as forms of assessment); analytics of assessment (appli
cations of learning analytics to answer questions about assessment practices); and validity of measurement (conceptualization of and practical approaches to assuring 
validity in measurement in learning analytics). The findings of these studies highlight pressing scientific and practical challenges and opportunities in the connections 
between learning analytics and assessment that will require interdisciplinary teams to address: task design, analysis of learning progressions, trustworthiness, and 
fairness – to unlock the full potential of the links between learning analytics and assessment.   

1. Introduction 

By analyzing digital traces of user interaction with technology, 
learning analytics offer many opportunities to understand and enhance 
learning and the environments in which learning takes place (Lang et al., 
2022). 

The field of learning analytics has led to research and development 
activities in learning, teaching, and education more broadly that have 
attracted the attention of policy- and decision-makers in education. For 
example, learning analytic researchers have examined prediction of 
student success (Jovanović et al., 2021), uncovering learning strategies 
(Matcha et al., 2020), understanding affective states (D’Mello, 2017), 
and determining the role of social networks in learning (Joksimović 
et al., 2016; Poquet & Jovanovic, 2020). The use of learning analytics 
has also shown its potential to enhance both student retention (Arnold & 
Pistilli, 2012) and quality of feedback (Lim et al., 2021; Pardo, 2018), 
and to inform teaching practice (Martínez-Maldonado et al., 2022). 
Educational institutions have developed policies for learning analytics 
(Tsai et al., 2018), adoption and implementation strategies (Macfadyen 
et al., 2014), and principles for ethics and privacy protection (Ferguson 
et al., 2016; Kitto & Knight, 2019). 

In spite of much promise, the field of learning analytics has three 
critical questions to address:  

1. How can learning analytics help track learning progressions and 
inform assessment?  

2. How can reliability and validity of learning analytics be improved?  
3. How can learning analytics account for issues of diversity, equity, 

and inclusions in its practices and models? 

These questions are particularly salient in today’s world. In the 
digital age, work increasingly relies on the use of complex skills (Greiff 
et al., 2014); learning and assessment are intertwined (VanLehn, 2008); 
and both moral and practical concerns require expanding the workforce 
to include — and thus account for — marginalized groups. 

In educational data mining, a cognate field to learning analytics 
(Baker et al., 2021), researchers have used assessment to support 
intelligent tutoring systems. These systems are primarily focused on skill 
development (Corbett & Anderson, 1994; Desmarais & Baker, 2012); 
however, there is a dearth of research that looks at the relationship 
between data and methods from learning analytics and formal assess
ments, whether summative or formative. 

Although some scholars argue that learning analytics are inherently 
a form of assessment in the broadest sense (Knight et al., 2013; Milligan, 
2018, 2020), existing learning analytic methods do not meet all of the 
criteria used in psychometrics to account for the different forms of 
validity in assessment (Kane, 2013; Messick, 1994, 1995). We posit that 
the weak connections between learning analytics and educational 
measurement is the likely reason for some of common concerns voiced 
about learning analytics and its use for student assessment (Lodge & 
Lewis, 2012). 

There are many open challenges in learning analytics that are asso
ciated with the aforementioned three questions. It is often unclear the 
extent to which results are generalizable and actionable (Gašević et al., 
2015). The theoretical foundations and properties of the domain being 
measured (structural aspect of validity) has not been examined thor
oughly (Rogers et al., 2016; Wise & Shaffer, 2015). Little attention has 
been paid to reliability of data used in existing studies. Moreover, there 
is a considerable shortage of theoretically informed measures to meet 
external aspects of assessment validity across a range of skills (Milligan 
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& Griffin, 2016). Finally, little work has systematically addressed chal
lenges that underrepresented groups present to models used for data 
analysis. 

Positive exchanges between learning analytics and assessment can go 
in both directions. Learning analytics can use tools, theories, and 
methods from assessment to improve its validity and reliability. But 
learning analytics also holds potential to offer benefits to the field of 
assessment (Milligan, 2020). Some early attempts to connect these two 
bodies of work have been made, for example when Ifenthaler and Greiff 
(2021) explored using trace data and data analytic techniques in 
assessment. Learning analytics can also be used to study existing 
assessment practices and to test open hypotheses in assessment research. 
However, there has been a notable absence of research to investigate 
how assessment research and practice can benefit from developments in 
learning analytics. Finally, the literature on assessment has long recog
nized issues of psychometric bias when a group of learners finds it 
harder to complete an assessment than another group (Jones & Appel
baum, 1989). Learning analytics is built upon data that may reflect 
existing systemic biases in society and education institutions, and in turn 
can inadvertently propagate or even amplify an unfair treatment of some 
groups of learners (Gardner et al., 2019; Prinsloo & Slade, 2018). 
Bringing learning analytics and assessment together has the potential to 
advance concerns of fairness and bias. However, there is a shortage of 
research on fairness and bias in learning analytics and let alone in 
analytics-based assessment. 

This special issue was organized to bring together a collection of 
papers that addresses some of these open research questions and 
strengthen the links between learning analytics and assessment. We aim 
to explore differences in both data collection and analysis, which are 
conducted differently in learning analytics and established assessment 
procedures. The papers are organized to investigate implications of 
these differences, draw recommendations about how they can be 
addressed, and thus develop better methods in learning analytics and 
assessment. 

2. Contributions in the special issue 

Table 1 summarizes the papers that are included in this special issue. 
They are broadly grouped into three categories: (1) analytics of assess
ment; (2) analytics for assessment, and (3) validity of measurement. The 
papers address different issues in assessment, but each uses trace data to 
analyze existing practices in assessment or propose and validate new 
forms of assessment. 

The first group of papers reports on the findings from four studies 
that use learning analytic approaches to support assessment, namely 
analytics for assessment. Two of the studies use video games for learning 
and assessment; the other two propose novel learning analytic ap
proaches to supporting assessment in massive open online courses 
(MOOCs). Peters et al. (2021) report on the findings of a study that 
aimed to create and validate a new approach to assessment of intelli
gence – pattern completion, mental rotation, and spatial construction – 
using the popular Minecraft™ video game. The study showed that tests 
administered through Minecraft™ had moderate reliability (as demon
strated by Rasch models) and convergent and factorial validity. Impor
tantly for this special issue, the study found that trace data was highly 
predictive of performance on intelligence tests in Minecraft™ and 
moderately predictive of performance on conventional tests. Rowe et al. 
(2021) also made use of a video game – Zoombinis™ – to measure im
plicit practices of computational thinking that students follow while 
playing the game. The study developed a set of machine learning clas
sifiers trained on trace data from gameplay; the classifiers produced 
good accuracy in automatic detection of computational thinking prac
tices. Dowell and Poquet (2021) propose a novel analytic approach for 
the assessment of socio-cognitive roles learners take in during online 
interactions. The approach is based on a combination of two data ana
lytic techniques – social network analysis and group communication 

Table 1 
Themes, authors, and brief description of the contributions included in the 
special issue.  

Theme Authors Description 

Analytics for 
assessment 

Abhinava Barthakur, Vitomir 
Kovanovic, Srecko 
Joksimovic, George Siemens, 
Michael Richey, Shane 
Dawson 

The study proposes a learning 
analytic approach for 
longitudinal assessment of 
learning strategies based on 
latent class analysis of online 
trace data collected within 
several MOOCs that are part of a 
professional development 
program. The study identified 
three program-level strategies 
that were significantly associated 
with outcomes. The study also 
found a significant effect of 
MOOC design on the level of 
student engagement. 

Heinrich Peters, Andrew 
Kyngdon, David Stillwell 

The study proposes the use of 
video game Minecraft™ for 
assessment of intelligence. 
Intelligence was measured for 
pattern completion, mental 
rotation, and spatial 
construction. The results showed 
moderate reliability with Rasch 
models; factorial validity with 
separate factors for pattern 
completion and spatial 
construction tasks, but not for 
mental rotation. Trace data were 
very predictive of performance in 
the Minecraft™ tests; trace data 
were also predictive of 
performance on conventional 
tests. 

Elizabeth Rowe, Ma Victoria 
Almeda, Jodi Asbell-Clarke, 
Richard Scruggs, Ryan Baker, 
ErinBardar, Santiago Gasca 

The study examines the use of 
machine learning classifiers for 
automatic detection of implicit 
practices in computational think. 
The study analyzed trace data 
about behavior while playing the 
game called Zoombinis™. The 
study showed a good reliability 
of automatic detectors in 
comparison to that by expert 
coders. The external validity of 
the automatically detected 
practices was confirmed through 
strong correlations with post- 
assessment scores. 

Nia M.M. Dowell, Oleksandra 
Poquet 

The study proposed an analytic 
approach for assessment of 
emergent socio-cognitive roles 
that learners adopt in online 
social interactions. The approach 
is based on a combination of 
group communication analysis 
and social network analysis. The 
approach was applied to a 
dataset collected in a MOOC and 
found five emergent socio- 
cognitive roles that learners took 
while interacting with their 
peers. 

Analytics of 
assessment 

Matthias Stadler, Sarah Hofer, 
Samuel Greiff 

The paper makes use of trace data 
about student testing behavior to 
check whether test-taking 
behavior is a good indicator of 
tested ability. The study used 
structural equation modeling 
(SEM) in the context of complex 
problem solving assessment to 
show that both time-on-task and 
the count of interactions were 
significant predictors of students’ 

(continued on next page) 
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analysis – and is empirically shown to be able to effectively characterize 
socio-cognitive roles that emerge in peer interactions in a MOOC. Bar
thakur et al. (2021) introduce an analytic approach for assessing stra
tegies that learners follow across multiple MOOCs within a professional 
development program. The approach is based on a latent class analysis, 
which a soft clustering technique, to identify program-level strategies 
through the analysis of trace data about learner interactions with re
sources available in a MOOC platform. 

The second group of papers in the special includes four papers that 
focus on analytics of assessment. These papers propose analytic ap
proaches that are used to examine assessment practices and answer 
questions about properties of existing assessments. Stadler et al. (2020) 
use trace data to examine whether test-taking behavior is an effective 
indicator of the tested ability. Trace data from students taking tests of 
complex problem solving suggest that in this test, behavior is a good 
indicator of ability. Nicolay et al. (2021) used trace data to investigate 
whether students are able to transfer from knowledge acquisition to 
knowledge application during an assessment of complex problem solv
ing. They show that many participants were not able to transfer 
knowledge, especially for the more complex items in the assessment. 
Zhang et al. (2021) propose a novel analytic approach for modeling the 
interaction between resilience and ability in assessments that allow for 
multiple attempts. The proposed analytic approach found that resilience 
both affected performance scores (and thus questioned validity for 
summative assessments) and created opportunities for ecologically valid 
measures of resilience that are not based on self-reports. Finally, Mis
iejuk et al. (2021) propose a learning analytic approach to investigate 
how students react to peer assessment. They used epistemic network 
analysis to show that students value specificity, justification, and 
constructiveness in peer assessment, but kindness is less of a priority. 

The third group of papers is focuses on validity in learning analytics 
based on trace data and its implications for assessment. Winne (2020) 
discusses validity in learning analytics by examining self-regulated 
learning. He argues that theory plays a critical role in assuring validity 
of learning analytics and then analyzes factors that can confound val
idity, such as student agency while studying and the contrast between 
dynamic events in learning versus static assessment measures. Shute and 
Rahimi (2021) analyze the validity of a stealth assessment of creativity 
in a physics video game. They show that the proposed stealth assessment 
has good external validity (i.e., it can predict external performance 
measures) and that estimated creativity through stealth assessment is a 
good predictor of in-game performance, game enjoyment, and learning 
of physics content. Finally, Liu et al. (2021) report on the findings of a 
study that validated a formative assessment model of written reflection. 
They use confirmatory factor analysis based on textual features extrac
ted from two datasets using well-known linguistic frameworks. 

3. Future opportunities and challenges 

The papers included in this special issue thus offer a rich set of 
contributions that illustrate the potential for strengthening the links 
between learning analytics and assessment. The three broad categories – 
analytics for assessment, analytics of assessment, and validity –highlight 
key areas of the potential connections between these fields: raising 
questions and possible avenues for future research. The contributions to 
this special issue are important developments for both learning analytics 
and assessment. However, they are best viewed as exemplary work early 
in the process of fostering connections between the two fields. As a 
result, of course, these contributions do not provide a complete picture 
of the possible links between learning analytics and assessment, the 
opportunities, and the open questions that can be investigated in the 
future work. In the reminder of this section, we highlight some of these 
key opportunities and open challenges. 

Table 1 (continued ) 

Theme Authors Description 

GPA. However, when 
intelligence was added to SEM, 
time-on-task and count of 
interaction become almost 
negligible predictors. 

Bjorn Nicolay, Florian 
Krieger, Matthias Stadler, 
Janice Gobert, Samuel Greif 

The paper made use of trace data 
to check whether learners 
transfer knowledge acquired to 
knowledge application during a 
complex problem solving task. 
The study showed that many 
learners were not able to transfer 
their knowledge from acquisition 
to application. The number of 
learners who were unable to 
make this translation was 
associated with the complexity of 
assessment items. 

Kamila Misiejuk, Barbara 
Wasson, Kjetil Egelandsdal 

The study investigated students’ 
reactions to peer assessment 
using epistemic network analysis. 
The results unveiled that students 
value specificity, justification, 
and constructiveness while 
kindness was not as much 
appreciated in peer assessment. 
The study also revealed 
differences between students 
who did and did not found peer 
assessment useful. 

Susu Zhang, Yoav Bergner, 
Jack DiTrapani, Minjeong 
Jeon 

The study proposed a novel 
approach to modeling the 
interaction between resilience (i. 
e., persistence in multiple 
attempts in computer-based 
assessments) and ability in 
assessments. The results showed 
resilience to affect performance 
scores, and such can be a threat 
to the validity of summative 
assessments. 

Validity Philip H. Winne The conceptual paper analyzes 
the notion of validity and 
reliability in learning analytics 
based on trace data. The paper 
emphasizes the critical role of 
theory in assuring validity in 
learning analytics and the 
consideration of dynamic nature 
of events about learning in 
contrast to the static nature of 
conventional measures. 

Valerie J. Shute and 
Seyedahmad Rahimi 

The study reports on stealth 
assessment of creativity in a 
physics video game. The study 
showed an external validity of 
the stealth assessments through 
the significant correlations with 
the external measures of 
creativity, in-game performance, 
game enjoyment, and learning of 
physics content. 

Ming Liu, Kirsty Kitto, and 
Simon Buckingham Shum 

The study reports on the findings 
of a model for automated 
formative assessment of written 
reflection. The study validated 
the model by using confirmatory 
factor analysis of textual features 
of written reflections from two 
different datasets. The writing 
context was found to have a 
significant impact on the validity 
of the proposed model.  
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3.1. Properties of assessment and learning analytics 

Validity is a critical property of assessment and has a strong tradition 
in educational research and practice (Kane, 2013; Messick, 1994, 1995). 
Accordingly, validity has received significant consideration in the con
tributions to this special issue, both in the papers that explicitly deal 
with validity (Liu et al., 2021; Shute & Rahimi, 2021; Winne, 2020), and 
in other papers that addressed issues of validity in assessment for 
learning (Dowell & Poquet, 2021; Peters et al., 2021; Rowe et al., 2021) 
and assessment of learning (Zhang et al., 2021). These contributions 
considered different facets of validity including construct and conse
quential validity (Winne, 2020), external validity (Rowe et al., 2021; 
Shute & Rahimi, 2021; Zhang et al., 2021), factorial and convergent 
validity (Peters et al., 2021), and structural and convergent validity 
(Peters et al., 2021). 

There are several key challenges to be addressed in research on 
validity at the intersection of learning analytics and assessment. The 
papers here provide valuable illustrations of how both learning analytics 
and assessment can benefit from the consideration of issues pertinent to 
validity. However, the field still needs a clear theoretical framework to 
guide the consideration of validity in learning analytics. Existing ex
aminations of validity in assessment (e.g., Kane, 2013; Messick, 1994, 
1995) are frequently cited in the contributions in this special issue, and, 
of course, they indeed offer some useful directions. However, data used 
in learning analytics is not always purposefully collected to meet criteria 
for validity that are expected in conventional assessment. The role of 
theory, as emphasized by Winne (2020) in this special issue and previ
ously in learning analytics (Gašević et al., 2015; Wise & Shaffer, 2015), 
is essential for validity. Therefore, a key open challenge is to develop a 
theoretical framework for validity in learning analytics that recognizes 
the specific properties of in situ data that learning analytics use. At the 
same time, there is a significant opportunity to harness new types of data 
(e.g., trace data) to inform the validity of assessments, as shown by 
Zhang et al. (2021), and to test properties of assessment in different 
context, as illustrated by Nicolay et al. (2021) and Stadler et al. (2020). 

There is little research generally on properties of assessment in 
learning analytics such as reliability, fairness, sustainability, and 
developmental nature. In assessment, reliability means that assessments 
produce consistent results across similar contexts (Crocker & Algina, 
2009). Some of the contributions in this paper make use of well-known 
approaches to reliability by focusing on inter-rater reliability to make 
sure the results produced by machine learning algorithms are in agree
ment with ratings by human experts (Rowe et al., 2021). Winne (2020) 
takes a step further and highlights that in learning analytics, reliability is 
not simply a function of a good design of a learning environment used 
for data collection; it is equally dependent on a learner’s agency1 and 
level of metacognitive knowledge2 about learning tools that are avail
able to them in the learning environment. If learners do not know about 
tools that are available in a learning environment, they are not likely to 
use them (Gašević et al., 2017; Winne, 2006). Thus, they will not ‘pro
duce’ data that are deemed necessary to make assessment inferences 
about their learning. 

Sustainability is also a critical dimension in the connections between 
learning analytics and assessment. In the assessment literature, sus
tainability is the extent to which an assessment is easy to implement and 
maintain (Beck et al., 2013). Learning analytics strives towards suit
ability through the use of data that are collected as a by-product of 

learning activities (Siemens, 2013). However, this requires addressing 
the concerns about reliability of data not collected expressly for pur
poses of assessment. If those concerns are met, learning analytics could 
offer strong opportunities for sustainable assessment through video
games (Peters et al., 2021; Rowe et al., 2021; Shute & Rahimi, 2021) and 
formative assessment in online environments more generally (Dowell & 
Poquet, 2021; Liu et al., 2021). 

3.2. Instrumentation and measurement 

Data used in learning analytics are not always purposefully collected 
for measurement and assessment. While unobtrusive data collection 
allows for collection of large amounts of data, digital learning envi
ronments are not always instrumented to collect necessary data about 
learning processes, learning products, and skills (Gašević et al., 2015). 
Recent studies suggested that these limitations can be addressed with 
improvements in instrumentation of learning environments. For 
example, Van Der Graaf et al. (2021) demonstrated how introduction of 
specialized tools (e.g., planner or time) can enable the collection of 
granular trace data about processes of self-regulated learning. The val
idity of such trace data can be improved with the use of other data 
sources, which are established in the literature such as the use of think 
aloud protocols as reference points for validation of trace data about 
self-regulated learning (Fan et al., 2022). 

Novel measurement approaches are needed to make use of historic 
trace data in assessment. Several promising approaches have been pro
posed in the literature. Milligan and Griffin (2016) propose an assess
ment instrument based on trace data in MOOCs to measure what they 
refer to as the “crowd-sourced learning” capability, namely, the capa
bility to learn in environments with large numbers of learners. In the 
proposed instrument, the capability is theorized to have five levels (from 
novice to expert). Evidence for each level is demonstrated through in
dicators that are derived from trace data about learner activities. The 
instrument was validated using the item response theory on data 
collected from two different MOOCs. In a similar vein, two studies in this 
special issue used evidence centered design (Rowe et al., 2021; Shute & 
Rahimi, 2021) as a systematic and well-known approach to designing 
assessments (Mislevy et al., 2017). Other authors in this special issue 
also well-established psychometric and/or statistical techniques to 
validate their measurement approaches that are built upon the use of 
trace data (Barthakur et al., 2021; Dowell & Poquet, 2021; Peters et al., 
2021). To assure scalability and wide-adoption of these novel mea
surement approaches, future research is needed on learning design 
practices to create learning tasks that can be used for learning 
analytics-based assessment with high validity and reliability. 

Metadata about task conditions in learning environments is another 
essential precondition for learning analytics-based approaches to 
assessment. However, such metadata are often not readily available in 
trace data extracted from open-ended learning environments. Without 
such metadata, for learning analytic approaches, it is difficult to make 
automatic inferences about the pedagogical intent behind the use of 
certain features of a learning environment (e.g., whether a discussion 
forum is used for question-answering or problem-solving) across 
different contexts. Therefore, future research and development of open 
learning environments should include instrumentation principles and 
mechanisms that can support effective collection of metadata about task 
conditions. 

3.3. Learning progression 

Developmental (also known as formative) assessment and learning 
analytics are designed with the aim to inform pedagogical decisions and 
actions such as giving students feedback (Taras, 2008) or providing 
additional help or resources. The field of learning analytics claims its 
intention to enhance learning in most of widely used definitions (Lang 
et al., 2022). To date, dashboards have been the most common format 

1 In this context, we define agency as “the capability to exercise choice in 
reference to preferences” (Winne, 2006, p. 8) and that learners-agents “act with 
purpose” (idem., p. 8).  

2 Metacognition can be defined as “one’s knowledge concerning one’s own 
cognitive processes and products or anything related to them” (Flavell, 1976, p. 
232), while metacognitive knowledge can be defined as “knowledge of cogni
tion” (Clarebout et al., 2013, p. 187). 
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for presenting the results of data analysis to decision makers (Bodily & 
Verbert, 2017). However, studies show that in many cases dashboards 
are not an effective means to communicate the results of data analysis 
(Aguilar et al., 2021; Chaturapruek et al., 2018; Lonn et al., 2015). 
Partly, this is due to limitations in reliability and validity of the assess
ments being presented and the shortage of the suitable data for assess
ments (Matcha et al., 2020). The field has also not developed analytic 
approaches that track progression of learning and identify gaps in 
learning that require further attention. Recent efforts using epistemic 
network analysis to model learning progressions (Rolim et al., 2019; 
Shaffer et al., 2016) and to inform feedback and pedagogical practice 
(Herder et al., 2018) offer promising opportunities for analytics-based 
developmental assessment. Likewise, data analytic learning analytics 
techniques based on temporal and sequential modeling (Chen et al., 
2018; Saint et al., 2022) potentially offer opportunities to track learning 
progression and provide formative guidance to teachers or students. 
Finally, work by Milligan and Griffin (2016) suggests that combining 
established principles from psychometrics with learning analytics 
techniques provides another avenue for measuring progression in 
developing skills and abilities. 

3.4. Multimodal data and physical environments 

Learning analytics offers approaches that can enrich assessment 
practices through the use of multimodal data collected from in physical 
learning environments. The papers included in this special issue pri
marily use trace data from one data modality: online click behaviors, 
question answering, or written text. Multimodal learning analytics is a 
subfield of learning analytics that recognizes (a) learning is a multi
modal phenomenon, (b) learning happens across multiple physical and 
digital spaces, and (c) multiple data channels (e.g., eye-tracking, mouse 
movements, spatial location, and physiological biomarkers) need to be 
taken into consideration to analyze learning as a complex process 
(Azevedo & Gašević, 2019; Sharma & Giannakos, 2020; Worsley et al., 
2021). Future research that aims to strengthen the links between 
learning analytics and assessment should focus on approaches that can 
make use of multimodal data to address questions of validity and reli
ability in measurement (Fan et al., 2022; Wise et al., 2021) and perform 
measurements in physical and hybrid (physical and digital) learning 
environments. 

3.5. Assessment trustworthiness 

Introduction of digital technologies in assessment is often associated 
with questions related to trustworthiness. Debates around dishonesty in 
assessments have been frequent in the context of MOOCs. The on-going 
COVID19 pandemic has brought more contentious debates about 
assessment in remote and distance education (Selwyn et al., 2021). 
Many schools and higher education institutions opted for different on
line proctoring solutions to address the questions of assessment trust
worthiness (Kharbat & Abu Daabes, 2021). That prompted a 
considerable pushback and raised questions about the impact of such 
practices on student autonomy and privacy (Coghlan et al., 2021). 
Several approaches based on data analytic methods have been proposed 
that aim to identify academic dishonesty in online assessment, such as 
using multiple accounts to copy answers to assessment items (Alexan
dron et al., 2017) or communication between students during assess
ments (Ruipérez-Valiente et al., 2021). While the use of data analytic 
approaches holds some promise to address issues of assessment trust
worthiness, future research needs to determine situations under which 
the use of such approaches is educationally justified and ethically 
acceptable. Future research should also investigate conditions under 
which privacy is protected to prevent the development of surveillance 
culture and unwarranted data sharing with third parties (Kollom et al., 
2021; Selwyn, 2020), and thus, the erosion of trust in analytics-based 
assessment practices in education institutions (Tsai et al., 2021). 

Moreover, future research and development is needed on codes of 
practice that will promote ethical and privacy principles. 

3.6. Fairness, equity, and inclusion 

Learning analytics researchers have access to large datasets about 
student learning. When this data is used to assess student learning, it is 
critical that such models be fair. That is, all participants in the assess
ment must have equal opportunity to succeed, and the assessment 
should not be systematically biased toward or against certain groups 
(Gipps & Stobart, 2009). However, data used in learning analytics can be 
and often are reflective of structural biases that may exist in society and 
education institutions (Carter & Egliston, 2021; Selwyn, 2020). When 
data analysis models are trained on such biased data (e.g., prediction of 
students at risk of failing a course), the use of the results of such models 
can perpetuate the biases and even further deepen inequality (O’Neil, 
2016). 

This poses a problem for the development and validation of learning 
analytics-based assessments, however, because learning datasets typi
cally contain subgroups: populations of students defined by de
mographics (e.g., race, native language, disability, income) or other 
metadata (e.g., attendance) that have relatively low numerical repre
sentation in a dataset. As researchers develop and validate assessments 
on such data, the models—and thus any assessments based on 
them—may be biased toward majority groups and thus ultimately unfair 
to subgroups. In machine learning, this is known as the subgroup fairness 
problem (Chouldechova & Roth, 2018; Mehrabi et al., 2019). Despite 
broad attention to issues of equity in education, there has been little 
systematic attention paid to subgroup fairness in learning analytics, 
despite the fact it has the potential to reify and even augment existing 
biases (Gardner et al., 2019; Mayfield et al., 2019; Sha et al., 2021). 

4. Conclusion 

This special issue is meant to serve as a catalyst for strengthening 
research links between learning analytics and assessment. We were very 
fortunate to assemble an outstanding group of papers that were 
contributed by authors with different theoretical backgrounds. The 
high-quality contributions included in this special issue provide a good 
overview of the state-of-the-art on this topic. The contributions offer 
important insight into the complexity of the relationship between 
learning analytics and assessment. Advancements in understanding of 
this relationship can inform future work of researchers, practitioners, 
and policy makers to develop novel forms of assessment and increase 
rigor of learning analytics. We hope that this special issue and the 
challenges and opportunities discussed in this editorial will inspire 
future work on the links between learning analytics and assessment. 
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Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are 
about learning. TechTrends, 59(1), 64–71. https://doi.org/10.1007/s11528-014- 
0822-x 
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