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Abstract— The theory of switched systems which focuses 

on stability and control synthesis of systems with multiple 

modes or different dynamics, has gained significant attention 

from control theorists, computer scientists, and practicing 

engineers. Switching between motor controllers due to sensor 

faults, faster response, or targeted dynamics, open a new 

dimension of shaping a motor drive’s performance. There are 

three main types of control strategies for induction motor 

drives: namely volts per hertz (V/f) control, field-oriented 

control (FOC), direct torque control (DTC). Multi-mode-

controlled induction motor drive can be modelled as a 

switched system where each control mode results in different 

motor dynamics. In this paper, a comprehensive state-space 

model of an induction motor drive under different control 

mode is developed. Detailed analysis as well as simulation 

results are included to demonstrate the validity of the state-

space representation for induction motor under different 

mode. 

Keywords—induction motor drive, switched system, 

switched control, state-space representation, multi-mode 
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I. INTRODUCTION 

Induction motors (IMs) are widely used in electrical 

drives because of their ruggedness and relatively low cost. 

Scalar control, namely volts per hertz (V/f) control [1], 

offers the simplest solution in applications such as pumps, 

compressors, heating, ventilation, and air conditioning, 

where the transient performance of the motor is not of great 

concern. It also relies on no or minimal number of sensors. 

On the other hand, advanced control techniques such as 

indirect field-oriented control (IFOC) and direct torque 

control (DTC) have also been well-established for high-

performance adjustable speed drives (ASDs). All three 

control modes can be integrated in one electrical drive due 

to the enhanced computing power of digital signal 

processors (DSPs), which will make the whole drive more 

robust and can withstand sensor failures, giving engineers 

and operators flexibility on shaping a drive’s response. 

A switched system has hybrid dynamic features. It 

consists of a finite number of subsystems described by 

discrete (or continuous) time dynamics and a switching rule 

governing the switching among them. A typical architecture 

of multi-controller switched system is shown in Fig. 1. A 

high-level decision maker (supervisor) determines which 

controller is to be connected in closed loop with the plant at 

each instant of time [5]. Fig. 2 illustrates the system 

architecture of an induction motor drive with three 

admissible modes. Since the induction motor (IM) drive 

exhibits different dynamics depending on the selected 

mode, it can be modeled as a switched system. Three 

subsystems are embedded within the switched system: V/f-

controlled, IFOC-controlled, and DTC-controlled IM drive. 

 
Fig. 1.  A Multi-controller switched system. 

 
Fig. 2.  System architecture of a multi-mode induction motor drive. 

V/f control is essentially an open-loop control scheme 

and will be kept as the fundamental mode. IFOC or DTC 

will serve as advanced modes that the electrical drive can be 

switched to when superior drive performance is desired, 

depending on sensor availability and health. The block 

diagram for all three control modes is shown in Fig. 3. (a), 

(b), and (c), respectively [2], [3]. There is a supervisory 

controller within the processor that continuously monitors 

the system’s states and determines which mode to select [4]. 

As far as the stability with arbitrary switching is concerned, 

it is necessary to require that all the subsystems be 

asymptotically stable. However, even when all the 

subsystems of a switched system are stable, such a system 

might fail to preserve stability under arbitrary switching but 

might be stabilized under restricted switching signals [6].  
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Fig. 3.  Block diagram of different control strategies: (a) V/f control; 

(b) IFOC; (c) DTC. 

Among the tools that have been developed for stability 

analysis of switched systems, the notion of dwell-time or 

average dwell-time (ADT) has played a significant role in 

characterization of stability conditions [7]. Unfortunately, 

none of the existing literatures have investigated IM drive 

stability under different modes in the context of switching 

control. In [8], the lower bounds on ADT which guarantee 

input to state stability (ISS) is derived within the context of 

stability of switched systems under slow switching. The 

framework proposed in [8] has provided a tool to analyze 

the optimal ADT that ensures stable operation of multi-

mode-controlled IM drive. Before we can apply the 

framework to the IM drive, each subsystem’s dynamics 

must be identified first. 

The rest of the paper is organized as follows: section II 

discusses the lower bounds of average dwell-time for 

switched systems; section III presents the workflow in 

developing the state-space representation of motor 

dynamics under each control mode; section IV includes the 

simulation results to show the validity of the proposed state-

space representation of motor dynamics under each control 

mode; section V concludes the paper. 

II. DISCUSSION ON AVERAGE DWELL-TIME (ADT) IN 

SWITCHED SYSTEMS  

Consider a class of switched linear systems given by 

( ) ( )( ) ( ) ( )t tx t A x t B u t = +            (1) 

where σ(t) is a piecewise constant function of time, called a 

switching signal, which takes its values in the finite set  S = 

{1, …, M}, and M is the number of subsystems. For a 

switching signal σ(t) and each t2 ≥ t1 ≥ 0, let Nσ(t2, t1) denote 

the number of discontinuities of σ(t) in the open interval (t1, 

t2). We say that has an average dwell-time if there exist two 

positive numbers N0 and τa such that 

2 1 0 2 1 2 1( , ) ( ) / , 0aN t t N t t t t  + −         (2) 

According to [8], assume that Aσ(t) are Hurwitz for all σ(t) 

such that there exist positive definite symmetric matrices 

Mσ(t), Qσ(t) and the following equation holds 

0TA M M A Q    + + =            (3) 

By introducing a constant µ ≥ 1 such that 

1 2 1 2, for every ,T Tx M x x M x S      (4) 

the lower bound on ADT for switched linear systems (1) can 

be determined as 

( / ) lna a b              (5) 

where a and b are defined by 

max | ( ) |
S

a M





=    (6) 

min | ( ) |
S

b Q





=                 (7) 

and (.)  and (.)  denote the maximum and minimum 

eigenvalues respectively. 

III. STATE-SPACE MODELING OF INDUCTION MOTOR 

DRIVE UNDER DIFFERENT CONTROL MODES 

 
Fig. 4.  Dynamic equivalent circuit of an IM in d-q frame [9]. 

In previous section, a useful framework for computing 

the lower bound of ADT for linear switched systems is 

introduced. In this section, we will be closely looking into 
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the problem that how the IM drive under different control 

modes can be modeled as linear switched systems. Fig. 4 

shows the dynamic equivalent circuit of a squirrel cage 

induction motor in the synchronous reference frame. Such 

equivalent circuit can be described by a set of fifth order 

non-linear differential equations: 
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where subscript d and q denote direct and quadrate axis, 

respectively; subscript s and r denote stator and rotor, 

respectively; R represents the resistance; L represents the 

inductance; Ψ represents the flux linkage; ω represents 

electrical frequency; Lm is the magnetizing inductance; P is 

pole pair of an IM; J and TL are moment of inertia and 

applied mechanical torque on the shaft, respectively. 

Based on the equivalent circuit, the state-space 

representations of V/f control, IFOC, and DTC are 

developed in the following sections. The inverter’s non-

linearities are ignored for simplicity. Realization of each 

control mode is the same as the block diagram shown in Fig. 

3. Small-signal perturbation can be applied at steady-state 

operating point to derive a linearized model for the IM drive 

under different control modes. 

A. Motor Dynamics Under V/f control/IFOC/DTC 

For V/f control, according to Fig. 3 (a), the q-axis stator 

voltage vqs is kept at zero, while the d-axis stator voltage vds 

is set proportional to ωs. The motor dynamics under V/f 

control can be rewritten as: 
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where k = Vrated/ωrated defines the flux level. 

Under IFOC, according to Fig. 3 (b), d-axis stator 

current ids is supposed to regulate the rotor flux, while q-axis 

stator current iqs is supposed to control the electromagnetic 

torque. Therefore, decoupled control over rotor flux and 

electromagnetic torque can be achieved and the motor 

dynamics can be simplified as: 
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In DTC, according to Fig. 3 (c), the stator is to be 

controlled instead by the d-axis stator voltage vds and the 

electromagnetic torque is to be regulated by the q-axis stator 

voltage vqs accordingly. The motor dynamics reduce to 
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B. State-state Representation Derivation of IM Drive 

Under V/f Control/IFOC/DTC 

To derive the state-space representation of IM drive as a 

whole requires linearizing the motor dynamics at certain 

steady-state operating point and incorporating each 

controller’s dynamics to make it a closed-loop system where 

applicable. Both IFOC and DTC adopt dual proportional-

integral (PI) controllers to compensate for stator voltages. 

The transfer function of a general PI controller is: 

( ) /

( / )( / )

( )(1/ )p i

G s v e

v u u e

k s k s

=

=

= +

         (12) 

Rewrite eq. (12) as: 

p i

p i

u e

v k u k u

k e k u

=

= +

= +

                (13) 

where s is the Laplace operator; e and v represent the input 

and output of a PI controller, respectively; kp and ki represent 

the proportional gain and integral gain, respectively; u is an 

intermediate state variable associated with the input. 

According to (10, the motor dynamics under IFOC are 

associated with stator currents. Since the motor is usually 

fed by a voltage source inverter (VSI) [10], [11], the 

relationships between stator voltages and stator currents 

under IFOC are approximated as: 
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where Tr=Lr/Rr, and Tm=Lr/Lm. 

Combining (9)-(14), the state-space representation (state 

matrix, input matrix, state variables and inputs) of IM drive 

under each control mode is summarized and shown in 

TABLE I. Note that subscript 0 denotes the steady-state 

operation point where small-signal perturbation is applied, 

and superscript * denotes the input command. The 

proportional and integral gains to regulate d- and q-axis 

currents in IFOC are denoted as kp_d and ki_d, and ki_q,and 

kp_q, respectively. Similarly, the proportional and integral 



gains for regulations of flux and torque in DTC are denoted 

as kp_Ψ and ki_Ψ, and ki_T and kp_T, respectively. 

IV. SIMULATION 

A detailed model of the induction machine as well as 

controllers of all three control modes are simulated in 

MATLAB/Simulink. The induction machine’s parameters 

are given in TABLE II. In addition, the derived state-space 

representations for each control mode are simulated in 

MATLAB/Simulink to compare their response with the 

detailed ones’. Fig. 5 and Fig. 6 illustrate the simulated 

results for IM drive under IFOC and DTC, respectively. In 

IFOC, the rotor flux command is set to 0.5 Wb and torque 

command is set to 1.5 N.m. When the drive reaches its 

steady state, a 10% increase in both commanded rotor flux 

and torque is applied. As can be seen, the derived state-

space model shows similar dynamics of IM drive under 

IFOC as the detailed model exhibits. Same step response is 

tested with detailed and derived state-space model for DTC. 

Overall, the derived state-space model reflects the dynamics 

of the IM drive under each control mode as expected. 
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Fig. 5.  Simulated step response for both detailed model and state-

space model: (a) Rotor flux response under IFOC; (b) Torque response 

under IFOC. 

 
(a) 
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Fig. 6.  Simulated step response for both detailed model and state-

space model: (a) Stator flux response under DTC; (b) Torque response 

under DTC. 

V. CONCLUSIONS 

In this paper, the IM drive under different control mode 
is modeled from the perspective of switched systems. The 
concept of average dwell-time (ADT) associated with 
stabilized switching and its lower bound are discussed. 
State-space model of IM drive under different control mode 
is developed and validated from simulations. The proposed 

model provides the recipes for analysis of multi-mode-
controlled IM drive under the framework of ADT in 
stabilizing switched systems. Further research on this topic 
will be reported in the future. 
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