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Abstract— The theory of switched systems which focuses
on stability and control synthesis of systems with multiple
modes or different dynamics, has gained significant attention
from control theorists, computer scientists, and practicing
engineers. Switching between motor controllers due to sensor
faults, faster response, or targeted dynamics, open a new
dimension of shaping a motor drive’s performance. There are
three main types of control strategies for induction motor
drives: namely volts per hertz (V/f) control, field-oriented
control (FOC), direct torque control (DTC). Multi-mode-
controlled induction motor drive can be modelled as a
switched system where each control mode results in different
motor dynamics. In this paper, a comprehensive state-space
model of an induction motor drive under different control
mode is developed. Detailed analysis as well as simulation
results are included to demonstrate the validity of the state-
space representation for induction motor under different
mode.
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L. INTRODUCTION

Induction motors (IMs) are widely used in electrical
drives because of their ruggedness and relatively low cost.
Scalar control, namely volts per hertz (V/f) control [1],
offers the simplest solution in applications such as pumps,
compressors, heating, ventilation, and air conditioning,
where the transient performance of the motor is not of great
concern. It also relies on no or minimal number of sensors.
On the other hand, advanced control techniques such as
indirect field-oriented control (IFOC) and direct torque
control (DTC) have also been well-established for high-
performance adjustable speed drives (ASDs). All three
control modes can be integrated in one electrical drive due
to the enhanced computing power of digital signal
processors (DSPs), which will make the whole drive more
robust and can withstand sensor failures, giving engineers
and operators flexibility on shaping a drive’s response.

A switched system has hybrid dynamic features. It
consists of a finite number of subsystems described by
discrete (or continuous) time dynamics and a switching rule
governing the switching among them. A typical architecture
of multi-controller switched system is shown in Fig. 1. A
high-level decision maker (supervisor) determines which
controller is to be connected in closed loop with the plant at
each instant of time [5]. Fig. 2 illustrates the system
architecture of an induction motor drive with three
admissible modes. Since the induction motor (IM) drive
exhibits different dynamics depending on the selected

mode, it can be modeled as a switched system. Three
subsystems are embedded within the switched system: V/f-
controlled, IFOC-controlled, and DTC-controlled IM drive.
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Fig. 1. A Multi-controller switched system.
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Fig. 2. System architecture of a multi-mode induction motor drive.

V/f control is essentially an open-loop control scheme
and will be kept as the fundamental mode. IFOC or DTC
will serve as advanced modes that the electrical drive can be
switched to when superior drive performance is desired,
depending on sensor availability and health. The block
diagram for all three control modes is shown in Fig. 3. (a),
(b), and (c), respectively [2], [3]. There is a supervisory
controller within the processor that continuously monitors
the system’s states and determines which mode to select [4].
As far as the stability with arbitrary switching is concerned,
it is necessary to require that all the subsystems be
asymptotically stable. However, even when all the
subsystems of a switched system are stable, such a system
might fail to preserve stability under arbitrary switching but
might be stabilized under restricted switching signals [6].
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Fig. 3. Block diagram of different control strategies: (a) V/f control;
(b) IFOC; (¢) DTC.

Among the tools that have been developed for stability
analysis of switched systems, the notion of dwell-time or
average dwell-time (ADT) has played a significant role in
characterization of stability conditions [7]. Unfortunately,
none of the existing literatures have investigated IM drive
stability under different modes in the context of switching
control. In [8], the lower bounds on ADT which guarantee
input to state stability (ISS) is derived within the context of
stability of switched systems under slow switching. The
framework proposed in [8] has provided a tool to analyze
the optimal ADT that ensures stable operation of multi-
mode-controlled IM drive. Before we can apply the
framework to the IM drive, each subsystem’s dynamics
must be identified first.

The rest of the paper is organized as follows: section II
discusses the lower bounds of average dwell-time for

switched systems; section III presents the workflow in
developing the state-space representation of motor
dynamics under each control mode; section I'V includes the
simulation results to show the validity of the proposed state-
space representation of motor dynamics under each control
mode; section V concludes the paper.

II. DISCUSSION ON AVERAGE DWELL-TIME (ADT) IN
SWITCHED SYSTEMS

Consider a class of switched linear systems given by
X(t) = A, () + B, ,u(?) (1)

where o(7) is a piecewise constant function of time, called a
switching signal, which takes its values in the finite set S=
{1, ..., M}, and M is the number of subsystems. For a
switching signal o(f) and each £,> ¢, > 0, let N,(£, t) denote
the number of discontinuities of o(¢) in the open interval (¢,
). We say that has an average dwell-time if there exist two
positive numbers Ny and 7, such that

N (t,,t) <N, +(t,—t,)/7,,¥t,>1,>0 (2)

According to [8], assume that A, are Hurwitz for all o(¢)
such that there exist positive definite symmetric matrices
Mo, Qs and the following equation holds

ATM_+M_A, +0, =0 3)
By introducing a constant g > 1 such that
x'M, x< ux"M, x, for every o,,0, €S “4)

the lower bound on ADT for switched linear systems (1) can
be determined as

r,>(a/b)Inp (5)

where a and b are defined by

a:manﬂ(Mgn (6)
b=min| A(Q,)] ()

and A(.) and A(.) denote the maximum and minimum
eigenvalues respectively.
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Fig. 4. Dynamic equivalent circuit of an IM in d-g frame [9].

In previous section, a useful framework for computing
the lower bound of ADT for linear switched systems is
introduced. In this section, we will be closely looking into



the problem that how the IM drive under different control
modes can be modeled as linear switched systems. Fig. 4
shows the dynamic equivalent circuit of a squirrel cage
induction motor in the synchronous reference frame. Such
equivalent circuit can be described by a set of fifth order
non-linear differential equations:

: s Rs
l//qs = l//qs - a)sl//ds - l//qr +Vqs
3 4

1

y Rs R.v
l//ds = a)sl//qs - l//ds - l//dr +vds
V4! 1

v ——&w —&t// —(o, -0,y
qr /?_’1 qs 12 qr s r dr (8)

; Rr Rr
l//dr = '//ds + (wv - wr )l//qr - l//dr
V4 V4
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. 3P
Ja)r = g (l//dsl//qr - quWdr) - TL
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Zl = Lm _L,er /Lm
ZZ = Lr _Lfn /Lx

l3 :Ls _Lfn /Lr

where subscript d and ¢ denote direct and quadrate axis,
respectively; subscript s and r denote stator and rotor,
respectively; R represents the resistance; L represents the
inductance; ¥ represents the flux linkage; w represents
electrical frequency; L,, is the magnetizing inductance; P is
pole pair of an IM; J and 7; are moment of inertia and
applied mechanical torque on the shaft, respectively.

Based on the equivalent circuit, the state-space
representations of V/f control, IFOC, and DTC are
developed in the following sections. The inverter’s non-
linearities are ignored for simplicity. Realization of each
control mode is the same as the block diagram shown in Fig.
3. Small-signal perturbation can be applied at steady-state
operating point to derive a linearized model for the IM drive
under different control modes.

A. Motor Dynamics Under V/f control/IFOC/DTC

For V/f control, according to Fig. 3 (a), the g-axis stator
voltage vy is kept at zero, while the d-axis stator voltage ves
is set proportional to w,. The motor dynamics under V/f
control can be rewritten as:

Wy =—(R /)W —0W 4 — (R 1),

Y =W, — (R )W — (R )W, +ho,
V=R W, — R 0., —(0,-0)y,
Vo =R )W+ (o, -0y, —(R | 1)V,
Jao, =GP/ 2) WV, V¥ Wa) T,

©)

where k = V,ated! Wraea defines the flux level.

Under IFOC, according to Fig. 3 (b), d-axis stator
current ig s supposed to regulate the rotor flux, while g-axis
stator current iy, is supposed to control the electromagnetic
torque. Therefore, decoupled control over rotor flux and
electromagnetic torque can be achieved and the motor
dynamics can be simplified as:

l/}dr = _(Rr /Lr )l//dr + (RiLm /Lr)id.v

(10)
7:_' = (3P/2/1/1)(L?n /Lr _Ls)'//driqs
In DTC, according to Fig. 3 (c), the stator is to be
controlled instead by the d-axis stator voltage v4 and the
electromagnetic torque is to be regulated by the g-axis stator
voltage vy, accordingly. The motor dynamics reduce to

l/}ds = _(Rs /13 )l//ds - (Rs /zl )l//dr +Vd:
Vi =R 2 Wi =R 20, (h
7; = (3P/ ZRx)'//d.v (Vqs - a)xy/dx)

B. State-state Representation Derivation of IM Drive
Under V/f Control/IFOC/DTC

To derive the state-space representation of IM drive as a
whole requires linearizing the motor dynamics at certain
steady-state operating point and incorporating each
controller’s dynamics to make it a closed-loop system where
applicable. Both IFOC and DTC adopt dual proportional-
integral (PI) controllers to compensate for stator voltages.
The transfer function of a general PI controller is:

G(s)=v/e
=(v/u)ule) (12)
=(k,s +k)(1/5)

Rewrite eq. (12) as:

u=e
V= kpbl +kl.u (13)
=k,e+ku

where s is the Laplace operator; e and v represent the input
and output of a PI controller, respectively; &, and k; represent
the proportional gain and integral gain, respectively; u is an
intermediate state variable associated with the input.

According to (10, the motor dynamics under IFOC are
associated with stator currents. Since the motor is usually
fed by a voltage source inverter (VSI) [10], [11], the
relationships between stator voltages and stator currents
under [FOC are approximated as:

iq_s B 1
Vis XS+ R (14)
Iy s+1/T,

V28 +[R 4y /T +L (T,T.)]s+R /T,

A

where T,=L,/R,, and T,=L,/L.

Combining (9)-(14), the state-space representation (state
matrix, input matrix, state variables and inputs) of IM drive
under each control mode is summarized and shown in
TABLE 1. Note that subscript 0 denotes the steady-state
operation point where small-signal perturbation is applied,
and superscript * denotes the input command. The
proportional and integral gains to regulate d- and g-axis
currents in IFOC are denoted as k, 4 and k; 4, and k; gand
ky 4, respectively. Similarly, the proportional and integral



TABLE I. STATE-SPACE REPRESENTATION OF IM DRIVE UNDER V/F CONTROL/IFOC/DTC

__Rs /Z:& _a)SO _Rs /Z] O O I _l//ds() O
a)sO _Rs /Z3 O _Rs /Zl O k +Wq30 0
vif Aye =| R/ 1, 0 Rt 0000 Vo |Bur=| Vao 0 |H=3P/2Jx)
control 0 Ry oy-0, Ry, Wi Yaro 0
| HY 0 HY 0 Hy,o  —Hy,, 0 | .0 -1/J
‘xV/f = [qu !//ds qu l//dr a)r ]T u\//f = [w: TL ]T
[ 0 -1/T -1 0 0
0 0 0 -1 0
4 0 0 0 0
Ok g, 0 —ay/xs—k, /(L) —alx5-k, ./ 75 0 0
k. 17 0 0 R/ y;—k, /s O
i 0 L /Tr2 L /T 0 -1/T
oc i /L, 0 ]
W/ Wa WY 40
0 0 aO = Rs /7—;
B = -
_Wkp_qTeO /(/’%1/3{//51"0) VVkp_q /(ZSy/drO) - ' "
Xroc = [uiid u, , v v s Ya I Upoc = v, T. ]T
0 0 -1 0 1 0
Lo 0 0|, 0 0
DTC — DTC —
DTC kl._w 0 —kp_w -R /y, —-R /g kpj, 0
0 0 -R / x -R /y, 0 O
‘xDTC = [ul// uT st !//dr ]T uDTC = [lf//:'s T: ]T

gains for regulations of flux and torque in DTC are denoted
as k, yand k; y, and k; rand k, 7, respectively.

Iv.

A detailed model of the induction machine as well as
controllers of all three control modes are simulated in
MATLAB/Simulink. The induction machine’s parameters
are given in TABLE II. In addition, the derived state-space
representations for each control mode are simulated in
MATLAB/Simulink to compare their response with the
detailed ones’. Fig. 5 and Fig. 6 illustrate the simulated
results for IM drive under IFOC and DTC, respectively. In
IFOC, the rotor flux command is set to 0.5 Wb and torque
command is set to 1.5 N.m. When the drive reaches its
steady state, a 10% increase in both commanded rotor flux
and torque is applied. As can be seen, the derived state-
space model shows similar dynamics of IM drive under
IFOC as the detailed model exhibits. Same step response is
tested with detailed and derived state-space model for DTC.

SIMULATION

Overall, the derived state-space model reflects the dynamics

of the IM drive under each control mode as expected.
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Fig. 5. Simulated step response for both detailed model and state-
space model: (a) Rotor flux response under IFOC; (b) Torque response

under IFOC.
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Fig. 6. Simulated step response for both detailed model and state-
space model: (a) Stator flux response under DTC; (b) Torque response
under DTC.

V. CONCLUSIONS

In this paper, the IM drive under different control mode
is modeled from the perspective of switched systems. The
concept of average dwell-time (ADT) associated with
stabilized switching and its lower bound are discussed.
State-space model of IM drive under different control mode
is developed and validated from simulations. The proposed

model provides the recipes for analysis of multi-mode-
controlled IM drive under the framework of ADT in
stabilizing switched systems. Further research on this topic
will be reported in the future.
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