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In ultracold-atom experiments, data often comes in the form of images which suffer information loss inherent
in the techniques used to prepare and measure the system. This is particularly problematic when the processes
of interest are complicated, such as interactions among excitations in Bose-Einstein condensates (BECs). In
this paper, we describe a framework combining machine learning (ML) models with physics-based traditional
analyses to identify and track multiple solitonic excitations in images of BECs. We use an ML-based object
detector to locate the solitonic excitations and develop a physics-informed classifier to sort solitonic excitations
into physically motivated subcategories. Lastly, we introduce a quality metric quantifying the likelihood that
a specific feature is a longitudinal soliton. Our trained implementation of this framework, SOLDET, is publicly
available as an open-source PYTHON package. SOLDET is broadly applicable to feature identification in cold-atom
images when trained on a suitable user-provided dataset.
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I. INTRODUCTION

Machine learning (ML) techniques promise improved data
analysis and enhanced performance for today’s quantum de-
vices and technologies. Ultracold atomic gases are a nearly
ideal system to deploy ML-driven analysis, where the auto-
mated exploration and interpretation of a very large dataset,
in the form of images, can lead to scientific enhancements
and experimental optimization [1] as well as new discoveries.
Here we focus on the general problem of feature identifi-
cation, a commonly recurring task in the analysis of such
data, from locating vortices [2–4] or tracking solitons [5,6],
identifying spin textures or magnetic domain walls [7–9] to
locating topological singular points [10]. While data from
these examples have been individually analyzed using task-
specific algorithms (or even manual inspection), they are all
feature identification problems that can be solved using a
single ML-enhanced analysis framework. This paper intro-
duces such a framework, and demonstrates its utility on the
specific problem of identifying solitonic excitations in atomic
Bose-Einstein condensates (BECs), as well as quantifying the
quality of each identified feature.

Traditional statistical analysis using physics-based models,
such as least-square fitting and hypotheses testing, have been
go-to techniques for data analysis since the 1800′s [11] and
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remain widely applied in quantum cold-atom image analysis
[12–14]. The outcome of physics-model-based algorithms and
fits are intuitive, physically meaningful, and can help identify
patterns present in the data; even fits based on more heuristic
functions can have coefficients that are derived in obvious
ways from the data. By contrast, ML methods work as “black
boxes,” making their operation difficult to interpret. Conven-
tional statistical methods use fixed algorithms in conjunction
with preconceived models for data reduction. Overfitting oc-
curs when the number of fit parameters is comparable or larger
than the number of independent data points. In this context,
the process of training an ML tool essentially codesigns the
fitting algorithm and the data model, as encoded by a large
number of internal parameters. Training ML models is itself
a fitting process that can be susceptible to overfitting, for ex-
ample when the training dataset has too little variability or the
ML model has too many internal parameters. ML involves a
class of data-driven techniques that do not rely on preexisting
models, but also add additional opportunities for overfitting
that can make them less reliable on new data than conventional
techniques.

Here, we describe the hybrid two-module feature iden-
tification framework shown in Fig. 1, that combines the
flexibility of ML techniques with the intuition and robustness
of conventional fitting methods. Furthermore the separate out-
puts of these two very different modules allow us to assess
data quality by cross-validation. Hybrid approaches have been
employed in other settings, for example for landslide predic-
tion [15], medical image processing [16], and cyber attack
detection [17].

The framework begins with a labeled dataset that is used to
train the ML module and initialize the physics-based module.
Before trusting either module, we independently validate each
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FIG. 1. Overview of the framework. The colored arrows link the preparation (Secs. II A, II B, and II C), validation (Secs. III A and III B),
and application (Sec. III D) phases of the framework. The red path represents the preparation and implementation of the physics-based-
approximation module of the framework. The blue path represents the ML modules.

module on a subset of the labeled data that was not used for
training. Model redesign may be needed until satisfactory per-
formance of each module is reached. We then combine both
modules into an integrated system able to analyze new data.

We demonstrate the performance of our framework us-
ing data from atomic BECs, quintessential quantum systems.
Quantum research with BECs, and cold-atom quantum gases
more broadly, is multifaceted with examples ranging from re-
alizing collective many-body physics [18] to creating today’s
most accurate atomic clocks [19]. In the vast majority of these
experiments, data is acquired in the form of noisy images that
typically have undergone evolution, such as a time of flight,
before measurement. This often obfuscates the computation
of the quantities of interest. Cold quantum gases therefore
make an ideal testbed for our methodology that combines
physically motivated, but heuristic, fitting functions with es-
tablished computer vision techniques.

We focus on the specific problem of locating dark solitons
(spatially compact excitations that manifest as reductions in
the atomic density) as they move in BECs [13,20,21]. This
allows us to leverage our established soliton dataset [22,23]
to train and validate our framework; representative elements

of the dataset are shown in Fig. 2. These data consist of
elliptical atom clouds (top row) where solitons appear as
vertically aligned density depletions (bottom row). Not all
vertically aligned density depletions are created equal: deep
depletions mark the location of slowly moving kink solitons;
shallow depletions are associated with rapidly moving kink
solitons or “longitudinal” solitonic vortices (where the vortex
core is aligned in the image plane); asymmetric depletions
can result from “transverse” solitonic vortices [24] (where the
vortex core is aligned perpendicularly to the image plane); and
chains of stripes can result from highly excited phonon modes.
Our framework is a tool that can automatically locate all the
solitonic excitations in each image and distinguish between
longitudinal solitons and transverse solitonic vortices. Here
we introduce the term “longitudinal soliton” to include both
kink solitons and longitudinal solitonic vortices.

Our ML module leverages and extends established com-
puter vision techniques. Computer vision is a broad field
with applications ranging from image classification to seman-
tic segmentation and object detection [25]. Object detection
refers to the capability of software systems to locate and
identify objects in an image. Convolutional neutral networks

(a) (b) (c)

0 164

0

20

0 164 0 164 0 164 0 164 0 164

(i) (ii) (iii) (i) (ii)

FIG. 2. Representative data. The top panels plot preprocessed images from our dataset and the bottom panels plot profiles: profile of
full image (green), TF fits (black), and density fluctuations (blue). The red lines mark the location of the deepest depletion in the density
fluctuations, while the orange lines mark the soliton locations found from our OD. (a) An element of the no-excitation class. (b) Three
elements of the single-excitation class: (i) a single longitudinal soliton, (ii) an off-center longitudinal soliton, and (iii) a solitonic vortex.
(c) Two representative elements of the other excitations class.
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(CNNs) underlie solutions to all of these tasks, and unsurpris-
ingly were employed in our previous work classifying soliton
image data into three categories: no solitonic excitation, one
solitonic excitation, and other excitations [22]. Our ML mod-
ule goes beyond simple classification and uses a CNN-based
object detector (OD) to provide the location of all candidate
excitations in a given image.

By contrast our physics-based module employs a least-
squares fit of an inverted and skewed Mexican-hat function
to one-dimensional (1D) background-subtracted projections
of soliton candidates (shown in bottom row in Fig. 2). We
initialized this module using our previously labeled single
soliton data and employ a Yeo-Johnson transformation [26]
to produce a multivariate normal distribution yielding the
likelihood that an unknown feature is a soliton.

This approach yielded three immediate benefits. First,
a careful analysis of the coefficients from the physics-
based module identified previously overlooked correlations
that allow us to distinguish between some solitonic excita-
tions (longitudinal solitons and transverse solitonic vortex
[20,21,24,27]). Second, combining the results of the ML and
fitting modules allowed us to automatically create a larger,
more reliable dataset that includes fine-grained information
such as the soliton position and type of excitation. This dataset
is described in Ref. [28] and published in the NIST data
repository [23]. Third, our hybrid framework was prepared
solely from a training dataset whose images contain either
zero or one solitonic excitation; however, it is performant on
complex data containing multiple excitations.

The remainder of this paper is structured as follows: Sec-
tion II introduces both modules and describes their training
and initialization. Section III describes the validation of both
modules and their performance on new data that include
multiple solitonic excitations. In Sec. III E, we describe an
open-source PYTHON reference implementation of our frame-
work: SOLDET [29]. Lastly, in Sec. IV we conclude and discuss
the potential applications of the framework as well as the
possible future directions.

II. DATA AND MODULES

In addition to the recent success of ML methods
[22,30,31], solitonic excitations have also been located and
characterized using traditional fitting techniques. For exam-
ple, Ref. [13] began with the background-removed atom
density profiles (blue curves in Fig. 2) described in Sec. II A,
then identified the deepest depletion (orange dashed line),
and fit to a Gaussian function (a physically motivated, but
heuristic choice) centered near the deepest depletion. This
yielded physical information including soliton width, depth,
and position. Unfortunately, this simple approach is failure
prone, as for example in Fig. 2(b)(ii), where the deepest
depletion is far from the actual soliton. Moreover, it detects
only single solitonic features, making human intervention
necessary when many excitations are present. Rather than
finding the deepest minimum, our framework first uses an
OD (described in Sec. II B) to provide an initial estimate
of all solitonic excitation positions, and then uses a skewed
Mexican-hat fit function (Sec. II C) that accurately describes
their density profiles. The resulting fit coefficients serve two

purposes: qualitative likelihood assessment and fine-grained
categorization.

A. Data

Our framework is trained and initialized using a revised
dataset consisting of about 5.5 × 103 manually labeled exper-
imental images of BECs with and without solitonic excitations
[23,28]. The experimental setup and preprocessing techniques
are described in [13].

Figure 2 shows six selected sample images from the la-
beled dataset. The dataset includes labels for five classes:
“no solitonic excitation,” images that do not contain any
excitations; “single solitonic excitation,” images containing
one solitonic excitation; “other excitations,” images not in
the preceding classes (including those with multiple solitonic
excitations, high degrees of noise, and those annotators could
not agree on); “mislabeled”, data determined to be potentially
mislabeled during the curation process; and “unlabeled,” im-
ages that have not been manually annotated. Additionally, for
the single excitation class the dataset includes the horizontal
position of excitations within BEC.

Figure 2(a) displays an image from the no excitation class,
which lacks the pronounced stripes present in the remaining
examples. In (b), we show three elements of the single excita-
tion class, each containing a single dark vertical fringe: (b)(i)
a longitudinal soliton; (b)(ii) an off-center single longitudinal
soliton; and (b)(iii) a solitonic vortex. In (c), we show two
elements of the other excitations class containing more than
one vertical fringe.

Horizontal 1D profiles (bottom row of Fig. 2) also have fea-
tures associated with vertically aligned solitonic excitations
and are amenable to least-squares fitting. We obtain these pro-
files by first summing the pixel values vertically to compress
two-dimensional (2D) images to 1D; this sum can be over all
(green curves) or part (see Sec. II C 1) of the vertical extent of
the image. We then fit a 1D Thomas-Fermi (TF) model

nTF(i) = n0 max
{[

1 − ( i−i0
R0

)2]
, 0

}2
+ δn (1)

to each summed 1D profile, where i is the horizontal pixel
index, and n0, i0, R0, and δn are fitting parameters representing
peak density, center position, TF radius, and an overall offset,
respectively. This fit (black curves) serves as an overall back-
ground that we subtract from the 1D profiles, leaving behind
the 1D density fluctuations (blue curves). The orange dashed
lines represent the location of deepest depletion in the 1D
fluctuations.

B. ML modules

Our previous dark soliton classifier [22] consisted of a
CNN model that returned one of the three predefined classes:
no solitonic excitation, single solitonic excitation, or other ex-
citations. However, this detector did not locate the excitations.
To compare with experimental data, we located the soliton by
identifying the deepest depletion and fitting to a Gaussian, as
described above. This algorithm has two limitations: (1) The
soliton may not be the deepest depletion [as in Fig. 2(b)(ii)];
and (2) multiple solitons cannot be located [as in Fig. 2(c)].
Here we retain the CNN classifier to globally organize the
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data, but inspired by a highly successful recent result using
an OD to locate vortices in numerically simulated 2D BECs
[30], we employ an OD to locate solitonic excitations in
experimental images of highly elongated BECs.

The OD complements the CNN classifier in two ways:
(1) it identifies soliton positions rather than classifying; and
(2) even though it is trained with single-soliton data, it can
locate multiple excitations in the same image. We employ
a neural network based OD with six convolution layers and
four max-pooling layers but no fully connected layers (see
the Appendix for more details). The OD has an order of
magnitude fewer trainable parameters than our previous CNN
(7 × 104 versus ∼106 parameters), accelerating the training
process and making it lightweight to deploy. Because the OD
simply requires a dataset with many representative instances
of the object to be detected, it requires far less training data
than the CNN classifier (which by design required substantial
data from all considered classes).

In our data, the solitonic excitations are roughly four pixels
in width. Since our images are 164 pixels wide, we designed
our OD to aggregate the image into 41 spatial cells, each with
two outputs in the range [0, 1]; the OD therefore returns a
41 × 2 array Ỹ. For our dataset this aggregation guarantees
that each output cell can describe the state of at most one
soliton. Ỹ�,1 is a probability estimate that cell � contains a
soliton, and Ỹ�,2 is the fractional position of the soliton center
within that cell, where 0 or 1 correspond to the left or right
edge of the cell, respectively. The OD considers any cell with
Ỹ�,1 > 0.5 as containing an excitation, and then obtains its
position from Ỹ�,2.

When comparing to the training dataset with labels denoted
by Y, we use the cost function [30]

F =
41∑

�=1

{−w1 log(Ỹ�,1) + w2(Y�,2 − Ỹ�,2)2, if Y�,1 = 1
− log(1 − Ỹ�,1), if Y�,1 = 0

(2)

for each training image, where the label Y�,1 identifying the
presence of an excitation in a cell is fully confident, i.e., either
0 or 1. The coefficients w1,w2 are hyperparameters control-
ling the relative importance of each term. The logarithmic
terms increase the cost function when the OD misidentifies
solitons, while the quadratic term contributes when a soliton is
mislocated within a cell. Our training set uses images with at
most one soliton, so cells with Y�,1 = 1 are much less frequent
than those with Y�,1 = 0; as a result we expect w1,w2 � 1
to give similar overall weight to the three terms in Eq. (2). We
train the OD by minimizing the cost function summed over all
training images, updating the predicted OD values Ỹ in each
iteration. Because the cell size is comparable to the soliton
size, a single soliton can span two cells. To prevent double
counting, we merge detections occurring in adjacent cells and
take the position to be their average.

We deem the OD’s detection successful if our training data
contains a labeled soliton close to the detected one (within
three pixels in our implementation). The two failure modes
are failing to detect a solitonic excitation and reporting an
excitation that is not present.

C. Physics-based modules

In this section, we introduce our physics-based module
that uses constrained least-squares fitting to estimate soliton
parameters, and following a Yeo-Johnson transformation [26],
produces a quality estimate giving the likelihood of a given
feature being solitonic.

We fit the Ricker wavelet [32], i.e., a Mexican-hat function

f (i) = δn − nTF(ic)A exp
[
− 1

2

( i−ic
σ

)2]
×

[
1 − a

( i−ic
σ

)2 + b
( i−ic

σ

)]
, (3)

to the 1D density fluctuations described Sec. II A, where
nTF(ic) is evaluated with δn = 0. The function takes six pa-
rameters: normalized logarithmic amplitude A, center position
ic, width σ , logarithmic symmetrical shoulder height a, asym-
metrical shoulder height b, and an offset δ. When a and b
are zero this function is a simple Gaussian, making a nonzero
adds symmetric shoulders to the distribution, and b introduces
an asymmetry. Our solitonic features are well described by
this function; since our excitations manifest as density deple-
tions, the second term in Eq. (3) is negative.

Our constrained least-squares fit requires initial guesses
for all of these parameters. The guess for the center position
ic also provides the initial guess for A by setting it equal
to the 1D density fluctuations evaluated at ic. We found the
initial values σ = 4, a = 0.2, b = 0, and δ = 0 to lead to
convergent fits across the whole dataset. In order to produce
reliable fits we apply the following constraints: ic must remain
within three pixels from the initial guess, 10−13 < A < 104,
and 10−13 < a < 104 to prevent numerical fitting errors.

1. Physics-informed excitation classifier

Many candidate solitonic excitations are not vertically
symmetric as might be expected [see, e.g., Fig. 2(b)(iii)]. The
location of the largest “shoulder” in the top half of the exci-
tation is reversed with respect to the bottom half; in addition,
the location of the minimum is slightly displaced going from
the top half to the bottom. Inspired by these differences, we
bisect each image into top and bottom halves (labeled by +
and −, respectively) and separately apply the Mexican-hat fit
to fluctuations in these data, giving vectors �±. Using this
observation, we develop a physics-informed excitation (PIE)
classifier based on the single-soliton dataset and discover that
correlations between these vectors allow for a more fine-
grained excitation classification.

Figure 3 shows the distribution of parameters from a
single-soliton dataset that were useful for classifying excita-
tions. No meaningful correlations were found for parameters
σ± and a±, thus these did not assist in classification. The
markers in the top panel show the amplitude ratio ρA =
A+/A− versus the top-bottom position difference δic = i+c −
i−c , and show that they are not correlated. By contrast, the
bottom panel shows that the asymmetric shoulder height dif-
ference δb = b+/σ+ − b−/σ− is clearly anticorrelated with
δic. Both panels are colored based on the cut-off points dis-
cussed in Sec. III B (see also Fig. 5).
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FIG. 3. Correlations between parameters implemented in PIE
classifier. The top panel shows the distribution of center position
difference versus the amplitude ratio (on a logarithmic scale). The
bottom panel shows the correlation between the center position dif-
ference and the asymmetrical shoulder height difference for the gray
points from the top panel. Both panels are colored based on the
cut-off points discussed in Sec. III B
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FIG. 4. OD performance compared to ground truth (top), and
the CNN classifier prediction (bottom). For ground truth and the
CNN classifier, the ticks ‘0,’ ‘1,’ and ‘other’ represent no, single,
and other excitation classes. For OD, ticks represent the total number
of positive excitations within an image.

FIG. 5. The flow of the PIE classifier with example images for
classification categories. Flow pathways and nodes are square-root
scaled.

This distribution and its correlation guide the classification
rules described in Sec. III B, yielding a PIE classifier based on
cutoffs defined by human examination of the data.

2. Quality estimation

Here we describe a quality estimate that a candidate exci-
tation in an image is solitonic. We derive the likelihood that
a vector of fit outcomes � = [A, ic, σ, a, b] is drawn from a
k = 5 dimensional prior distribution spanning the set of rep-
resentative solitonic excitations [33]. Ideally this distribution
would be an uncorrelated multivariate normal distribution, but
it is not. As a result, we developed the following procedure to
bring the distribution into this desired form.

We first fit a Yeo-Johnson power transformation [26] to
each separate parameter distribution (having summed the five-
dimensional distribution along the remaining parameters) to
transform them into independent zero-mean 1D Gaussian dis-
tributions with unit variance. Note that this treatment cannot
transform the parameter distributions into perfect Gaussians;
nevertheless, each resulting distribution is balanced, contains
a single peak, and has long tails. The covariance matrix �k is
uncorrelated after this treatment and the distribution is quali-
tatively Gaussian in shape.

To calculate the quality estimate for a candidate excitation
detected in an image, we

(1) fit the subtracted background 1D profile to Mexican-hat
function given in Eq. (3) to obtain �;

(2) use the established power transformation on� to obtain
�′; and

(3) return the quality estimate: M(�′) = 1 − χ2
k [D

2(�′)],
the likelihood between 0 and 1 that the excitation is solitonic.

The chi-squared cumulative distribution function χ2
k (p) re-

lates the Mahalanobis distance [34] D2(�′) = �′†�−1
k �′ to

the likelihood that an outcome was drawn from the specified
distribution [35]. D(�′) is unbounded above and decreases
to zero as �′ approaches 〈�′〉, the average over the prior
distribution.
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III. RESULTS

A. ML modules

We train both the CNN classifier and the OD using the re-
fined dataset with added soliton position labels (see Ref. [28]).
The CNN classifier is trained using the full dataset while the
OD training uses only the no solitonic excitation and single
solitonic excitation classes. We assess the performance of
both modules using five-fold cross-validation, that is using
80% of the data to train a given module and the remain-
ing 20% to test it, and repeating the process five times
to fully cover the dataset (see the Appendix for training
details).

The results are summarized in the two cumulative confu-
sion matrices plotted in Fig. 4. The top panel compares the
outcome of the OD to the initial labels, showing near perfect
delineation between the no excitations and single excitations
classes. However, the OD further subdivides the other exci-
tations class, counting anywhere from zero to four candidate
solitonic excitations within it. This results from the existence
of excitations in this class that are not solitonic, as well as
the possibility of having multiple solitons in the same image.
The analogous comparison to CNN classification labels in
the bottom panel is nearly indistinguishable from the one
presented in the top panel, evidencing the quality of the CNN
predictions.

Together, these ML tools effectively classify these data
and locate excitations; however, they do not provide any fine-
grained information on the nature or the quality of the identi-
fied excitations. This is addressed in the following sections.

B. PIE classifier

The PIE classifier operates by applying a sequence of
“cuts” driven by different combinations of the top-bottom fit
outcomes �±. The exact parameter values described below
are arrived at manually by exploring the data accepted and
rejected by the cut to minimize the number of false-positive
longitudinal soliton identifications.

The following cuts are applied sequentially, and the PIE
classifier stops as soon as a classification is assigned.

A cut: The amplitude parameters A± and their ratio ρA al-
low us to identify excitations that do not span the whole cloud.
Data with ρA > 1.57 are classified as “top partial excitation”
and those with 1/ρA > 1.57 are classified as “bottom partial
excitation.” This threshold identifies large fractional jumps
in depth between the top and bottom that likely are off-axis
solitonic vortices. Applying A cuts first is important because
partial excitations interfere with the subsequent steps.

δb cut: Figure 2(b)(iii) illustrates a case with large shoulder
height difference δb; Ref. [27] showed that such data result
from solitonic vortices. As a result, we classify data with δb >

0.75 as “counterclockwise solitonic vortex” and δb < −0.53
as “clockwise solitonic vortex.”

δic cut: Since longitudinal solitons have a vertically aligned
density depletion [36], we classify data with −3.0 < δic <

1.14 as “longitudinal soliton.”
Weaker δb cut: Figure 3 shows that differences δic and δb =

b+/σ+ − b−/σ− are anticorrelated, indicating that asymme-
tries in position and shoulder height are related. A closer
look at Fig. 2(b)(iii) indicates that it is such a case, with
δic < 0 and δb > 0. We therefore add images with δic < −3.0
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and δb > 0.61 to the counterclockwise solitonic vortex class
and those with δic > 1.14 and δb < −0.41 to the clockwise
solitonic vortex class.

Other data: The remaining images have δic �= 0 but δb ≈ 0
are labeled as “canted excitations,” likely kink solitons in the
process of decay.

The flow chart in Fig. 5 shows the application of this clas-
sifier to a single-soliton dataset. We found that of the initial
3 212 images, about 1/3 failed a cut and were rejected as
longitudinal soliton candidates.

This classification was also used in the preparation of
Ref. [28] in which we present a refined soliton dataset, which
includes improved single longitudinal soliton labels. The cuts
above are fairly aggressive to avoid false positives in the
longitudinal soliton classification. This implies possible mis-
classification in the other categories in order to ensure a high
quality longitudinal soliton subset and a reliability of the
quality metric.

C. Quality estimator

The quality estimator is initialized on the subset of the sin-
gle excitation class identified as longitudinal soliton using the
PIE classifier. Figure 6(a) shows the power-transformed distri-
bution of Mexican-hat fit coefficients�′, with nontransformed
coordinates marked on the top axis for reference. As would
be expected, the data from the initialization dataset (orange)
are nearly normally distributed; interestingly, the remaining
elements of the single excitation class (partial solitons, canted
excitations, and solitonic vortices, as labeled by the PIE filter)
collectively follow very similar distributions (green). By con-
trast, the coefficients from every local minimum [37] in the
initialization set except solitonic excitations (blue curve) obey
a qualitatively different distribution.

Using this initialization, we compare quality estimates M
obtained from the single excitation class in Fig. 6(b). The
orange data show M for longitudinal solitons, and as intended
the majority of this data is associated with larger values of
M. The green data for the remaining solitonic excitations
are nearly uniformly distributed, and the nonsoliton minima
(blue) are highly concentrated at small M. We note that
the small peak in longitudinal soliton distribution near-zero
M contains a negligible fraction of the longitudinal soliton
dataset (about 1.3%). However, this peak is more pronounced
for the remaining excitations, which is not surprising because
the power transform was initialized using longitudinal soliton
data. These distributions demonstrate the ability of the quality
estimator to discriminate between solitonic excitations and
other features in the data, reinforcing the importance of the
PIE filter for fine-grained classification.

We quantify the performance of the quality estimator in
terms of the F1 scores plotted in Fig. 6(c), for longitudinal
solitons (orange) and all other solitonic excitations (green).
The F1 score for longitudinal solitons is maximized with a
threshold of just M = 0.02 (stars): however, in practice we
minimized false positives and assign a feature to be solitonic
when M > 0.2 (circles). This choice gives only small change
in the F1 score: however, it gives a marked increase in pre-
cision with only a small reduction in recall, as shown in the
inset. The performance of the quality estimate on the other
solitonic excitations, while far better than random, is subpar;

this reemphasizes the importance of the PIE classifier in our
framework.

D. Application to other excitation and mislabeled data class

Here we discuss the performance of our SolDet framework
applied to two classes of data from the dark soliton dataset:
other excitations (1 036 images) and mislabeled data (879 im-
ages). These classes consist of images with multiple solitonic
excitations, such as shown in Fig. 2(c), as well as confusing
structures that made human annotation difficult. As such, they
are an ideal test dataset since they defeated previous labeling
attempts.

As a reminder, after the CNN classification step, the frame-
work first uses the OD to locate all soliton candidates that
are then sorted by the PIE classifier. Here, we focus only on
features identified as longitudinal solitons. Figure 7(a) plots
the frequency of transformed Mexican-hat fit outcomes �′,
giving distributions that for both classes are qualitatively the
same as those in Fig. 6(a) for the labeled single solitons. By
contrast, histograms of the quality estimate for longitudinal
solitons detected in these two classes [panel (b)] have impor-
tant differences. For the other excitations class (Nlongitudinal =
877, Nimages = 669), the distribution is nearly uniform, with a
potential increase for the higher quality estimates (M > 0.4).
For the mislabeled data (Nlongitudinal = 415, Nimages = 398), on
the other hand, the quality estimate distribution follows a trend
consistent with that observed in Fig. 6(b).

To better understand this discrepancy it is important to con-
sider more carefully the differences between the two classes.
According to the OD module, nearly 78% of images in the
other excitation class contains two or more excitations. While
for excitation spaced apart within the BEC, as in Fig. 7(c)(i),
the individual fits to Mexican hat do not affect one another, the
contrary holds for excitation captured in close proximity, as
shown in Fig. 7(c)(ii). Qualitative differences between these
images are quantified by the quality estimate. The quality
estimate for the two well separated excitations in image (i)
is 0.74 and 0.86. In image (ii), in contrast, even though both
excitations are reminiscent of a longitudinal soliton, they are
assigned a low quality, with M(ii) = [0.00, 0.01] from left
to right. This is likely because the overlap in the adjacent
shoulders significantly affects the relative fits. Given that the
majority of data in this class contains multiple excitations, the
unusually high frequency of the low quality is to be expected.

The mislabeled class, on the other hand, consists of images
determined to be potentially mislabeled during the manual
annotation (see Ref. [28] for details about the data curation
process). These include over 320 images that the annotators
found confusing (but in which ODs consistently found exactly
one candidate excitation); over 190 images removed during
curation from the single excitation class; and about 30 images
originally assigned to the no excitation class (but in which
the ODs also consistently found exactly one candidate exci-
tation). Unsurprisingly, in almost 83% of these images the
OD module found only one excitation. Two representative
images from this set are shown in Figs. 7(c)(iii) and 7(c)(iv),
with M(iii) = [0.92, 0.02] and M(iv) = 0.82. The distribution
of nonlongitudinal soliton quality estimate, shown in the inset
in Fig. 7(b), is consistent with that depicted in Fig. 6(b).
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FIG. 7. Performance of quality estimate on other excitation (orange) and mislabeled (red) classes. (a) Power-transformed fit coefficient
distributions, with untransformed variables labeled on the top axis. (b) Distribution of quality estimate of all longitudinal solitons. (c) Rep-
resentative images from the other excitation [(i),(ii)] and mislabeled [(iii),(iv)] classes, with OD + PIE identified longitudinal soliton marked
with arrows. The quality estimate for these excitations is as follows: M(i) = [0.74, 0.86], M(ii) = [0.00, 0.01], M(iii) = [0.92, 0.02] (all from
left to right), and M(iv) = 0.82.

The performance on these qualitatively different test sets
emphasizes the power of SOLDET. By combining the CNN
and OD modules, SOLDET autonomously and reliably locates
multiple excitations within the BECs, which goes beyond the
traditional state-of-the-art deepest-depletion-based approach.
The PIE classifier enables further systematic validation that
the desired type of excitation (here, longitudinal solitons) has
been observed, which previously required visual inspection of
each acquired image. Finally, the quality metric provides a
quantitative assessment of the excitation quality, further rein-
forcing the classification reliability. Put together, these tools
provide a robust and reliable analysis framework, capable
of processing data significantly more complex than possible
given the current traditional state-of-the-art approaches.

E. SOLDET: Open-source PYTHON package for solitonic
excitation detection

In this section, we describe our software package SOLDET

that integrates both the ML modules (CNN classifier and OD)
with the fitting physics-based modules (PIE classifier and
quality estimator), as we described in previous sections. The
above discussion showed that theMLmodules classify images
effectively and can accurately locate one or many candidate
solitons. The physics-based modules can sort these candidates
into subclasses and provide a quality estimate for longitudi-
nal soliton candidates. Therefore, the ML and physics-based
modules contribute to the task of soliton detection in different
ways, and the SOLDET infrastructure leverages their comple-
menting strengths. We emphasize that soliton detection is one

of a larger class of feature identification in quantum gases and
that SOLDET was designed to be broadly applicable.

The SOLDET distribution includes a CNN classifier, OD,
PIE classifier, and quality estimator trained and initialized
using the soliton dataset [23]. In addition, we provide training
scripts to enable the ready application to user-defined data
with custom preprocessors, ML models, fitting functions, and
even the overall process flow.

Figure 8 illustrates a single use of SOLDET for the specific
example of longitudinal soliton detection, where the individ-
ual blocks operate as follows:

Data processing: Preprocess raw data into a 164 × 132
image format that just encloses the elliptical atom clouds [22].
The preprocessing particulars are not generic and instead are
specific to both our task as well as the experimental parame-
ters.

CNN classifier: Apply a trained CNN classifier to pro-
cessed data and yield labels no excitation, single excitation,
or other excitations.

Object detection: Apply trained OD to processed data and
yield a list of positions of solitonic excitations.

CNN:0 OR OD:0: If either the CNN classifier or OD finds
no soliton, SOLDET terminates.

PIE classifier: The PIE classifier is applied to each solitonic
excitation.

Quality estimator: The quality estimator is applied to each
excitation identified as “longitudinal soliton” by the PIE clas-
sifier.

This algorithm is designed to be usable in a laboratory
environment where one needs real-time identification, as well
as for automated labeling of large datasets, as in Ref. [28].
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FIG. 8. The SOLDET flow chart. The black line follows the
SOLDET dataflow and contains the labels added by each module (rect-
angles). Blue blocks represent ML modules; red blocks represent
physics-based modules.

IV. DISCUSSION AND OUTLOOK

Here we described a framework that adds to the growing
ML quantum science and technology toolkit, with additional
recent developments including noise characterization [38,39];
quantum state detection [22,30,40–48]; parameter space
exploration and optimization [49–54]; and quantum control
[55,56]. Together, these results show that ML techniques
can extract information from ambiguous data, efficiently
search large parameter spaces, and optimally control quantum
systems.

Our high level framework combines ML methods with
physics-based analysis, providing an integrated platform for
studying experimental data. Our implementation of this
framework, SOLDET, currently targets the identification, clas-
sification, and tracking of features in image data generated by
cold-atom experiments. We demonstrated its initialization and
performance using a publicly available dark soliton dataset
[28]. This investigation focused only on properties of individ-
ual images; however, the dataset also includes a label giving
time elapsed since the excitation’s were created. This opens
the door for studies correlating system control parameters and
the SOLDET labels.

While our initialization used only the no excitation and
single excitation classes, SOLDET’s feature detection success-
fully generalizes the learned patterns. This is confirmed by its
performance on the other excitations and mislabeled classes
that were not part of training, where the CNN classifier gave
ambiguous results and human classifiers often disagreed. Go-
ing beyond simple classification tasks, SOLDET allowed us
to identify unexpected structure in the data, enabling a fine-
grained division of the single excitation class into physically
relevant subclasses, including solitonic vortices and partial
solitons.

Moreover, for the multiple excitations class, the distri-
bution of the quality metric in Fig. 7 reveals a possible
correlation between the quality metric and the excitations
relative proximity. These observations illustrate the power of
our combined framework as a data analysis tool for discovery.

An interesting application of SOLDET would be an off-line
optimization of the experimental setup. Such optimization
strategy, successfully implemented to, e.g., improve fabrica-
tion of quantum dot devices [1], requires an efficient analysis
of large volumes of data to find the appropriate correlations
in a high-dimensional parameter space. The ML toolbox
described in our paper allows one to automatically locate
multiple solitonic excitations in the same cloud and produces a
fine classification that goes beyond longitudinal solitons. An
analysis of the correlations between the various control pa-
rameter ranges used in our experiments and the resulting class
of data (as determined by SOLDET) could enable a controlled
generation of a desired number, type, and configurations of
excitations, with SOLDET integrated online to provide real-
time data analysis and control feedback. Another interesting
extension of this work would be to train an OD on a dataset
containing a single subclass found by the PIE classifier, e.g.,
longitudinal solitons, or solitonic vortices.

From the ML perspective, adding modules based on un-
supervised [57], active learning [58], and synthetic data
generation with generative models [59] may further enhance
the performance of the SOLDET framework.

Going beyond solitonic excitations, the wakefield for
sub- and supersonic impurities moving in atomic superflu-
ids have characteristic patterns that could be identified by
ML techniques [60–63]. This might be implemented using a
template-based method such as used in the Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) where a large
set of numerical simulations provide a library of patterns to
correlate with the data [64]. This pattern matching is a form
of object detection, and in our context a CNN based object
detector could also be trained on such a template set. In this
way, our methodology could be employed with a trained OD
followed by a LIGO-like algorithm playing the role of our
quality estimator and PIE classifier.

In the final analysis, SOLDET improves the data analysis
pipeline for feature identification and classification problems
in physically derived image data, but leaves the remainder
of the scientific discovery process unchanged. For example,
in our studies the PIE classifier module provided a fresh
way to process data and enabled us to identify new patterns
in the reduced data. The step beyond this is ML-driven
discovery, where the identification of previously unknown
patterns and physical reasoning are both implemented by
ML. An emerging area of ML is the derivation of effective
hydrodynamic equations of motion for biological, colloidal,
and active fluids based on time-series data [65]. Owing to
the complexity of full 3D simulations of nonzero temperature
BECs, this data-driven approach could also be applied to
create effective kinetic theory of solitons as well as the
hydrodynamics of the underlying fluid.
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APPENDIX: PARAMETERS OF MACHINE
LEARNING MODELS

Both machine learning modules are built and trained
using the TENSORFLOW (v.2.5.0) KERAS PYTHON API [66].

TABLE I. The OD architecture parameters. The top four rows
are for the convolutional 2D layers and the three bottom rows are for
max-pooling 2D layers.

Layer 1 2 3 4 5 Output

Filter 8 16 32 64 128 2
Kernel 5 × 5 5 × 5 5 × 5 1 × 5 1 × 5 1 × 5
Padding Same Same Same Same Same Same
Activation ReLu ReLu ReLu ReLu ReLu Sigmoid
Pool size 4 × 2 4 × 2 4 × 1 2 × 1 N/A N/A
Strides 4 × 2 4 × 2 4 × 1 2 × 1 N/A N/A
Padding Valid Valid Same Same N/A N/A

Figures 9(a) and 9(b) show the visualization of the network
architecture for the OD and the CNN classifier, respectively.
The model parameters of OD are presented in Table I. The
model parameters for the CNN classifier are presented in the
Appendix of Ref. [22].

As can be seen in Fig. 9, there are three main differences
between the two architectures: (1) the OD outputs 41 lo-
cal probabilities and positions while the CNN classifier only
outputs one of three possible classes; (2) the CNN classifier
contains three fully connected layers, which dramatically in-
crease the number of trainable parameters, while OD does not;
(3) the OD has asymmetric pool size and strides for vertical
and horizontal directions, which are customized to the features
in our dataset; the pool size and strides are symmetric for the
CNN classifier. As a result, the OD has more than an order of
magnitude fewer trainable parameters (7 × 104) than the CNN
classifier (106).
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