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H I G H L I G H T S  

• Model predicts embodied lifecycle CO2e for 60 U.S. balancing authorities. 
• Novel method translates CO2e balancing authority emissions down to the county level. 
• 16 balancing authority consumption and generation emission factors deviate by >20%. 
• County-level emission factor variations of 6 balancing authorities >0.3 MT-CO2e/MWh.  
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A B S T R A C T   

Predicting the embodied scope 3 carbon dioxide equivalent (CO2e) emissions from purchased electricity for end 
users in the United States is challenging due to electricity transmission within interconnected power grids. 
Existing methods only focus on large aggregation areas, thereby ignoring potentially significant emission factor 
(EF) variations, so this study proposes a novel method to translate the CO2e emissions from the balancing au-
thority (BA)-level to the county-level by utilizing explicit finite-difference theory for electricity flow predictions, 
and then employing economic input–output theory to evaluate the scope 3 embodied lifecycle CO2e emissions. 
Results show that the generation-based EFs at the BA-level range from 0.007 to 0.905 MT-CO2e/MWh with a 
mean value of 0.400 MT-CO2e/MWh and a standard deviation of 0.229 MT-CO2e/MWh. The consumption-based 
EFs at the BA-level range from 0.008 to 0.836 MT-CO2e/MWh with a mean value of 0.378 MT-CO2e/MWh and a 
standard deviation of 0.019 MT-CO2e/MWh. Results also show that sixteen BA consumption-based EFs deviate by 
more than 20% compared to their generation-based EFs, which indicates the significance of accounting for 
electricity interchanges in emissions quantification processes. A larger range of possible consumption-based EFs 
is revealed at the county-level: 0.007 to 0.902 MT-CO2e/MWh, with a mean value of 0.452 MT-CO2e/MWh and a 
standard deviation of 0.123 MT-CO2e/MWh. Results also indicate significant variations in EFs of counties within 
each BA: 20 BAs have county-level EFs range greater than 0.1 MT-CO2e/MWh, 13 BAs have county-level EFs 
range greater than 0.2 MT-CO2e/MWh and 6 BAs have county-level EFs range beyond 0.3 MT-CO2e/MWh.   

1. Introduction 

Electricity generation is one of the largest producers of global carbon 
dioxide equivalent (CO2e) emissions. The emissions are dominated by 
carbon dioxide (CO2) but also include small amounts of other gases (e.g., 
methane (CH4), nitrous oxide (N2O) and F-gases) that stem from the 
three major lifecycle stages of electricity production: upstream (e.g., 
extraction and delivery), operation and downstream (e.g., disposal and 
recycling) [1]. Emission factors (EFs), which indicate the amount of 
emissions embodied in unitary electricity consumption (MT-CO2e/ 

MWh), are a common way to incorporate predictions from the life cycle 
impact assessment of electricity production [2]. 

In the United States, the end users of grid power often rely on their 
utility providers or other aggregated data sources such as the Emissions 
& Generation Resource Integrated Database (eGrid) [3] developed by 
United States Environmental Protection Agency (EPA) to retrieve their 
EFs, which are then used in developing carbon reduction strategies. One 
major drawback of the EFs provided by eGrid is that they neglect the 
impact of electricity exchanges across regional boundaries [4]. 
Furthermore, the EFs provided in the eGrid database do not stem from 
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lifecycle analysis, thereby neglecting emissions from both upstream and 
downstream stages in the electricity production process [4]. 

There is currently a strong motivation to better quantitatively un-
derstand how electricity and emissions propagate. Dotzauer [5], for 
example, emphasized the need for improved reliability in electricity 
tracking. According to the greenhouse gas (GHG) emissions inventory 
[6] and the GHG footprint reduction targets developed by the EPA, 
existing studies can be classified into three scopes. Scope 1 GHG emis-
sions measure the direct emissions from sources, such as onsite fossil fuel 
combustion. Notably, the eGrid database established by EPA fits into this 
scope since it estimates GHG emission rates at different levels [3] using 
the regional electricity production portfolio. However, electricity 
transfers among regions and some low-carbon electricity generation 
sources (i.e., nuclear power, hydropower, solar energy and wind energy) 
are neglected. 

Scope 2 GHG emissions include the impact of generating the pur-
chased electricity. Marriott and Matthews [7] estimated the U.S. state- 
level EFs by treating most of the states as either a net importer or 
exporter using net electricity interchange data from year 2000. A 
transportation optimization model that assumes “minimized travel dis-
tance” predicts where electricity flows to net exporters. The resultant 
EFs are calculated based on the predicted values of direct imports or 
exports, which could be inconsistent with actual electricity trades. 
Similarly, Colett et al. [8] conducted a case study of U.S. GHG emissions 
in primary aluminum production by proposing “nested average alloca-
tion protocols” that only consider bilateral electricity trades to estimate 
the emissions interchanges at the power control area (PCA)-level. 

Scope 3 GHG emissions measure both direct and indirect electricity- 
related emissions resulting from the transportation and distribution of 
purchased electricity. Qu et al. [9] examined the virtual CO2 emission 
flows in the global electricity trade network. Sjödin and Grönkvist [10] 
acknowledged the significance of electricity cross-border trade between 
countries in the Nordic region and discussed different ways to account 
for GHG emissions variations due to corresponding electricity demand 
and supply changes. Kang et al. [11] introduced the “carbon emission 
flow in networks” concept and developed a method to trace GHG 
emissions through a virtual network using an actual analysis of China’s 
energy pattern. In their study, the country is divided into 6 regions that 
act as both electricity consumers and producers. Qu et al. [12] examined 
the CO2 emissions embodied in interprovincial electricity transmissions 
in China. Wei et al. [13] conducted a case study in Shanghai, China by 
comparing the different scopes of GHG emissions caused by electricity 
consuming activities. Their results show that Shanghai has high scope 3 
GHG emissions due to large net inflows of electricity embodied GHG 
emissions, which emphasizes the significance of scope 3 GHG emissions 
accounting. St-Jacques et al. [14] demonstrated a case study of GHG 
emissions embodied in building electricity use in Ontario, Canada. 
Finally, Chaparro et al. [15] assessed the marginal carbon emissions of 
hydrothermal systems of Chile. 

In the U.S., the entire power grid consists of thousands of miles of 
power transmission lines that connect power plants and deliver elec-
tricity to consumers all over the country [16]. The vast amount of 
electricity interchanges between regions and various regional electricity 
production methods could significantly alter the EFs. Following the 
“carbon emission flow in networks” concept introduced by Kang et al. 
[11], Kodra et al. [17] employed an iterative method to track the elec-
tricity interchanges and associated emissions transfers in the U.S. at the 
PCA-level. At each time step, each PCA transmits a portion of its avail-
able electricity to other PCAs who trade with it directly. The iteration 
stops when the available electricity of each PCA becomes extremely 
small. Based on Kodra’s work, Qu et al. [18] proposed the quasi- 
input–output (QIO) model that improves the accuracy of the iterative 
method by utilizing the idea of input–output theory from economics, 
and they applied it to the Eurasian Continent. Interestingly, de Cha-
lendar et al. [19] implemented a fully coupled multiregional 
input–output model to trace the emission flows at the BA-level over 

multiple time period sizes, and Koffler et al. [20] developed the regional 
life cycle inventory of scope 3 GHG emissions at the eGrid subregion- 
level. 

The above studies indicate that the spatial resolution of scope 3 
emissions in the U.S. has been restricted to the PCA-level due to the lack 
of consistent and high-resolution data. However, Siddique et al. [21] 
recognized that the carbon footprints of electricity are sensitive to 
geographical attribution methods and spatial resolution. Therefore, this 
study fills an important knowledge gap by introducing a novel method 
that that predicts GHG emissions at a much finer scale – the county level 
– which enables the first known assessment of the spatial variation of 
scope 3 EFs within balancing authorities. This assessment therefore tests 
the hypothesis that the spatial variation of EFs within balancing au-
thority areas can be significant and therefore should be incorporated 
into building scope 3 GHG emissions calculations. 

2. Methodology 

The approach here first traces the electricity generation and its 
associated lifecycle emissions within the U.S. at the BA-level using data 
published in the hourly electric grid monitoring system developed by the 
U.S. Energy Information Administration (EIA) [22]. The published daily 
data are collected and cleaned, and the annual EF values are determined 
by summing daily data over the entire year. In 2019, the 64 BAs in the U. 
S. that consistently reported power data to the EIA are considered. Five 
BAs based in Canada [23] and one BA based in Mexico [24] are also 
included to properly address the effects of international electricity in-
terchanges. The EFs at the BA-level are determined using the QIO model. 

The second step is the translation of BA-level data down to the 
county-level. A novel approach was developed to translate the EFs at the 
BA-level to the county-level resolution with the aid of an explicit finite 
difference method to predict county-level electricity flows. This 
approach predicts the variation in scope 3 emissions within BAs and 
achieves the needed finer level of granularity in consumption-based EF 
predictions. 

2.1. The network approach: QIO model 

Qu et al. [18] proposed the QIO model, which is a network approach 
that evaluates the embodied CO2e emissions from purchased electricity 
using economic input–output theory. Traditional input–output theory is 
used to describe the interrelationship of supply and demand between 
different sectors in an economy. The two major branches of traditional 
input–output theory are the Leontief model, which is a demand driven 
model, and the Ghosh model, which is a supply driven model [25]. The 
mathematical equivalence of the two branches in this case and the dif-
ferences between the traditional input–output model with the QIO 
model are discussed in Qu et al. [18] The QIO model connects direct 
emissions from regional power generation to power consumption in 
other regions, which allows the model to capture both direct and indi-
rect electricity transfers. The indirect electricity transfers occur when a 
region transfers electricity to other regions through one or more transit 
region(s) within the entire power grid. 

In the QIO model, each region is represented as a node that connects 
to other nodes. Each node can either be an importer, an exporter or both. 
The electricity interchanges of each node (i) must be conserved, there-
fore 

Gi +
∑n

j=1
Eji = Ci +

∑n

j=1
Eij = Xi (1)  

where G and C are 1 by n matrices. Gi and Ci represent the power 
generation and consumption of node i, respectively. E is the n × n matrix 
that represents the electricity transmission network with n nodes. Eij 

indicates the amount of direct electricity transmission from node i to 
node j. X is defined here as the total electricity flows of all n nodes. 
Taking a four-node electric grid as an example, Fig. 1 shows that Node 1 
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imports electricity from both Node 2 (E21) and Node 3 (E31) as inflows, 
and local consumption (C1) is the only outflow, indicating that node 1 is 
acting as an importer only. On the other hand, Node 2 exports electricity 
to Node 1 (E21) and Node 4 (E24) as electricity outflows, and local 
generation (G2) is the only inflow, indicating that Node 2 serves as an 
exporter only. Both Nodes 3 and 4 have inflows and outflows connecting 
to other nodes, indicating that Nodes 3 and 4 are both importers and 
exporters. 

The emissions associated with X in Eq. (1) can be written as 

eX
i = eG

i +
∑n

j=1
BjieX

j = eC
i +

∑n

j=1
BijeX

i (2)  

where eX
j is the emissions in total electricity flows of node j. eG

i and eC
i are 

the emissions associated with electricity generation and electricity 
consumption, respectively, in node i. In this study, the lifecycle emis-
sions associated with power generation eG

i is determined by considering 
the unique power production portfolio using following equation: 

eG
i =

∑n

k=1
Gkrk (3)  

where k represents a specific power production technology, Gk is the 
electricity generation from technology k in MWh, and rk is the lifecycle 
emission rates associated with electricity generation technology k [26]. 

A considerable amount of lifecycle assessment (LCA) research has 
been performed to evaluate the emission rates for different types of 
electricity generation technologies, but significant discrepancies exist. 
However, in project Life Cycle Assessment Harmonization [26], the 
National Renewable Energy Laboratory (NREL) analyzed and harmo-
nized the LCA of multiple electricity generation methods to reduce the 
variability from more than 2,000 published results, so this study quan-
tifies the lifecycle generation-based EFs at the BA-level by incorporating 
the harmonized median lifecycle emission rates of multiple power 
generation technologies into eG

i . More discussion on this topic can be 
found in Supporting Information (SI). 

B, shown in Eq. (2), is defined here as the direct outflow coefficient 
matrix and can be calculated using 

B = X̂
−1

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
E12

X1
⋯

E1n

X1

E21

X2
0 ⋱

E2n

X2

⋮ ⋱ ⋱ ⋮

En1

Xn

En2

Xn
⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)  

where X̂ is the diagonal matrix of X, and Bij represents the fraction of 

total electricity flows of node i that is exported to node j. By its defini-
tion, Bij = 0 when i = j. Eq. (2) can be rearranged into matrix form: 

eX = eG(I − B)
−1

= eGT (5)  

where T = (I − B)
−1 is referred to as the total outflow coefficient matrix 

in input–output theory [18]. Therefore, T captures all electricity trans-
fers through infinite paths within the grid, and Tij represents the pro-
portion of aggregated electricity transfers to node j that is generated by 
node i. Furthermore, the EF for purchased electricity in each node can be 
determined: 

EF = eX X̂
−1

= eGT X̂
−1 (6) 

In addition, all the emissions due to electricity transfers through 
infinite paths from generating grids to consuming grids can be traced 
using 

W = êG TBC (7)  

where êG is the matrix of diagonal components of eG and BC = ĈX̂
−1

, 
which is a diagonal matrix that represents the fraction of electricity 
consumption in total electricity flow. Wij represents the total embodied 
GHG emissions that transferred from generating grid i to consuming grid 
j. 

2.2. The EF translation approach 

The QIO model provides accurate results for scope 3 GHG emissions 
estimation provided that data such as regional power generation, con-
sumption and cross-regional electricity transfers are available. There-
fore, the spatial precision of the QIO model is currently limited to the 
BA-level. The translation approach proposed here uses an explicit 
finite-difference method to enable the application of the QIO method for 
scope 3 GHG emissions predictions with higher spatial precision (e.g., at 
the state-level and county-level) in order to assess the variation in EFs 
within BAs. This section illustrates how to apply the QIO method at the 
county-level using existing data at the BA-level. 

First, each county is assigned to a BA based on the coverage areas of 
each BA to utilize existing data at the BA-level [27]. Since the bound-
aries of BAs are often fuzzy and overlapping, the smaller BAs are pre-
served when they are covered by larger BAs entirely. For the counties 
that are covered by two or more BAs, geographic centroids are used to 
determine which BA they are assigned to. Second, the known data, 
including power generation, consumption, and interregional electricity 
transfers, of each BA are translated to the county-level. The EIA pub-
lished power plant data in 2020 for all power plants operating with a 
combined nameplate capacity of 1 MW or more [28]. This information is 
used to determine the total power generation in each county. Due to data 
consistency issues, the total electricity generation calculated as the sum 
total of all power plants within each BA is not always identical to the BA- 
level generation data provided in the electric grid monitor [22]. 
Therefore, county-level electricity generation is predicted using 

Gi,m =

∑

k
gi,m,k

∑

m

∑

k
gi,m,k

× Gi (8)  

where Gi,m represents the adjusted electricity generation of county m in 
BA i, and gi,m,k indicates the electricity generation of power plant k in 
county m of BA i, which is acquired from EIA-923 [29]. Gi is the elec-
tricity generation of BA i reported by the EIA in the hourly electric grid 
monitor [22]. 

The electricity consumption of counties could in theory be calculated 
in a similar manner, but detailed power plants’ sales data are not 
available. Thus, we propose using Gross Domestic Product (GDP) as an 

Fig. 1. Example of electricity conservation in a four-node grid.  
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indicator of electricity consumption. To verify our assumption, the 
correlation between GDP, found as the sum of all counties’ GDP within a 
BA, and electricity consumption at the BA-level has been determined. 
Fig. 2 shows that the GDP and consumption can reasonably be approx-
imated as proportional. Therefore, following equation is used to esti-
mate the electricity consumption at the county-level: 

Ci,m =
GDPi,m∑

m
GDPi,m

× Ci (9)  

where Ci,m represents the electricity consumption of county m in BA i, 
GDPi,m indicates the GDP of county m in BA i, and Ci is the electricity 
consumption of BA i reported by the EIA in the hourly electric grid 
monitor [22]. 

The electricity transfer between BAs is traced back to counties within 
each BA. Between two BAs with electricity transfers (Eij), it is assumed 
for all counties in the destination BAj that a county with high electricity 
consumption is more likely to import electricity. Since consumption is 
roughly proportional to GDP per Fig. 2, the distribution of electricity 
that comes from BA i to all counties in BA j is 

Eij−n =
GDPj,n∑

n
GDPj,n

× Eij (10)  

where subscript n represents the county in destination BA j. For all 
counties in BA i, it is assumed that a county with more electricity gen-
eration is more likely to export electricity, so the electricity to county n 
in BA j is traced back to each county m in BA i as 

Eij−mn =

∑

k
gi,m,k

∑

m

∑

k
gi,m,k

× Eij−n (11)  

where k indicates an electricity generation technology. 
Eqs. (10) and (11) provide a mechanism to predict electricity 

transfers between counties in different BAs, but additional modeling is 
required to predict the direct electricity interchanges between counties 
within the same BA. However, a lack of electricity interchange data at 
the county-level exists, so an approximate model is developed here 
based on applying reasonable assumptions about electricity flows. This 
novel geographical electricity flow model is inspired by, and uses con-
cepts from, thermal finite volume and explicit finite-difference methods 
to estimate the direct electricity interchange between counties within 

the same BA. In this model, each county is treated as a control volume 
and the model begins with an electricity balance equation: 

dEc

dt
= Ėin − Ėout − Ėnf (12)  

where dEc/dt is the total rate of electricity change in the county of in-
terest, and Ėin and Ėout represent the electricity flow into and out of the 
control volume, respectively. Ėnf is the net electricity flow rate of the 
control volume. By taking electricity going out of the control volume as 
positive, Ėnf can be determined as 

Ėnf ,m = gm − cm − f out,m (13)  

where f out,m indicates the net electricity flow between county m and 
other BAs. Discretizing the equation over time for county m within a BA 
with N counties, Eq. (12) becomes 
(
ϕp+1

m − ϕp
m

)

Δt
=

∑N

n∕=m
fmn

(
ϕp

n − ϕp
m

)
− Ėnf ,m (14)  

where p and Δt represent the time step number and time step value, 
respectively, fmn is the weighing factor, and ϕp

m is a scalar potential that 
indicates the electricity remaining that are available for transfer at time 
step p in county m. The above model assumes that each county only 
imports or exports electricity. It is assumed that the electricity inter-
change is more likely to happen between counties with more generation 
and consumption, so fmn is defined here as 

fmn =
|gmcn − gncm|

∑

m

∑

n
|gmcn − gncm| (15)  

Eq. (14) is solved iteratively for ϕ at the subsequent time step as 

ϕp+1
m =

(
1 − Δt

∑

n
fmn

)
ϕp

m + Δt
∑

n

(
fmnϕp

n

)
− Ėnf ,mΔt (16) 

At steady state, ϕp+1
i = ϕp

i , with convergence criterion set at 
⃒
⃒ϕp+1

m − ϕp
m

⃒
⃒
〈
10−6. Eq. (14) becomes 

∑

n
fmn(ϕm − ϕn) − Ėnf ,m = 0 (17)  

where the time step number designation is removed since ϕ is inde-
pendent of time step at steady state. Eq. (17) provides a basis for the 
electricity flow model since the general governing equation for 

Fig. 2. Correlation between GDP and electricity consumption at the BA-level.  
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electricity flows at steady state is 

Ėnf ,m =
∑N

n∕=m
Ėmn (18)  

where Ėmn is the electricity transfer from county m to county n, deter-
mined as 

Ėmn = fmn(ϕm − ϕn) (19) 

The QIO model can then be applied at the county-level with 
knowledge of county-level electricity generation, consumption, and 
intercounty electricity transfers. 

3. Verification 

Kodra et al. [17] estimated the EF values for over 134 PCAs in North 
America using an iterative method and available data from 2012. Qu 
et al. [18] pointed out that the iterative method is a mathematically 
equivalent approach to the QIO model if infinite iterations were per-
formed. To verify the QIO model implementation here, we compared 
results using both the iterative method and the QIO model using 2019 
data. The convergence criterion for the iterative method is an available 
electricity in ‘tank T’ at or below 10-9 MWh as suggested by Kodra et al. 
[17] Results show that the maximum absolute error is 1.85 × 10−17 MT- 
CO2e/MWh and the mean absolute error is 1.00 × 10−17 MT-CO2e/MWh 
when comparing EFs derived from two methods, which again shows the 
equivalence between the two approaches and provides confidence in the 
implementation of the QIO model in this study. 

4. Results 

4.1. BA-level EF 

Fig. 3 shows some BAs that provide electricity directly to end users in 
the power grid network. The figure uses 2019 data. Generation-only BAs 
– those that do not directly serve retail customers (e.g., Electric Energy, 
Inc. (EEI), Gridforce Energy Management, LLC (GRID)) – are not 
included. Each node in the figure, covered by a pie chart, represents a 
BA. The colors on the pie chart represent different electricity generation 
technologies, and the size of the pie chart indicates the amount of 
electricity generated in MWh. PJM Interconnection, LLC (PJM), which 
produced over 821 TWh electricity in 2019, was the biggest electricity 
producer within the country at 15.3% of national total electricity 

generation. It should be noted that around 60% and 34% of electricity 
generated from PJM is fossil-fuel and nuclear-based, respectively. 

Fig. 4 demonstrates how electricity interchanges affect EFs at the BA- 
level. A total of 64 markers shown in the figure represent the 64 BAs 
operating in the U.S. electricity network in 2019. Horizontal and vertical 
axes indicate generation-based EFs and consumption-based EFs, 
respectively. The generation-based EFs are determined by only consid-
ering CO2e emissions in power generation processes within each BA 
using the lifecycle emission rates published by NREL. The calculated BA 
generation-based EFs range from 0 to 0.978 MT-CO2e/MWh, and the 
consumption-based EFs range from 0 to 0.836 MT-CO2e/MWh. Ten BAs 
(brown triangles) have consumption-based EFs of 0, indicating that they 
are generation-only BAs that do not directly provide electricity to cus-
tomers. One BA (red square) has a generation-based EF of 0, which 
means that 100% of its electricity sold to end users is from other BAs. 
Results also show that 30 BAs with nonzero generation- and 
consumption-based EFs have smaller consumption-based EFs than 
generation-based EFs. Portland General Electric Company (PGE), which 
has a generation-based EF of 0.316 MT-CO2e/MWh (65% of natural gas 
and around 35% of hydro power) and a consumption-based EF of 0.171 
MT-CO2e/MWh, is the BA with the largest reduction in GHG emissions 
(-59.6%) after considering electricity interchanges between regions. On 
the other hand, the EF of Western Area Power Administration-Upper 
Great Plains West (WAUW) has a generation-based EF (0.007 MT- 
CO2e/MWh) which is much smaller than its consumption-based EF 
(0.372 MT-CO2e/MWh, or 193%). Overall, in addition to the generation- 
only and non-generation BAs, 16 BAs’ consumption-based EFs deviate 
from their respective generation-based EFs by over 20%, which indicates 
the significance of accounting electricity interchanges in the CO2e 
emissions quantification processes. 

Fig. 5 reveals the largest CO2e emission transmissions within the 
grid. Due to space limits, only emission transmissions at least 106 MT are 
shown. Specifically, the Salt River Project Agricultural Improvement 
and Power District (SRP) transmitted the most CO2e emissions to other 
BAs in 2019, which occupies 59.7% of total local CO2e production. The 
two largest customers who receive electricity from SRP are the Arizona 
Public Service Company (AZPS) and the California Independent System 
Operator (CISO). Interestingly, CISO is the BA that receives the most 
CO2e emissions from other BAs due to large electricity imports, whereas 
the Los Angeles Department of Water and Power (LDWP), the Balancing 
Authority of Northern California (BANC), AZPS and SRP are the biggest 
contributors. Furthermore, PJM, Midcontinent Independent System 

Fig. 3. Power generation portfolio of BAs that serve directly to end users.  
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Operator, Inc. (MISO), the Electric Reliability Council of Texas, Inc. 
(ERCO) and the Southwest Power Pool (SWPP) are the biggest CO2e 
producers in the country. On the contrary, 10 BAs (e.g. WAUW and the 

City of Tacoma, Department of Public Utilities (TPWR), etc.) in the U.S. 
achieved 100% renewable energy in 2019, which gives these BAs the 
distinction of having the least CO2e emissions from electricity 

Fig. 4. Comparison between generation-based EFs and consumption-based EFs at the BA-level.  

Fig. 5. Largest CO2e emissions transmissions (>1,000,000 MT) between grids.  
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generation. Notably, 92.4% of total GHG emissions from electricity 
production in the Southwestern Power Administration (SPA) is trans-
mitted to other BAs. Furthermore, over 99% of GHG emissions associ-
ated with electricity consumption in HST is generated from other BAs. 

4.2. County-level EF 

The predicted county-level consumption-based EFs are shown in 
Fig. 6. Results reveal that the consumption-based EFs at the county-level 
(0.007–0.902 MT-CO2e/MWh) vary more broadly than at the BA-level 
(0.008–0.836 MT-CO2e/MWh). Specifically, Chelan County and Grant 
County, WA are reported to have the lowest EFs (0.007 and 0.013 MT- 
CO2e/MWh, respectively) among all counties in contiguous United 
States. The electricity market of those two counties are operated by 
Public Utility District No. 1 of Chelan County (CHPD) and Public Utility 
District No. 2 of Grant County (GCPD), respectively, who have achieved 
100% renewable energy (hydropower and pumped storage) in elec-
tricity production. On the contrast, Mason County, KY, which is oper-
ated by LG&E and KU Services Company (LGEE), is reported to have the 
highest EF (0.902 MT-CO2e/MWh) among all counties. One reason for 
the large EF is that the electricity production in LGEE is still dominated 
by fossil fuels (99%), where coal and natural gas produce 83% and 16% 
of electricity, respectively. Though electricity interchanges with other 
low EF counties help to reduce the consumption-based EF, the EFs of 
most of the counties within LGEE remains high. Counties in California 
and Pacific Northwest regions generally have low EFs due to high 
renewable energy usage. Counties in New England also show relatively 
low EFs because of international electricity transfers (electricity imports 
from Canada are dominated by hydropower). However, some counties 
within the Rocky Mountains and Midwest show some of the highest EFs 
in the U.S. because fossil fuels are still their largest electricity generation 
sources [30]. 

Fig. 7 reveals the remarkable variances in consumption-based EFs at 
the county-level within each BA. Red lines represent county-level EFs 
within a certain BA, and the green dots indicate BA-level EFs. Results 
suggest that using a BA-level EF as an emissions indicator for counties 
can be extremely inaccurate. One example of such inaccuracy can be 
found comparing EFs at the county-level and the BA-level in LGEE. The 
QIO model reveals that LGEE possesses a consumption-based EF of 0.836 
MT-CO2e/MWh, which makes it one of the most emission intensive BAs 
in the country. However, wide-ranging county-level EFs are found in 
counties within LGEE (0.287–0.902 MT-CO2e/MWh) due to the 

diversity of power origins. Results also show that the BA-level EF is very 
close to county-level EFs if the BA contains few counties. 

Fig. 8 reveals the variations in county-level EFs within each BA. 
Specifically, 20 BAs have county-level EFs vary greater than 0.1 MT- 
CO2e/MWh, 13 BAs have EFs range greater than 0.2 MT-CO2e/MWh, 
and 6 BAs have an EF variation exceeding 0.3 MT-CO2e/MWh. The di-
agram re-emphasizes the large level of county-level EF variations within 
some BAs. 

For comparison purposes, county-level EFs estimated in this study 
have been gathered at the state-level. The top half of Fig. 9 thoroughly 
characterizes the variances of county-level EFs within each state, as 
shown in the red lines. Green dots indicate the state-level EFs published 
in the eGrid database. Specifically, 12 eGrid estimates are smaller than 
the lower bound of county-level EFs within the same state, and 11 es-
timates are larger than the higher bound of county-level EFs within the 
same state. The bottom half of Fig. 9 shows the standard deviation of 
county-level EFs of each state. Specifically, taking California as an 
example, the EFs of counties within California range widely from 0.200 
to 0.531 MT-CO2e/MWh with a standard deviation of 0.05 MT-CO2e/ 
MWh, indicating that all data points are close to the mean, whereas the 
California-wide EF of 0.191 MT-CO2e/MWh is reported in eGrid data-
base. Overall, eGrid estimates range from 0.026 to 0.936 MT-CO2e/ 
MWh, while the county-level estimations range from 0.007 to 0.902 MT- 
CO2e/MWh. One crucial reason that leads to such discrepancy is that 
neither electricity interchanges nor lifecycle analysis were considered in 
eGrid predictions. 

A simplified uncertainty analysis, shown as Supplementary Infor-
mation, was performed to quantify the possible range of both 
generation-based and consumption-based emission factors at the 
balancing authority-level due to the uncertainty in data inputs. These 
uncertainties stem from discrepancies and inconsistencies in the self- 
reported electricity generation values at the BA level provided by the 
Energy Information Administration. Furthermore, inconsistent meth-
odologies and assumptions in thousands of life cycle assessment studies 
to predict life cycle emissions by various power generation sources have 
led to additional uncertainties. It was found that balancing authorities 
with extensive coal use led to the largest EF range, while consumption- 
based EFs tend to have smaller ranges than generation-based EFs 
because of fuel mixing. 

The improved model provides an important step to determining the 
scope 3 greenhouse gas emissions from electric consumers, which could 
drive climate-change related policies and regulations. For example, the 

Fig. 6. Consumption-based EFs at the county-level.  
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carbon usage effectiveness (CUE) metric, which is defined as the mass of 
CO2e per kWh of IT load [31], is used in the data center industry and can 
be estimated as the product of emission factor and the commonly-used 
power usage effectiveness (PUE), which is the total data center power 
consumption divided by IT load. The improved model can also be 
applied to determine the emission factors for any international region 
where electricity generation and transfer data are available. 

5. Conclusions 

This study confirms the hypothesis that scope 3 greenhouse gas 
emissions vary significantly within a large aggregation area (i.e., 
balancing authority region) by presenting a framework to estimate and 
track the local greenhouse gas emissions within the complex North 

American power grid. This study demonstrates that the new framework 
provides plausible data at a high spatial resolution (i.e., the county 
level), so the framework could be adapted to deduce the life cycle 
consumption-based emission factors at other spatial resolutions (e.g., 
state-level and region-level, etc.). Predictions that 16 balancing au-
thorities have differences between consumption and generation-based 
EFs that exceed 20%, which suggests that consumption and 
generation-based emission factors may be significantly different for a 
given region and should not be used interchangeably. The results also 
reveal that large (>0.1 MT-CO2e/MWh) county-level consumption- 
based emission factor variations exist in 37% of balancing authorities 
due to electricity interchanges, which supports the hypothesis that sig-
nificant spatial emission factor variations exist within balancing au-
thority regions. 

Fig. 7. Variations in consumption-based EFs at the county-level.  

Fig. 8. Range of county-level EFs within a given BA.  
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