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Abstract—Modeling faulty behavior of systems has benefits
in diagnosis and control. In this paper a data-driven method,
dynamic mode decomposition with control (DMDc), is employed
for modeling an inverter-fed induction machine. Results are
shown and compared for two scenarios: A step input change
and an inverter fault. For both cases, the algorithm can correctly
predict behavior of the system. The advantage of this model is
its independence from the system parameters. The results show
promise for data-drivenfault diagnostics and system modeling.

Index Terms—Data-driven modeling, induction machine mod-
eling, dynamic mode decomposition

I. INTRODUCTION

Modeling faulty behavior of any system helps in establish-
ing strategies to mitigate faults. This can be achieved through
control actions by predicting the next states. If the next states
are known, more precise and effective control signals can
be generated. For electric drives, there are different types of
faults such as those in the inverter, machine or sensors. In [1],
faults and some of their mathematical modeling guidelines
are summarized. The generated fault model can then be used
for diagnosis and control when that specific fault occurs [2],
[3]. Major drawback of mathematical modeling is that there
is no guarantee that a modeled fault will occur, even if it is
a common fault, and that modeling is susceptible to model
parameter variations and uncertainty. Data-driven modeling
techniques are advantageous in fault modeling since a math-
ematical model can be easily generated with no reliance on
system parameters. Dynamic mode decomposition (DMD) is
such a technique that does not require any system information
to model a system. DMD uses state measurement snapshots to
model system dynamics [4]. If input information is available,
more precise models can be generated through DMD with
control (DMDc) [5]. DMD and DMDc methods are mostly
used in fluid dynamics research, and their application to power
electronics is limited. One attempt is in [6], where the authors
used models obtained by DMD to solve Riccati equation for
permanent magnet synchronous motor drives.

In this study, faulty state trajectories of an inverter-fed
induction machine are explored. Because control signals are
present, DMDc method is preferred. Since the system itself is
already a low-order system, order reduction is not necessary.
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To make continuous guesses, DMDc is calculated through a
moving window in each time step, with a predefined window
size. Simulations show that faulty states can be modeled using
DMDc with low error margin.

The paper organized as follows: In Section II, the DMDc
algorithm and mathematical background are shown. In Section
III, predictive modeling is shown. In Section IV, simulation
results verify that DMDc can accurately model system be-
havior under healthy and faulty conditions. In Section V,
experimental results are presented where DMDc can follow
system behaviour, also some design considerations are dis-
cussed. Section VI concludes the paper.

II. DMDC ALGORITHM AND BACKGROUND

Assume that there is a discrete-time system where A is the
system matrix, B is the input matrix and C is the output matrix.
x[n] denotes the present state matrix, it is a vector for one
dimensional measurements.

x[n+ 1] = Ax[n] +Bu[n] (1)
y[n] = Cx[n] (2)

If u[n] = 0, i.e. no inputs are present, matrix A can be solved
as:

x[n+ 1] = A x[n] (3)
A = x[n+ 1] (x[n])−1 (4)

Equation (4) can be rewritten as,

A = x[n] (x[n− 1])−1 (5)

An interpretation of this equation is that if we have the
state measurements x[n] and a shifted version of the state
measurements x[n−1], we can find matrix A. To improve this
method, control signals can be added. To solve the system
given in (1) with the same methodology, new matrices will be
defined. Let,

G =
[︁
A B

]︁
, Υ[n] =

[︃
x[n]
u[n]

]︃
(6)



Then, A and B matrices can be found as:

x[n+ 1] = GΥ[n] (7)

G = x[n+ 1]Υ−1[n] (8)

G = x[n]Υ−1[n− 1] (9)
(10)

Normally, the DMDc algorithm uses single value decom-
position and order reduction. However, since the induction
machine model is already a low-order system, no order-
reduction steps of the algorithm are necessary [5]. To apply
DMDc, the following matrices are needed: State snapshots X,
input snapshots U, and augmented control matrix Υ. By using
these three matrices, the matrix G containing A and B will
be found. X1 is defined to be the sub-matrix of X with first
component excluded. Similarly, X2 and U2 are sub-matrices
of X and U where the last components are excluded. To form
Υ, U2 will be used. Fig. 1 illustrates such formations.

Figure 1: Formation of matrices

Matrix G can be found as,

Υ =

[︃
X2

U2

]︃
, G = X1 Υ−1 (11)

Matrix Υ will likely not be square matrix, and therefore
its inverse is not defined. In this case it is better to use the
pseudo inverse, denoted by superscript (†). Matrix G can then
be found as,

Υ =

[︃
X2

U2

]︃
, G = X1 Υ† (12)

III. PREDICTIVE FAULT MODELING

Predicting future states is not a new topic in control, and
there are established methods to do these. Any observer-based
system can be considered as a predictor, as well as Kalman
filters. While these are viable alternatives they require system
information in terms of system matrices, as well as information
regarding environment (noise, disturbance etc.). The power of
DMD-based methods is that it can model a system based on
state measurements or simulation results, without requiring
any data of the system. For induction machines, it does not
require stator or rotor inductances and winding resistances.
This makes a DMD-generated model robust against parameter
variations. DMD is also flexible for combination with other
methods, e.g. with a Kalman filter as shown in [7].

In this paper, DMDc is used for future state prediction by
considering an N-sized window. Using the last N state and
input data, the system is modeled and system matrices A and
B are generated. Using generated system matrices, the next

state is synthesized. The algorithm describing this process is
given in Fig. 2.

Figure 2: Predictive modeling process

IV. SIMULATION RESULTS

For this paper, an inverter-fed induction machine with
indirect field-oriented control (IFOC) system is simulated. The
induction machine and IFOC are modeled using equations
provided by [8]. A hysteresis current control technique is
employed. The Simulink diagram of the system is given in
Fig. 3. Two test scenarios are applied; in the first scenario a
step change is applied on the torque signal from 5 N•m to 10
N•m at t=1s and the output is observed. In the second scenario,
a fault is injected to one of the inverter phases, specifically
bottom switching device is shorted to ground. For both cases
sampling time is set to 50µs.

Figure 3: Simulink diagram

To form matrices G and Υ, dq-stator currents and rotor
speed are used as state variables since currents are almost
always available rather than fluxes. Torque command and the
d-component of the rotor flux are used as control commands
to form the U matrix. Even though the torque and rotor
flux are not available as measurements, their commands are
available through the control unit. The DMDc algorithm is
implemented into a MATLAB function block in Simulink
which runs alongside with the simulation setup given in Fig.
3. for given scenarios. Results of the estimation algorithm
are presented in Figures 4 and 5. The first scenario has a
stepped torque command, whereas the second scenario has an
inverter fault. Note that no system information is provided to



the DMDc algorithm, only current and speed measurements,
and input reference information. As can be seen from Figures
4 and 5 , there is a small amount of error between estimated
states and simulated states. Maximum percentage error for iq
and id are 8% while maximum percentage error for rotor speed
is less than 1%.

Figure 4: Simulation results for the first scenario, sampling
time is . (a) and (b) iq and id simulation results and estimation
results, respectively; (c) wr simulation and estimation results,
(d) the difference between estimated and simulated results.

V. EXPERIMENTAL RESULTS

A. Setup Details

To carry this study further, the experimental setup is pre-
pared in a previous study [9]. The picture of the experimental
setup is provided in Fig. 6, which includes an inverter-fed

Figure 5: Simulation results for the second scenario. a) and
(b) iq and id simulation results and estimation results, re-
spectively; (c) wr simulation and estimation results, (d) the
difference between estimated and simulated results.

1.5-hp induction motor and dSPACE DS1104 digital con-
trol platform. For experimental studies, constant V/f control
method is implemented instead of IFOC. DMDc algorithm is
embedded to dSPACE and runs with the system. To test the
estimation performance, a step-type command is applied to the
speed input; the output current sensor readings, speed sensor
readings as well as DMDc estimations are logged. The results
are presented in Fig. 7. Estimation performance is proven to
be close to the simulation results with some implementation
considerations.

B. Implementation Considerations

There are two parameters that affect the estimation perform-
ance, one is the DMDc window size ‘N’, the other one is the



Figure 6: Experiment setup

Figure 7: Experimental results for V/f controlled system for a
step reference change, N/n=20/20 (a) measured and estimated
iq , (b) measured and estimated id, (c) measured and estimated
speed

shifting index ‘n’. DMDc uses N-sized input vector to calcu-
late the next state and it updates or shifts the measurements
every n samples. Tests showed that a smaller N/n ratio results
in a better estimation performance, but it creates a peaky
response if a sudden change occurs. Also, a smaller N/n ratio
will create a noisy estimation whereas a larger N/n ratio also

acts a moving average filter in the steady state. Selection of
window size N is important and can be restrictive in terms
of calculation cost, larger N requires more computational
power. Moreover if the measurement contains low frequency
characteristics, they might be missed if a smaller window size
is used. Experiment results with different (N,n) pairs are
presented in Fig 8. Since the main point of this study is to
model faulty cases, larger N/n ratios are preferable as power
stage faults tends to create sudden changes.

Figure 8: Experimental results for different window sizes and
shifting indices, (a) N=100, n=2. (b) N=20, n=2. (c)N=20,
n=20

VI. CONCLUSION

A predictive fault model using DMDc method is presented
for inverter-fed induction machines. Simulation and experi-
mental results are shown to verify that DMDc can accurately
predict the machine states without requiring any system para-
meters. DMDc is a promising method with a lot of application
potential in power electronics and drives.
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