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Abstract—Despite rapid advances in quantum computing
technologies, the qubit connectivity limitation remains to be
a critical challenge. Both near-term NISQ quantum computers
and relatively long-term scalable quantum architectures do not
offer full connectivity. As a result, quantum circuits may not
be directly executed on quantum hardware, and a quantum
compiler needs to perform qubit routing to make the circuit
compatible with the device layout. During the qubit routing
step, the compiler inserts SWAP gates and performs circuit
transformations. Given the connectivity topology of the target
hardware, there are typically multiple qubit routing candidates.
The state-of-the-art compilers use a cost function to evaluate
the number of SWAP gates for different routes and then select
the one with the minimum number of SWAP gates. After qubit
routing, the quantum compiler performs gate optimizations
upon the circuit with the newly inserted SWAP gates.

In this paper, we observe that the aforementioned qubit
routing is not optimal, and qubit routing should not be
independent on subsequent gate optimizations. We find that
with the consideration of gate optimizations, not all of the
SWAP gates have the same basis-gate cost. These insights lead
to the development of our qubit routing algorithm, NASSC (Not
All Swaps have the Same Cost). NASSC is the first algorithm
that considers the subsequent optimizations during the routing
step. Our optimization-aware qubit routing leads to better
routing decisions and benefits subsequent optimizations. We
also propose a new optimization-aware decomposition for the
inserted SWAP gates. Our experiments show that the routing
overhead compiled with our routing algorithm is reduced by
up to 69.30% (21.30% on average) in the number of CNOT
gates and up to 43.50% (7.61% on average) in the circuit depth
compared with the state-of-the-art scheme, SABRE.

Keywords-quantum computing; compiler optimization; qubit
routing

I. INTRODUCTION

Quantum computing has shown immense promise for

accelerating chemistry simulation [15], prime factoriza-

tion [33], database search [12], and machine learning [8].

Recently, Google, IBM, Intel, and Honeywell announced

their quantum computers with 72, 65, 49, and 10 qubits,

respectively [2], [11], [13], [16]. These quantum comput-

ers with few tens to hundreds of qubits are termed as

Noisy Intermediate-Scale Quantum (NISQ) computers [31].

Although NISQ computers do not have enough qubits to

accommodate error correction codes, they are useful for

exploring quantum algorithms and demonstrating quantum

supremacy [6].

Both near-term NISQ systems [6], [11], [13] and the

long-term scalable quantum architectures [24]–[26] do not

support full connectivity among a high number of qubits.

However, quantum algorithms are developed with an implicit

assumption of a fully-connected quantum computer. Such

mismatch makes the qubit mapping and routing critical

challenges in quantum computing systems.

A quantum compiler is responsible for a number of tasks,

including decomposing higher-level gates to basic ones

supported natively by the target quantum hardware, restruc-

turing quantum circuits, optimizing circuits, and scheduling

quantum gate operations. During the restructuring step, the

compiler performs the logical-to-physical qubit mapping

and qubit routing. Specifically, the compiler needs to in-

sert SWAP gates and perform circuit transformations to

make the circuit layout compatible with the device lay-

out. When inserting the SWAP gates, the compiler would

evaluate different routing candidates based on a cost func-

tion. The cost function is computed based on the number

of SWAP gates [19] and/or the fidelity of the inserted

SWAP gates [29]. After qubit mapping and routing, the

compiler performs circuit optimizations such as template

matching [20], commutation analysis [14], and gate can-

cellation [21] to optimize the circuit. In the state-of-the-

art approaches [19], [29], the qubit routing step selects the

best route based on the backend topology, qubit fidelity, and

logical circuit topology while being independent upon the

subsequent circuit optimization step.

In this paper, we make the key observation that the

aforementioned compilation flow and the cost functions have

several shortcomings. First, the qubit routing step and the

circuit optimization step should not be independent. Finding

the shortest path with the minimum number of SWAP gates

at the routing step may not lead to the optimal design. The

reason is that the inserted SWAP gates can be optimized

by the subsequent optimizations. When considering the

optimization opportunities at the routing step, the SWAP

gates should not be treated equally. Some of the SWAP gates

may lead to fewer CNOT gates than others. Therefore, rather

than the number of inserted SWAP gates, we propose to use

the number of inserted CNOT gates as the cost metric since

not all of the SWAP gates lead to the same numbers of

CNOT gates. We illustrate this observation with an example
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in Figure 1. Assume that the circuit to be executed consists

of pairwise 2-qubit operations, one between qubit 1 and 2,

one between qubit 0 and 1, and one between qubit 0 and 2.

Also assume that our target device has linear connectivity,

i.e., q1 is connected with q0 and q2, but q0 and q2 are not

directly connected. As a result, to perform the CNOT gate

between q0 and q2, we need to insert SWAP gates and there

are two options: either insert a SWAP gate between (q0,

q1) or between (q1, q2). If we only consider the SWAP-

gate count at the routing step, both routing options have the

same SWAP gate cost as one SWAP. Therefore, the compiler

may randomly select between these two designs. However,

if we consider the subsequent optimizations that would re-

synthesize the consecutive two-qubit gates, these two routes

actually have different costs in the number of CNOT gates.

As shown in Figure 1, the second routing option only needs

to insert one CNOT gate, while the first one needs three

CNOT gates.

q0

q1 U2

q2 U1 U3

⇒
q0

q1 U2 U3

q2 U1

⇒
q0

q1 U2 U3

q2 U1

(a) SWAP insertion resulting in three extra CNOT gates

q0

q1 U2

q2 U1 U3

⇒

Optimization

q0

q1 U2

q2 U1 U3

⇒
q0 V1 V2 V3 V4

q1 V5 V6 V7 V8

q2 U1 U3

(b) SWAP insertion resulting in one extra CNOT gate

Figure 1: Two different SWAP gate insertions with the same

SWAP gate count but different CNOT gate counts.

The second shortcoming of the state-of-the-art compila-

tion schemes is that a fixed template is used to decompose

the SWAP gates, losing the logic information that the two

qubits of the SWAP gate are interchangeable. As a result,

fixed SWAP gate decomposition may result in reduced

optimization opportunities. In our approach, we propose an

optimization-aware SWAP gate decomposition to overcome

this problem.

We implemented our NASSC in Qiskit v0.28 and com-

pared it with a state-of-the-art scheme, SABRE [19]. Our

experiments show that the routing overhead compiled with

our routing algorithm is reduced by up to 69.30% (21.30%
on average) in the number of CNOT gates and up to 43.50%
(7.61% on average) in the circuit depth compared with

SABRE.

Our contributions are summarized as follows:

• We highlight that qubit routing should not be indepen-

dent upon the subsequent gate optimizations.

• Besides optimization-aware qubit routing, we propose

optimization-aware SWAP gate decomposition to facil-

itate subsequent optimizations.

• We show that our proposed NASSC algorithm achieves

much better results than the prior work.

The remainder of the paper is organized as follows. Sec-

tion II introduces the background and the related work. Sec-

tion III presents our observations that motivate optimization-

aware qubit routing. Section IV discusses the overall compi-

lation process and details our proposed NASSC algorithm.

Section V describes our compiler implementation and the

benchmark set used in our evaluation. Section VI presents

our experimental results on different hardware topologies.

Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the basic concepts

of quantum computing and the structure of the quantum

compiler. We also discuss the related works.

A. Quantum Computing

Analogous to classical bits, qubits (quantum bits) are the

basic unit in quantum computing. A qubit can not only stay

in the classical states, |0〉 and |1〉, it can also stay in the

superposition of these two states. The superposition state

is expressed as |ψ〉 = a |0〉 + b |1〉, where a and b are

complex numbers and |a|2 + |b|2 = 1. An n-qubit quantum

system can exist in a superposition of 2n states, which can

be represented by a 2n vector of complex values. Besides

superposition, entanglement is another unique feature in

quantum computing. Qubits can be entangled via two-qubit

operations such as CNOT gates. When qubits are entangled,

their measurement results are correlated.

A quantum program is a sequence of quantum gates that

operate on a number of qubits. An n-qubit quantum gate

can be represented by a 2n × 2n unitary matrix, U . The

gate operation can be considered as multiplying the unitary

matrix U with the input state |ψ0〉. The result is the output

state |ψ1〉 = U |ψ0〉. Some quantum gates in a quantum

program may commute, and the compiler optimizes the

quantum gates based on commutation analysis. The target

quantum hardware may only support a small set of basis

gates. For example, the basis gates in the IBM Q system are

id, rz, sx, x, and cx [35]. A quantum gate with a higher-

level abstraction such as a Toffoli gate needs to decompose

to the basis gates.

B. Quantum Compiler

Quantum compiler plays a critical role in practical quan-

tum computation. A typical compilation pass includes four

steps. The first step is decomposing the quantum gates to the

basis gates supported by the quantum hardware. Different

quantum hardware might support a different set of basis

gates. The second step selects logical-to-physical qubit map-

ping and inserts SWAP gates to route the qubits. Qubit map-

ping and routing, also known as the qubit allocation problem,

has been proven to be NP-hard [10]. There has been exten-

sive research using heuristic algorithms or converting the

problem to other well-studied problems tackled with clas-

sical solvers. The third step performs optimizations to the
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quantum circuit. We will discuss the common optimizations

in Section II-C. The last step schedules the quantum gates to

achieve the minimal program runtime and/or highest fidelity.

In Figure 2 we show the simplified step-wise compilation

flow of Qiskit. A different compiler may have different

compilation flows. For example, the t |ket〉 compiler [34]

has an architecture-independent optimization phase followed

by an architecture-dependent phase that prepares the circuit

for the target hardware. The architecture-dependent phase

includes gate decomposition, qubit mapping and routing,

and gate optimizations. Although the compilation flows may

differ, the qubit routing and the gate optimizations are inde-

pendent steps in these compilers. Such independent design

may lose optimization opportunities and lead to sub-optimal

routing decisions. Based on such findings, we introduce

our optimization-aware qubit routing scheme NASSC, which

overcomes this potential design limitation.

Figure 2: The compilation flow of IBM Qiskit.

C. Related work

First, we review qubit mapping and routing algorithms.

The evaluation metric in prior works can be classified into

three categories: circuit size (i.e., number of extra gates

inserted at the routing step; which is often equivalent to the

number of extra SWAP gates), circuit depth (i.e., the number

of layers in the final circuit), and the circuit error rate.

Zulehner et al. [44] proposed an approach to partition

quantum circuits into layers. Each layer contains gates that

can be executed in parallel. Then for each layer, SWAP gates

are inserted to find a hardware compliant mapping. The A*

algorithm is adopted to search for the path with the lowest

cost, where the cost is the number of elementary operations.

While their cost function considers the basis gates, their

SWAP gates always follow the same decomposition and have

the identical cost of seven elementary gates (three CNOTs

and four Hadamard operations for monodirectional links). Li

et al. [19] proposed a SWAP-based bidirectional heuristic

search method named SABRE. SABRE first computes a

distance matrix of the target hardware. The best route is

selected using a heuristic cost function based on the distance

matrix. The lookahead cost function considers not only

the front layer but also the subsequent layers. They also

leverage intrinsic reversibility to enable global optimization.

Inspired by SABRE, HA is a hardware-aware heuristic

proposed by Niu et al. [29]. HA improved the fidelity and

reduced the number of additional gates by introducing a

new distance matrix based on hardware connectivity and

calibration data. The cost function estimates the success

rate of the inserted gates. Itoko et al. [14] takes advantage

of the commutation rules to find the gates that commute

in the original circuit. Such an approach can explore more

routing candidates than the fixed layer approach. However,

the routing algorithm is not optimization-aware as the CNOT

gate count for the SWAP gate decomposition always stays

the same. Besides these, there are prior works that use the

number of SWAP gates as the cost function and propose

different approaches to find the best route [9], [37], [42],

[43]. There are also works that incorporate the error rates in

their cost functions [7], [26], [30]. Some other prior works

also take the circuit depth into consideration [40], [41]. In

summary, none of these prior works on qubit routing is

optimization aware.

Next, we review various quantum circuit optimizations.

Peephole optimization [22] is widely used in quantum com-

pilers. The peephole optimization identifies subcircuits in

specific patterns and substitutes them with equivalent circuits

that have lower cost. The Qiskit transpiler [5] contains the

Optimize1qGates optimization pass, which identifies

the pattern of consecutive single-qubit gates and substitutes

them altogether with a single-qubit gate. The transpiler

also contains optimization passes Collect2qBlocks and

UnitarySynthesis to identify the two-qubit blocks

and re-synthesize them. The t |ket〉 [34] compiler identifies

long sequences of single-/two-qubit gates and re-synthesizes

them with Euler and KAK decomposition [17]. Similar

optimizations can also be found in the Cirq [1] compiler.

These optimizations can be considered as in the category of

peephole optimization. Commutation analysis has been uti-

lized for gate optimization [23] and qubit mapping [4], [14].

The compiler can identify more templates by reordering the

quantum gates. In Qiskit, the CommutationAnalysis
pass finds the commutation relations between the quantum

gates, and groups the gates in a set of gates that commute.

After commutation analysis, the gates are optimized with

gate cancellation [21]. Qiskit also has optimization passes

including noise adaption [26], crosstalk mitigation [27], and

scheduling optimization [32].
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III. MOTIVATION

In this section, we motivate the need for optimization-

aware qubit routing. We look closely at the Qiskit compiler

framework and study the optimization passes that may

change the cost of the SWAP gates.

Gate optimizations can remarkably reduce the count of the

basis gates inserted at the qubit routing step. As we studied

the quantum circuit generated by Qiskit, we found that a

large proportion of the inserted SWAP gates are actually

modified by the subsequent optimizations, the re-synthesis

of two-qubit blocks and gate cancellation, in particular. For

example, when a 10-qubit Grover benchmark is mapped to a

backend with 4×4 2D-grid connectivity, 20.7% of the SWAP

gates are optimized by the two-qubit block re-synthesis

while 40.3% of them are optimized by gate cancellation.

Such observation indicates that even the compiler selects

the path with the fewest number of SWAP insertions at the

routing step, the final cost of the selected route may not be

optimal.

The first optimization that optimizes the SWAP gate is the

re-synthesis of two-qubit blocks. A two-qubit block [5] is

a sequence of uninterrupted two-qubit gates. Since the two-

qubit block operator U ∈ SU(4), it can be generated with

a two-qubit gate with three CNOTs [36]. The compiler cal-

culates the matrix representation of the two-qubit block and

uses the KAK decomposition [17] to generate a subcircuit

with up to three CNOT gates. Figure 3 shows an example

of this optimization. In this example, after re-synthesis, the

cost of implementing the SWAP gate is two CNOT gates and

several single-qubit gates. In some extreme cases, when the

gate sequence already contains at least three CNOTs before

the SWAP insertion, the SWAP gate can be inserted for free.

In other words, some SWAP gates can be inserted at no cost!

two-qubit block

V1 V2

V3 V4

⇒

U1 U2 U3 U4

U5 U6 U7 U8

Figure 3: The re-synthesis of two-qubit block and the

universal two-qubit gate decomposition reduce the cost of

the SWAP gate.

The second optimization that may affect the cost of SWAP

gates is gate cancellation. The compiler will search for the

potential cancellable quantum gates based on commutation

analysis. In Qiskit, the CommutativeCancellation

pass cancels the self-inverse gates through commutation

relations. The following self-inverse gates are considered:

H , X , Y , Z, CX , CY , and CZ. We show an example in

Figure 4 to illustrate this optimization. In the first circuit, the

first two CNOT gates commute since they share the same

target qubit [14]. If we switch the order of the first two

CNOT gates, an inserted CNOT gate can be canceled with

the second CNOT gate in the original circuit. Therefore, the

number of CNOT gates required by the SWAP is no longer

three. In this example, the SWAP gate will only introduce

one extra CNOT gate. In other words, the cost of a SWAP

is not a fixed value and is dependent on the subsequent

optimizations.

commutation

⇒

SWAP decomposition

⇒

gate cancellation

⇒

Figure 4: SWAP gate optimization with gate commutation

and cancellation.

Both of the optimizations can reduce the CNOT gate count

required by SWAP gates. This finding leads to the design

of our optimization-aware routing algorithm. As a matter

of fact, the above-mentioned optimizations may not identify

all the potential optimization opportunities for SWAP gates.

In Section IV-E, we will discuss the SWAP-related gate

optimization and our new optimization-aware SWAP gate

decomposition.

IV. NASSC

In this section, we describe our proposed NASSC ap-

proach. In Section IV-A, we show an overview of the

NASSC algorithm and its integration with Qiskit. In Sec-

tion IV-B, we present our search heuristic. In Section IV-C

we discuss our cost function. In Section IV-D and Sec-

tion IV-E we discuss the two optimizations that can impact

the cost of SWAP gates. We discuss the integration of

multiple optimizations in Section IV-F.

A. Overview

An overview of NASSC and its integration with Qiskit

is shown in Figure 5. Our routing algorithm considers the

two-qubit block re-synthesis and commutation-based gate

cancellation at the routing step. In order to collect the opti-

mization information and shorten the transpilation time, we

move the corresponding optimizations before qubit mapping
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Figure 5: The compilation flow of NASSC integrated with

Qiskit

and routing. We use the same qubit mapping algorithm as

SABRE, which includes the random front layer initialization

and the reverse traversal initial mapping update [19]. After

the initial mapping, for each two-qubit gate that does not fit

on the device, the NASSC routing algorithm finds the SWAP

candidates that might move the logical qubits closer. For

each SWAP candidate, the algorithm identifies the potential

optimizations and calculates CNOT gate count reduction Ck

with each optimization. Some of the optimizations might

require a special SWAP decomposition. The compiler will

flag the SWAP candidates with the special decomposition

requirement. Then the algorithm calculates the cost function

for each SWAP candidate and inserts the SWAP gate with

the smallest cost. The algorithm will iteratively insert SWAP

gates until all the two-qubit gates fit the topology of the

device. After inserting all the SWAP gates, the last step

of the NASSC algorithm is performing optimization-aware

SWAP gate decomposition based on the flags. After the

routing step, the compiler will perform the rest of the circuit

optimizations and schedule the gates.

B. Optimization-Aware Qubit Routing

In our routing algorithm, we first reformulate the logi-

cal quantum circuit representation to the Directed-Acyclic-

Graph (DAG) format. The DAG is constructed such that a

DAG node represents a quantum gate, and the directed edge

(i,j) between node i and node j represents the dependency

from node i to node j. In other words, gate i should be

executed before gate j.

Then, the quantum gates in the circuit are divided into

three groups: the resolved gates, the executable gates, and

the to-be-executable gates. The resolved gates are the ones

that have already been mapped by the algorithm, including

the inserted SWAP gates. The resolved gates form the

resolved layer. The executable gates are the gates that do not

have un-executed predecessors in the DAG. The executable

form the front layer. The to-be-executable gates are the rest

of the gates. Some of the closest successors of the gates in

the front layer form the extended layer. The extended layer is

set for lookahead analysis. The abstraction of different layers

helps to define the search heuristic. And an illustration of

these layers is shown in Figure 6.

Next, we perform layered search to determine qubit

routing. In our algorithm, we use the random front layer

initialization and the reverse traversal initial mapping update,

the same as SABRE [19]. For the gates in the front layer, the

algorithm will remove the gates that are directly executable

with the current mapping and add them to the resolved layer.

The remaining gates in the front layer, if there are any,

would require SWAP gates insertion. In the example shown

in Figure 6, assume that the circuit is to be executed on a

hardware backend with linear-nearest neighbor connectivity.

Then, the CNOT gate in the front layer in Figure 6a is not

directly executable since physical qubits q0 and q2 are not

connected. In this case, the compiler needs to find SWAP

candidates. For each logical qubit in the front layer, the com-

piler finds its current physical qubit and its adjacent physical

qubits to construct potential routing candidates. Every SWAP

corresponding to one of the physical couplings is considered

a candidate SWAP. For the example in Figure 6, q0 is the

physical qubit that correlates to the logical qubit in the front

layer, and q1 is its adjacent qubit. Hence the SWAP between

q0 and q1 is a candidate SWAP as shown in Figure 6c.

Similarly we can have another candidate SWAP between

q1 and q2 as shown in Figure 6d. All of the candidate

SWAPs form a SWAP candidate set T . The compiler will

calculate the cost of each SWAP candidate in T based on an

optimization-aware cost function H . For a SWAP candidate,

the compiler will analyze its predecessor and successors to

estimate the cost. In Figure 6c, the SWAP gate between q0
and q1 can be resynthesized with the controlled-Rx gate.

Therefore, it will introduce two CNOT gates. The SWAP

gate between q1 and q2 in Figure 6d will be optimized

with gate cancellation and introduce one CNOT gate. The

reason is that the CNOT between q1 and q2 commutes with

the controlled Rx gate between q0 and q1. As a result, the

CNOT can cancel one of the CNOTs decomposed from the

SWAP gate. As shown in Figure 6e, the SWAP candidate

with the minimum cost is selected. For a gate that requires

multiple hops, the compiler iteratively inserts SWAP gates,

one hop a time until the gate becomes implementable on the

target device. Then, the above process repeats until all of the

gates in the front layer are resolved. Once the front layer

is empty, the compiler will select the executable gates that

form a new front layer, as shown in Figure 6e. The compiler

finishes routing when the front layer and the extended layer
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(a) Connec-
tivity graph

Resolved Front Extended

q0

q1 Rx

q2 Rx

q3

(b) Original circuit

Resolved Front Extended

q0

q1 Rx

q2 Rx

q3

(c) SWAP insertion option 1

Resolved Front Extended

q0

q1 Rx Rx

q2

q3

(d) SWAP insertion option 2

Resolved Front Extended

q0

q1 Rx Rx

q2

q3

(e) Circuit after SWAP insertion

Figure 6: The layered search heuristic.

are both empty. During SWAP gate insertion, the compiler

will maintain the information such as the total number of

SWAPs and collect the information relating to the SWAP

candidate set T .

C. Optimization-Aware Cost Function

The cost function is crucial for qubit routing as it is used

to select the optimal route from the candidate routing sets.

The basic cost function in NASSC is defined as:

Hbasic =
∑

gate∈F

3×D[g.i][g.j]−
∑

k∈opt

bk × Ck (1)

The cost function is calculated for every SWAP candi-

date: for a two-qubit gate, the candidates include all the

couplings/connections from either of the two physical qubits

of the gate. The first part of the equation calculates the

number of CNOT gates without considering optimization,

which is why the constant 3 is used as one SWAP can be

implemented with 3 CNOT gates. The second part of the

equation estimates the CNOT reduction for the SWAP gates.

In the equation, D is the distance matrix, which records

the distance between different physical qubits. D[g.i][g.j]
represents the distance between the input qubits of gate g.

g.i and g.j are the physical qubits of the gate g after SWAP

insertions (the cost before SWAP insertion is the same for

all the SWAP candidates, thereby not being included in

the cost function). F represents the front layer. bk and

Ck are introduced to reflect the cost reduction resulting

from the subsequent gate optimizations. bk ∈ {0, 1} is

the binary value for the kth optimization in the set of

gate optimizations opt. Since different benchmarks might

favor different optimizations, we use binary value bk to

enable/disable the kth optimization. The discussion can be

found in Section IV-F. In our experimental results, the

binary values bk are set to 1 to enable all the optimizations.

Ck is the estimated CNOT gate count reduction with the

kth optimization. In this work, we consider the following

optimizations in opt as they are related to SWAP gates: two-

qubit block re-synthesis (C2q), and two commutation-related

optimizations (Ccommute1, Ccommute2 ).

Although our basic cost function in eq. 1 considers

both the routing distance and the impact from subsequent

optimizations, it might lead to a local optimal result. The

reason is that finding the best route for the gates in the front

layer might hinder the routing of the gates in the extended

layer. Therefore, the extended layer cost should be added to

the cost function to increase the lookahead capability of the

algorithm, and the resulting cost function is defined as:

H = Hbasic +Hlookahead =
1

|F | (3×
∑

gate∈F

D[g.i][g.j]−
∑

k∈opt

bk × Ck) +
W

|E|
∑

gate∈E

D[g.i][g.j]
(2)

In the equation, E is the extended layer and we can adjust

its size to account for different lookahead windows. The cost

of the extended layer is the routing distances based on the

distance matrix. The impacts of the front and the extended

layer are normalized by their sizes. A weight parameter W
is introduced to prioritize the impact of SWAPs in the front

layer.

Since we move the two-qubit block re-synthesis and

commutation analysis before the qubit routing pass, for

every SWAP candidate, calculating corresponding Ck only

requires constant overhead. For the two-qubit block re-

synthesis, calculating C2q requires the re-synthesis of the

two-qubit block with a SWAP gate. Considering that pre-

routing optimizations have re-synthesized the qubit block

into a concise form, re-synthesizing that block and cal-

culating C2q have time complexity of O(1). For the

commutation-related optimizations, CNOT gate count reduc-

tions Ccommute1, and Ccommute2 are based on the commu-

tation set information from the commutation analysis pass.

Calculating Ccommute1, and Ccommute2 have complexity

O(1). The detailed calculation of Ck can be found in

Section IV-D and IV-E. The time complexity of the heuristic

cost function is O(N) since there are at most O(N) gates

in the front layer. Here N is the number of physical qubits.

The extended layer size is not considered since it is not very

large and is set to a fixed number in our experiments, i.e.,

O(1). Strictly speaking, the cost of the extended layer should

also consider the impact of optimizations as well. We ignore

such impact in the extended layer for two reasons. First, the

impact from lookahead/the extended layer is relatively small

compared to the cost of the front layer. Second, since the

circuit structure in the extended layer has not been fixed,
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the calculation for the optimization impact on SWAPs in

the extended layer would be imprecise.

D. Two-qubit Block Re-synthesis

As aforementioned, two-qubit block re-synthesis is an

optimization that may affect the cost of SWAP gates. In

the cost function, the value C2q is used to represent the

impact of the CNOT gate reduction from two-qubit block

re-synthesis. C2q can be one of the four possible values 0,

1, 2, and 3 depending on how many CNOT gates can be

removed. The maximum value is 3 as a SWAP needs at

most 3 CNOT gates. Our compiler implementation uses the

following way to calculate the number of CNOT reduction.

In Qiskit, the two-qubit block re-synthesis pass traverses

the DAG to find the gates in the same two-qubit block.

We move the two-qubit block re-synthesis pass before our

qubit routing step for C2q estimation. After the pass, the

gates that belong to the same two-qubit block will have the

same block id. For each SWAP in the SWAP candidate set

T , the compiler checks the block id of its predecessors. If

they share the same block id, it means that they are in the

same two-qubit block. Then the SWAP candidate can also be

included in the same block. The compiler invokes the two-

qubit block re-synthesis function to calculate the CNOT gate

count difference before and after the SWAP gates insertion.

This difference would be the reduced cost C2q for that

particular SWAP. Note that since the two-qubit blocks have

been re-synthesized into a fixed template before routing,

calculating C2q only requires constant overhead O(1).

E. Commutation-Based Optimizations

Commutation-based optimization can effectively reduce

the circuit complexity by exploring the order of gates to

find opportunities for gate cancellation. However, the effec-

tiveness of this optimization can be significantly affected

by qubit routing and SWAP decomposition. For example,

Figure 7a shows a snip of the 10-qubit VQE circuit compiled

with SABRE. The routed VQE circuit can not be optimized

by the subsequent CommutativeCancellation pass,

which is the commutation-based optimization implemented

in Qiskit. There are two reasons. First, the single-qubit U3

gate does not commute with the first two CNOT gates. As

a result, it blocks the commutation analysis. Second, the

SWAP gate has already been decomposed into three CNOT

gates before the optimization step. The compiler would not

be able to find an opportunity for gate cancellation even if

the U3 gate is not there. On the other hand, if we retain

the semantics of the SWAP operation, we can see that the

single-qubit gate U3 can be commuted with the SWAP gate

by moving U3 to the swapped qubit. Furthermore, if the

compiler is aware that one of the qubits to be swapped

is used as the control qubit of a CNOT, it can choose

the decomposition such that this qubit is the control bit

of the first CNOT gate in the decomposition, as shown

in Figure 7b. Then, the commutation-based optimization

can discover the gate cancelling opportunities, which would

result in a much simpler circuit as shown in Figure 7c.

Motivated from the example in Figure 7, we propose

optimization-aware SWAP gate decomposition at the qubit

routing step to facilitate subsequent commutation-based

optimizations. There are two possible decompositions for

a SWAP gate to be decomposed into three CNOT gates

depending on which qubit is used as the control qubit of the

first CNOT. For every SWAP candidate in the qubit routing

step, the compiler will look for potential commutation-based

optimization opportunities. If the first CNOT gate in the

SWAP can potentially be cancelled with a CNOT gate in

the circuit, the SWAP gate should be decomposed according

to the control and the target qubit of the CNOT in the

circuit. Also, as shown in Figure 8, if the first and the

last CNOT gate in two SWAP gates can be potentially

cancelled through commutation, both SWAP gates should

be decomposed according to the intermediate commute set.

Next, we derive the cost reduction from commutation-

based optimizations, i.e., Ck in the cost function. We con-

sider commutation-based optimizations in two scenarios.

The first is that a decomposed SWAP gate can be optimized

with CNOT gates in the circuit, similar to the example shown

in Figure 7. The second is that a decomposed SWAP gate

can be optimized with previously inserted SWAP gates. An

example is shown in Figure 8, where a set of commutable

gates is sandwiched by two SWAP gates. Once the gates

form this sandwich-like structure, both SWAP gates can

reduce their CNOT cost by one, as shown in the figure. Since

these two scenarios happen frequently and have different

circuit structures, we treat them as individual optimizations

and derive different cost reductions in the cost function.

The value Ccommute1 represents the CNOT gate reduc-

tion in the first scenario. Ccommute1 is set to 2 when

the CNOT gate cancellation happens, and set to 0 when

the SWAP can not be optimized. In our implementation,

we move the CommutationAnalysis pass before rout-

ing to analyze the gate commutation relationship. The

CommutationAnalysis pass traverses the DAG and

groups the commutable gates that operate on the same qubits

into the same commute set. As pointed out earlier, single-

qubit gates before a SWAP should not block the commuta-

tion analysis. Therefore, our compiler skips the single-qubit

gates before SWAPs to find cancellable CNOTs in the prede-

cessors. The compiler finds the intersection of the commute

sets for each qubit. If there is a CNOT gate in the intersection

and it operates on the same qubits as the SWAP, this CNOT

can be canceled with the CNOTs in the SWAP gate. If the

compiler finds a cancellable CNOT in the predecessors, the

single-qubit gates before the SWAP gate will be moved to

after the SWAP gate. And the compiler will label the SWAP

based on the control and the target qubit of the CNOT.

After routing, the SWAP will be decomposed based on this
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commute set fixed SWAP decomposition
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(a) VQE subcircuit compiled with SABRE

opt-aware decomposition
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(b) Single-qubit gate movement and
Optimization-aware SWAP decomposition

U3

(c) Final VQE subcircuit compiled with
NASSC

Figure 7: Case 1: Gate cancellation between a CNOT and a SWAP gate
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Figure 8: Case 2: CNOTs cancellation across two SWAP gates

(a) ibmq_montreal (b) 25-qubit linear nearest
neighbour

(c) 5× 5 2D grid topology

Figure 9: CNOT gate reduction comparison between the best result from the 8 combinations and the result of enabling all

the three optimizations on three different connectivity maps

label. In our experiments, we found the commute set size is

always smaller than 20 gates. In some of the benchmarks (for

example, VQE with specific ansatz designs), it is possible

that all the gates commute and form very large commute

sets. We limit the search size in the commute set to avoid

the potentially long search time. The compiler will only

search for the first 20 gates in the commute sets. Thereby, the

time complexity of calculating Ccommute1 and Ccommute2 is

O(1). The compiler also merges the single-qubit gates before

and after the SWAP gate. Although the t |ket〉 compiler [34]

has a similar optimization CommuteSQThroughSWAP that

commutes the single-qubit gates through SWAP, it always

places the single-qubit gates on the physical qubit with the

best fidelity. In our approach, the single-qubit gate placement

is optimization-aware, which leads to more gate cancellation

opportunities.

The value Ccommute2 represents the CNOT gate reduction

of the second scenario, i.e., a set of commutable gates

sandwiched by two SWAP gates. Ccommute2 is set to 2 when

either of the SWAPs has one CNOT gate canceled. And it is

set to 0 when the SWAPs are not optimized. The compiler

will search for the commute set on both of the qubits of a

SWAP. Similar to Ccommute1, the compiler skips the single-

qubit gates before a SWAP. Once the compiler finds that a

commute set is sandwiched by two SWAPs, it will check

if the CNOT in the SWAP might commute with the gates

in the commute set. The SWAP gates are also labeled for

optimization-aware decomposition.

F. Optimization Selection

In previous sections, three different optimizations are

discussed. The first one is the two-qubit block re-synthesis,

and the other two are the commutation-based optimizations.

Since different quantum algorithms have different circuit
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structures, they may favor different optimizations. In other

words, enabling different sets of optimizations may have

different impacts on different quantum algorithms. Since

we have three optimizations, enabling/disabling these three

different optimizations and differently combining them will

generate a total of 8 possible combinations. Figure 9a, Fig-

ure 9b and Figure 9c show the CNOT reduction comparison

between the best result of the 8 combinations and the result

of enabling all the three optimizations on three different

coupling maps, which are the ibmq montreal coupling map,

the 25-qubit linear nearest neighbour coupling map, and the

5× 5 2D grid coupling map, respectively. From the results,

we can see that for most of the benchmarks, enabling all

the three optimizations has a very close CNOT reduction

ratio compared with the best result of the 8 combinations.

Therefore, enabling all three optimizations is used in our

NASSC approach.

G. Noise-aware Qubit Routing

In this section, we discuss the noise-awareness of the

NASSC algorithm. Since the gate cancellation leads to

higher noise reduction, our NASSC algorithm prioritizes the

gate optimizations over the noise awareness. Both SABRE

and NASSC routing algorithms can be noise-aware by incor-

porating the noise information in the distance matrix [29].

The modified distance matrix considers the CNOT gate error

ε[g.i][g.j], SWAP execution time T [g.i][g.j], and the original

distance D[g.i][g.j] between qubit g.i and g.j:

Dnoise[g.i][g.j] = α1 × ε[g.i][g.j] + α2 × T [g.i][g.j]

+α3 ×D[g.i][g.j]
(3)

Here α1, α2, α3 are the normalized parameters. α1, α2,

α3 are set to be 0.5, 0, and 0.5 in our experiments. In

Section VI-D, we compare the original NASSC algorithm

and the noise-aware version of NASSC algorithm on a

realistic noise model and the results show that the original

NASSC algorithm actually achieves the best route.

H. Complexity Analysis

In this section, we show that our NASSC algorithm has

the same level of time complexity as SABRE. SABRE is

known for its low time complexity O(N2.5) compared to

the exhaustive search approaches [39], [44] with O(exp(N))
complexity for each two-qubit gate. Here N is the number of

physical qubits. In the NASSC algorithm, the time complex-

ity to satisfy each two-qubit gate is the multiplication of the

time to calculate the cost function (O(N)), the maximum

number of the SWAP candidates (O(N)) per iteration,

and the maximum number of iterations per two-qubit gate

(O(
√
N)). As discussed in Section IV-C, evaluating the cost

function for a SWAP candidate has complexity O(N). In

each iteration, the maximum number of SWAP candidates

is linearly correlated with the size of the front layer which

(a) The connectivity map of 27-qubit ibmq_montreal

(b) The connectivity map of 25-
qubit linear nearest neighbour
topology

(c) The connectivity map of 5×
5 2D grid topology

Figure 10: Three different connectivity maps

is O(N). The maximum number of iterations per two-qubit

gate is the diameter of the device coupling graph (O(
√
N)

for 2D graph). In other words, a two-qubit gate needs at

most O(
√
N) SWAP gates to move two qubits together.

So the total time complexity to satisfy each two-qubit gate

is O(N2.5). Note that the two-qubit re-synthesis pass and

the commutation analysis pass are predefined passes that

would be executed at the gate optimization step. Therefore,

moving these two passes before routing does not incur extra

complexity.

V. METHODOLOGY

We evaluate NASSC with a set of benchmarks on devices

with different connectivity topologies.

Benchmarks: The benchmarks are derived from the al-

gorithms in [28], Qiskit programs [5], QASMBench [18]

and RevLib [38].

Algorithm Implementation: We implement our NASSC

algorithm on the open-source quantum computing frame-

work Qiskit [5], the version of qiskit-terra is 0.19.0, and

our implementation is publicly available (see Appendix). In

our experiments we compared the Qiskit with the SABRE

routing algorithm (Qiskit+SABRE) and the Qiskit with our

NASSC algorithm (Qiskit+NASSC).

Algorithm Configuration and Evaluation: In our ex-

periment, the weight of the extended layer E is set to

0.5, and the size of the layer |E| is 20. The layer size

represents the maximum number of two-qubit gates in the

layer. The experiments with the SABRE algorithm use the

same extended layer size and weight. All the binary values

bk are set to 1 to enable all the optimizations. We use the
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geometric mean to calculate the average ratio of the CNOT

gate and depth reduction. The results are the average of ten

runs.

Connectivity: We run our experiments with three dif-

ferent hardware connectivity maps, including the connec-

tivity of a 27-qubit quantum computer ibmq_montreal,

linear nearest neighbour, and 2D grid. Figure 10 shows

the different connectivity maps in our experiments. The

ibmq_montreal has heavy-hex lattice topology that

might be used by IBM for future large scale quantum

computers with error correction code [3].

VI. EVALUATION

In this section, we first compare the CNOT gate number

and circuit depths of using our NASSC approach with

SABRE on the coupling map of IBM quantum device

ibmq_montreal. Then, we analyze the transpilation time

for large-size quantum circuits. Next, we compare the CNOT

gate number of using our NASSC approach with SABRE

on different connectivity maps. Finally, we run experiments

using the Qiskit simulator with noise model from real

quantum device ibmq_montreal to show the success rate

improvement when applying our NASSC approach.

A. Comparison with Qiskit+SABRE

We compare the number of additional CNOTs and

the additional circuit depth of our NASSC with

Qiskit+SABRE on the coupling map of IBM quantum

device ibmq_montreal. The CNOT gate reductions are

shown in Table I. And the depth reductions are shown in

Table II. The CNOTtotal in the table means the total number

of CNOTs in the original circuit optimized by Qiskit. The

CNOTtotal under Qiskit+SABRE/Qiskit+NASSC column

means the total number of CNOTs after SABRE/NASSC

routing and Qiskit optimizations. The CNOTadd under

Qiskit+SABRE/Qiskit+NASSC column means the number

of additional CNOTs after SABRE/NASSC routing and

Qiskit optimizations compared with the original circuit

optimized by Qiskit. ΔCNOTtotal is the percentage change

in the number of total CNOT gates: ΔCNOTtotal =
1 − CNOTtotal(NASSC)/CNOTtotal(SABRE).
ΔCNOTadd is the percentage change in the

number of additional CNOT gates: ΔCNOTadd =
1 − CNOTadd(NASSC)/CNOTadd(SABRE). For all of the

benchmarks, the additional CNOTs of Qiskit+NASSC are

less than that of Qiskit+SABRE. The geometric means of

ΔCNOTtotal and ΔCNOTadd are 13.25% and 21.30%.

Since the NASSC algorithm also incorporates re-synthesis,

we compare the total transpilation time of Qiskit+NASSC

with Qiskit+SABRE, which is collected by transpiling each

benchmark ten times and getting the average value. As

shown in Table I, the transpilation time of our NASSC is

comparable to that of SABRE. We also perform the circuit

depth comparison in Table II. For most of the benchmarks,

the circuit depth of Qiskit+NASSC is reduced compared

with Qiskit+SABRE. The reason is that at the routing step,

our algorithm will try to merge the single-qubit gates before

and after the SWAP gate. This single-qubit movement also

contributes to the circuit depth reduction. However, for a

few (5 out of 15) of the benchmarks, the circuit depth is

increased. This is due to the fact that the re-synthesis of

the two-qubit blocks may generate more single-qubit gates,

which would increase the depth of the circuits. Note that in

state-of-the-art quantum systems, the two-qubit gates’ error

rates are much higher than that of the single-qubit gates.

As a result, it is often desirable to have reduced numbers

of 2-qubit gates even at the cost of higher circuit depths

due to additional single-qubit gates.

B. Transpilation Time for Large-Size Circuits

The optimization awareness of our NASSC algorithm

reduces the total circuit size and benefits the subsequent

optimization passes. Our algorithm is especially suitable

for large-size circuits because there can be more opti-

mization opportunities when the circuit becomes larger.

Table I and Table II show that the large-size benchmarks

sqn 258, rd84 253, co14 215 and sym9 193 have high

CNOT gate number reduction and circuits depths reduc-

tion from NASSC compared with Qiskit+SABRE. The

ΔCNOTadd of sqn 258, rd84 253, co14 215 and sym9 193

are 23.33%, 25.95%, 21.31% and 24.74%, respectively, and

Δdepthadd of sqn 258, rd84 253, co14 215 and sym9 193

are 35.33%, 36.98%, 31.82% and 43.50%, respectively. The

high reduction in the circuit size and circuit depth leads

to shorter circuit optimization and gate scheduling time.

Therefore, the total transpilation time of these large-size

benchmarks only show a small increase than the SABRE

algorithm. The transpilation time of sqn 258, rd84 253,

co14 215 and sym9 193 compared with Qiskit+SABRE

approach are only 1.08X, 1.06X, 1.10X and 1.02X, respec-

tively.

C. Backend Connectivity

Table I, III, and IV show the number of CNOT

gates using our NASSC approach in comparison with

Qiskit+SABRE on different coupling maps. As shown in

the tables, our NASSC approach is effective on differ-

ent topologies and has high CNOT gate number reduc-

tion compared with Qiskit+SABRE on all three different

coupling maps. The geometric means of ΔCNOTtotal on

ibmq_montreal, linear topology, and 2D grid topol-

ogy are 13.25%, 21.92% and 15.13%. And the geometric

means of ΔCNOTadd on ibmq_montreal, linear topol-

ogy, and 2D grid topology are 21.30%, 34.65% and 28.10%.

Among the three coupling maps, our NASSC approach has

the highest CNOT gate number reduction compared with

Qiskit+SABRE on the linear coupling map. The reason

is that linear coupling map has the worst connectivity
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Table I: Number of additional CNOT gates of NASSC in comparison with Qiskit+SABRE [19] on ibmq_montreal (The

geometric mean of ΔCNOTtotal and ΔCNOTadd is 13.25% and 21.30%, respectively)

Original Circuit Qiskit+SABRE Qiskit+NASSC Comparison
name #qubits CNOTtotal CNOTtotal CNOTadd transpile time(s) CNOTtotal CNOTadd transpile time(s) ΔCNOTtotal ΔCNOTadd tNASSC/tSABRE

Grover 4-qubits 4 84 167 83 1.35 116 32 1.75 30.54% 61.45% 1.30
Grover 6-qubits 6 184 310 126 2.43 231 47 3.2 25.48% 62.70% 1.32
Grover 8-qubits 8 760 1470 710 10.15 978 218 12.4 33.47% 69.30% 1.22
VQE 8-qubits 8 84 370 286 2.92 290 206 4.29 21.62% 27.97% 1.47

VQE 12-qubits 12 198 919 721 7.42 790 592 9.28 14.04% 17.89% 1.25
BV 19-qubits 19 18 134 116 0.75 132 114 1.03 1.49% 1.72% 1.38

QFT 15-qubits 15 210 591 381 3.51 434 224 6.01 26.57% 41.21% 1.71
QFT 20-qubits 20 374 1014 640 6.44 901 527 10.81 11.14% 17.66% 1.68
QPE 9-qubits 9 43 114 71 0.81 102 59 1.39 10.53% 16.90% 1.72

Adder 10-qubits 10 65 186 121 1.18 160 95 1.74 13.98% 21.49% 1.48
Multiplier 25-qubits 25 670 1889 1219 15.7 1836 1166 20.47 2.81% 4.35% 1.30

sqn 258 10 4459 11939 7480 109.35 10194 5735 118.35 14.62% 23.33% 1.08
rd84 253 12 5960 16006 10046 149.97 13399 7439 159.13 16.29% 25.95% 1.06
co14 215 15 7840 19788 11948 190.9 17242 9402 210.62 12.87% 21.31% 1.10
sym9 193 11 15232 40189 24957 379.8 34014 18782 389.1 15.36% 24.74% 1.02

Geometric mean 13.25% 21.30% 1.32

ΔCNOTtotal is the percentage change in the number of total CNOT gates: ΔCNOTtotal = 1− CNOTtotal(NASSC)/CNOTtotal(SABRE).
ΔCNOTadd is the percentage change in the number of additional CNOT gates: ΔCNOTadd = 1− CNOTadd(NASSC)/CNOTadd(SABRE).
tNASSC/tSABRE is the ratio between the total transpilation time of Qiskit+NASSC and Qiskit+SABRE: tNASSC/tSABRE =
transpile time(NASSC)/transpile time(SABRE)

Table II: Circuit depth of NASSC in comparison with Qiskit+SABRE [19] on ibmq_montreal (The geometric mean of

Δdepthtotal and Δdepthadd is 6.05% and 7.61%, respectively)

Original Circuit Qiskit+SABRE Qiskit+NASSC Comparison
name #qubits depthtotal depthtotal depthadd depthtotal depthadd Δdepthtotal Δdepthadd

Grover 4-qubits 4 155 286 131 284 129 0.70% 1.53%
Grover 6-qubits 6 315 512 197 444 129 13.28% 34.52%
Grover 8-qubits 8 1275 2010 735 1724 449 14.23% 38.91%
VQE 8-qubits 8 108 356 248 345 237 3.09% 4.44%

VQE 12-qubits 12 171 719 548 607 436 15.58% 20.44%
BV 19-qubits 19 25 85 60 103 78 -21.18% -30.00%

QFT 15-qubits 15 100 407 307 321 221 21.13% 28.01%
QFT 20-qubits 20 135 584 449 594 459 -1.71% -2.23%
QPE 9-qubits 9 84 148 64 170 86 -14.86% -34.38%

Adder 10-qubits 10 119 232 113 242 123 -4.31% -8.85%
Multiplier 25-qubits 25 799 1832 1033 2157 1358 -17.74% -31.46%

sqn 258 10 6013 19356 13343 14642 8629 24.35% 35.33%
rd84 253 12 8011 25971 17960 19330 11319 25.57% 36.98%
co14 215 15 9490 30330 20840 23699 14209 21.86% 31.82%
sym9 193 11 21332 68008 46676 47704 26372 29.86% 43.50%

Geometric mean 6.05% 7.61%

Δdepthtotal is the percentage change in total circuit depth: Δdepthtotal = 1− depthtotal(NASSC)/depthtotal(SABRE).
Δdepthadd is the percentage change in additional circuit depth: Δdepthadd = 1− depthadd(NASSC)/depthadd(SABRE).

Table III: Number of additional CNOT gates of NASSC in comparison with Qiskit+SABRE [19] on linear topology
(The geometric mean of ΔCNOTtotal and ΔCNOTadd is 21.92% and 34.65%, respectively)

Original Circuit Qiskit+SABRE Qiskit+NASSC Comparison
name #qubits CNOTtotal CNOTtotal CNOTadd transpile time(s) CNOTtotal CNOTadd transpile time(s) ΔCNOTtotal ΔCNOTadd tNASSC/tSABRE

Grover 4-qubits 4 84 238 154 1.69 147 63 2.56 38.24% 59.09% 1.52
Grover 6-qubits 6 184 414 230 2.5 278 94 3.94 32.85% 59.13% 1.58
Grover 8-qubits 8 760 1867 1107 10.26 1256 496 15.46 32.73% 55.19% 1.51
VQE 8-qubits 8 84 202 118 2.75 168 84 5.59 16.83% 28.81% 2.03

VQE 12-qubits 12 198 564 366 6.13 396 198 13.45 29.79% 45.90% 2.19
BV 19-qubits 19 18 269 251 1.33 190 172 1.64 29.37% 31.47% 1.24

QFT 15-qubits 15 210 492 282 3.11 314 104 9.82 36.18% 63.12% 3.16
QFT 20-qubits 20 374 922 548 5.23 569 195 18.59 38.29% 64.42% 3.55
QPE 9-qubits 9 43 116 73 0.84 100 57 1.38 13.79% 21.92% 1.63

Adder 10-qubits 10 65 132 67 0.91 112 47 1.39 15.15% 29.85% 1.53
Multiplier 25-qubits 25 670 2190 1520 13.07 1865 1195 20.82 14.84% 21.38% 1.59

sqn 258 10 4459 12286 7827 112.32 10282 5823 115.32 16.31% 25.60% 1.03
rd84 253 12 5960 17926 11966 157.39 15373 9413 163.89 14.24% 21.34% 1.04
co14 215 15 7840 22734 14894 207.14 18897 11057 212.1 16.88% 25.76% 1.02
sym9 193 11 15232 44418 29186 395.2 38770 23538 411.14 12.72% 19.35% 1.04

Geometric mean 21.92% 34.65% 1.59
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Table IV: Number of additional CNOT gates of NASSC in comparison with Qiskit+SABRE [19] on 2D grid topology
(The geometric mean of ΔCNOTtotal and ΔCNOTadd is 15.13% and 28.10%, respectively)

Original Circuit Qiskit+SABRE Qiskit+NASSC Comparison
name #qubits CNOTtotal CNOTtotal CNOTadd transpile time(s) CNOTtotal CNOTadd transpile time(s) ΔCNOTtotal ΔCNOTadd tNASSC/tSABRE

Grover 4-qubits 4 84 161 77 1.4 114 30 1.69 29.19% 61.04% 1.20
Grover 6-qubits 6 184 321 137 1.95 233 49 3.64 27.41% 64.23% 1.87
Grover 8-qubits 8 760 1119 359 6.61 955 195 14.72 14.66% 45.68% 2.23
VQE 8-qubits 8 84 224 140 1.81 179 95 3.48 20.09% 32.14% 1.93

VQE 12-qubits 12 198 525 327 4.58 440 242 7.57 16.19% 25.99% 1.65
BV 19-qubits 19 18 116 98 0.7 101 83 1.07 12.93% 15.31% 1.52

QFT 15-qubits 15 210 445 235 3.06 434 224 6.48 2.47% 4.68% 2.12
QFT 20-qubits 20 374 802 428 5.51 748 374 10.93 6.73% 12.62% 1.98
QPE 9-qubits 9 43 77 34 0.64 70 27 1.23 9.09% 20.59% 1.94

Adder 10-qubits 10 65 123 58 0.99 97 32 1.47 21.14% 44.83% 1.49
Multiplier 25-qubits 25 670 1709 1039 11.13 1413 743 22.68 17.32% 28.49% 2.04

sqn 258 10 4459 10551 6092 89.28 8292 3833 108.55 21.41% 37.08% 1.22
rd84 253 12 5960 14559 8599 125.38 11449 5489 149.14 21.36% 36.17% 1.19
co14 215 15 7840 19451 11611 166.81 15855 8015 240.38 18.49% 30.97% 1.44
sym9 193 11 15232 37239 22007 320.96 29216 13984 441.71 21.54% 36.46% 1.38

Geometric mean 15.13% 28.10% 1.64

(a) Comparison of additional CNOT
gate count

(b) Comparison of success rate

Figure 11: Comparison of four different routing algorithms

using noise model from the real IBM quantum device

ibmq_montreal

among all these three coupling maps. Therefore, there are

more optimization opportunities than the other two types of

coupling maps.

D. Simulations using A Realistic Noise Model

We compare the results of noise-aware routing algorithms

using Qiskit’s simulator (8192 trials) and the noise model is

generated from the properties of the real IBM quantum de-

vice ibmq_montreal. The results are shown in Figure 11.

Figure 11a shows additional CNOT gate count after applying

different routing method. Figure 11b shows the success rate

after applying different routing methods. And the success

rate of each benchmark means the ratio of the number of

trials that get the correct output state over the total number

of trials. The SABRE+HA and NASSC+HA are the noise-

aware versions of the SABRE and the NASSC algorithm

by modifying the distance matrix based on the calibration

data from the real IBM quantum device ibmq_montreal.

Among the four routing algorithms, the NASSC algorithm

has the fewest additional CNOT gate count and lowest noise.

VII. CONCLUSIONS

In this paper, we propose an optimization-aware qubit

routing algorithm, NASSC. We highlight that optimization-

aware routing leads to better routing decisions and benefits

subsequent optimizations. We evaluate different optimization

combinations at the routing step. Our experiments show that

the routing overhead compiled with our routing algorithm is

significantly reduced in terms of the number of CNOT gates

and circuit depths.
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APPENDIX

A. Abstract

Our artifact provides the source code of the optimization-

aware qubit routing algorithm NASSC, which is developed

based on the open-source framework Qiskit-Terra. All the

benchmarks that are used in the evaluation part are also

included in the artifact. Python scripts are used to run all

these benchmarks and generate the corresponding results of

the evaluation part.

B. Artifact check-list (meta-information)

• Algorithm: NASSC routing algorithm
• Compilation: Qiskit Terra transpiler
• Data set: Benchmarks listed in Section VI of our paper
• Hardware: In Section VI-D, simulations are done based

on the noise model from the real IBM quantum device
ibmq_montreal

• Execution: Run the bash scripts and python scripts
• Metrics: CNOT gate count, circuit depth, transpilation time,

and success rate of the quantum circuit
• Output: CSV files and pdf files corresponding to the results

of tables and figures in Section VI of our paper
• Experiments: Applying different routing method to the

quantum circuits and compare the CNOT gate number, circuit
depth and transpilation time of the circuit

• How much disk space required (approximately)?: 2GB
• How much time is needed to prepare workflow (approxi-

mately)?: A few minutes
• How much time is needed to complete experiments (ap-

proximately)?: 12 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache-2.0 License
• Archived (provide DOI)?: 10.5281/zenodo.5790219

C. Description

1) How to access: Our source code, benchmarks and

the scripts to run the benchmarks are available on Zen-

odo: https://doi.org/10.5281/zenodo.5790219. We also pro-

vide a github repository for potential updated versions:

https://github.com/peiyi1/nassc code

2) Hardware dependencies: In Section VI-D of

our paper, we access a real IBM quantum device

ibmq_montreal to obtain the noise model from it, and

then perform the simulations based on that noise model. If

you do not have access to the real ibmq_montreal, we

have provided the experiments using the noise model from

the fake ibmq_montreal which do not need access to a

real quantum device.

3) Software dependencies: Python version used in the

experiments is 3.7, and all the experiments have been tested

in Red Hat Enterprise Linux Server 7.9 and Ubuntu 18.04.6

LTS.

4) Data sets: Quantum benchmarks are listed in our

paper.
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D. Installation

1) Anaconda installation: Anaconda can be downloaded

in https://www.anaconda.com/. After installing Anaconda,

create an environment named env:

$ conda create -y -n env python=3.7

Then activate the environment:

$ conda activate env

2) Qiskit installation: Download our repository from

Zenodo: https://doi.org/10.5281/zenodo.5790219

After downloading the repository from Zenodo, enter the

folder of nassc code, there are two folders named qiskit-

terra and qiskit-ibmq-provider. Let’s first enter the folder of

qiskit-terra and install it using the following commands:

$ pip install cython

$ pip install -r requirements-dev.txt

$ pip install .

After qiskit-terra is installed, go to the folder of qiskit-

ibmq-provider and install it using the following commands:

$ pip install -r requirements-dev.txt

$ pip install .

3) Package installation: Before running the experiments,

go back to the folder of nassc code and install the bench-

mark package and the hamap package using the following

commands:

$ python setup benchmark.py develop

$ python setup hamap.py develop

E. Experiment workflow

1) Experiments using different connectivity maps:
Enter the folder named test in the nassc code folder

and you can see there are total five folders in the folder

test. Folder test CouplingMap FullyConnected, folder

test CouplingMap linear, folder test CouplingMap grid

and folder test CouplingMap montreal contains differents

script to run benchmarks with four different coupling maps.

And folder yaml file contains YAML files which are used

to set different configurations when running the benchmark.

For example, if you want to run benchmark grover n4

using the coupling map from device ibmq_montreal,

you can enter the folder test CouplingMap montreal and

run the benchmark grover n4 by the following commands:

$ python ./run benchmark.py ../yaml file/grover n4.yaml

If you want to collect all the result from all the bench-

marks, go back to the directory /nassc code/test and use the

script generate raw data.sh:

$ ./generate raw data.sh

Running the above script generate raw data.sh will

take about 10 hours to finish. After the script gener-

ate raw data.sh finishes running and getting all the re-

sult, run the following python script to generate the

cnot table using montreal map.csv which corresponding to

the results in Table I:

$ python generate cnot table using montreal map.py

Run the following python script to generate

depth table using montreal map.csv which corresponding

to the results in Table II:

$ python generate depth table using montreal map.py

Run the following python script to generate

cnot table using linear map.csv which corresponding

to the results in Table III:

$ python generate cnot table using linear map.py

Run the following python script to generate

cnot table using grid map.csv which corresponding

to the results in Table IV:

$ python generate cnot table using grid map.py

2) Experiments using noise model from real device
ibmq montreal : If you do not have access to the real IBM

quantum device ibmq_montreal, skip this subsection’s

experiments and go to the next subsection E3.

Before running the experiments, available

IBMQ providers need to be set in the file of

/nassc code/hamap/hardware/IBMQHardwareArchitecture.py

by modifying the line 122 to use IBMQ providers that are

available to you.

All the YAML files in the directory

/nassc code/test HardwareAware/yaml file specify the

configuration of running benchmarks, and all these YAML

files need to be modified in order to use the IBMQ

providers that are available to you. You can specify the

IBMQ providers by modifying line 2 of all the YAML files.

After finishing the configuration of IBMQ provider, go

back to the folder test HardwareAware:

run the script generate raw data.sh to generate the bench-

mark results:

$ ./generate raw data.sh

After the above command finishes, run the following

python scripts to generate the cnot compare.pdf and Suc-

cessRate compare.pdf which corresponding to the Figure 11

in our paper:

$ python generate cnot table.py

$ python generate SuccessRate table.py

3) Experiments using noise model from fake
ibmq montreal: The experiments in this subsection is

provided as substitutions for the experiments in the above

subsection E2 if you do not have access to a real IBM

quantum device ibmq_montreal.

Go to the directory /nassc code/test HardwareAware

strategy using backed up data, run the following command

to get the benchmark results:

$ ./generate raw data.sh

After the above command finishes, run the following

python scripts to generate the cnot compare.pdf and Suc-

cessRate compare.pdf which corresponding to the Figure 11

in our paper:
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$ python generate cnot table.py

$ python generate SuccessRate table.py

However, the SuccessRate compare.pdf generated will be

slightly different from the Figure 11b in our paper, because

the above result are generated using the noise model from

FakeMontreal while Figure 11b is generated using the noise

model from real device ibmq_montreal.

F. Evaluation and expected results

After running the scripts mentioned in the experiments

workflow, csv files and pdf files are generated, which cor-

responding to the result of Section VI(Table I, Table II,

Table III, Table IV, Figure 11).

G. Experiment customization

The configuration in the YAML files can be modified to

run different benchmarks with various configuration.

H. Notes

In the above Section E, experiments in subsection E3 are

provided as substitutions for experiments in subsection E2.

If you do not have access to the IBMQ quantum device

ibmq_montreal, you can skip the experiments in sub-

section E2 and perform the experiments in subsection E3.

I. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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