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Quantum many-body scars (QMBS) constitute a new quantum dynamical regime in which rare “scarred”
eigenstates mediate weak ergodicity breaking. One open question is to understand the most general setting in
which these states arise. In this work, we develop a generic construction that embeds a new class of QMBS,
rainbow scars, into the spectrum of an arbitrary Hamiltonian. Unlike other examples of QMBS, rainbow scars
display extensive bipartite entanglement entropy while retaining a simple entanglement structure. Specifically,
the entanglement scaling is volume-law for a random bipartition, while scaling for a fine-tuned bipartition is
subextensive. When internal symmetries are present, the construction leads to multiple, and even towers, of
rainbow scars revealed through distinctive non-thermal dynamics. Remarkably, certain symmetries can lead

rainbow scars to arise in translation-invariant models. To this end, we provide an experimental road map for
realizing rainbow scar states in a Rydberg-atom quantum simulator, leading to coherent oscillations distinct
from the strictly sub-volume-law QMBS previously realized in the same system.
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Introduction. Statistical mechanics relies on relaxation to-
wards the maximally entropic state in thermal equilibrium.
This process, however, is at odds with the fact that the entropy
of a many-body system prepared in a pure state must remain
identically zero under unitary dynamics. The emergence of
statistical mechanics in such systems, known as quantum
thermalization, proceeds by the relaxation of local subregions
to a thermal state via the exchange of quantum correlations
with the remainder of the system. This mechanism, whereby
a pure state becomes locally indistinguishable from a thermal
state, follows from the eigenstate thermalization hypothesis
(ETH) [1-4]. The ETH postulates a correspondence between
the local reduced density matrix of a finite-energy-density
eigenstate and the Gibbs ensemble.

Many lines of inquiry involve constructing systems where
thermalization is avoided. For example, quantum integrable
systems [5,6] fail to thermalize due to extensively many
conservation laws; however, these systems are unstable to
perturbations. A more robust violation of the ETH arises in
disordered interacting systems, which may induce many-body
localization, resulting in an extensive number of conservation
laws [7-10].

Experiments utilizing cold atoms [11-16], ion traps
[17,18], and superconducting circuits [19,20] demonstrated
unprecedented control over the dynamics of many-body
systems. Recently, experiments in Rydberg-atom arrays sim-
ulating quantum Ising models in varying dimensions [21,22]
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observed sustained coherent oscillations of local observables
for special initial states, such as the Néel state. This observa-
tion was later traced to the existence of rare, weakly entangled
eigenstates in an otherwise thermal system [23,24]. This
phenomenology was dubbed “quantum many-body scars”
(QMBS) [25], an earlier example of which was found in
the Affleck-Kennedy-Lieb-Tasaki spin chain in Refs. [26,27].
QMBS have been studied in a wide range of systems,
including the “PX P model” simulated by the Rydberg exper-
iment [28-32], the spin-1 XY model [33,34], Fermi-Hubbard
models [35,36], Floquet models [37—41], and other systems
[42-52]. Group-theoretic techniques [35,53—57], matrix prod-
uct state methods [58], and projector embeddings [59,60] have
been employed to systematically generate sub-volume-law
QMBS in the many-body spectrum. It remains an open ques-
tion to construct QMBS with a specific entanglement structure
in the spectrum of a generic system.

In this work, we develop a general construction for a new
class of QMBS, rainbow scars [61-63], in the spectrum of an
arbitrary Hamiltonian governing a replicated system. Rain-
bow scars differ from previous examples of QMBS in that
their entanglement scaling strongly depends on the chosen
bipartition. Specifically, the entanglement is volume-law for
a random cut, but sub-volume-law for a fine-tuned cut. In the
presence of symmetries, multiple and even towers of rainbow
scar states emerge, and may exhibit a rich group-theoretic
structure. This opens the possibility to probe the scar states
with quantum quenches. Furthermore, certain symmetries can
even yield rainbow scars in simple translation-invariant mod-
els. We propose a realization of rainbow scars in a system of
interacting Rydberg atoms, where these states lead to coherent
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FIG. 1. Entanglement scaling of the random bipartition is shown.
(a) Average entanglement for each bipartition £ € [0, 2N], the dotted
line indicates maximal entanglement, here 2N = 200. Inset: Depic-
tion of bipartitions. (b) Rainbow state for d = 2 with each bond a
Bell state.

oscillatory dynamics whose origin is fundamentally distinct
from the previously studied sub-volume-law QMBS.

General construction. Imagine two related copies of a
quantum many-body system with the Hamiltonian

H=HQ®1+1®H + iJV.. (1)

Each subsystem H; and H, consists of N sites with a
d-dimensional local Hilbert space, spanned by the local com-
putational basis |s;) at site i. The state |S) =[], |s;) defines
the global computational basis spanning a Hilbert space
of dimension d?¥. Moreover, in one dimension [64], the
“copied” Hamiltonian, H», satisfies H, = —MH;' M, with the
mirror-symmetry operator M mapping i — i = 2N — i + 1.
Complex conjugation is defined with respect to the computa-
tional basis |S). The two systems interact through V., which
generically thermalizes the combined system, akin to two
boxes of gas equilibrating through a thin connecting wire.
Provided the condition H, = —MH; M is met, the construc-
tion is independent of the microscopic details of H). This
strict condition on H, is relaxed in the presence of certain
symmetries, as discussed below.

We proceed by illustrating how a class of nonthermal states
emerges from a large set of degenerate states through a care-
fully chosen coupling. Using the spectral decomposition to ex-

=3 E, 1Y) (Y, where Hy [) = E, [¥). and
— 3 E, | Myt) (MyrF], where

press H;

similarly express H, =

MYy = (M |,)*. At A, = 0, the eigenstates of the to-
tal Hamiltonian H, with eigenvalues E, — E,,, are {|W,,,) =
V) @ IMy¥) : ¥Yn,m=1,...,d"}, which have no entan-

glement between the two halves. Consequently, H has a
dN-fold degenerate subspace spanned by |W¥,,). Within this
degenerate subspace, there exists a special eigenstate indepen-
dent of the details of H;:

1 N
dN/2 Z |"Ilnn = d_ @

where the second equality follows from inserting a resolution
of the identity. This state is precisely the “rainbow state”
[61-63], named for its characteristic pattern of entanglement,
in which every site i is maximally entangled with its mirror
partner i [see Fig. 1(b), middle inset]. The rainbow state is
also known as the infinite-temperature thermofield double
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FIG. 2. Second-order Rényi entropy is depicted. (a) Second-
order Rényi entropy for a random Hamiltonian drawn from the GUE
with a Heisenberg coupling A. = 5.0. (Inset) Chosen entanglement
cuts: standard bipartition (blue) and fine-tuned bipartition (red).
(b) Translation-invariant model with J, = 0.20, J, = 0.15, J, = 0.25
using open boundary conditions.

state; it is of interest in the high-energy community [65-68]
for its connections to black-hole physics and in the quantum
information community where it is used as an entanglement
resource [69—71]. The entanglement entropy for the standard
bipartition [see Fig. 2(a), top inset] scales linearly with system
size S = Nlogd, while retaining a simple structure. More
generally, for a random bipartition defining a subregion A
of size ¢, the entanglement scales extensively on average
when € o« N: Spy = 2N — £)¢log(d)/(2N — 1) [Fig. 1(a)]
[see Supplementary Material (SM) [72]]. The rainbow state
is denoted as the state |I) corresponding to the identity op-
erator under the state-channel duality [73,74]. For A. # 0,
the rainbow state is selected as an eigenstate of the local
Hamiltonian H from the degenerate subspace provided |I) is
an eigenstate of V. Specifically, for d = 2, |I) is a product of
long-range Bell states, |I) = ®1<N(|T, P+ L)) If the
subsystems are coupled through, e.g., a Heisenberg interac-
tion, V, = Sy - §N+1, then |I) is an eigenstate of the combined
system with energy E; = A./4.

To emphasize the generality of the construction, consider
a system of 2N qubits for which H; (which fixes H») is
randomly drawn from the Gaussian unitary ensemble (GUE),
with a local Heisenberg coupling acting on the central qubits.
Figure 2(a) shows the second-order Rényi entropy S =
—log tr( pﬁ), for each eigenstate of H, where p4 is the reduced
density matrix of subregion A for two different entanglement
cuts. Blue points denote the standard bipartition, while the red
points denote the fine-tuned bipartition [see Fig. 2(a), inset].
The appearance of a “thermalization band” [75-79] in both
cases indicates that the coupling brings the combined system
to equilibrium, as expected for a random chaotic model. Addi-
tional evidence is obtained through the average level spacing
parameter [9,80-82], (r) ~ 0.594, which falls near the GUE
random matrix result, 0.60 [83]. For the standard biparti-
tion, the rainbow state is found as a nondegenerate eigenstate
above the band with maximal entanglement, markedly distinct
from previous examples of QMBS. By contrast, for the fine-
tuned bipartition, the rainbow state is a product state, thus
violating expectations from ETH. A priori, a random chaotic
model is not expected to host QMBS; nevertheless, the local
Heisenberg coupling between the two copies is responsible for
selecting |I) from the degenerate subspace and elevating it to
a scar.
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Symmetries. First, we discuss how an appropriate sym-
metry relaxes the condition on H,. Consider a system with
a spectral-reflection symmetry [84] implemented by an op-
erator O satisfying {O, H;} = 0. We can then define H, =
+MH]M and the state |O) = (O ® 1) |I) as an eigenstate
of HH ® 1+ 1 ® H,. This symmetry can even be used to
realize the construction in fully translation-invariant models.
For instance, consider the Hamiltonian

2N-1 2N-2
H = Z(stf i1 +JSySl+1)+ Z JSiSiniSiva ()

where S are the standard spln-l operators on site i.
The Hamlltonlan above reduces to the form of Eq. (1)
through a unitary transformation with the operator O =
| +iOn4ip1 Which flips the sign of the Hamiltonian
on the last N sites. Here the coupling becomes A V. =
TSNSN 1+ ISySivgr + Sy 1 SiSivet = SuSi 1Sy 12)- for
which the rainbow state |I) is an eigenstate. As discussed
above, the state |O) then becomes an eigenstate of Eq. (3).
Figure 2(b) shows S® for each eigenstate of Eq. (3) reveal-
ing two rainbow scars; the mechanism for multiple scars is
elaborated below.

Symmetries enrich the construction to yield multiple rain-
bow scar states, which is why two rainbow scars appear
in the previous example. Let O“ be symmetry generators
satisfying [Hy, O%] = 0. Then the state |O%) = (O* ® 1) |I)
also belongs to the d"-fold degenerate subspace at A, =0
and is independent of the details of H;. Provided the |O%)
are eigenstates of V., they will emerge as scars in the spec-
trum. For example, consider the case where H; has a Z,
symmetry generated by O =[], <y 0i» Where o is a Pauli
operator. The result is an add1t10nal ralnbow state, |X) =
Ricn (s 1) + 11,45 If [H, 0%] =0 for each O =
HngU (¢ = {x,y,2}), then a set of orthogonal rainbow
scars, {|I),|X),|Y),|Z)} arises in the spectrum. Moreover,
an extensive number of rainbow scars emerge if H possesses
a global symmetry or kinetic constraints leading to discon-
nected subsectors.

We examine the consequence of symmetries by studying
two coupled XYZ chains of N spins:

Hy =Y LSS+ LSIS), ) + JLSiS5,,

+ JSiS? O C))
The next-nearest neighbor interaction J is included to prevent
integrability. H, is set to —MH M, and the chains are cou-
pled by V. = Sy - Sy1.

If H, commutes with O% for o = {x, y, z}, then four or-
thogonal rainbow scar states, {|/), |X),|Z),|Y)}, emerge as
eigenstates of H. The first three states correspond to the triplet
states of V. and are degenerate with energy A./4, while the
final state is the singlet state of V; at energy —3X./4.

When J, = J,, the total magnetization $* = ZZZI:V , S5 of the
combined system is conserved. In this case, the four scars
states discussed above are still present, and their projections
into each magnetization sector (if nonzero) are eigenstates.
For instance, the states |X) and |Y) lie within the S* =0
sector. |I) and |Z), instead, have finite projections onto all

magnetization sectors with Zf,: S = ZNN 4155 these pro-
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FIG. 3. U(1) tower of rainbow scars. (a) Overlap between the
rainbow state |/) and each energy eigenstate of Eq. (4), both with
(Jy =J, = 1.0, red) and without (J, = 1.0, J, = 1.25, blue) U(1)
symmetry. (b) Second-order Rényi entropy using the standard bipar-
tition within the §* = 0 sector in the U(1)-symmetric case (J, = J, =
1.5). Inset: The tower highlights the doubly degenerate projected
rainbow states |/) and |Z) in each allowed magnetization sector (red
dot indicates ¢ = 0). (c) Krylov time evolution of ((S*(¢))?)/N in
a system of 2N = 18 spins prepared in |I), with time step dt = 0.1.
The dotted lines are fits capturing the amplitude decay. (d) Inverse
lifetime of ((S*(¢))?)/N with increasing perturbation strength. The
remaining parameters used in (a)-(d) are J, =2.0,u =0.5,7 =
0.5, 1. = 1.5.

jections coincide up to a global phase, leading to N + 1
degenerate eigenstates. Adding u S° breaks this degeneracy,
resulting in an equally spaced tower of scar states. This tower
of states is created by applying J* = YV | 57 S to the fully
polarized state |2) = ®), |{). Together with J = 1 3"2¥ ¢,
one can readily verify that the operators /* and J% obey SU(2)
commutation relations, so that the tower forms a spin-N/2
representation of SU(2). In Fig. 1(b), we plot S for each
eigenstate with $* = 0, with the nonthermal states spanning
the tower in the inset. The states {|X),|Y)} in the S* =0
sector are nonzero because they are exact eigenstates of the
magnetic field term [85]. In Ref. [72], we demonstrate that the
tower has volume-law entanglement scaling for the standard
bipartition and logarithmic scaling for the fine-tuned cut.
Performing a quantum quench from an initial state with
finite weight on each eigenstate of the tower leads to perfect
coherent dynamics [53,55-57]. In particular, preparing Eq. (4)
in either |I) or |Z) results in perfect oscillations, quantified
through the nonlocal correlator, ((S*(t))?)/N for 2N = 20
spins, where S* = )" S7. These oscillations are found to be
remarkably robust to perturbations. We perturb Eq. (4) by
setting J, — Jx = D [86]; at D = 0, the U(1) symmetry is ex-
act and the correlator has the analytical form ((S*(¢))*)/N =
(5%(0)?) cos®(ut)/N. For D # 0, the U(1) symmetry is explic-
itly broken; yet, the oscillations remain strong for deviations
up to D ~ 0.50, upon which thermalization sets in [see
Fig. 3(c)]. We find that the inverse lifetime 1/t ~ aD?,
where o & 0.40, as expected from Fermi’s golden rule [see
Fig. 3(d)]. Perturbations like D that preserve the structure
of Eq. (1) yield a more robust dynamical signature than
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FIG. 4. Dynamical signature in a chain of interacting Rydberg
atoms. (a) Depiction of a nonuniformly spaced Rydberg chain.
(b) Maximum overlap of |Z) projected into the subsector absent
of neighboring Rydberg states for different interaction strengths.
Nearest-neighbor (all-to-all) interactions are denoted by blue (red).
(c) Dynamics of the average expectation value between inversion
pairs (o7 (t)o; (t)) prepared in |Z). Inset: Short time dynamics for
tQ2 ~ 1.5. (d) Néel state dynamics for the correlator, (af(t)af(t)).
Parameters used in (b)—(d): /27w =2MHz, V, = 12Q, A,y =
Vo/2a® with @ ~ 1.51 and 2N = 16.

perturbations that break not only U(1) but also the form of
Eq. (1) [72].

Experimental realization. As a physically motivating ex-
ample, we consider a chain of interacting Rydberg atoms
with a nonuniform spacing [see Fig. 4(a)] governed by the
Hamiltonian

Q2 2N
H:EZU;‘JFZVL,n,-nJ =Y Am. Q)
i=1 i<j i=1
Here we set the interatomic spacing a = 1 except between
sites N and N + 1, where the spacing is a. The operator ¢;}*
connects the internal ground state |g); to the Rydberg state
|r); of the ith atom, with parameters 2 (Rabi frequency) and
A, (detuning) characterizing the drive laser. Rydberg states in-
teract through V; ; = Vy/ rf o with operators n; = (1 4 07°)/2.
In the limit V; ;11 > Q > V12, we take Vy i1 = Vo/a@® to
be comparable to 2; equivalently, we take a > 1.0. In addi-
tion, we take A; = 0 except for the two central sites, where
Ay = Any1 = Aopt = Vv,n+1/2. The coupling then becomes
Voolf,a]f,ﬂ/ét&é.

In the limit V; ;1 > Q >V, ;4», a pair of U(1) conserva-
tion laws emerge, with generators njj,, = Z%):l iy iGy+1
that count the number of nearest-neighbor pairs of Rydberg
excitations in each half of the chain. The projection of H onto
a sector with fixed n", reads

H=H, +H2+4‘%Ulf,a]f,+] +V0(n7+n£'), (6)
with H1(2) = 791(2)(% vazl Oix)'P] ) where P ) projects the
left (right) half of the chain into a sector with fixed ni()-
The Hamiltonians H )y individually have a spectral-reflection
symmetry since {O%, Hi2)} = 0 [87] When P, = MP, M
(note P{ =P)), then n{" =n}" and H, = + MH;M. To-
gether with the spectral-reflection symmetry, this implies that
the rainbow state (P} ® P,)|Z) is an eigenstate of H| + H,.

This state is also an eigenstate of the coupling, and therefore
of the overall H in Eq. (6). Such a rainbow state exists for each
subsector satisfying P; = MP, M, leading to an equally
spaced tower of scar states with energies V,/4a° + 2V, ny". We
emphasize this tower is distinct from the strictly sub-volume-
law scars of the PX P model, which reside in the sector with
ny" = nj" = 0 [23,25]. This tower of states becomes exact in
the limit V; ;11 > Q >V, 4»; remarkably, it is also robust
away from this limit.

In Fig. 4(b), we determine the maximum overlap between
each eigenstate and the projection of |Z) into the n]" = n} =
0 sector. For strictly nearest-neighbor interactions (blue), the
maximum overlap asymptotes to unity as Vy — oo. However,
this is not the case when the full van der Waals interaction
is accounted for (red); here, the overlap grows slowly, never
exceeding ~0.5. This is a result of the next-nearest-neighbor
interactions breaking the spectral-reflection symmetry of H| »
in Eq. (6).

Figure 4(c) shows the quench dynamics of the |Z) rain-
bow state under the Hamiltonian Eq. (5). We consider both
nearest-neighbor (blue) and full van der Waals interactions
(red) with parameters Vy = 12 and interchain spacing
a ~ 1.51. Remarkably, for nearest-neighbor interactions, the
oscillations are robust, persisting well beyond the local ther-
malization timescale 1/2. In the limit V; — oo, the coherent
dynamics become exactly periodic with a period T = 7 /Vj
as a consequence of the rainbow tower. Including long-
range interactions leads to faster relaxation dominated by
next-nearest-neighbor terms on a timescale 1/V; ;. This
dynamical behavior is confirmed by measuring the average
expectation value between inversion partners (o} (t)a;.x @) =
PIRCA (t)a{‘ (t))/2N. Interestingly, the sub-volume-law scars
of the PXP model [23,24] coexist with the rainbow scars,
still displaying a strong dynamical signature, illustrated in
Fig. 4(d) by preparing the system in the Néel state. We em-
phasize that the dynamical signature of the rainbow tower is
more robust than that of the PX P scars for nearest-neighbor
interactions. This results from the fact that |Z) has unit overlap
with the rainbow tower in the limit V — oo, whereas the
PXP tower remains approximate in this limit. In Ref. [72]
we explored various perturbations to Eq. (5), as well as a
translation-invariant model in which a similar dynamical sig-
nature was found.

Experimental preparation. Rainbow-state preparation re-
quires nonlocal gates to entangle inversion partners at sites
i and i, posing an experimental challenge. Recently, how-
ever, the rainbow state was prepared in a trapped ion
quantum simulator [88]. We recognize that these systems
are able to apply nonlocal two-body entangling gates, al-
lowing for easier preparation, but experimental groups are
attempting to implement similar gates in Rydberg arrays.
A possible solution is quantum state reversal [89-91].
Alternatively, in a ladder geometry, the Rydberg system be-
comes translation-invariant, and state preparation is local. In
Ref. [72] we found the nonergodic dynamics to persist in
this geometry.

Conclusion. This work gives a general recipe to realize a
new class of QMBS, dubbed rainbow scars, that are related
to the infinite-temperature thermofield double states. Rainbow
scars emerge in any system of the form (1), provided (i) H, =
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—MHM and (ii) Eq. (2) is an eigenstate of the coupling
V.. Symmetries enrich the construction, leading to multiple
or even towers of rainbow scars with a rich group structure.
These nonthermal states display volume-law entanglement for
random bipartitions and sub-volume-law scaling for a fine-
tuned bipartition, as well as perfect coherent dynamics in
the presence of towers. Our work serves as an experimental
blueprint for Rydberg simulators, where we find a robust
dynamical signature distinct from previous studies.
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