
OpenSHMEM Active Message Extension for

Task-Based Programming

Wenbin Lu, Tony Curtis, and Barbara Chapman

Institute for Advanced Computational Science
Stony Brook University

Stony Brook, USA
{wenbin.lu, anthony.curtis, barbara.chapman}@stonybrook.edu

Abstract. As a lightweight library-based Partitioned Global Address
Space (PGAS) programming model, OpenSHMEM provides efficient one-
sided and collective communications and is receiving more attention in
recent years. However, task-based programming models are getting big-
ger traction in scientific computing communities. Application developers
are attracted by their ability to achieve better load balance in the face of
ever-growing application complexity, and the increasing on-node paral-
lelism in modern high-performance computing machines. Although com-
munication contexts provide threads with first-class access to the network
in the OpenSHMEM+X model, OpenSHMEM still has very limited abil-
ity to perform advanced operations found in other task-based models. For
example, compared to the remote procedure call (RPC) mechanism in the
UPC++ programming model, more work is required if the signal/wait
routines are used to achieve similar remote task launching operations.
In this paper, we introduce a lightweight active message (AM) exten-
sion to OpenSHMEM that is designed to perform short, non-blocking
remote function invocations. This extension aims to bring some bene-
fits of task-based programming to OpenSHMEM without making it a
full-blown heavyweight tasking system with a sophisticated scheduler.
We study the performance of this active message extension by running
micro-benchmarks, and by evaluating its computation efficiency at dif-
ferent task granularities using the TaskBench framework.

Keywords: PGAS, OpenSHMEM, Active Message, Tasking

1 Introduction

The increasing complexity of software and hardware in the exascale era calls for
more adaptive and dynamic programming models. In recent years we are seeing a
surge of new programming models that break away from the traditional SPMD-
way of expressing parallelism and embrace the flexibility and scalability provided
by dynamic execution of operations, mostly in the form of tasks or a variant
of active messages [8]. In today’s diverse and heterogeneous HPC systems, an
application using HPX [11], an active global address space programming model,
was able to achieve a much higher parallel efficiency at scale than MPI [6].

2 Wenbin Lu et al.

Many members in the family of partitioned global address space (PGAS) pro-
gramming models already have some way to launch functions remotely: Coarray
Fortran [20], GASNetEX [3]/UPC++ [1], and Chapel [4] are among the most
prominent ones. Their ability to insert operations into another process’s execu-
tion flow is a simpler, sometimes more scalable, way to realize tasks and their
dependencies than using distributed signal variables. As of OpenSHMEM 1.5
[15], a similar feature is not available, and we believe it is affecting OpenSH-
MEM’s adoption in the supercomputing community.

In this paper, we propose a lightweight active message extension for Open-
SHMEM that is designed to support a basic form of task-based programming
without feeling out-of-place when mixed with other parts of the model. It en-
ables efficient remote invocation of pre-defined message handler functions across
Processing Elements (PEs). Our work provides a basis for the inclusion of this
important feature, and we hope to spark discussion in the OpenSHMEM com-
munity on this topic.

This paper is organized as follows: Section 2 discusses the background of this
work. Section 3 describes the proposed API extension and its implementation.
Section 4 provides a preliminary evaluation of the work and Section 5 gives a
conclusion and talks about future work.

2 Background

2.1 Task-Based Programming and Active Messages

Task-based programming is the practice of expressing parallelism in terms of
small units of computation called tasks. Two tasks can be executed indepen-
dently or have an order imposed on them in the form of task dependency. The
directed acyclic graph (DAG) constructed with task dependencies is expressive
enough for the majority of HPC applications, while still can be mapped and ex-
ecuted on supercomputers. Due to its ability to express sophisticated workflows
in an organized manner and expose more opportunities for load balancing, task-
based programming is playing an increasingly prominent role in the exascale
era.

Active messages [8] enable one process to schedule a function (AM handler)
invocation on a remote process, using a pre-registered AM handler ID and a set
of handler arguments (AM payload) contained in the scheduling request. AM and
its derivatives have become building blocks of many HPC programming models
and machine learning frameworks for performing distributed control flow (e.g.
work assignments, load balancing). While a simple AM implementation lacks the
central/distributed task scheduler found in fully-fledged tasking frameworks, it
still can be used to construct tasks and dependencies between them. The devel-
oper needs to implement an application-specific scheduler to decide when and
where to send AM requests, but this might be preferable for some applications.

OpenSHMEM Active Message Extension 3

2.2 OpenSHMEM

OpenSHMEM[5] is an SPMD programming model that implements the PGAS
memory model. It is library-based and uses one-sided remote memory access
(RMA) as its main method for doing point-to-point communication and synchro-
nizations between its processes/PEs. Due to its elegant and implementer-friendly
design, it has been well-received in both academia and commercial products like
NVSHMEM [14].

However, when compared to other members of the PGAS family, OpenSH-
MEM lacks advanced features that could help developers achieve scalability and
portability in the face of the exploding complexity of the modern HPC ecosys-
tem. The recent addition of teams [17] and contexts [7] are solid steps towards
this direction and have been shown to improve application performance [13], but
data movement is still the main focus.

Currently, if the developers want to have a task-like workflow in an Open-
SHMEM application, the entire DAG of tasks must be hard-coded into the ap-
plication, with every task spawning operation and dependency realized through
a dedicated signal variable and a wait operation. This approach not only loses
the flexibility of task-based programming but also requires heroic effort and is
very error-prone. Moreover, inputs and outputs of the tasks must be placed on
the symmetric heap and passed using PUTs or GETs even if they are single
integers/floating-point numbers, which further increases complexity and reduces
scalability.

The active message extension proposed in this paper could bridge the gap
between OpenSHMEM and other programming models on handling control flow
on the distributed-memory level. Instead of using signals to trigger task execution
and notify the availability of execution results of tasks, parent tasks can inject
tasks into any PE’s execution flow and the children tasks can invoke AM handlers
on the parent task’s PE to fetch computation results, or simply send the results
as the AM payload if the sizes are within the limits. If designed with care, the
AM extension will blend nicely with the rest of the OpenSHMEM specification
and does not introduce unnecessary overhead to other OpenSHMEM operations.

2.3 Related Work

An AM extension for OpenSHMEM has been proposed before [10], in which a
set of APIs is presented to initiate, progress, and perform active message opera-
tions between PEs. Their GASNet-based implementation features opportunistic
execution of incoming active messages using a background polling thread. The
potential risk of data race on internal data structures and other progression is-
sues leads to the need of banning the invocation of most OpenSHMEM routines
from the AM handler, as well as a dedicated mutex interface for handler safety.
The main difference between their design and ours is that: we allow the use of
simple point-to-point communication routines including sending AMs from the
handler, give the user total control of where the handler gets executed, and let
the user handle thread-safety using whatever mechanism they see fit. As a result,

4 Wenbin Lu et al.

our design does not require SHMEM THREAD MULTIPLE when not requested by the
application and is much more flexible in what can be done inside the handler.

MPI, being the most popular distributed-memory programming model for
HPC, also has had a few attempts to retrofit it with active message capabilities.
The MPI-Interoperable Generalized Active Messages [24] is the most complete
one, which is similar to the MPI Op of MPI-3’s RMA accumulate operation but
is extended with user-defined operations and a data streaming-like interface.
Compared to our design, their API is extremely complex and requires more effort
to use. Another attempt at MPI AM is presented in [21] and has achieved good
performance. However, the work focused on implementing an active message
mechanism using MPI RMA and did not design a general-purpose API interface
for it.

Active message-like functionalities can be found in many other programming
models. UPC++’s RPC mechanism supports automatic serialization and pro-
vides future objects that can be waited on to obtain the RPC’s return value.
Charm++ [12] features location-agnostic method invocations on a unified view
of all the distributed C++ objects, with its runtime performs automatic object
migration and load balancing behind the scene. Legion [2] implements a mapper
layer that controls the placement of the tasks instead of having to specify on
which process each task should run in the application’s main workflow. These
advanced features are too heavy-weight for both the OpenSHMEM specification
and its implementations.

3 Design and Implementation

This section describes the design of our OpenSHMEM active message extension
and the rationale behind it. The extension’s implementation is also discussed to
demonstrate how we are able to allow the use of simple point-to-point commu-
nication operations from within the AM handlers.

3.1 OpenSHMEM Active Message API Extension

The type and macro definitions for the AM handler are shown in Listing 1.1.
The size of the active message payload is limited by the implementation-defined
macro SHMEMX AM PAYLOAD MAX SIZE, typically this will be a few kilobytes. We
decide to add this restriction to avoid introducing the rendezvous protocol to
handle large payload sizes. Since OpenSHMEM focuses on fast one-sided com-
munication operations, an active message interface with MPI-like request objects
and/or callbacks deviates too far away from OpenSHMEM’s communication se-
mantics. If the user needs to transfer a large amount of data with an AM request,
our design allows invoking PUTs/GETs from within the AM handler so it should
not be a problem.

Active message handlers must be registered on the destination PE before
the initiator PE can schedule its execution. The handlers must have the same
function type defined by shmemx am handler t, and its definition must be visible

OpenSHMEM Active Message Extension 5

// Maximum active message payload size.

#define SHMEMX_AM_PAYLOAD_MAX_SIZE

// Active message handler signature.

typedef void (* shmemx_am_handler_t)(void* payload ,

size_t length ,

void* args_r ,

void* args_p ,

int source_pe)

[IN] payload Active message payload

[IN] length Size of the payload

[IN] args_r Registration-time user arguments

[IN] args_p Polling-time user arguments

[IN] source_pe PE number of the initiator of this AM

Listing 1.1. Proposed OpenSHMEM Active Message API type definitions

to the compiler/linker when the application is compiled. When a handler is
invoked by the destination PE, the payload and its size, a pointer provided by
the user when the handler was registered, a pointer passed to the polling routine
that invoked this handler, and the PE number of the source of the AM request
are passed as function arguments. Once the handler returns, the payload buffer
is freed.

One of the main advantages of our design is the ability to call OpenSH-
MEM routines from the AM handler. Point-to-point communication operations
like PUT/GET/atomic operations are all supported, as well as shmem fence

and shmem quiet, and even send AM requests using the API in Listing 1.2. Us-
age of collective communications, distributed locking routines, symmetric heap
management routines, and contexts & teams routines inside the handlers are
still forbidden. Additionally, the user can make libc and other external func-
tion calls inside the AM handler, but we strongly discourage performing any
potentially blocking operation in the handler, as doing so could prevent timely
handling of other AM requests or even cause deadlocks. Our proposed API is
inter-operable with shared-memory tasking frameworks, so long-running com-
putations or system calls like I/O can be handled by offloading them to other
threads.

Listing 1.2 defines the API extension that will be used to register, send and
progress OpenSHMEM active messages. A PE can call shmemx am set handler

to register an AM handler and receive an integer as the ID of the registered
handler, this ID will be used by an initiator PE to send an AM request that
invokes this handler. The registration routine is not a collective call and the
application is not required to have the same handler-to-ID mapping across all
PEs. A pointer to local arguments can be registered along with the handler, and
it will be passed as the third argument (args r) to the handler for every AM
request of this ID.

6 Wenbin Lu et al.

// Set & reset active message handler.

void shmemx_am_set_handler(shmemx_am_handler_t handler ,

void* args_r ,

int* id)

[IN] handler Active message handler (NULL to reset)

[IN] args_r User-defined local arguments

[OUT] id Active message ID

// Send an active message.

void shmemx_am_send_nbi(int id,

void* payload ,

size_t length ,

int pe)

[IN] id Active message ID

[IN] payload Payload to send

[IN] length Size of the payload

[IN] pe PE number of the remote PE

// Non -blocking poll of incoming active messages.

int shmemx_am_poll(void* args_p)

[IN] args_p User-defined local arguments

[RETURN] Non-zero if any AM was processed, zero otherwise.

// Blocking wait on incoming active messages.

void shmemx_am_wait(void* args_p)

[IN] args_p User-defined local arguments

Listing 1.2. Proposed OpenSHMEM Active Message API routines

To send an AM request, the initiator PE should pass the ID, the payload
and its size, and the PE number of the destination to the shmemx am send nbi

routine. Safe reuse of the payload buffer is not guaranteed when the non-blocking
send routine returns and so the user should use the shmem quiet routine to
wait for the completion of all outbound AM requests, as the AM requests are
sent through the default context SHMEM CTX DEFAULT. We do not provide any
guarantee of the ordering of consecutive AM requests, as well as the atomicity
of the execution of the handlers.

For the progression and completion of active message requests, we provide
the shmemx am poll and shmemx am wait pair of routines. The shmemx am poll

routine checks for arrived AM requests, it returns 0 immediately if no pending
requests could be found, or a non-zero number if it was able to execute one
or more AM requests. Alternatively, if the application calls the shmemx am wait

routine and it could not find pending AM requests, it blocks the execution, enters
a passive polling mode until an AM request arrives. Both routines could pass
another pointer to user-defined arguments as the fourth argument (args p) to
the handler, so the handler can have easy access to the calling context.

OpenSHMEM Active Message Extension 7

// Active message handler definition

void am_handler(void* payload ,

size_t length ,

void* args_r ,

void* args_p ,

int src_pe)

{

database_t* db = args_r;

scheduler_ctx_t* ctx = args_p;

int payload_index = db ->store(payload , length , src_pe);

ctx ->insert_task(payload_index);

}

// Initiating PE of the AM request

shmemx_am_send_nbi(am_id , payload , length , pe_id);

shmem_quiet ();

// Destination PE

shmemx_am_set_handler(am_handler , &database , &am_id);

while (! scheduler_ctx.done()) {

shmemx_am_wait (& scheduler_ctx);

int got_new_am;

do {

got_new_am = shmemx_am_poll (& scheduler_ctx);

} while (got_new_am != 0);

}

Listing 1.3. Sample Usage of the Proposed OpenSHMEM Active Message API

The two polling routines can be combined in a fashion that is similar to the
adaptive spinlocks: wait is used to put the thread to ”sleep” while waiting for
incoming AM requests to reduce resource usage; after wake-up, we perform busy
non-blocking polling with the other routine until it returns 0, then go back to
the blocking wait.

We deliberately choose to not have a background polling thread because
we want the developers to have precise control over when and where the AM
handlers are executed. This decision is crucial for inter-operating with OpenMP
tasks: OpenMP does not provide an ”entry” to its task scheduler for inserting
new tasks on the fly, the user must write #pragma omp task inside the AM
handler and make sure the handler is executed by an OpenMP-managed thread
to inject a new task into a parallel region.

An example showing how the proposed API extension could be used to in-
sert a task into a hypothetical shared-memory tasking system is presented in
Listing 1.3. The active message handler stores the payload and the ID of the ini-
tiator PE into a database on the destination PE. Then the handler inserts a task

8 Wenbin Lu et al.

into the task scheduling context that processed this AM request, so the shared-
memory tasking framework can pick it up later and process the corresponding
entry in the payload database. The initiator sends the AM request using an
am id that is the same as the one returned by the shmemx am set handler rou-
tine on the destination PE and flushes the default context so the payload buffer
can be reused. On the destination PE, we use the wait-and-poll combo to receive
AM requests and insert tasks to the current scheduling context, until the work
is done.

The example above can also be viewed as a child task sending its execu-
tion results to the parent task, or as a parent task sends a unit of work to one
of its children for execution. This approach could be extended to execute a dy-
namic DAG of tasks that changes based on run-time information. Task migration
through our active message extension is more flexible and maintainable than al-
locating one signal variable for each edge in the DAG and perform manual task
queue management.

3.2 Implementation

Our implementation is based on the reference implementation of OpenSHMEM,
OSSS-UCX [16]. This implementation uses UCX [22] as its communication sub-
strate, which provides unified low overhead access to various vendor-specific
communication protocols like InfiniBand Verbs and Cray uGNI. UCX provides a
simple active message interface that works as follows: AM handlers are registered
on UCP workers, AM requests are sent through UCP endpoints which represent
pairs of ”linked” workers, and calling the ucp worker progress routine on the
destination process executes incoming active messages. The UCX AM handlers
are invoked from the progress context, so trying to perform nested progression
by calling ucp worker progress from within the handler is not allowed, thus
prohibiting the handler from tracking the completion of various non-blocking
operations. Constraints like this are common in similar frameworks to prevent
deadlocks and other issues, with GASNet being another notable example.

Figure 1 shows how a PE processes an incoming AM request and sends
another one from the AM handler. Rectangular boxes represent the execution
contexts of different UCP workers and AM handlers, and the outermost rounded
boxes represent the execution context of the OpenSHMEM runtime library. The
shmemx am send nbi routine sends the AM request and the accompanying pay-
load to a dedicated UCP worker (AM worker) on the destination PE, along with
some metadata, using the UCX AM mechanism and an internal UCX AM han-
dler. When the destination PE calls shmemx am poll, the OpenSHMEM run-
time calls ucp worker progress on the AM worker to process incoming AM re-
quests. The UCX AM handler simply stores the pointer to the payload and re-
turns UCS INPROGRESS so that the UCX runtime does not deallocate the payload
when the handler returns. Then, the OpenSHMEM runtime calls the requested
OpenSHMEM AM handler using the ID assigned during registration. Any com-
munication request initiated from the OpenSHMEM AM handler goes through
the worker (DEF worker) that handles the default context to avoid accidentally

OpenSHMEM Active Message Extension 9

Fig. 1. OpenSHMEM Active Message Implementation in OSSS-UCX.

invoking another incoming AM request. Finally, when the OpenSHMEM AM
handler finishes execution, ucp am data release is called on the payload buffer
to return it to UCX.

This design adds some overhead when compared to UCX active messages, but
the two-worker approach enables chaining of AM requests and avoids execution
of AM handlers in unexpected places (e.g. quiet, barriers) if the default worker
is also used to process incoming active messages.

Advanced features like active message completion notification, automatically
return data from the handler to the initiating PE and aggregated active message
queues are have been considered for inclusion. These features could be very use-
ful for many applications, but they will increase the complexity of the API and
its implementation significantly, so we have decided to not support them in this
work. The resulting API is still capable of being used as a task-based program-
ming model and is inter-operable with a shared-memory tasking framework.

4 Performance Evaluation

We perform a preliminary evaluation of the performance of our implementation
using two point-to-point micro-benchmarks and the TaskBench [23] framework.
The performance numbers presented below were obtained on a cluster equipped
with Fujitsu A64FX FX700 CPUs and NVIDIA Mellanox ConnectX-6 100Gb/s
network cards. On the software side, the machine is running CentOS 8.1.1911
AArch64, Linux 4.18.0, MOFED 5.0-2.1.8.0, UCX 1.10.1, and GCC 10.3.0. For
all MPI results, we use OpenMPI 4.1.1 linked to the same version of UCX.

10 Wenbin Lu et al.

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

5

10

15

20

25

30

Fig. 2. Active Message Inter-Node Round-Trip Latency Results (UCX protocol switch-
ing threshold = 1KiB).

4.1 Latency and Throughput

The classic ping-pong micro-benchmark is a good way to measure the latency of
communication operations. A pair of PEs exchange active messages of a certain
payload size between two nodes, each side sends one AM request and polls for
the other side’s AM request to arrive before moving on to the next iteration. We
compared the round-trip latency of our OpenSHMEM AM extension against
vanilla UCX AM to see how much overhead is added by the implementation
shown in Figure 1. The handler only sends an AM request to the other PE so
this benchmark does not measure unrelated workload.

From Figure 2, we can see that our implementation adds roughly 10 µs to
every round-trip of active messages, so it’s 5 µs of overhead per AM request.
This overhead is the result of fetching the OpenSHMEM AM handler from the
hash table of registered handlers, parsing the AM metadata, and other internal
operations. The drop in latency when the payload increases from 1K to 2K
is caused by UCX switching its communication protocols. It is worth noting
that the two worker approach slightly increases memory usage and slows down
the launching of OpenSHMEM applications, but once the application is up and
running, the impact should be minimal.

Message throughput benchmark results are shown in Figure 3, where one PE
sends a large amount of AM requests with a trivial handler to the other PE and
waits for the completion of all the requests. From the numbers, we can see that

OpenSHMEM Active Message Extension 11

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

10
5

10
6

Fig. 3. Active Message Inter-Node Throughput Results (UCX protocol switching
threshold = 1KiB).

the message rate of OpenSHMEM AM is consistently lower than that of vanilla
UCX AM, but the difference is within a reasonable range and is expected since
the OpenSHMEM runtime library performs extra work. Again, the sudden drop
of throughput in both implementations is caused by UCX switching protocols.

4.2 Tasking Framework Efficiency

Measuring the performance of a tasking framework is not easy: micro-benchmark
results do not translate well to real-world application performance; it is dif-
ficult to create comparable ports of mini-apps and above to different tasking
frameworks; even strong and weak scalability results can have different mea-
suring methodologies and interpretations. TaskBench [23] is a new benchmark
framework designed to provide a better way to compare different ways to do
task-based programming. TaskBench makes the process of creating benchmarks
(different DAGs and types of workload) orthogonal to the process of adding
a new tasking framework backend, thus enabling the comparison of different
programming models on equal grounds. Additionally, minimum effective task
granularity (METG) is proposed as a new metric to compare the performance
of tasking frameworks. METG is defined as the minimum task granularity that
can utilize the hardware effectively for a given combination of hardware and
workload, with a user definition of what is effective (usually being the ability to
reach a certain percentage of the computer’s peak performance). It is based on

12 Wenbin Lu et al.

10
0

10
2

10
4

10
6

10
8

0

10

20

30

40

50

60

70

80

90

100

Fig. 4. TaskBench Efficiency v.s. Task Granularity Results.

the assumption that application efficiency drops as task granularity decreases,
which is generally true due to the high scheduling cost of the execution of a large
task DAG.

To compare the METG of our active message extension against OpenSH-
MEM’s signal variable approach and MPI’s message-passing approach, we run
TaskBench on 8 nodes with 8 PEs/ranks per node (a total of 64 processes).
The DAG used here is a 256× 256 array of tasks with the all-to-all dependency
pattern and 16 bytes of input/output data along the edges. Each task runs a
compute-bound kernel with various numbers of iterations of synthetic computa-
tions to simulate tasks of different granularities. We use the MPI backend that
comes with the TaskBench package, a signal-and-get OpenSHMEM back-end,
and an OpenSHMEM active message back-end that uses AM requests to launch
tasks and complete dependencies.

The results are presented in Figure 4. Similar to the original paper’s method-
ology [23], we define the machine’s peak performance to be the FLOPS achieved
when using a very large task granularity and calculate the efficiency of a par-
ticular task granularity by dividing the FLOPS obtained at that granularity by
the peak FLOPS. From the achieved percentages of peak FLOPS show in Ta-
ble 1, we can see that our OpenSHMEM active message backend shows a clear
advantage (6% ∼ 24%) between task granularities from 210 to 216 iterations.
DAGs with longer tasks are compute-bound and DAGs with shorter tasks are
latency-bound, so we see similar results for all three backends. Also, from the

OpenSHMEM Active Message Extension 13

Task Granularity MPI Send/Recv OpenSHMEM Signals OpenSHMEM AM

1024 6.503% 10.41% 12.51%
2048 12.35% 19.11% 23.60%
4096 21.91% 32.59% 42.06%
8192 35.49% 48.78% 59.48%
16384 52.48% 65.49% 76.85%

32768 69.46% 79.22% 87.32%
65536 81.66% 88.05% 93.85%

Table 1. Percentage of Peak FLOPS Achieved at Different Task Granularities

embolden percentages in Table 1, we can see that to reach 80% of the peak
FLOPS of our test setup, the active message backend only requires about 1/2
of the task size of the signal-and-get backend, and about 1/4 of the task size
of the MPI send/receive backend. This shows that our implementation of the
proposed extension provides better performance for a wider range of task-based
applications than MPI and classic OpenSHMEM.

5 Conclusion and Future Work

In this paper, we present an OpenSHMEM active message extension and its im-
plementation that is designed to support basic task-based programming on its
own, and inter-operates well with shared-memory tasking frameworks. Our pro-
posed API is simple and adheres to the look and feel of existing OpenSHMEM
routines. The user is given full control of when and where the AM handlers are
executed, and the ability to perform selected communication operations from the
AM handlers. The two-worker approach used in our UCX-based prototype im-
plementation separates the initialization and completion of AM requests, which
is crucial for the flexibility of the AM handler.

The performance of the implementation of the active message extension was
evaluated using point-to-point micro-benchmarks and TaskBench. Evaluation
results show that our design adds a reasonable amount of overhead when com-
pared to vanilla UCX AM, and it beats both the MPI back-end and a signal-
and-get-based OpenSHMEM back-end of TaskBench in minimum effective task
granularity. The proposed active message extension narrows the functionality
gap between OpenSHMEM and other task-based programming models.

In the future, we plan to explore the feasibility and performance trade-off
of adding optional AM completion notifications, as it could further simplify de-
pendency management of the task DAG. We also plan to port mini-apps like
MiniAMR [19] to OpenSHMEM+X where X is a shared-memory tasking model
like OpenMP, Intel TBB [18] and Taskflow [9], and evaluate the real-world perfor-
mance benefits of our active message extension in load-imbalanced applications.

14 Wenbin Lu et al.

Acknowledgment

This research was funded in part by the United States Department of Defense,
and was supported by resources at Los Alamos National Laboratory, operated
by Triad National Security, LLC under Contract No. 89233218CNA000001.

The authors would also like to thank Stony Brook Research Computing and
Cyberinfrastructure, and the Institute for Advanced Computational Science at
Stony Brook University for access to the innovative high-performance Ookami
computing system, which was made possible by a $5M National Science Foun-
dation grant (#1927880).

References

1. Bachan, J., Baden, S.B., Hofmeyr, S., Jacquelin, M., Kamil, A., Bonachea, D.,
Hargrove, P.H., Ahmed, H.: UPC++: A High-Performance Communication Frame-
work for Asynchronous Computation. In: Proceedings of the 33rd IEEE Inter-
national Parallel & Distributed Processing Symposium. IPDPS, IEEE (2019).
https://doi.org/10.25344/S4V88H, https://escholarship.org/uc/item/1gd059hj

2. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
pp. 1–11 (2012). https://doi.org/10.1109/SC.2012.71

3. Bonachea, D., Hargrove, P.H.: GASNet-EX: A High-Performance, Portable
Communication Library for Exascale. In: Proceedings of Languages and
Compilers for Parallel Computing (LCPC’18). Lecture Notes in Com-
puter Science, vol. 11882. Springer International Publishing (October 2018).
https://doi.org/10.25344/S4QP4W, https://link.springer.com/chapter/10.1007/
978-3-030-34627-0 11, lawrence Berkeley National Laboratory Technical Report
(LBNL-2001174)

4. Chamberlain, B.L.: Chapel (Cray Inc. HPCS Language), pp. 249–256. Springer
US, Boston, MA (2011), https://doi.org/10.1007/978-0-387-09766-4 54

5. Chapman, B.M., Curtis, T., Pophale, S., Poole, S.W., Kuehn, J.A., Koelbel, C.,
Smith, L.: Introducing openshmem: Shmem for the pgas community. In: PGAS
(2010)

6. Daiß, G., Amini, P., Biddiscombe, J., Diehl, P., Frank, J., Huck, K., Kaiser,
H., Marcello, D., Pfander, D., Pfüger, D.: From piz daint to the stars: Simula-
tion of stellar mergers using high-level abstractions. In: Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3295500.3356221, https://doi.org/10.1145/
3295500.3356221

7. Dinan, J., Flajslik, M.: Contexts: A Mechanism for High Throughput Com-
munication in OpenSHMEM. In: Proceedings of the 8th International Confer-
ence on Partitioned Global Address Space Programming Models. pp. 10:1–10:9.
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2676870.2676872,
http://doi.acm.org/10.1145/2676870.2676872

8. Eicken, T., Culler, D., Goldstein, S., Schauser, K.: Active messages: A mechanism
for integrated communication and computation. In: [1992] Proceedings the 19th

OpenSHMEM Active Message Extension 15

Annual International Symposium on Computer Architecture. pp. 256–266 (1992).
https://doi.org/10.1109/ISCA.1992.753322

9. Huang, T.W., Lin, D.L., Lin, Y., Lin, C.X.: Taskflow: A general-purpose
parallel and heterogeneous task programming system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems pp. 1–1 (2021).
https://doi.org/10.1109/TCAD.2021.3082507

10. Jana, S., Curtis, T., Khaldi, D., Chapman, B.: Increasing computational asyn-
chrony in openshmem with active messages. In: Gorentla Venkata, M., Imam,
N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM and Related Technologies. En-
hancing OpenSHMEM for Hybrid Environments. pp. 35–51. Springer International
Publishing, Cham (2016)

11. Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Berge, A., Biddis-
combe, J., Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkha-
han, A., Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang,
T.: Hpx - the c++ standard library for parallelism and concurrency. Journal of
Open Source Software 5(53), 2352 (2020). https://doi.org/10.21105/joss.02352,
https://doi.org/10.21105/joss.02352

12. Kale, L.V., Krishnan, S.: Charm++: A portable concurrent object oriented sys-
tem based on c++. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications. p. 91–108. OOP-
SLA ’93, Association for Computing Machinery, New York, NY, USA (1993).
https://doi.org/10.1145/165854.165874, https://doi.org/10.1145/165854.165874

13. Lu, W., Curtis, T., Chapman, B.: Enabling low-overhead communication in multi-
threaded openshmem applications using contexts. In: 2019 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM). pp. 47–57 (2019).
https://doi.org/10.1109/PAW-ATM49560.2019.00010

14. NVSHMEM. https://developer.nvidia.com/nvshmem
15. OpenSHMEM Application Programming Interface Version 1.4. http:

//openshmem.org/site/sites/default/site files/OpenSHMEM-1.4.pdf
16. Open Source Software Solutions (OSSS) OpenSHMEM Implementation on top of

OpenUCX (UCX) and PMIx. https://github.com/openshmem-org/osss-ucx
17. Ozog, D., Rahman, M.W.u., Taylor, G., Dinan, J.: Designing, implementing, and

evaluating the upcoming openshmem teams api. In: 2019 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM). pp. 37–46 (2019).
https://doi.org/10.1109/PAW-ATM49560.2019.00009

18. Pheatt, C.: Intel® threading building blocks. J. Comput. Sci. Coll. 23(4), 298
(Apr 2008)

19. Sasidharan, A., Snir, M.: Miniamr - a miniapp for adaptive mesh refinement (2016)
20. Scherer, W.N., Adhianto, L., Jin, G., Mellor-Crummey, J., Yang, C.: Hiding latency

in coarray fortran 2.0. In: Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. PGAS ’10, Association for Computing
Machinery, New York, NY, USA (2010). https://doi.org/10.1145/2020373.2020387,
https://doi.org/10.1145/2020373.2020387

21. Schuchart, J., Bouteiller, A., Bosilca, G.: Using mpi-3 rma for active messages.
In: 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI). pp. 47–56 (2019).
https://doi.org/10.1109/ExaMPI49596.2019.00011

22. Shamis, P., Venkata, M.G., Lopez, M.G., Baker, M.B., Hernandez, O., Itigin, Y.,
Dubman, M., Shainer, G., Graham, R.L., Liss, L., et al.: Ucx: an open source frame-
work for hpc network apis and beyond. In: 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects. pp. 40–43. IEEE (2015)

16 Wenbin Lu et al.

23. Slaughter, E., Wu, W., Fu, Y., Brandenburg, L., Garcia, N., Kautz, W., Marx,
E., Morris, K.S., Cao, Q., Bosilca, G., Mirchandaney, S., Lee, W., Treichler, S.,
McCormick, P., Aiken, A.: Task bench: A parameterized benchmark for evaluating
parallel runtime performance. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’20, IEEE
Press (2020)

24. Zhao, X., Balaji, P., Gropp, W., Thakur, R.: Mpi-interoperable generalized active
messages. In: 2013 International Conference on Parallel and Distributed Systems.
pp. 200–207 (2013). https://doi.org/10.1109/ICPADS.2013.38

	OpenSHMEM Active Message Extension for Task-Based Programming

