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Circuit quantum electrodynamics is one of the most promising platforms for efficient quantum
simulation and computation. In recent groundbreaking experiments, the immense flexibility of super-
conducting microwave resonators was utilized to realize hyperbolic lattices that emulate quantum physics
in negatively curved space. Here we investigate experimentally feasible settings in which a few
superconducting qubits are coupled to a bath of photons evolving on the hyperbolic lattice. We compare
our numerical results for finite lattices with analytical results for continuous hyperbolic space on the
Poincaré disk. We find good agreement between the two descriptions in the long-wavelength regime. We
show that photon-qubit bound states have a curvature-limited size. We propose to use a qubit as a local
probe of the hyperbolic bath, for example, by measuring the relaxation dynamics of the qubit. We find that,
although the boundary effects strongly impact the photonic density of states, the spectral density is well
described by the continuum theory. We show that interactions between qubits are mediated by photons
propagating along geodesics. We demonstrate that the photonic bath can give rise to geometrically
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frustrated hyperbolic quantum spin models with finite-range or exponentially decaying interaction.
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One of the greatest challenges of modern physics is to
formulate a consistent theory that unifies general relativity
and quantum mechanics. A possible way to shed light on
this problem is to study well-controlled table-top quantum
simulators that mimic curved geometries [1-10]. Lattices of
microwave resonators in circuit quantum electrodynamics
(QED) emerged recently as a particularly promising plat-
form [11-13]. The high control and flexibility of this
system make it possible to incorporate spatial curvature in
different models with strong quantum effects. Previous
studies focused on understanding the properties of photons
living on the hyperbolic lattice [14-24]. In this Letter, we
study the impact of negative curvature on various observ-
ables of a hybrid system consisting of qubits and photons
on a hyperbolic lattice.

For decades, the spectra of hyperbolic graphs have been
studied by mathematicians and computer scientists due to
their unusual properties [25-32]. Recently, hyperbolic
graphs have also attracted the attention of the quantum
error correction community [33-37]. The hyperbolic spec-
trum can be probed in experiments through transmission
measurements [14]. Here, we propose to use qubits to probe
the local properties of hyperbolic graphs.

Classical spin models on hyperbolic lattices were studied
in Refs. [38—44]. However, the quantum spin model
problem [45-48] is more challenging due to the interplay
of quantum mechanics with noncommutative geometry and
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strong geometric frustration. In the spirit of quantum
simulation, we propose to use a hybrid photon-qubit system
to engineer (i) finite-range localized photon-mediated
interactions between spins, and (ii) exponentially decaying
photon-mediated interactions. Finally, our work is related
to recent studies of emitters interacting with structured
quantum baths [49-53].

System.—We study a circuit QED system with photons
and qubits on a hyperbolic lattice G. The photons are
modeled by a tight-binding Hamiltonian, and the qubits, at
positions i, are approximated by two-level systems with
spin-1/2 operators o; 6; = | 1)(1 |;- The full Hamiltonian
in the rotating-wave approximation and rotating frame
reads as

H=nY | )1 |i+9)_(ofaj+He)+ Hy, (1)

ieS jes
Hy, =t Z aja;, (2)

with alT the photon creation operator, g the coupling

between photons and qubits, and A the difference between
the qubit frequency and the frequency of a photon on a
single site. The set S comprises the qubit sites and G the
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hyperbolic lattice. For concreteness, in the following we set
the hopping t = 1.

The spectrum of flph is bounded from below and above
[54,55] [see Fig. 1(a)], and hence the spectrum of H
consists of scattering eigenstates together with localized
photon-qubit bound states [49,56—60]. For a single qubit at
position i, the single-excitation eigenstate energies  are
given by the solutions of

0 = A+ ¢G;(w), 3)

where G;;(w) = (0 - Iﬁlph)i‘j1 is the photonic Green func-
tion. We denote the lowest eigenvalue of & ph Or lower band
edge (LEBE) by E, < 0. For arbitrary A, Eq. (3) always
permits two solutions outside the photonic band (corre-
sponding to the bound states), and we focus in the
following on the lower bound state with @ = Ep < A.
For weak coupling (g < |Ey—Al|), we have Eg~
A + ¢*G;;(A), and the bound-state wave function consists
mostly of the spin component such that
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FIG. 1. (a) Single-excitation single-qubit bound state. Color

indicates the amplitude of the wave function. Gray lines denote
the connectivity of photonics sites. One site is coupled via g to a
qubit (gray circle). Inset: the photonic spectrum as a function of
the eigenstate index j. All results are for g = 0.05 and A = -3.2
below the band edge at E, ~ —2.9. (b) Comparison of photonic
amplitudes of the lowest eigenstate as a function of the distance
d(zy, z;) from the qubit at z;—exact y; (diamonds), perturbative
expressions from Eq. (4) based on discrete (squares) and
continuous (dots) Green function. (c¢) and (d) The density of
the photonic amplitude of a two-spin single-excitation bound
state illustrating the photon-mediated interactions between spins
on the graph (c) and in the continuum (d). We see that photons
follow the shortest path between two spins [positioned at two
black dots in (c)]—the geodesic shown as a (dashed) semicircle
on the Poincaré disk.

lyg)~|1.0) + QZGU(A)“;

Jj€g

1,0). (4)

When the experimentally relevant energies are close to
the LEBE, w—Ey <t, we can capture the photonic
part by a continuum model [16] on the Poincaré disk
with metric ds? = (2x)?(dx* + dy?)/(1 — r*)? and curva-
ture radius k = 1/2 [61]. The finite hyperbolic lattice is
mapped to a hyperbolic disk of radius L < 1, where L =

\/N/(N + Ny) for N sites with N a constant [16], so that
L — 1 for large lattices. For concreteness, we consider the
{7, 3} lattice based on regular heptagons with coordination
number 3, with Ny = 28, and lattice constant 7 = 0.276.
However, our results apply (i) to other hyperbolic {p, ¢}
lattices by substituting the corresponding value of 4, and
(i) to line graphs of {p,q} lattices [54] in the long-
wavelength regime. We denote the hyperbolic distance by
d(z.2') = karcosh(1 +{[2[z = 2'P]/[(1 = [z[*) (1 = [']*)]})-
The number d(z;, z;), intuitively, quantifies the number of
hops needed to get from z; to z; on the graph.

The photon spectrum is continuous on the Poincareé disk
and given by Ey = E; + (1/M)|k|?, with momentum Kk,
effective photon mass M = (4/3h?) [16]. The bound-state
condition [Eq. (3)] becomes Egz = A + ¢*Ga(z;, 2i, E),
with G, (z,7/,w) the continuum approximation of the
photon Green function. The subscript A indicates the need
to introduce a large-momentum cutoff A o h~!, because
the continuum Green function is not well defined for z = 7/
[16]. This is analogous to the well-known regularization of
bound states for parabolic bands in two Euclidean dimen-
sions [62,63]. The value of A can be fixed through a
renormalization condition, yielding A ~3h~' [64]. The
bound-state wave function for a qubit at z;, for arbitrary
L <1 and energies close to the LEBE, is

. d’z
i) (o = [ 2@ @) 1Lo). 9

with u(z) = MgG(z;,z,Eg) and = +/x/28g. In Fig. 1(b),
we show the photonic amplitude |u(z)| of the bound-state
wave function using both the continuum expression for
GA(zi,zj,EB) from Ref. [16] and lattice Green function
G;;(Eg), which both agree well with the exact result.

Setting L = 1 in the continuum model, i.e., considering
an infinite system, often leads to simple analytical for-
mulas, but assumes the absence of a system boundary.
Since boundary effects are not subleading in hyperbolic
space, results obtained for L = 1 can differ qualitatively
from those for any L < 1, which is the case for our system.
We are primarily interested in contributions of weakly
coupled spins located in the bulk, sufficiently far away from
the boundary. We find that some observables are well
captured by the L = 1 limit, whereas others need to be
computed for L < 1. The continuum Green function for
L =1 reads
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n d*k  tanh(zk/2)
G Liv L E - — 5 6

where k = |k|. The tanh term in the numerator [65] is due
to the negative curvature of space. In practice, |Ez — Eq| >
M~ because of the large value of the mass, and we can
neglect the tanh factor to approximate G,(z;,z;, Ep)~
(M/112)In(|Eg — Eo|M/A?).

Curvature-limited  correlations.—The  continuum
approximation enables us to analytically quantify the size
of the single-particle bound state. For this purpose, we
expand [64] the Green function for large hyperbolic
distance d(z,z') > h, leading to

/
Ga(z.2. ) ~ G (o) e><p< uitar: >>,

- 24(w)

which confirms the exponential decay shown in Fig. 1(b).
The correlation length & depends on the system parameters
through the frequency w, and in the following we neglect a
weak residual dependence on z and 7’ from boundary
effects. In the continuum approximation and in the limit
L — 1, the lower edge of the photonic band is located at
Ey= -3+ (1/M) [16]. As @ approaches E; from below,
for qubits coupled to a Euclidean lattice, the correlation
length diverges as & « (Ey—w)~"/? [50,56]. In stark
contrast, on the hyperbolic lattice, correlations are cut
off by the curvature radius, and ¢ < k remains finite. In
particular, for L = 1 and w < E, we find [64] that

(7)

K
§N1+,/M(E0—w)' ®)

Spin relaxation and photonic density of states (DOS).—
We propose a local probe—an excited qubit with frequency
within the band—to measure properties of hyperbolic
graphs. For very weak coupling g, one can couple to only
a few eigenstates and extract the spectral properties from
the time dependence of the excited state population. On the
other hand, by using larger g, such that a qubit couples to
many states, the dynamics of the initially excited spin
corresponds to the exponential decay governed by the
graph spectrum. We concentrate on the latter in the
following.

The spontaneous emission from the qubit can be
described by a Markovian Lindblad master equation with
the decay rate I' = j(A), where j(w) =27 |9k |*6(w —
@y ) is the spectral function. In the low-energy continuum

approximation we have g, = g+/(7/28)|wy (z;)] with
wi(z) the eigenfunctions of the hyperbolic Laplacian
[64] and wy = E, + (1/M)|k|?. Furthermore, for L = 1,
we have

. M
Jjr=1(@) = 7~ ¢’ tanh 5

(—”W). o)

We see that, due to the tanh factor, j(w) is qualitatively
different in curved space than in 2D Euclidean space where,
for quadratic dispersion, j(w) lacks this factor and is thus
constant. However, the range of energies for which curved
and flat space differ is restricted to a narrow energy
range SOE;_| =1/M <« 1 close to the LEBE. Note
that, for L = 1 and within the continuum approximation,
j(w) is directly proportional to the DOS p, p;—; =
Nntanh[(z/2)+/(®w — Eq)M| with n = (M/112), as the
energy dependence from g, drops out in the angular
average [64], as is often the case in the Euclidean geo-
metry [52].

Close to the LEBE, the photonic spectrum can be
computed from the hyperbolic Laplacian A, for any
L < 1 using Dirichlet boundary conditions. The DOS of
eigenvalues ¢ of the Laplacian follows Weyl’s law py, (¢) ~
(area/4rx) — [circ/(87m+/€)] + O(e™!) [66-69], with area =
7L*/(1 = L?) and circ = 2zL /(1 — L?) the area and cir-
cumference of the finite hyberbolic disk, respectively.
Using ¢ = M(w — E,), we arrive at

L L/h 1
pwlw) 3(1-12) 2V3(1-L%)Vo—E,

Note that the leading, constant term is characteristic for
parabolic bands in two dimensions, but the subleading
correction is important even in the large-system limit—
which is in dramatic contrast to flat space. Importantly,
setting L = 1 in py, does not reproduce py_;.

In Fig. 2(a), we plot the exact normalized cumulative
DOS, P(w) = (1/N) [¢ dup(v), from which we see that P
shows Weyl scaling and does not change with system size.
We confirm that the second term in Weyl’s law [Eq. (10)] is
non-negligible in a wide range of energies, 5Ey,, which is
much greater than 6E;_;. The neglect of boundary effects

(10)
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FIG. 2. Comparison of spectral properties from analytic limits
to numerics of different-sized graphs in the long-wavelength limit
near the LEBE. Graphs are characterized by the number  of
concentric rings of heptagons, where £ =1 corresponds to a
single heptagon. (a) The cumulative DOS P(w) has data points
nearly overlapping for different . (b) The cumulative J(w) is less
smooth, but asymptotically (£ — oo) approaches J;_;(w): The
root-mean-square error with respect to J;_; for @ < -2 is
0.0066, 0.0052, and 0.0044 for £ = 5, 6, and 7, respectively.
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FIG. 3. (a) Comparison of analytical expressions and numerical
results (with the bin size Aw = 0.15) for j and p. (b) Comparison
of the numerical (with Aw = 0.3) j and p with the fitted I" within
time € [0, 15] (error bars correspond to the standard deviation) for
g=03,7="7.

in p;_; does not reproduce the lattice DOS. Note that the
leading term in py, is the same as the large-w value of
pr—1(w), which is equal to Nu.

Figure 2(b) shows the cumulative spectral function
J(w) = |, £ dvj (v)/¢*. Close to the band edge, we observe

that J(w) with increasing ¢ is well approximated by a
constant j(w). Hence, J(w) qualitatively agrees [70] with
Ji—1(w), because both lead to a nearly constant value of
Jj(w). We conclude that, since j(w) is a local quantity, it is
only weakly influenced by the boundary physics of hyper-
bolic lattices and can be described by the continuum L = 1
theory, which is an important and useful result for future
experimental and theoretical studies.

The presence of the lattice leads to a significant differ-
ence between p and j for large A away from the LEBE [see
Fig. 3(a)], whereas they are directly proportional in the low-
energy continuum approximation for L = 1. We numeri-
cally extract the decay rate I" on the lattice from the
dynamics of an initially excited spin with no photons,
however, with significant error bars for some detunings A
corresponding to the nonexponential decay. Due to the
limited lattice sizes accessible in numerics, we analyzed
g=0.3 to ensure that the qubit is coupled to many
photonic modes. We find that I' x j(w) rather than « p
[see Fig. 3(b)]. The deviation between I" and j is caused by
(1) the finite number of states we couple to, (ii) edge effects
such as reflection from the boundary, (iii) fast variation of
the photonic density of states with energy, and (iv) effects
beyond Fermi’s golden rule due to g being comparable to
the hopping strength ¢+ = 1. These effects can also contrib-
ute to the error bars in Fig. 3(b). We note that for larger
systems, one could either suppress or better establish
nonexponential decay.

Single-excitation bound state for 2 qubits.—We now
consider 2 qubits located at positions z; and z;, each with
frequency A. In this case, the situation is slightly different
than for 1 qubit. There is always one symmetric bound state
below the LEBE for all A, but for certain unfavorable
values of A, distance between qubits, or coupling strength,

E
-2.8

-34

-4.0

FIG. 4. Energy spectrum (a) as a function of g for A = -2.5
and next-nearest neighbors separated by z = 0.5, and (b) as a
function of A for g = 0.5 and nearest neighbors separated by
z="h=20.276. All lattice results are for # =6, which we
compare with symmetric (lower black dashed curve) and anti-
symmetric (upper red dashed) 2-qubit bound states.

the second antisymmetric bound state melts into the
continuum of states. This is analogous to antisymmetric
bound states in 1D [49]. The energies of two single-
excitation bound states (E7) are given by the solutions of

Ej —A-3,(E5) F 2,(Ep) =0, (11)

with £;;(w) = ¢*G,j(w). We find good agreement between
the solution using the continuum Green function
Ga(zi,zj,w) and the results using the lattice Green
function G;;(w) (see Fig. 4).

The bound-state wave functions in the continuum are

49
W) = cx [(Uf +o))- 3th2/[GA(z,zl;E§)
Z

: GA<z,zj;E§>1a*<z>] 1110, (12)

In Figs. 1(c) and 1(d), we plot the photonic density for the
lowest (i.e., symmetric) bound state |w}) as a function of
position z. On a lattice, z takes only discrete values z;, and
nph(zi) is given by 92 Zw,w’e{l,j} Gwi (EB)Gw’i(EB>‘ We see
that the photons mediating the interactions follow a
geodesic—the shortest path between the two spins.

Effective spin models.—The coupling of spins to the
hyperbolic photonic bath leads to an effective spin-spin
interaction that changes as the spin frequency is tuned. For
spin frequencies satisfying E, — A > g, we integrate out
the hyperbolic photons and arrive at the effective spin-spin
Hamiltonian

V=g GyAo7o] (13)
ij

describing flip-flop interactions. Here terms with i = j
introduce an on site energy shift for the qubits. For i # j,
we can use the continuum approximation for the Green
function G;;(w). Equation (7) reveals that the interaction
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FIG. 5. Spin model in the vicinity of the flatband for the

heptagonal kagomelike line graph with r = —1 [14]. (a) The
photonic spectrum as a function of the eigenstate index j. (b) We
plot the interaction strength as a function of qubit position,
assuming the position of the second qubit to be where the largest
dot is. The dot color denotes the sign of the interactions [green
(yellow) is +(—)], whereas its diameter is directly proportional to
the interaction strength.

decays exponentially with a correlation length £ < x = 1/2
that depends on A.

For simplicity of presentation, we focused on hyperbolic
{p,q} graphs. Conveniently, their long-wavelength phys-
ics is the same as that of their line graphs [71], which
naturally appear in cQED experiments [14]. Line graphs,
additionally, feature a flatband of localized states at energy
@pai» Which is near the LEBE for ¢ < 0 [14]. In particular,
for lattices based on polygons with an odd number of
vertices, these flatbands are gapped [see Fig. 5(a)]. Due to
the gap, we can choose the qubits to be coupled effectively
only to the flatband. Because flatband eigenstates have
support only on two neighboring polygons [14], the
photon-mediated interactions between the spins are strictly
finite range. The spin Hamiltonian, in terms of the wave
functions ¢, describing the localized states in the flatband,
reads as

2
0 g -
V—ig di(z;)pi(zi)o70}. 14

A — wqy k.ij k< j) k< ) ! ( )

Figure 5 illustrates that the interactions are of finite range,
with the sign of the interactions oscillating rapidly with
distance (see Supplemental Material [64]). Together with
possible geometric frustration, this leads to a highly
frustrated spin model, which may lead to exotic spin-liquid
phases.

Outlook.—Though we assumed two-level qubits, the
multilevel structure of different superconducting qubits is
worth exploring, for example, of transmon [72] or fluxo-
nium [73]. In a regime in which the anharmonicity of the
transmon is not large enough to neglect higher excited
levels, we envision a generalized hyperbolic Bose-Hubbard
model with long-range hopping. On the other hand,
fluxonium qubits offer larger anharmonicities as well as
enable Raman and microwave-activated (possibly time-
dependent) control [74,75]. Using our formalism, it is

exciting to study the impact of spatial curvature on the
creation and detection of entanglement, fractional quantum
Hall phases [17,76], giant atoms [77], frustrated and/or
disordered spin and bosonic models [78,79], and BCS
theory involving flatbands [80]. Finally, we envision
the possibility of engineering a quantum simulator of the
AdS-CFT correspondence [81,82].
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