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Custodial symmetries are common in the Standard Model of particle physics. They arise when
quantum corrections to a parameter are proportional to the parameter itself. Here, we show that a
custodial symmetry of the chiral type is also present in a classical Su-Schrieffer-Heeger (SSH) electri-
cal circuit with memory. In the absence of memory, the SSH circuit supports a symmetry-protected
topological edge state. Memory induces nonlinearities that break chiral symmetry explicitly and
spreads the state across the circuit. However, the resulting state is still protected against pertur-
bations by the ensuing custodial chiral symmetry. These predictions can be verified experimentally
and demonstrate the interplay between symmetry and memory.

A symmetry is said to be custodial if, despite be-
ing explicitly broken, it still protects physical quantities
(e.g. the mass of particles) from large quantum correc-
tions [1, 2]. Symmetries of this type appear in the Stan-
dard Model of particle physics. They arise when quan-
tum corrections to a parameter, as introduced by some
symmetry-breaking term in the Lagrangian (e.g. a mass
term), are proportional to the parameter itself.

For instance, a custodial SU(2)V symmetry protects
the mass relation between the electroweak W and Z
gauge bosons from large quantum corrections; or a custo-
dial chiral symmetry protects fermion masses from large
radiative corrections.

However, symmetry (like topology) is a concept that
extends far beyond quantum systems. As such, it is nat-
ural to ask whether custodial symmetries can emerge in
classical systems as well. In this Letter, we answer this
question in the affirmative. In particular, we use the 1D
Su-Schrieffer-Heeger (SSH) model with memory, as re-
alized in electrical circuits with resistive memories [3],
as a prototypical example where this type of symme-
try can be detected experimentally. The SSH model is
a paradigmatic symmetry-protected topological insula-
tor [4, 5], namely it realizes a state of matter with a
quantized topological indicator, known as the winding
number, associated with a symmetry (chiral in the case
of the SSH model) and a finite gap (in the thermody-
namic limit).

In fact, there have been studies of electric circuits that
simulate topological systems [6–19]. The simplest such
circuit can be realized with an alternating series of ca-
pacitors, C1 and C2, and inductors, L (Fig. 1). The ra-
tio C2/C1 controls the existence of a symmetry-protected
topological mid-gap state at one edge of the circuit. This
state can be easily detected as a peak in the impedance
as a function of frequency (Fig. 2a), and is localized at
the edge of the circuit, as a plot of the voltage drop at the
nodes easily shows (Fig. 2b). This state is robust against
local perturbations that do not break the chiral symme-
try. We would then expect that if we introduced elements
in the circuit that explicitly break such a symmetry, the
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Figure 1. Schematics of (a) standard and (b) memristive SSH
circuit. The numbers in (a) represent the node number. In
simulations, we used C1 = 0.22 µF (blue (odd) capacitors),
C2 = 0.1 µF (red (even) capacitors), and L = 10 µH (all
inductors).

edge state would disappear as the perturbation strength
increases.

Here, we introduce such elements in the form of
experimentally-realizable resistors with memory (mem-
ristive elements) [3] in parallel with the capacitors
(Fig. 1(b)). (The case of memristive elements in se-
ries with the capacitors is reported in the Supplementary
Material.) Such elements introduce non-Hermiticity and
strong nonlinearities, and break chiral symmetry explic-
itly. In fact, they delocalize the mid-gap state along the
whole circuit. However, the resulting state is still robust
against perturbations. We will show that the reason for
this robustness is the reduction of the original chiral sym-
metry to a custodial status when memristive elements are
added.

SSH circuit – One way of emulating symmetry-
protected topological systems via electric circuits [9] is
based on the relation I = GV for idealized linear and
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Figure 2. Resistive/memristive SSH circuit simulations. (a) Impedance Z10 of the circuit in Fig. 1(b) for different values of
the resistance of standard resistors. (b) Maximum values of the node voltage at ν = 89 kHz. (c) Color map representation
of R = 103 Ohms calculation in (b). (d) Impedance of the circuit in Fig. 1(b) for different values of the low memristance
state Ron. (e) Maximum values of the node voltage at ν = 89 kHz. We used RM (t = 0) = 104 Ohms, Roff = 107 Ohms,
α = 105 (V·s)−1, Vt = 0.3 V. (f) Color map representation of Ron = 103 Ohms calculation in (e).

memoryless elements. Here, I and V are the profiles of
the current and voltage along the circuit, and G is the
conductance matrix. By connecting alternating capaci-
tors C1 and C2 in a circuit like the one shown in Fig. 1a,
a classical analogue of the 1D SSH model [9], can be real-
ized. The SSH circuit with periodic boundary condition
leads to the following conductance matrix in the Bloch
form:

G = iω[dx(k)σx + dy(k)σy + h012]. (1)

Here dx(k) = −[C1 + C2 cos(k)], dy(k) = −C2 sin(k),
h0 = [− 1

ω2L +C1+C2], 12 is the 2×2 identity matrix, and
σx,y,z are the Pauli matrices. The momentum k is within
the first Brillouin zone. An inductor L connected to the
ground has been included in each cell. The conductance
matrix (1) thus plays the role of the Hamiltonian. In the
ideal situation, namely in the absence of memory, dissi-
pation, and/or other chiral symmetry-breaking elements,
the eigenvalues of the conductance matrix resemble the
energy spectrum of the quantum SSH model [9]. The two
energy bands of the quantum model become, in the elec-
trical circuit analogue, two continua of the conductance
as a function of the driving frequency ω.

As mentioned, the mid-gap state may emerge when the
lattice has open boundary condition (see Fig. 1). In this

case, a localized edge state emerges near the left edge if
C2/C1 < 1, and can be detected experimentally by mea-
suring, e.g., the two-point impedance, Zs0 = (Vs−V0)/I,
between the source, s, and ground, 0, nodes of the cir-
cuit when the total current I flows through it. The
impedance then exhibits a peak with continua on both
sides (Fig 2a). The localized state is associated with
the winding number obtained from the equivalent system
with periodic boundary condition via the bulk-boundary
correspondence [4]. The band (or bulk) states, mean-
while, contribute to clusters of small peaks on both sides
and away from the localized-state peak (see the Supple-
mentary Material). We will focus on the in-gap localized
state hereinafter.

To more clearly see the emergence of the localized edge
state, let us write explicitly the conductance matrix for
the SSH circuit shown in Fig. 1 with N unit cells, each
containing two capacitors and one inductor. Since the
voltage in Fig. 1 is applied to node 1 while node 0 is
grounded, the conductance matrix starting from node 1
has the form G = A1N−iωB, where A = iω[−(ω2L)−1+
C1 + C2] contributes to a uniform shift of the spectrum,
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and

B =


0 C2 0 0 · · ·
C2 0 C1 0 · · ·
0 C1 0 C2 · · ·
...

...
...

...
. . .

 . (2)

By defining C = −C2/C1, a voltage profile Vloc =
(V1, V2, · · · )T = (1, 0, C, 0, C2, 0, · · · )T is an eigenstate of
G at the resonant frequency ω̃ = 1/

√
L(C1 + C2). Here

the superscript T denotes the transpose. When |C| < 1,
we then clearly see that the voltage profile shows an ex-
ponential decay towards the boundary opposite to the
voltage source [20]. Therefore, Vloc is a localized state
at the left edge of the circuit. This state can be seen
in Fig 2b (see also Fig. S6 in the Supplementary Mate-
rial) in the configuration when the current is applied only
to the first node. In addition, the diagonal part of the
above matrix is uniform and can be separated out, indi-
cating that the chiral (sublattice) symmetry is respected.
To see this, let us define the following projection opera-
tors P1 and P2 into the odd and even sites, respectively:
P1 = diag(1, 0, 1, 0, · · · ) and P2 = diag(0, 1, 0, 1, · · · ).
Then, (P1 − P2)B(P1 − P2) = −B and the matrix B
respects chiral symmetry.

SSH model with memory – We now show that this pic-
ture of band-topology/chiral symmetry changes dramat-
ically in the presence of strong nonlinear effects in the
form of, say, memristive elements in parallel with the ca-
pacitors (Fig. 1b) To this end, let us employ a widely
used model of memristive elements that reproduces the
main features of experimentally-realized devices [3, 21]:

RM = Roff (1− x) +Ronx, (3)

dx

dt
= α[θ(V − Vt)(V − Vt) + θ(−V − Vt)(V + Vt)].(4)

Here RM is the memory resistance, Ron and Roff are
its limits, x ∈ [0, 1] is the internal state variable, Vt is
a positive threshold voltage, θ(v) is the Heaviside step
function, and α is the switching rate. When combined
in parallel with the capacitor and driven by V = V0e

iωt,
we have I = [iωC + (1/RM )]V for a capacitor-resistor
pair. Therefore, we can group the contributions from
the resistors by defining C̃n = Cn + (iωRM,n)−1 for n =
1, 2, where RM,n is the memory resistance of the n-th

memristive elements. This implies that In = iωC̃nVn.
Hence, one may replace C1, C2 in Eq. (1) by C̃1, C̃2.

Due to the memory effect from the memresistive el-
ements, a full analysis of the system requires the (nu-
merical) integration over time. However, to extract the
main features observed in the simulations, we will use
an approximate Fourier analysis (justified in the Sup-
plementary Material). By generalizing G to the ad-
mittance matrix and assuming the form I = GV still
holds for a frequency component, the first thing we no-
tice is that the presence of the memristive elements

leads to a complex-valued conductance matrix because
the modified circuit dissipates energy. If we write again
G = dxσx + dyσy + h012, we then see that the trajec-
tory (dx, dy) now becomes a path in a complex space due
to the presence of the memory elements, namely in a
4-dimensional (real) space, not 2-dimensional as before.
While a loop in a 2-dimensional plane enclosing the origin
cannot be smoothly transformed into a loop that does not
enclose the origin, a loop in three or higher dimensions
can smoothly deform around the origin without obstruc-
tion.

Therefore, the winding number of the original (memo-
ryless) SSH model is no longer faithful in characterizing
the topology of the (non-Hermitian) memcircuit. More-
over, nonlinear effects come from the dependence of the
memory resistance RM on the voltage (Eq. (3)). While
it is possible to characterize the topology of some non-
Hermitian systems by using a biorthogonal basis [22, 23],
the presence of nonlinear effects in the memory circuit
invalidates the construction of a basis for linear super-
position [24]. Therefore, the SSH circuit with memory
elements defies the construction of conventional topolog-
ical quantities.

On the other hand, localized edge states in tight-
binding models, known as Shockley-Tamm states [25, 26],
may still arise due to symmetry and are not necessar-
ily associated with the band topology. For a 1D lattice
with nearest-neighbor interactions and alternating site
strengths, the system has a chiral (or sublattice) sym-
metry. As explained previously, the symmetry can be
observed by either constructing the projectors PA, PB

in real space or checking if the Bloch Hamiltonian an-
ticommutes with an operator. For the SSH circuit with
periodic boundary condition, σz anticommutes with the
diagonal part of the conduction matrix. Therefore, the
chiral symmetry leads to pairs of the eigenstates. For
the system shown in Fig. 1, a localized state may emerge
with its energy pinned inside the bandgap in order to be
consistent with the chiral symmetry. If we had regular
resistors (RM = R = constant) in parallel with the ca-
pacitors, we would introduce dissipation, rendering the
system non-Hermitian, invalidating the winding number.
However, the SSH circuit with regular resistors remains
linear, and chiral symmetry still holds after the uniform
diagonal part is factored out. Therefore, the edge state
is still protected by the chiral symmetry [27], and the
impedance shows a broadened peak until the parallel re-
sistance R is small enough that the current will bypass
the capacitors altogether (see Fig. 2a, where the peak de-
creases dramatically when we reduce R from 104 Ohms
to 100 Ohms).

Custodial chiral symmetry – If we now introduce mem-
ory into the resistors in parallel with the capacitors
(Fig. 1b) two additional effects emerge. The nolinear-
ity introduced by these elements breaks chiral symmetry
explicitly: σzBσz 6= −B, where B is the admittance ma-
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trix after the uniform diagonal part is removed. The SSH
edge state is then no longer an eignestate of the conduc-
tion matrix. Nonetheless, we find the original SSH edge
state is still present (as seen in the impedance curve of
Fig. 2c) but spreads across the circuit (Fig. 2d). How-
ever, this effect emerges from the diagonal component of
the conductance matrix. To see this, let us add alter-
nating memristive elements RM,1 and RM,2 to the cir-
cuit [28]. As discussed before, this leads to the effective
capacitors with C̃i(xj) = Ci(xj) + [iωRM,i(xj)]

−1, with
i = 1, 2. Here xj labels the node location of the element
with voltage V (xj) as shown in Fig. 2(d).

To the lowest order in RM,i, we may use Vloc as the
input voltage to get the profile of RM,i(xj). The inho-

mogeneous RM,i(xj) then leads to G = Ã(x1)1N + B̃.

Here Ã(xj) = iω[−(ω2L(xj)
−1 + C̃L(xj−1) + C̃R(xj+1)],

where C̃L and C̃R are the capacitor to the left and to the
right of the node, and

B̃ =


0 C̃2(x2) 0 0 · · ·

C̃2(x1) α1 C̃1(x3) 0 · · ·
0 C̃1(x2) α2 C̃2(x4) · · ·
...

...
...

...
. . .

 . (5)

Here, αj = Ã(xj+1)− Ã(x1). The eigenstate of the con-
ductance matrix is now

Vdis = (1, 0,− C̃2(x1)

C̃1(x3)
, α2

C̃2(x1)

C̃1(x3)C̃2(x4)
, · · · )T , (6)

spreading over the whole circuit, consistent with the re-
sults of Fig. 2d. By comparing the matrix B̃ above
with the matrix B of Eq. (2), we see that the nonlin-
ear terms violate the uniform diagonal of the linear case,
thus breaking chiral symmetry.

However, note that the chiral-symmetry breaking term
is diagonal and depends on 1/RM . In fact, we can de-
fine its strength by taking the diagonals of the matrix
Eq. (5): ∆ = diag(0, α1, α2, · · · ). Using the projection
operators, P1 and P2, we have previously defined, we
have (P1 − P2)∆(P1 − P2) = ∆, so the conductance in
the presence of memory elements does not respect the
full chiral symmetry, but its violation is suppressed by
increasing the magnitude of the memristances RM .

In field-theory language we would say that the sym-
metry is broken by a “mass term” and its strength is
proportional to the mass itself. This is precisely the def-
inition of custodial symmetry [1]. We thus expect that
the delocalized state (6) is still protected against pertur-
bations and located in the mid-gap of the continua. This
is shown explicitly in Fig. 3, where we randomly perturb
the values of the capacitors. Even up to perturbations of
30%, the delocalized state is still clearly visible via the
peak in the impedance. (See the Supplementary Material
for details.)

Conclusions – In conclusion, we have shown that the
concept of custodial symmetry holds also in the classical
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Figure 3. Memristive SSH circuit simulations with a capaci-
tance distribution of 15% and 30%. (a) Impedance as a func-
tion of frequency found averaging 100 random realizations
of the circuit. (b) and (c) present the voltage distributions
for two selected frequencies. The parameters of memristive
elements are the same as in Fig. 2: Ron = 102 Ohms and
RM (t = 0) = 104 Ohms.

case. In particular, we have used a 1D electrical cir-
cuit with memristive elements to emulate the SSH model
with memory effects. We have shown both analytically
and numerically that memory induces nonlinearities that
break chiral symmetry explicitly and spreads the in-gap
state across the circuit. Nevertheless, the resulting state
is still protected against perturbations due to the pro-
motion of the original chiral symmetry to a custodial
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status. Our predictions, which can be verified experi-
mentally with realistic circuit elements, open up yet an-
other venue to explore some symmetry and topological
concepts, which are typically found in quantum systems,
in classical settings.
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Supplementary Material: Custodial chiral symmetry
in a Su-Schrieffer-Heeger electrical circuit with

memory

Numerical simulations

The numerical integration scheme utilized in this work
was based on the Runge–Kutta fourth-order method. We
performed a series of tests to check the convergence and
correctness of the numerical solution. In particular, we
compared results of our simulations with simulations in
LTspice circuit simulator and found an excellent agree-
ment, see Fig. S1(a). This simulation was performed for
Fig. 1(a) circuit at N = 4 using a physical model of in-
ductors (taking into account a small in-series resistance
of 10 mOhms). Fig. S1(a) indicates that the integration
time step of 10−9 s is suitable for present simulations.

From time-dependence of the external current I(t),
we extracted the current envelops Imax and Imin, see
Fig. S1(b). According to this plot, the system reaches
the dynamic steady-state at about 10 ms. A similar
equilibration time scale was found for other circuits.
The current oscillation amplitude was evaluated as I1 =
(Imax − Imin)/2. The ratio of the applied voltage am-
plitude to the current amplitude I1 was used to estimate
the impedance.

We note that in circuits composed of only linear cir-
cuit components (such as in Fig. 1(a)), perfect sinu-
soidal current oscillations were observed at long times
(see Fig. S1(a)). Examples of voltage waveforms are in
Fig. S2. Fig. S3 presents examples of current waveform
in the memristive SSH circuit. It indicates that in most
cases the signal can be approximated well by a sinusoidal
waveform. From the point of view of impedance calcula-
tion, the deviation is significant only in the case of mem-
ristors with a small Ron = 102 Ohms and larger threshold
voltage Vt = 0.3 V. Physically, the spikes in Fig. S3(b) are
due to the switching of the memristor connecting nodes
0 and 1 into Ron.

The quantities presented in the main text demonstrate
the steady-state oscillations in the circuit. To extract
those quantities, we skipped the initial transient evolu-
tion interval and identified the amplitudes of oscillations
for node voltages and external current. To support the
application of the approximate Fourier analysis to the
memristive circuit, Fig. S4 shows the Fourier series co-
efficients of Fig. S3. In all but one case of low Ron

(Fig. S4(c)), there is a dominant component with the
weight of higher modes decaying away, justifying the ap-
proximate Fourier analysis in the steady states.

Regular resistors in series with capacitors

If we place regular resistors in series with the ca-
pacitors, the chiral-symmetry protected mid-gap state

is still visible provided the resistance is not too large
so as to close the current flow in the circuit. This
is because the resistors in series with the capaci-
tors provide the current at each node of the type
I = V/[(iωC)−1 + R] = [iωC/(1 + iωCR)]V , with the
current going to zero with increasing R. This effect on
the mid-gap state is clearly seen in Fig. S5.

Voltage profiles and extended plot corresponding to
Fig. 2

The voltage profiles corresponding to Fig. 2 in the
main text are shown in Fig. S6. Moreover, a plot of the
impedance in an extended frequency range shows the con-
tributions from the band states of the admittance matrix
on the two sides of the localized-state peak, as shown in
Fig. S7.

Memristive elements in series with capacitors

If the memristive elements are in series with the ca-
pacitors, the expression for a single node becomes I =
V/[(iωC)−1+RM ] = [iωC/(1+iωCRM )]V . In the result-
ing SSH memcircuit, the conductance matrix can be ob-
tained by replacing C1,2 in Eq. (1) of the main text with

Ĉ1,2 = [C1,2/(1+iωC1,2RM,{1,2})]. The conductance ma-
trix then becomes complex-valued and the equations are
nonlinear. Therefore, the same arguments as the ones
we made in the main text for the memristive elements in
parallel with the capacitors hold.

The admittance matrix now becomes G = Â1N + B̂.
Here Â(xj) = iω[−(ω2L(xj)

−1 + ĈL(xj−1) + ĈR(xj+1)],

where ĈL and ĈR are the capacitor to the left and to the
right of the node, and

B̂ =


0 Ĉ2(x2) 0 0 · · ·

Ĉ2(x1) α1 Ĉ1(x3) 0 · · ·
0 Ĉ1(x2) α2 Ĉ2(x4) · · ·
...

...
...

...
. . .

 . (7)

Here, the αj = Â(xj+1)− Â(x1).

If RM,{1,2} � 1, we may replace Ĉ1,2 by iω/RM,{1,2}.

Then B̂ has the form of the SSH model with alternat-
ing off-diagonal elements. The nonlinearity terms on the
diagonal, however, still break the symmetry.

The admittance matrix has then the same structure
as that with parallel memristive elements. The same ar-
guments then hold regarding the custodial status of the
chiral symmetry. The only major difference is that its
detection can only be observed at relatively small RM ,
namely so long as the current in the circuit is not too
small to be detected. In this case, the mid-gap state
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Figure S1. (a) Comparison of our custom code and LTspice simulations of Fig. 1(a) circuit with N = 4. (b) Time evolution of
oscillation envelops Imax and Imin.
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Figure S2. Voltage waveforms in Fig. 1(b) circuit with N = 21, Ron = 102 Ohms, Vt = 0.3 V at (a) ν = 79 kHz, and (b)
ν = 89 kHz.

is weakly delocalized compared to the case of in-parallel memristive elements, as shown in Fig. S8.
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Figure S3. Current waveforms in Fig. 1(b) circuit with N = 21 at (a) ν = 79 kHz, and (b) ν = 89 kHz.
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Figure S4. Fourier series coefficients for the current waveforms in Fig. S3(b). (a) to (f) correspond to the top to bottom curves
in Fig. S3(b). Here, an-s and bn-s are the standard cosine and sine coefficients, respectively. The sign of coefficient is indicated
by the color.
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Figure S5. SSH circuit simulations with resistors connected in-series with capacitors. (a) Impedance as a function of frequency.
(b) Voltage distributions at 89 kHz. (c), (d) Voltage and inverse voltage distributions plots for R = 1 Ohm.
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Figure S6. Another representation of Fig. 2 with R = 104 Ohms. The edge state can not be clearly distinguished in (a) as
its main feature is the suppression of voltages at even sites (for different frequencies), see (b). However, the edge state can be
distinguished in the inverse voltage plot, (c). (d) Comparison of voltage distributions in the edge state (red circles) and outside
(black squares and blue triangles). This plot indicates the exponential decay in all three cases. The distinguishing feature of
the edge state is that the voltages at even sites are very low.
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Figure S7. Extended frequency plot corresponding to the R = 104 Ohms curve in Fig. 2(a) of the main text. The contributions
of the SSH band states are highlighted in shaded color.
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Figure S8. Edge state of the SSH memcircuit with in-series connected memristive elements. The edge state can not be clearly
distinguished in (a) as its main feature is the suppression of voltages at even sites. However, the edge state can be distinguished
in the inverse voltage plot, (b). The parameters used in this simulation are Ron = 1 Ohm, Roff = 10 Ohm, Vt = 0.1 V,
R(t = 0) = 1 Ohm. (c) Impedance as a function of frequency. (d) Voltage distributions at various frequencies.


