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We present a theory of a two-component atomic Fermi gas with tunable attractive contact in-
teractions on a spherical shell going through the Bardeen-Cooper-Schrieffer (BCS) - Bose Einstein
condensation (BEC) crossover, inspired by the realizations of spherical bubble traps for ultracold
atoms in microgravity. The derivation follows the BCS-Leggett theory to obtain the gap and num-
ber equations. The BCS-BEC crossover can be induced by tuning the interaction, and the properly
normalized gap and chemical potential exhibit universal behavior regardless of the planar or spher-
ical geometry. Nevertheless, the spherical-shell geometry introduces another way of inducing the
crossover by the curvature. The curvature-induced BCS-BEC crossover is made possible by fixing
the particle number and interaction strength while shrinking the sphere, causing a reduction to
the ratio of the pairing and kinetic energies and pushing the system towards the BCS limit. The
saturation of the superfluid density further confirms the ground state is a Fermi superfluid.

I. INTRODUCTION

Ultracold atoms have offered versatile platforms for
studying quantum many-body physics with precise con-
trols and broad tunability [1–8]. While the Bose-Einstein
condensation (BEC) has been the foundation behind
major research of bosonic atoms [9, 10], pairing be-
tween fermionic atoms introduces the Bardeen-Cooper-
Schrieffer (BCS)-BEC crossover that smoothly interpo-
late the behavior of fermionic and bosonic superflu-
ids [11–15]. On the BCS side of the crossover at zero
temperature, the pairing gap is small with respect to
the Fermi energy EF while the chemical potential µ is
near EF . On the BEC side, the gap is comparable to
or larger than EF while µ becomes negative due to the
strong binding of fermions. The mean-field BCS-Leggett
theory [16] captures the main feature of the ground state
in the crossover.

Meanwhile, geometry has played an important role in
the study of cold atoms. For example, an atomic super-
fluid in a harmonic trap carries angular momentum by
forming vortices [17], but an atomic superfluid in a ring-
shape trap carries angular momentum by its circulating
persistent current [18]. Another example is the realiza-
tions of 2D planar atomic systems, including 2D super-
fluids [19, 20], 2D BCS-BEC crossover [21, 22], spin-orbit
coupled superfluids [23], phase transitions [24, 25], scale
invariance [26], along with many theoretical works [27–
32]. On the other hand, spherical bubble traps for cold
atoms have been proposed [33, 34] and recently realized
in microgravity environment, such as the outer space [35].
Shells of superfluid have also been observed in atomic
Mott insulator-superfluid systems [36] and relevant to
neutron stars [37]. While there have been theoretical
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studies of bosonic superfluid on a spherical shell [38–
44], showing enhanced transition temperature, vortices,
multi-component mixtures, etc., less references can be
found on fermionic superfluid on a spherical shell.

Here we present an analysis of the BCS-BEC crossover
of a Fermi superfluid on a 2D spherical shell at the level
of the BCS-Leggett theory. The dispersion of an ideal
Fermi gas on a spherical shell already exhibits interest-
ing features [45], including degeneracy within an angular-
momentum level and jumps between adjacent levels. By
considering a contact interaction similar to that in nu-
clear matter [46], we obtain a mean-field Hamiltonian de-
scribing pairing of the fermions on a spherical shell. Im-
plementing the Bogoliubov transformation [46], the gap
and number equations on a spherical shell are derived.
The solution exhibits the signatures of the BCS-BEC
crossover as the attractive interaction increases. When
the gap and chemical potential are properly normalized,
they exhibit universal behavior that depends only on the
interaction but not the curvature, as long as the sphere
is large so that the scattering remains a local event.

Nevertheless, the curvature will be shown to influ-
ence the Fermi superfluid and induce its own BCS-BEC
crossover on a sphere. This is because a bound state
always exists in 2D two-body scattering [47, 48]. In con-
trast, a two-body bound state in 3D only emerges beyond
the unitary point [49]. The binding energy is determined
by the scattering length that quantifies the interaction
strength. In experiments, the size of the spherical bubble
trap is expected to be tunable with the particle number
fixed, so the particle density increases with the curvature.
Since the Fermi energy increases with the particle den-
sity, the ratio of the pairing energy indicated by the two-
body binding energy and the kinetic energy indicated by
the Fermi energy decreases as the spherical shell shrinks,
thereby pushing the Fermi superfluid towards the BCS
limit even when the interaction is fixed. The curvature-
induced BCS-BEC crossover is made possible by the 2D
nature and the compactness of the spherical bubble trap,
and its realization will offer another elegant example of
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geometric effects on strongly interacting quantum sys-
tems. We remark that the topology of a sphere is dif-
ferent from a plane as the Poincare-Hopf theorem [50]
states that vector fields on the tangent planes of a sphere
must have singularities while those on a plane may have
none, and there is a recent study on the XY model on a
spherical shell [51].

The rest of the paper is organized as follows. Sec. II
shows a derivation of the BCS-Leggett theory of
fermionic superfluids in the BCS-BEC crossover on a
spherical shell. A comparison with the planar case is pre-
sented to show the universal behavior. Sec. III presents
the curvature-induced BCS-BEC crossover as the spher-
ical shell shrinks. Sec. IV discusses theoretical and ex-
perimental implications of the BCS-BEC crossover on a
spherical shell. Finally, Sec. V concludes our work. Some
details and derivations are given in the Appendix.

II. EFFECTIVE THEORY OF FERMIONIC
SUPERFLUID ON A SPHERICAL SHELL

A. Model Hamiltonian

We consider a two-component atomic Fermi gas with
equal mass and population confined in a spherical bubble
trap. Assuming the shell is thin, the gas thus lives on the
surface of a sphere. For a free Fermi gas confined on a
spherical shell, the energy dispersion is given by [45]

εl =
~2

2mR2
l(l + 1), l = 0, 1, · · · . (1)

Here m is the mass of the atoms and R is the radius of the
sphere. In the following, we will set ~ = 1 and kB = 1.
l is the quantum number of the orbital angular momen-
tum. For a fixed l, the magnetic quantum number takes
the values mz = −l, · · · , l, and σ =↑, ↓ labels the two
components. Therefore, there are 2(2l + 1) degenerate
states for the level labeled by l.

After including a two-body interaction term model-
ing atomic scattering, the Hamiltonian in the grand-
canonical ensemble is H = HK + HI , where HK =∑
l,m,σ(εl − µ)c†lmσclmσ and

HI =
′∑

l1,m1,···

V1234c
†
l1m1σ1

c†l2m2σ2
cl3m3σ3

cl4m4σ4
. (2)

Here V1234 = 〈l1,m1; l2,m2|V |l3,m3; l4,m4〉 and c†lmσ
(clmσ) is the fermion creation (annihilation) operator.
We also assume equal populations of the two compo-
nent, so µσ = µ. Assuming the two-body interaction
is rotational invariant, then non-vanishing matrix ele-
ments only occur if the magnetic quantum numbers sat-
isfy m1 +m2 = m3 +m4, as indicated by the prime above
the

∑
. For atomic gases, the interactions are usually

tunable via Feshbach resonance by an external magnetic
field [1, 9, 49]. Conventional superconductors are due to

phonon mediated interactions [52]. In principle, one may
formulate mediated interactions on a sphere. The ex-
pressions may be more complicated than those presented
here, and it may be challenging to tune those mediated
interactions through the BCS-BEC crossover.

In the conventional BCS theory, one only considers
two-body scattering from | ± k〉 to | ± k′〉, forming
Cooper pairs with zero total momentum [1, 46]. In-
spired by such a simplification, we also focus on the
initial and final states on the spherical shell that can
be coupled into |L = 0,M = 0〉 with spin singlet
and ignore other scattering processes. The approxima-
tion then leads us to the reduced interaction Hamilto-
nian HI =

∑
l1,m1,l2,m2

V12c
†
l1m1↑c

†
l1,−m1↓cl2m2↑cl2,−m2↓.

Here V12 = 〈l1,m1; l1,−m1|V |l2,m2; l2,−m2〉. The
coupling among the angular-momentum states gives

|l,m; l,−m〉 =
∑2l
L=0 |l, l;L, 0〉〈l, l;L, 0|l,m; l,−m〉. Here

we only keep the L = 0 state and use the
fact that 〈l, l;L, 0|l,m; l,−m〉 = (−1)l−m/

√
2l + 1.

The interaction Hamiltonian then becomes HI =∑
l1,m1,l2,m2

V12,0c
†
l1m1↑c

†
l1,−m1↓cl2m2↑cl2,−m2↓. Here

V12,0 = 〈l1, l1; 0, 0|V |l2, l2; 0, 0〉 (−1)l1−m1 (−1)l2−m2√
(2l1+1)(2l2+1)

. The

factor (−1)l1−m1(−1)l2−m2 inside V12,0 can be removed
by a canonical transformation, given by clm → clm and
cl−m → (−1)l−mcl−m. After those calculations, the form
of HI is now suitable for a general mean-field approxima-
tion similar to the BCS theory.

B. BCS theory on a spherical shell

Following the BCS approximation, we make the sub-

stitutions clm↑cl,−m↓ → 〈clm↑cl,−m↓〉 and c†lm↑c
†
l,−m↓ →

〈c†lm↑c
†
l,−m↓〉 in the interaction Hamiltonian and keep

only up to the quadratic terms. This leads to the BCS
Hamiltonian

HBCS = HK +
∑
l,m

(−∆lc
†
lm↑c

†
l,−m↓ −∆lclm↑cl,−m↓).(3)

Here the gap function is given by

∆j = − 1

(2j + 1)1/2

∑
l,m

Vjl
1

(2l + 1)1/2
〈clm↑cl,−m↓〉 (4)

and Vjl = 〈j, j; 0, 0|V |l, l; 0, 0〉. The BCS Hamilto-
nian can be diagonalized by the Bogoliubov transforma-
tion [46] with

clm↑ = ulαlm − vlβlm, c†l,−m↓ = vlαlm + ulβlm. (5)

The coefficients are given by u2
l = 1

2 (1 + ξl
El

) and v2
l =

1
2 (1 − ξl

El
), where ξl = εl − µ and El =

√
ξ2
l + ∆2

l . The
diagonalized Hamiltonian has the form

HBCS =
∑
lm

(ξl − El) +
∑
lm

El(α
†
lmαlm + β†lmβlm).(6)
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Figure 1. Universal behavior of interaction-induced BCS-
BEC crossover: The normalized gap (left) and chemical po-
tential (right) as a function of − ln(kF a) on a 2D plane accord-
ing to Eq. (9) (red circles) and on the shell of a unit sphere
according to Eq. (10) (blue squares) at zero temperature.

In terms of the Bogoliubov transformation, the gap
function becomes

∆j =
−1

(2j + 1)1/2

∑
l

Vjl(2l + 1)1/2ulvl[1− 2f(El)].(7)

Here f(x) = 1/[exp(x/T ) + 1] is the Fermi distribu-
tion function. We will further approximate the matrix
element Vjl before solving the gap equation. Mean-
while, the number equation can be derived from n =∑
l,m,σ〈c

†
lmσclmσ〉. Explicitly,

n =
∑
l

(2l + 1)
(

1− ξl
El

+ 2
ξl
El
f(El)

)
. (8)

Solving the gap and number equations gives us ∆ and µ
of the Fermi gas.

C. BCS-BEC crossover on a spherical shell

We begin with a brief review of the mean-field descrip-
tion of the BCS-BEC crossover on a 2D plane, following
Refs. [27, 32]. To handle the bound state from the 2D
two-body scattering, a regularization introduces a bind-
ing energy εb = −~2/(ma2), where a is the 2D two-body
s-wave scattering length. Combining the binding energy
with the renormalization of the contact interaction, the
coupling constant is expressed in terms of the scattering

length via 1
g =

∫
d2k

(2π)2
1

2εk+|εb| . Here εk = ~2k2/(2m) is

the free-fermion dispersion. The gap and number equa-
tions can be simplified to∫

d2k

(2π)2

[1− f(Ek)

2Ek
− 1

2εk + |εb|

]
= 0. (9)

n =

∫
d2k

(2π)2

(
1− ξk

Ek
+ 2

ξk
Ek

f(Ek)
)
.

Solving the equations gives ∆ and µ once the values of a
and T are given.

In a previous study of bosonic atoms in a spherical-
shell potential [38], a contact interaction has been im-
plemented. To simplify the BCS theory on a spherical
shell, we also implement an approximation of the ma-
trix element Vjl by considering only a short-range at-
tractive interaction. A choice is a two-body contact
interaction of the form V = −gδ(1 − cos θ12), where
cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). As one
will see shortly, the choice renders a constant gap func-
tion. The coupling constant g will be related to the
2D scattering length in a discussion later. After using
a generalization of the Wigner-Eckart theorem [46] as
explained in Appendix A, the matrix element becomes
Vjl = −g

√
(2j + 1)(2l + 1). We remark that the contact

potential has infinitesimal interaction range. When we
expand the contact potential by spherical harmonics, the
expansion coefficients are similar in magnitude for all an-
gular momentum l, leading to the simplified expression of
the matrix elements. If a different interaction potential is
considered, the dominant contributions may come from
those with small l, and the strength decays as l increases.

The gap equation is then reduced to ∆j = g
∑
l(2l +

1) ∆l

2El
[1 − 2f(El)]. Since the right hand side does not

depend on j, we conclude that ∆ does not depend on
j explicitly. Hence, the gap equation reduces to 1

g =∑
l

2l+1
2El

[1 − 2f(El)]. Since El ∝ l(l + 1), the domi-

nant terms in the summation will behave like
∑
l

2l+1
2El
∼∑

l
2l+1
l(l+1) → ∞ due to the contact-interaction approxi-

mation. A systematic renormalization scheme, similar to
the one in flat space, can be applied to render meaningful
physical results.

Following the planar case, the regularization on a 2D
spherical shell can be modified as 1

g =
∫
dl 2l+1

2εl+|εb| . We

assume εb = −~2/(ma2) due to its localized nature. The
two-body scattering length can be measured experimen-
tally to characterize the interaction strength [1, 49]. Af-
ter the regularization, we obtain the gap and number
equations as∫

dl (2l + 1)
[1− 2f(El)

2El
− 1

2εl + |εb|

]
= 0, (10)

n =
1

4πR2

∫
dl (2l + 1)

(
1− ξl

El
+ 2

ξl
El
f(El)

)
.

We mention there is another regularization scheme sum-
marized in Appendix B that produces qualitatively the
same results. Moreover, we have approximate the sum-
mations by integrals, and a comparison in Appendix D
shows that there is no observable difference between the
results from the summations and the integrals for rea-
sonably large l.

Numerical results of the BCS-BEC crossover on a 2D
spherical shell at zero temperature are shown in Fig. 1,
along with the results of the 2D planar case. We plot
∆ and µ as a function of − ln(kFa) for both cases. For
the 2D planar case, EF and kF are the Fermi energy and
Fermi momentum of a noninteracting Fermi gas with the
same density. For the spherical-shell case, we take EF



4

0

0.5

1

1.5

2

2.5

3
∆

/E
F

0.2

0.4

0.6

0.8

1

∆
/∆

0
1 1.2 1.4 1.6 1.8 2

 (R
0
/R)

2

-0.5

0

0.5

1

µ
/E

F

1 1.2 1.4 1.6 1.8 2

 (R
0
/R)

2

-4

-3

-2

-1

0

1

µ
/µ

0

Figure 2. Curvature-induced BCS-BEC crossover on a spher-
ical shell at zero temperature: (Top panels) Gap as a function
of (R0/R)2 normalized to EF (left) and ∆0 (right). (Bottom
panels) Chemical potential as a function of (R0/R)2 normal-
ized to EF (left) and µ0 (right). ∆0 and µ0 on the right pan-
els are the gap and chemical potential of N = 220 fermions
on the shell of a reference sphere with radius R0 satisfying
− ln(kF a) = −0.1. Then a and N are fixed while (R0/R)
varies.

and kF =
√

2mEF from a noninteracting Fermi gas with
the same total particle number. Assuming the largest oc-
cupied shell has angular momentum Lm for a free Fermi
gas, the total particle number is N = 2Lm(Lm + 1), so

EF = Lm(Lm+1)
2mR2 and n = N/(4πR2). As −ln(kFa) in-

creases, the gap increases while the chemical potential de-
creases, showing the signature of the BCS-BEC crossover.
While the BCS-BEC crossover is not a sharp transition,
the crossover may be identified as the regime where µ
changes sign. Since the scattering length reflects the ef-
fective interactions between the fermions, Fig. 1 shows
the interaction induced BCS-BCS crossover in two dif-
ferent 2D geometries.

Importantly, when normalized according to their re-
spective intrinsic quantities like EF and kF , the results
of the 2D plane are indistinguishable from those of the
spherical shell. This is because the pairing from the con-
tact interaction is a local property of the Fermi gas. As
a consequence, properly normalized quantities reflect the
same local behavior from the mean-field theory and fail
to differentiate the global geometry. For the spherical
case, taking different values of N , Lm, and R produces
the same universal results of ∆/EF and µ/EF . The uni-
versal behavior can also be confirmed by the resemblance
of the equations of state, Eqs. (9) and (10), when written
in the normalized quantities. The details can be found
in Appendix C. We remark that by using dimensionless
quantities such as ∆/EF and µ/EF , the theory can be
applied to systems with different species of atoms and
different sizes or numbers to extract universal behavior.

III. CURVATURE INDUCED BEC-BCS
CROSSOVER

The universal behavior of Fig. 1 may lead to a false
impression that the curvature of the sphere, 1/R2, does
not play a significant role. However, one may envision
that the radius of the spherical bubble trap is tunable
and consider a different scenario where the particle num-
ber, not the local density, is conserved and compare the
physical quantities with different curvatures but the same
interaction strength. As the curvature increases, the sur-
face area shrinks and the local particle density increases
if the total particle number is fixed. Since EF increases
with the density, it is tempting to claim that the gap will
increase with the curvature if ∆/EF is roughly the same.
A careful analysis, however, reveals the opposite and es-
tablish a BEC-BCS crossover induced by the curvature.

To demonstrate the curvature effects, we plot µ and ∆
as functions of the curvature with fixed particle number
and scattering length. As the radius of the sphere shrinks
from R0, one can see that the gap become smaller with
respect to the gap at R0. The reason is that as 1/R2

increases, the Fermi energy becomes larger. Meanwhile,
the effective two-body binding energy is fixed by the scat-
tering length, which is controlled by an external magnetic
field. The ratio |εb|/EF thus decreases with the curva-
ture, resulting in a situation where the kinetic energy
dominates the pairing energy and thereby driving the
system into the BCS limit as the radius of the spherical
shell shrinks. Again, a sign change of µ indicates the
occurrence of the BCS-BEC crossover.

Thus, there are two ways to sweep a Fermi superfluid
across the BCS-BEC crossover on a spherical shell, one
by tuning the interaction and the other by tuning the
geometry. The first one is an analogue of the 2D planar
case, where the particle density is fixed and the scatter-
ing length is tuned via magnetic or optical means. The
second one requires a compact 2D geometry, where the
particle number and scattering length are fixed but the
ratio between the two-body binding energy and Fermi
energy is tuned by the geometry. We remark that the
latter is possible in 2D because the two-body binding en-
ergy is always present [47, 48], different from the general
3D case where the binding energy is finite only on the
BEC side. Therefore, shrinking a 3D bulk Fermi super-
fluid cannot push the system to the BCS regime. We
also caution that the calculation of the two-body scat-
tering length assumes the system is locally flat, and the
assumption breaks down when the curvature is too large,
or when R ∼ O(a). Moreover, we note that the BCS-
Leggett theory does not take into account the induced
interaction [1] and Hartree-Fock energy [53]. The former
reduces the transition temperature by a factor in the 3D
case, and the latter shifts the chemical potential. As a
first attempt to develop the BCS-Leggett theory of Fermi
superfluids on a spherical shell, we leave those effects for
future, more refined studies.

Furthermore, we evaluate the superfluid density given
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tions of T/EF of a Fermi superfluid on the shell of a unit
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by

ns = n− 1

4πR2

∫
dl 2(2l + 1)

l(l + 1)

2mR2

[
− df(El)

dEl

]
.(11)

A derivation based on linear response theory is shown in

Appendix E. As T → 0, −df(x)
dx approaches the delta

function. Since El is positive, the delta function can
never be satisfied. Therefore, ns/n = 1 at T = 0 across
the whole interaction-induced BCS-BEC crossover, so
the ground state is indeed a Fermi superfluid. Never-
theless, in the curvature-induced crossover, the density
increases with the curvature because the total particle
number is fixed, leading to an interesting scenario where
ns increases while ∆ decreases with the curvature accord-
ing to the upper-right panel of Fig. 2. The disparity of
the dependence of ns and ∆ on the curvature has its root
in that ∆ is associated with thermodynamics while ns is
from linear response to perturbations.

IV. IMPLICATIONS

After characterizing the ground-state properties of
atomic Fermi superfluids on a spherical shell, we in-
vestigate the mean-field theory away from zero temper-
ature by solving the gap and number equations at fi-
nite temperatures. In Figure 3, we show ∆ and ns
as functions of T . The mean-field transition temper-
ature T ∗ is the point above which ∆ vanishes. As
the system moves towards the BEC limit, T ∗ increases
without bound and indicates the pairing energy scale.
The 2D Berezinskii–Kosterlitz–Thouless (BKT) transi-
tion [54–56] temperature separates the superfluid and
normal phase, which may be estimated by

kBTBKT
~2ns(TBKT )/m

=
π

2
. (12)

For the case shown in Figure 3, TBKT is below T ∗, so the
BKT transition will preempt the mean-field transition
and cause ns to jump to zero.

The BCS-Leggett theory only provides a qualitative
description of the crossover at finite temperatures. It has
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Here N = 220. The dashed line indicates the ideal TBEC/EF

in the BEC regime.

been shown [11–15] that the preformed pairs, which are
the analogue of thermal bosons in a Bose gas, lead to a
substantially lower Tc on the BEC side. There have been
studies of 2D planar Fermi superfluids that include pair-
ing fluctuations [22, 31, 32] and studies of 2D BKT transi-
tion in Fermi superfluids with fluctuation effects [27, 57].
In the BEC limit, the tightly bound pairs resemble com-
posite bosons. The BEC temperature of a noninteracting
Bose gas on a sphere is given by [38]

kBTBEC =
2π~2

mB
nB

~2

mBR2kBTBEC
− ln(e~2/mBR2kBTBEC − 1)

.(13)

By setting mB = 2m and nB = n/2 for the composite
bosons, we estimate the ideal BEC temperature of the
composite bosons in the BEC regime. For 3D Fermi su-
perfluids in the BEC limit, pairing fluctuations via the
Nozieres–Schmitt-Rink and other methods show that the
transition temperature approaches TBEC [12, 14, 58] due
to the composite bosons, and the same mechanism should
apply to 2D systems. Fig. 4 shows T ∗, TBKT , and TBEC
as functions of the interaction strength. On the BCS and
BEC sides, the BKT and BEC temperatures limits where
superfluid and condensate can be observed, respectively,
while the mean-field T ∗ shows where pairing energy en-
ters the excitation spectrum. The three temperatures
provide upper bounds for the transition temperatures,
and a full treatment of the finite-temperature BCS-BEC
crossover on a spherical shell will be worth another pub-
lication. We remark that the BCS, BKT, and BEC tran-
sitions are defined in the thermodynamic limit. For a
finite system, the transitions will lose the sharpness due
to finite-size effect.

Trapping of single-species atomic bosons in a spher-
ical shell has been achieved by having three hyperfine
states in a spherical harmonic potential with energy lev-
els split by a magnetic field [35]. A radio-frequency (rf)
excitation only couples the hyperfine states at a given
radius due to the inhomogeneity from the harmonic trap
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Figure 5. Illustration of a bubble trap for two-component
atomic Fermi gases. By using radio-frequency (rf) photons
(rf1 and rf2) to couple two pairs of hyperfine states |↑,±〉
and |↓,±〉 in a harmonic trap with a magnetic field, the re-
sulting minimum in the upper-branch of the potential for the
two-component Fermi gas (indicated by the black dots) cor-
responds to a spherical shell in 3D.

and inverts the potential inside. The combination of
the potentials for the dressed states thus resembles a
shell at specific radius determined by the harmonic trap,
magnetic field, and rf excitation. Therefore, the shell
size can be tuned by the background harmonic poten-
tial or radio frequency. The method should in principle
work for fermionic atoms. However, to have two com-
ponents of fermions in a spherical shell, more hyperfine
states with selected rf excitations among them may be
needed. High-component atomic Fermi gases have been
realized [59], and they may be suitable for the realiza-
tion of two-component Fermi gases in a spherical shell in
the future. Figure 5 illustrate the setup for a spherical
bubble trap for two-component fermionic atoms.

In this work, a contact interaction has been imple-
mented to model the atomic collisions. Numerical cal-
culations have shown that short-range interactions de-
scribes atomic interactions reasonably [60], and one may
consider finite-range interactions to include corrections
beyond the low-energy limit [61, 62]. We also remark that
when the spherical-shell size shrinks too much, the con-
tinually increasing density will lead to strong three-body
loss [49]. Moreover, finite-range corrections to the inter-
action may become observable when atoms are closely
packed. Therefore, while the increasing of the chemical
potential and decreasing of the gap function due to the
curvature-induced BCS-BEC crossover should be observ-
able as the radius decreases, the behavior of the system
may start to deviate from the mean-field description as
the trap size gets too small. Ref. [35] shows 104 atoms
confined in a shell potential with linear size of the or-
der of 100 µm. For a spherical shell of similar size, this
gives a surface density of about 1011/m2. If a Feshbach
resonance is sufficiently far away from others, the scatter-
ing length almost covers the range (−∞,∞) [49]. When
finite thickness of the atomic cloud is considered, the
system gradually deviates from the 2D case and eventu-

ally becomes 3D when the thickness is comparable to the
scattering length. For the curvature-induced BCS-BEC
crossover, the interaction is assumed to be fixed while the
radius changes. Thus, the thickness of the cloud should
be roughly the same to keep the scattering properties
fixed.

We remark the spherical-shell trap is not the only way
for realizing compact 2D geometries for cold atoms. One
may, for example, confine planar 2D atomic gases in a
finite regime. The distortion of the condensate wave-
function near the boundary is determined by the healing
length [46], which depends on the interaction and den-
sity. One may also envision wrapping a rectangle into
the surface of a torus to eliminate boundary effects. The
2D torus has two different principal curvatures while the
sphere has the same curvature everywhere. It has been
shown [63] that the Ginzburg-Landau theory on the sur-
face of a torus exhibits size-dependent transition temper-
ature. However, a torus-surface trap for cold-atoms may
be more challenging.

V. CONCLUSION

We have presented a generalization of the BCS-Leggett
theory of atomic Fermi superfluids on a 2D spherical
shell undergoing the BCS-BEC crossover, relevant to
future experiments using spherical bubble traps in mi-
crogravity. Although the highly degenerate levels and
jumps between the levels of an ideal Fermi gas on a
spherical shell makes the spectrum different from that
on a 2D plane, the pairing gap and chemical potential
of a Fermi superfluid after proper normalization exhibit
universal behavior transcending the underlying geome-
tries. Therefore, the conventional interaction-induced
BCS-BEC crossover of Fermi superfluid is also present
on a spherical shell. Nevertheless, the spherical geometry
introduces the curvature-induced BCS-BEC crossover by
fixing the interaction strength and particle number while
reducing the size of the spherical shell. The latter type
of crossover is due to a suppression of the ratio between
the pairing and kinetic energies by the curvature. Our
work paves the way towards a systematic investigation of
Fermi superfluids with compact geometries, exemplified
by the spherical bubble traps.
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Appendix A: Calculation of V

The two-body contact interaction V = −gδ(1−cos θ12)
allows an expansion by the Legendre polynomials and
spherical harmonic functions as

V = −g
∑
L

(2L+ 1)PL(cos θ12)

= −4πg
∑
LM

(−1)MYLM (θ1, φ1)YL,−M (θ2, φ2).(A1)

Here we treat YLM as an irreducible tensor operator, so
the summation∑

LM

(−1)MYLM (θ1, φ1)YL,−M (θ2, φ2) (A2)

is actually a tensor product of two irreducible tensor op-
erators, which results in a scalar operator.

According to a more general version of the Wigner-
Eckart theorem shown in Eq. (B.33) of Ref. [46], we find
that

〈l1l100|V |l2l200〉 =

−4πg
∑
L

(−1)l1+l2

{
0 l1 l1
L l2 l2

}
〈l1‖YL‖l2〉2. (A3)

Here the 6j symbol is given by{
0 l1 l1
L l2 l2

}
= (−1)l1+l2

1√
(2l1 + 1)(2l2 + 1)

(A4)

and reduced matrix element is

〈l1‖YL‖l2〉 =

(−1)l1

√
(2l1 + 1)(2L+ 1)(2l2 + 1)

4π

(
l1 L l2
0 0 0

)
.(A5)

In the above equation, the large parentheses denote the
3j symbol, not to be confused with the 6j symbol. After
collecting all the results, we find that

〈l1l100|V |l2l200〉 = −g
∑
L

√
(2l1 + 1)(2l2 + 1)

×(2L+ 1)

(
l1 L l2
0 0 0

)2

. (A6)

Moreover, the normalization condition of the Cleb-
sch–Gordan (CG) coefficients lead to

∑
L

(2L+ 1)

(
l1 L l2
0 0 0

)2

=
∑
L

〈l1l200|l1l2L0〉2 = 1.

(A7)

After some algebra, the matrix element takes the form

〈l1l100|V |l2l200〉 = −g
√

(2l1 + 1)(2l2 + 1). (A8)
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Figure 6. Gap and chemical potential as functions of
− ln(kF a) from Eq. (10) (red circles) using the integral and
from Eq. (D1) (blue squares) using the summation. Here
N = 220 and kFR = 10.5.

Appendix B: Alternative renormalization scheme

There is another way of regularizing the gap equation
of a Fermi superfluid on a 2D plane. This has been shown
in Eq. (12) of Ref. [48] as follows.

1

g
= lim
q→0

[
− m

2π
ln(

aqeγ

2
)−

∫
d2k

(2π)2
P 1

2(εq − εk)

]
.(B1)

Here γ is the Euler constant and P denotes the Cauchy
principle value. Combining with the gap equation of the
2D Fermi superfluid, one finds

−m
2π

ln(
aqeγ

2
) =

∫
d2k

(2π)2

1− f(Ek)

2Ek
+∫

d2k

(2π)2
P 1

2(εq − εk)
. (B2)

The drawback of this method, however, is that one has
to assume an infrared (IR) cutoff q. We have verified
that this alternative regularization gives qualitatively the
same results as those presented in the main text.

Appendix C: Universal behavior

The universal behavior of the gap and chemical poten-
tial in the interaction-induced BCS-BEC crossover comes
from the equations of state. We let b = − ln(kFa), which
is equivalent to a = e−b/kF . For the 2D-plane case,
EF = k2

F when ~ = 1 and 2m = 1. The particle number
per unit area of a noninteracting Fermi gas is given by
N = 2(πk2

F )/(2π)2, or n/k2
F = 1/(2π). Therefore, the

gap and number equations of Fermi superfluid on a 2D
plane can be written as∫

dy
[1− f(Ek/EF )

2Ek/EF
− 1

2y2 + 2e2b

]
= 0. (C1)

1

2π
=

∫
dyy

2π

(
1− ξk/EF

Ek/EF
+ 2

ξk/EF
Ek/EF

f(Ek/EF )
)
.
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Here y = k/kF and only ∆/EF and µ/EF show up in
Ek/EF and ξk/EF .

Meanwhile, for a noninteracting Fermi gas on a sphere
filled up to the angular-momentum state Lm, we have
n = N/(4πR2), N = 2Lm(Lm + 1), EF = N/(2R2), and
EF = k2

F with 2m = 1. Again, let b = − ln(kFa). The
equations of state of Fermi superfluid on a spherical shell
thus becomes∫
dz
(
z +

1

2Lm

)[1− f(El/EF )

2El/EF
− 1

2z2 + 2e2b

]
= 0. (C2)

1

2π
=

∫
dz

2π

(
z +

1

2Lm

)(
1− ξl/EF

El/EF
+ 2

ξl/EF
El/EF

f(El/EF )
)
.

Here z = l/Lm and only ∆/EF and µ/EF show up in
El/EF and ξl/EF . When Lm � 1, which is usually the
case in many-body systems, the two sets of equations
of state, Eqs. (C1) and (C2), are identical and give the
universal behavior of the normalized gap and chemical
potential.

Appendix D: Integral vs. summation in the
equations

Here we compare the results from the gap and number
equations using summation over the angular momentum
versus the approximation using integration. The equa-
tions with explicit summations are

LM∑
l=0

(2l + 1)
[1− 2f(El)

2El
− 1

2εl + |εb|

]
= 0, (D1)

N =

LM∑
l=0

(2l + 1)
(

1− ξl
El

+ 2
ξl
El
f(El)

)
.

Here LM is some cutoff level, which is much larger than
the highest occupied shell Lm. We present an example
with LM = 100 and lm = 10, which is the counterpart of
Fig. 1. After solving the gap and µ using summations,
we plot the results in Fig. 6 along with the results from

the integrals. One can see that they are virtually identi-
cal, thereby justifying the approximation of replacing the
summation over the angular momentum with integration.

Appendix E: Derivation of superfluid density

The superfluid density on a spherical shell can be de-
duced from the expression of the 2D planar case. We
remark that the superfluid density is derived from lin-
ear response theory [46] instead of thermodynamics. Ex-
plicitly, ns can be extracted from the London equation
jµ = −ns

mAµ, where jµ and Aµ denote the current and
four-potential. From linear response theory, the current
of a homogeneous system can be written as

jµ(k, ω) = −Kµν(k, ω)Aν(k, ω), (E1)

Kµν(k, ω) =
n

m
δµν − i〈[Jµ(k, ω), Jν(−k,−ω)]〉.

Here Jµ(k, ω) is the current operator and 〈· · · 〉 denotes
the ensemble average. The current-current correlation
function can be obtained by analytical continuation from
the corresponding Matsubara formula. In the static and
uniform limit with ω = 0 and k → 0, the result is sim-
plified to

lim
k→0
−i〈[Jµ(k, 0), Jν(−k, 0)]〉 =

1

m2

∑
k

k2 ∂f(Ek)

∂Ek
δµν .(E2)

After collecting all the above results, we find the ns of
BCS theory on a 2D plane as

ns = n−
∑
k

εk

[
− ∂f(Ek)

∂Ek

]
. (E3)

To generalize the expression to the spherical case, we
make the following replacements:∑

k

→ 1

4πR2

∫
dl 2(2l + 1), εk →

l(l + 1)

2mR2
, (E4)

Afterwards, we arrive at ns = n − 1
4πR2

∫
dl 2(2l +

1) l(l+1)
2mR2

[
− df(El)

dEl

]
as shown in the main text. If the

sphere is too small, the discreteness of the energy spec-
trum cannot be ignored. Then one has to replace the
integral by an explicit summation of l.
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